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Article

PSO Based Unconstrained Polygonal Fitting of 2D
Shapes

Costas Panagiotakis

Department of Management Science and Technology, Hellenic Mediterranean University, Greece;
cpanag@hmu.gr

Abstract: In this paper, we present a general version of polygonal fitting problem called
Unconstrained Polygonal Fitting (UPF). Our goal is to represent a given 2D shape S with an N-vertex
polygonal curve P with a known number of vertices, so that the Intersection over Union (IoU) metric
between S and P is maximized without any assumption or prior knowledge of the object structure
and the location of the N-vertices of P that can be placed anywhere in the 2D space. The search
space of the UPF problem is a superset of the classical polygonal approximation (PA) problem,
where the vertices are constrained to belong in the boundary of the given 2D shape. Therefore, the
resulting solutions of the UPF may better approximate the given curve than the solutions of the
PA problem. For a given number of vertices N, a Particle Swarm Optimization (PSO) method is
used to maximize the IoU metric, which yields almost optimal solutions. Furthermore, the proposed
method has also been implemented under the equal area principle so that the total area covered
by P is equal to the area of the original 2D shape to measure how this constraint affects IoU metric.
The quantitative results obtained on more than 2,800 2D shapes included in two standard datasets
quantify the performance of the proposed methods and illustrate that their solutions outperform
baselines from the literature.

Keywords: polygonal fitting; polygonal approximation; PSO; shape analysis; IoU; segmentation

1. Introduction

Polygonal shape fitting is a key problem in computer vision and computer graphics with several
applications including object recognition, computational cartography, signal summarization, and
compression [1–4]. When curves are modeled, straight-line segments are usually preferred due to their
simplicity. The polygonal fitting process saves memory space, reduces rendering time on graphics
applications, and gives a more compact representation of the original shape.

According to the classical polygonal approximation problem of a 2D shape, the goal is to compute
an N-vertex polygonal curve P that approximates the boundary B of the original shape S according to
a predefined error criterion. In the classical polygonal approximation, the vertices of P are an ordered
sub-sequence of the boundary points B [1]. The classical polygonal shape fitting provides poor results,
especially when the number of vertices is low and the shape complexity is high. In this work, we
study a general version of polygonal fitting called Unconstrained Polygonal Fitting (UPF) problem
to provide better solutions with the same number of vertices. According to UPF, the N-vertices of P

can be placed anywhere in the 2D space. Therefore, the search space of UPF problem is a superset
of the classical polygonal approximation (PA) problem, where the vertices are constrained to belong
in the boundary of the given 2D shape. This means that the resulting solutions of UPF may better
approximate the given curve than the PA problem solutions. This theoretically interesting computer
vision problem has compact and easy-to-grasp description, but a very high algorithmic complexity
due to the large search space. Even if just a triangle (N = 3) is used, there does not exist any trivial
method to compute the optimal solution of UPF problem.

Different error criteria have been proposed for shape fitting - polygonal approximation problems.
In this research, the Intersection over Union (IoU) metric between S and P is maximized given a fixed
number of polygonal vertices N, without any assumption or prior knowledge of the object structure.
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IoU metric can be easily replaced by any other segmentation metric, for example, accuracy and dice
coefficient (DICE) without any change in the proposed methodology. Another problem instance, that
we experimentally study is to define the problem under the Equal Area constraint which states that
the area covered by the polygonal curve P should be equal to the area of the given shape S.

Figure 1 shows two example outputs of the classical polygonal approximation using the
Douglas-Peucker algorithm [5] (left) and the unconstrained polygonal fitting using the proposed
method (right) for N = 4 vertices. In both cases, it holds that the solution of the UPF problem provides
higher IoU, DICE values compared with the results of Douglas-Peucker algorithm. In the first example
with an apple, the Douglas-Peucker algorithm yields DICE = 79.6%, IoU = 66.1% (Figure 1a), while
the proposed method yields DICE = 90.8%, IoU = 83.2% (Figure 1b). In the second example with
a building, the Douglas-Peucker algorithm yields DICE = 88.9%, IoU = 80.1% (Figure 1c), while
the proposed method yields DICE = 97.5%, IoU = 95.1% (Figure 1d). There exists several examples
where there exists significant differences in performance between the optimal solutions of the two
problems, especially for lower values of N where the optimal solutions of UPF space may be far from
the shape boundary.

