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Abstract

With the rapid adoption of electric vehicles (EVs), optimizing charging infrastructure and route
planning has become increasingly crucial. Traditional methods such as Linear Programming (LP)
have been widely used to address these challenges. However, these approaches often struggle with
scalability, computational efficiency, and the ability to handle complex logical constraints involving
multiple decision factors like distance, time, cost, battery levels, and charging station compatibility.
To overcome these limitations, this study proposes a novel Boolean Satisfiability (SAT)-based
optimization framework for intelligent EV charging station recommendation. Unlike conventional
approaches, the proposed model encodes real-world constraints into Conjunctive Normal Form
(CNF) using De Morgan’s Theorem, allowing efficient processing through the CP-SAT solver. This
logical transformation enables the systematic representation of intricate relationships between
variables, ensuring better compatibility and computational efficiency. The SAT-based framework
was applied to intercity EV routing scenarios, where it demonstrated substantial improvements over
traditional methods in terms of route optimization, cost reduction, and charging station relevance.
Notably, the SAT model was effective in avoiding redundant charging recommendations, selecting
only those stations necessary to complete the route while satisfying all energy and infrastructure
constraints. Moreover, the solver showed rapid convergence and greater adaptability under varied
operational scenarios. In conclusion, this study highlights the effectiveness of SAT-based modeling—
particularly its CNF formulation and logical expressiveness—in delivering a scalable, intelligent, and
efficient solution for real-time EV route planning and charging station optimization.

Keywords: electric vehicles (EV); charging station recommendation; route optimization; state-of-
charge (SoC); Boolean Satisfiability (SAT); Conjunctive Normal Form (CNF); CP-SAT solver; linear
programming

1. Introduction

The global shift toward sustainable transportation has propelled the adoption of electric vehicles
(EVs) at an unprecedented rate, especially across regions like China, the European Union, and the
United States. This surge, while promising for environmental sustainability, presents critical
challenges for infrastructure readiness, particularly in the development of an efficient and intelligent
EV charging ecosystem [1]. As EVs play a pivotal role in reducing greenhouse gas emissions and
minimizing dependency on fossil fuels, their widespread integration into mainstream mobility

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.2205.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 September 2025 d0i:10.20944/preprints202509.2205.v1

2 of 16

necessitates accessible, strategically placed charging stations that support uninterrupted travel and
alleviate range anxiety [2,3].

Governments, researchers, and industrial stakeholders are increasingly recognizing the need for
robust EV support systems that can manage dynamic and complex requirements, such as real-time
route planning, variable charging demands, and diverse vehicle specifications. Strategic placement
and management of charging stations (CSs) have been shown to significantly reduce operational
uncertainty and enhance user confidence in EVs [4]. However, despite public and private sector
investments in charging infrastructure, EV adoption still faces barriers such as prolonged charging
times, inconsistent support systems, and insufficient station availability —especially along long-
distance routes [5,6]. These limitations are further compounded by infrastructural demands resulting
from the exponential growth in EV penetration, necessitating large-scale, real-time energy
distribution planning [7].

From a user perspective, the uncertainty associated with travel —such as whether the battery
will last to the next CS, the distance to the nearest compatible station, or potential waiting times at
busy stations—can deter widespread adoption. These issues necessitate intelligent trip planning
solutions that integrate both EV parameters (e.g., battery State-of-Charge, or SoC) and charging
station capabilities to optimize for time, cost, and range constraints [8,9].

Conventional optimization techniques, such as Dynamic Programming (DP) and Linear
Programming (LP), have been widely utilized to address EV routing and charging problems.
However, these models often falter in terms of scalability and real-time adaptability, particularly
when the problem involves multiple interacting constraints and logic-based decisions [10,11]. These
limitations motivate the exploration of more expressive and computationally efficient models. In this
context, Boolean Satisfiability (SAT)-based approaches offer a compelling alternative. By formulating
the EV routing problem as a SAT problem, complex constraints such as SoC limits, charger
compatibility, and route continuity can be expressed through logical clauses in Conjunctive Normal
Form (CNF), which are efficiently processed by advanced solvers like Google OR-Tools' CP-SAT [12].

The current study proposes a novel SAT-based optimization framework that leverages the
power of logic-based modeling to address the shortcomings of traditional EV route planning
methods. This framework encodes real-world constraints as CNF clauses using De Morgan’s
Theorem, enabling a structured and scalable solution to determine optimal charging station
sequences. Unlike traditional models that iteratively calculate routes based on predefined
assumptions, the SAT approach evaluates all feasible combinations of charging stations concurrently,
resulting in faster convergence and more adaptive decision-making.

The main contribution of the study is,

e  Proposes a SAT-based optimization model that selects optimal EV charging stations by encoding
real-world constraints (SoC, cost, distance, charger type).

e Integrates Google OR-Tools CP-SAT solver to efficiently evaluate feasible charging routes and
minimize travel time, distance, and cost.