(a) PA (b) UPF

(c) PA (d) UPF

Figure 1. Example outputs of the proposed classical polygonal approximation (left) and unconstrained
polygonal fitting (right) for N = 4 vertices.

In summary, the major contributions of our work are the following: To the best of our knowledge,
this is the first work to define and solve the UPF problem. The proposed method solves the UPF
problem via Particle Swarm Optimization (PSO) [6] that quickly explore the search space. The
proposed framework suggests solutions that outperform baselines in quantitative terms, even if are
not necessarily optimal due to the PSO. Especially in a low-dimensional search space, that is true for
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low number of vertices, the proposed method clearly outperforms baselines of classical PA, since even
the optimal solutions of the classical PA problem usually fail to obtain high performance results due to
the limited search space (shape boundary) of PA problem.

2. Related Work

The problem of shape fitting - polygonal approximation has been studied extensively during the
last five decades [1,4,5,7]. The methods that have been developed solve the problem by approximating
the original shape S by a polygonal curve P under the constraint that the P vertex sequence is an
ordered sub-sequence of the vertices along shape boundary. The polygonal approximation problem
can be formulated in two ways [1,7]:

• The problem of better fitting, where the approximation error is minimized or the fitting accuracy
is maximized given the number of vertices N.

• The problem of minimum number of vertices, where the approximation error or the fitting
accuracy is bounded and the goal is to find the minimum number of vertices that satisfy the
given bound.

The polygonal approximations algorithms can be classified as (1) optimal or non-optimal and (2)
supervised or unsupervised algorithms [7]. The non-optimal algorithms do not guarantee any kind
of optimum as optimal algorithms but can find reasonable polygonal approximations faster than
the optimal ones. The supervised algorithms take into account parameters to generate polygonal
approximations, while the unsupervised algorithms generate the polygonal approximations without
parameters. Yin [8] presents a polygonal approximation approach based on the discrete particle swarm
optimization (PSO) algorithm. Each particle represented as a binary vector corresponds to a candidate
solution to the polygonal approximation problem. A swarm of particles is initiated and fly through
the solution space for targeting the optimal solution. In [9], the authors proposes a non-optimal and
unsupervised algorithm for generation of polygonal approximations based on the convex hull of the
2D closed curves or contours. The significance levels of the contour points are computed using a
symmetric version of the well-known Douglas-Peucker algorithm and, finally, a thresholding process
is applied to obtain the vertices or dominant points of the polygonal approximation.

In the case of 2D shape fitting, a 2D binary image is given with foreground points representing
the shape to be modeled. This image can be the result of any object detection or image segmentation
method (e.g., [10–12]). Several models can be used to solve the 2D shape fitting problem. In the
literature, there exists several approaches that fit a set of ellipses to the given 2D shape based on (a)
the Hough Transform,(b) Genetic and Optimization Algorithms and (c) edge-following [12,13]. In
[12], a framework has been proposed to represent a given 2D shape with an automatically determined
number of ellipses based on expectation maximization criterion, so that the total area covered by the
ellipses is equal to the area of the original shape. The method has been successfully applied to cell
[14] and tree detection [15] problems. In [4], an algorithm is proposed to extract and vectorize objects
in images with low-complexity polygons based on local merging and splitting of cells. Departing
from a polygonal partition that oversegments an image into convex cells, the algorithm refines the
geometry of the partition while labeling its cells by a semantic class. The authors applied their method
to a variety of scenes, from organic shapes to man-made objects through floor maps and line-drawing
sketches.

Concerning the metrics that have been used to measure the performance on shape fitting problem
can be classified into :

• Boundary based metrics that compares the distance between the boundary of given shape and
the approximated curve. Some of the most most metrics are the root mean square error (RMSE)
between the two curves and the maximum error between the boundary S and their corresponding
subcurves of P. These metrics have the advantage that can also be applied on given curves (non
closed contours) but are sensitive to boundary noise [1,7].
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• Region based metrics that compares the region of the approximated shape and the given shape.
Region-based metrics are more tolerant to noise since they do not restrict themselves to the
boundaries of shapes but rather take into account all shape points [12]. Common metrics of this
category are the Intersection over Union (IoU) and the Dice coefficient (DICE), which is defined
by twice the area of the shapes’ intersection divided by the sum of the areas of each shape. Both
of them have been also used to measure the performance of image segmentation methods [16].

3. Unconstrained Polygonal Fitting

3.1. Problem Formulation

We assume a binary image I that represents a 2D shape S. A pixel p of I belongs either to the
foreground S (I(p) = 1) or to the background (I(p) = 0). The area A of the 2D shape is given by

A(S) = ∑
p∈S

I(p). (1)

We also assume a closed polygonal curve P with N vertices Pi, i ∈ {1, ..., N}, which belong in the 2D
space (not necessary on the boundary of S). The binary image IP is also defined so that IP(p) = 1 at
points p that are inside any of the polygonal curve P and IP(p) = 0, otherwise. Then, the Intersection
over Union IoU(P) metric between the 2D shape S and P is calculated as follows:

IoU(P) =
∑p∈S IP(p)

∑p∈I max(I(p), IP(p))
. (2)

Essentially, IoU(P) is the percentage of the 2D shape points that are under polygonal curve P divided
by the number of 2D points that belong to shape S either polygonal curve P. The optimal solution of
Unconstrained Polygonal Fitting problem is the closed polygonal curve P that maximizes the IoU(P).

P∗ = argmaxP IoU(P) (3)

3.2. Equal Area Principle

The equal area principle (constraint) has been used in [12,14] restricting the area of P to be equal
with the area of the given shape. This is a reasonable constraint in the sense that we except in many
cases that the optimal solutions of the UPF problem have almost the same area with the given shape S.
So, by adding this extra constraint, we reduce the search space of the problem without mainly affecting
the performance of the method. Additionally, some applications may also include this requirement.
Let A(P) denote the areas of polygonal curve P, A(P) = ∑p∈I IP(p). According to the Equal Area
constraint it holds that the area of polygonal curve P is equal with the area of shape S meaning that
A(P) = A(S). Therefore the optimal solution of Unconstrained Polygonal Fitting problem under equal
area principle is the closed polygonal curve P that maximizes the IoU(P) under equal area principle.

P∗ = argmaxP IoU(P), A(P) = A(S) (4)

Hereafter, we describe a simple procedure that applies the equal area principle on a polygonal
curve P, yielding a new polygonal curve P̄ so that A(P̄) = A(S). Let C be the centroid of S1 and P̄i be
the i vertex of polygonal curve P̄, i ∈ {1, ..., N}.

1 The centroid of P can be also used. The centroid of S is more preferable for stability reasons in an iterative process.
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C =
1

A(S) ∑
p∈S

p (5)

P̄i = C +

√

A(S)

A(P)
· (Pi − C) (6)

3.3. UPF-PSO Algorithm

In this work, we cast the search for a single polygonal curve as a stochastic optimization problem
that is solved based on Particle Swarm Optimization (PSO) [6]. PSO is a derivative-free optimization
method that handles multi-modal, discontinuous objective functions with several local minima.
Optimization is performed through the evolution of particles (candidate solutions) of a population
(swarm). Particles lie in the parameter space of the objective function to be optimized and evolve
through a limited number of generations (iterations) according to a policy which emulates “social
interaction”. The main parameters of PSO are the number of particles and generations, the product of
which determines its computational budget (i.e., the number of objective function evaluations). PSO
achieves near-optimal solutions and has been successfully applied in several challenging optimization
problems in computer vision and pattern recognition such as classification, clustering, prediction,
image segmentation, video co-segmentation, object tracking [17,18].

The proposed Unconstrained Polygonal Fitting based on Particle Swarm Optimization Algorithm
(UPF-PSO) optimizes IoU metric (see Eq. 3) for different polygonal curves that are directly represented
by PSO particles. The input to UPF-PSO is the binary image I representing the given shape S and
the number of vertices N of the polygonal closed curve that will be fitted to S. The UPF-PSO method
quickly explores the search space starting from random solutions. Iteratively, PSO searches for a
polygonal curve that maximizes the IoU metric.

We represent each particle by a 2 · N vector with the 2D coordinates of the N points of the
polygonal curve. In order to simplify the search space, we assume that the vertices are in clockwise
order; otherwise, in the evolution process we correct the order of vertices of each particle according to
this hypothesis. The fitness (objective function) of the particle is directly given by the IoU metric of the
particle (see Eq. 2). The UPF-PSO Algorithm is analytically described hereafter.

Initially, we create a population of M (e.g. M = 20) particles that are located in random positions
around the centroid of the shape S under the Equal Area Principle (see Section 3.2) to be in valid
positions of the search space. In the evolution process, PSO finds the current optimal solution in order
to update the best global solution. Additionally, the best local solution of each particle is also updated,
where the IoU of the particle reaches a better solution. The method terminates when the number of
iterations of the evolution process exceeds the given number of generations, e.g. 100.

4. Experimental Evaluation

The evaluation of the proposed approach was based on two standard datasets from the literature.
More specifically, we employ:

• MPEG-7 [19], which consists of 1,400 binary shapes organised in 70 categories with 20 shapes
per category. This dataset has been extensively used in shape tasks [12,14,20].

• A subset of LEMS [21], that is, 1,462 shapes that come from the following categories of the
original database: Buildings, Containers, Fish, Fruit and vegetables, Misc Animal, People,
Robots, Toddlers, and Turtles [14].

Figure 2 shows twelve sample images form the MPEG-7 dataset and LEMS dataset.
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(a) MPEG-7 datase

(b) LEMS dataset

Figure 2. Twelve sample images form (a) the MPEG-7 dataset and (b) the LEMS dataset.

We compared the proposed Unconstrained Polygonal Fitting based on Particle Swarm
Optimization Algorithm (UPF-PSO) and UPF-PSO under equal area principle (UPF-PSO-EA) methods2

with the Douglas-Peucker algorithm (DP) [5] and Douglas-Peucker algorithm under equal area
principle (DP-EA) [5]. Additionally, we have implemented a sequential baseline method of classical
Polygonal Approximation that maximizes IoU. This method uses an initial polygonal curve that is
given by the execution of the Douglas-Peucker algorithm (DP) with high number of vertices (e.g.
50 >> N). In each step, it sequentially removes the vertex of the polygonal curve so that the IoU of
the resulting polygonal curve is maximized. The method terminates when the number of vertices are
reduced to N. This baseline method is called Sequential Maximization of IoU (SM). After the execution
of SM, the equal area principle can be applied yielding the SM-EA method.

In our experiments, we have evaluated the methods for different values of N. Since, our
framework makes sense to be applied for low values of N, where the difference in performance
between the solutions of UPF and PA usually is significant, we have fitted polygonal curves with
3 ≤ N ≤ 10 (eight cases). According to the formulation of the UPF problem, we have compared
the performance of UPF-PSO, UPF-PSO-EA, DP, DP-EA, SM and SM-EA on the IoU metric. For a
given dataset, we also compute Pr(m/IoU), where m is a method in {UPF-PSO, UPF-PSO-EA, DP,
DP-EA, SM, SM-EA}. Pr(m/IoU) is quantified as the percentage of shapes of the datasets where
the method m clearly outperforms the two others under the IoU. This also means that the value
100% − ∑m Pr(m/IoU) gives the percentage of images for which there is no clear winner method.

Tables 1 and 2 present the average IoU, DICE and Pr(m/IOU) metrics computed on all images
from the MPEG7 and LEMS datasets, respectively. It holds that UPF-PSO and UPF-PSO-EA clearly

2 In each execution, the PSO based methods may yields slightly different results due to Particle Swarm Optimization, so we
have executed 10 times each PSO based method (UPF-PSO, UPF-PSO-EA) getting the average IoU.
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outperform the rest methods in any dataset. UPF-PSO slightly outperforms UPF-PSO-EA. UPF-PSO

or UPF-PSO-EA outperform all the rest methods in about 80% of shapes under MPEG-7 and LEMS
datasets. SM or SM-EA outperform all the rest methods in about 17% of shapes under MPEG-7 dataset
and LEMS dataset. DP or DP-EA outperform all the rest methods in about 3% of shapes under MPEG-7
and LEMS datasets.

Table 1. The average IoU, DICE, Pr(m/IOU), UPF-PSO, UPF-PSO-EA, DP, DP-EA, SM, SM-EA

methods computed on all images of MPEG7 dataset.

Methods IoU DICE Pr(m/IOU)

UPF-PSO 0.776 0.866 0.477

UPF-PSO-EA 0.770 0.861 0.322

DP 0.645 0.764 0.005

DP-EA 0.661 0.771 0.031

SM 0.732 0.833 0.084

SM-EA 0.731 0.831 0.080

Table 2. The average IoU, DICE, Pr(m/IOU), of the methods UPF-PSO, UPF-PSO-EA, DP, DP-EA, SM,
SM-EA methods computed on all images of LEMS dataset.

Methods IoU DICE Pr(m/IOU)

UPF-PSO 0.801 0.885 0.404

UPF-PSO-EA 0.803 0.886 0.382

DP 0.679 0.793 0.008

DP-EA 0.685 0.794 0.024

SM 0.751 0.848 0.093

SM-EA 0.751 0.847 0.089

Figure 3 depicts the average IoU of UPF-PSO, UPF-PSO-EA, DP, DP-EA, SM and SM-EA computed
for different values of N ∈ {3, ..., 10} in the two datasets used. UPF-PSO and UPF-PSO-EA clearly
outperform the rest methods under any dataset and N ≤ 8. As expected, the lower N, the better
outer-performance of the proposed methods compared to the classical PA methods. For high values of
N (N > 8), the problem search space increases, so it is more difficult for the PSO to find near-optimal
solutions. At the same time, when N obtains high values, the solutions of classical PA significantly
better approximate the given shape, reducing the gap from the UPF methods. Theoretically, it holds
that as N tends to infinity, the optimal solution of both problems (classical PA and UPF) converges to
the initial shape having IoU equal to one (limN→∞ IoU = 1). When equal area principle is applied it
holds that the results are similar under any method. Usually, the equal area principle provides better
results for low values of N where the fitting polygon is less complex. The results under DICE metric
depicted in Figure 4 agree with the results of Figure 3.
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Figure 3. (a) The IoU metric of UPF-PSO, UPF-PSO-EA, DP, DP-EA, SM, SM-EA methods over (a) the
1,400 images of MPEG-7 dataset and (b) the 1,462 of LEMS dataset.
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Figure 4. (a) The DICE metric of UPF-PSO, UPF-PSO-EA, DP, DP-EA, SM, SM-EA methods over (a)

the 1,400 images of MPEG-7 dataset and (b) the 1,462 of LEMS dataset.

Figure 5 illustrates the Pr(m/IoU), m ∈ {UPF-PSO, UPF-PSO-EA, DP, DP-EA, SM, SM-EA} over
the 1,400 images of MPEG-7 dataset (Figure5(a)) the 1,462 of LEMS dataset Figure 5(b). The results
agree with the results of Figure 3. If we sum the cases where UPF-PSO or UPF-PSO-EA outperforms
all the rest methods, it holds that for N ≤ 8 is more than 70% and 68% under MPEG-7 dataset and
LEMS dataset. As it was expected, when N = 3, UPF-PSO or UPF-PSO-EA clearly outperform the rest
method on more than 98% of shapes and any dataset.
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Figure 5. (a) The Pr(m/IoU), m ∈ {UPF-PSO, UPF-PSO-EA, DP, DP-EA, SM, SM-EA} over the (a) 1,400
images of MPEG-7 dataset and (b) the 1,462 of LEMS dataset.

Finally, Figures 6–8 depict several output examples of the proposed methods and baselines to
further study their behaviour. The DICE-IoU metrics and the used method-N are depicted in the
title and caption of each result, respectively. These figures depict results for N = 3, 6, 9 vertices on
a turtle, bat and horse shapes from MPEG 7 and LEMS datasets. The results of N = 3, N = 6 and
N = 9, corresponds to low, middle and high values of N according to the proposed framework. In
most of the cases the proposed methods outperform the baselines. As it was expected, the difference
in performance between the proposed methods and baselines is higher for low value of N (N = 3),
due to the limited classical polygonal approximation problem - search space that is restricted on the
shape boundary. PSO based methods yield high performance results, when it is more possible to
find near-optimal solutions, which is true under low values of N and less complex given shapes. On
other cases (high values of N and complex shapes), the PSO based methods may fail to provide high
performance solutions due to the complicated and high dimensional search space. For example, in the
case of N = 9 and horse shape (see Figure8) that is the most complex shape, the results of UPF-PSO and
UPF-PSO-EA underperform the SM method. However, it should be noticed that under this complex
shape, when N = 3 or N = 6 it seems that the proposed methods outperform all baselines. Concerning,
the other two simpler shapes, it holds that UPF-PSO or UPF-PSO-EA outperform any other method
even when N = 9, showing that the proposed methods are able to provide high performance results
even for high values of N.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 December 2023                   doi:10.20944/preprints202312.0933.v1

https://doi.org/10.20944/preprints202312.0933.v1


10 of 14

(a) UPF-PSO (N = 3) (b) UPF-PSO (N = 6) (c) UPF-PSO (N = 9)

(d) UPF-PSO-EA (N = 3) (e) UPF-PSO-EA (N = 6) (f) UPF-PSO-EA (N = 9)

(g) DP (N = 3) (h) DP (N = 6) (i) DP (N = 9)

(j) DP-EA (N = 3) (k) DP-EA (N = 6) (l) DP-EA (N = 9)

(m) SM (N = 3) (n) SM (N = 6) (o) SM (N = 9)

(p) SM-EA (N = 3) (q) SM-EA (N = 6) (r) SM-EA (N = 9)

Figure 6. Results of the proposed methods and baselines for N = 3, 6, 9 vertices on a bat shape from
MPEG7 dataset.
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(a) UPF-PSO (N = 3) (b) UPF-PSO (N = 6) (c) UPF-PSO (N = 9)

(d) UPF-PSO-EA (N = 3) (e) UPF-PSO-EA (N = 6) (f) UPF-PSO-EA (N = 9)

(g) DP (N = 3) (h) DP (N = 6) (i) DP (N = 9)

(j) DP-EA (N = 3) (k) DP-EA (N = 6) (l) DP-EA (N = 9)

(m) SM (N = 3) (n) SM (N = 6) (o) SM (N = 9)

(p) SM-EA (N = 3) (q) SM-EA (N = 6) (r) SM-EA (N = 9)

Figure 7. Results of the proposed methods and baselines for N = 3, 6, 9 vertices on a turtle shape from
LEMS dataset.
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(a) UPF-PSO (N = 3) (b) UPF-PSO (N = 6) (c) UPF-PSO (N = 9)

(d) UPF-PSO-EA (N = 3) (e) UPF-PSO-EA (N = 6) (f) UPF-PSO-EA (N = 9)

(g) DP (N = 3) (h) DP (N = 6) (i) DP (N = 9)

(j) DP-EA (N = 3) (k) DP-EA (N = 6) (l) DP-EA (N = 9)

(m) SM (N = 3) (n) SM (N = 6) (o) SM (N = 9)

(p) SM-EA (N = 3) (q) SM-EA (N = 6) (r) SM-EA (N = 9)

Figure 8. Results of the proposed methods and baselines for N = 3, 6, 9 vertices on a horse shape from
LEMS dataset.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 December 2023                   doi:10.20944/preprints202312.0933.v1

https://doi.org/10.20944/preprints202312.0933.v1


13 of 14

5. Conclusions

In this work, a novel PSO based polygonal fitting algorithm (UPF-PSO) has been proposed to
solve a general version of the polygonal fitting problem called Unconstrained Polygonal Fitting (UPF).
An N-vertex polygonal curve P with known number of vertices is fitted to a given 2D shape S so that
the Intersection over Union is maximized. IoU metric can be easily replaced by any other segmentation
metric e.g. Accuracy/Dice coefficient without any change in the proposed methodology. According
to the UPF-PSO algorithm, the location of the N-vertices of P that can be placed anywhere in the 2D
space generally provides better solutions compared to those of the classical polygonal approximation
problem, where the vertices are restricted to belong in the boundary of the given 2D shape. In our
experimental results, we have also compared the proposed UPF-PSO with several baselines in two
standard datasets of 2D shapes of more than 2,800 images showing the high performance of the
proposed framework. As it was expected, when the number of vertices is low, the difference in
performance between UPF-PSO and the rest baseline methods increases as the solutions of classical
polygonal approximation problem generally fails to provide well fitting results. In ongoing and
future work, our aim is to study more unconstrained fitting problems and to provide better solutions
especially for high values of N by relaxing the constraint that the new shape border should be a
subset of the given shape boundary. Additionally, we plan to consider extensions of UPF-PSO towards
handling more complex shapes than polygons. Finally, we plan to extend the proposed framework on
3D shape and to explore real applications that the proposed proposed system may be useful.
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