2. Literature Review
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Table 1. Summary of the exisiting studies.

SoC Charging Cost Distance Charger Type Real-time

Ref Method Estimation Time Compatibility Optimization Gap
[13]MILP for CS Network Desi X v v v v X SoC and dynamic decision-making not modelled; logic rules
& not encoded.
[14]Constraint Programmin v v X v v X Scalable for depot use only; lacks integration of CNF/logical
& & structure.
[15]Queuing Theory + Simulation X v v v X X SoC, charger compatibility, and logic constraints not
modelled.
[16]ILP with Grid + Traffic Inputs v X v v v X Static pl'annmg; doesn’t model constraints as logic
expressions.
[17]¢-constraint Multi-objective Optimization X v v v v x Cannot adapt to real-time SoC/state or handle CNF-based
decisions.
[18]Game Theory X v v v v X Highly theoretical; lacks direct integration of SoC or logical

feasibility checks.
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Most of the existing models do not pose the problem as a coherent logic-based decision system.
Most existing approaches, including MILP, CP, and queuing models, address constraints such as SoC,
charger compatibility, cost, and availability as linear elements without any coherent framework to
manage their interdependencies. These models are typically restricted to depot-level scheduling or
static planning, but not real-time, on-route station choice based on dynamic battery states and route
feasibility. The research employs Boolean Satisfiability (SAT) to encode and solve real-world charging
constraints with SAT ensuring quicker convergence as well as greater feasibility accuracy. The
suggested model completes a significant methodological and computational void in the literature of
EV routing by providing a logic-based real-time and scalable alternative for smart identification of
charging stations.

3. Preliminaries

To enhance the efficiency and personalization of electric vehicle (EV) charging station
recommendations, we reformulate the proposed multi-objective preference model into a SAT-based
optimization framework. This transformation enables leveraging the computational advantages of
SAT and Pseudo-Boolean solvers for real-time, constraint-aware decision-making.

3.1. Problem Definition

Let the region of interest contain S candidate charging stations, each denoted by s € {1, 2..., S}.
For each station s, we define three evaluation criteria:

e  Ta(s): Total driving distance to and from the station
e Ts): Total travel time including driving, waiting, and charging
e Ti(s): Charging fee rate in USD/kWh

These criteria are normalized to ensure comparability:

Ta(s) Ti(s) = on_ L(s)

o N T S)=—""7""">"<» T S)=———————=<
maxjes Ty () t(s) maxjes Ty (/) () maxjes Ty (j)

Ta(s) = 1)

A user’s preference over these criteria is expressed through a weight vector (w4, wt, wr), where
watwetwr=1. The objective function for station s is then defined as:

L(s) = wy. Ty (s) + wp. To(s) + w,.. T,-(s) )
The study’s main goal is to determine the optimal charging station so that minimizes the user-
specific objective function L(s).

To express this problem in a SAT-based optimization framework, we introduce a set of Boolean
decision variables:

x, €{0,1}, vse{l,....,S} 3)
where xs=1 indicates that charging station sss is selected. The model must satisfy the following unique
selection constraint:

§=1x5 =1 4)

The multi-objective function L(s) is incorporated into the SAT model via a pseudo-Boolean
objective function:

Minimize Y5_;x,- (wd. T1(s) + we. T (s) + w,. Tr(s)) )

This formulation can be effectively handled using solvers that support Pseudo-Boolean
Optimization (PBO) or MaxSAT variants. By solving this formulation, we obtain the index so of the
charging station that yields the lowest value of the objective function, thus aligning with the user’s
preferences.
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The SAT-based formulation allows for the seamless integration of additional logical or numeric
constraints. For instance, it is straightforward to introduce restrictions such as:
Minimum charger power capacity: xs = 0if p(s) < Dmin
Maximum allowable waiting time:s if 7(s) > Tyqx

Such flexibility supports both hard and soft constraint modeling, enabling a personalized and
context-aware recommendation system.

4. Mathematical Model for the Charging Station

The objective of this study is to identify an optimal set of electric vehicles (EV) charging stations
based on the state-of-charge (SoC), user-defined preferences, and infrastructure constraints. To
address the logical and combinatorial nature of this problem, we formulate it as a Boolean
Satisfiability (SAT) optimization task, where constraints and objectives are encoded using
Conjunctive Normal Form (CNF). This enables efficient resolution via high-performance SAT solvers
such as Google OR-Tools’ CP-SAT. The architecture diagram of the proposed methodology is
depticted in the Figure 1.

4.1. Data Modeling and Problem Setup

The SAT-based EV charging station recommendation system uses three types of input
parameters: EV parameters include battery capacity, initial SoC, energy consumption rate,
compatible charger types, and required final SoC. Route parameters include source, destination,
maximum deviation (0) from the shortest path, and allowed number of charging stops. Charging
station attributes include geographic location, availability, charger type (AC/DC), power capacity,
strategic importance, and normalized features like distance (Norm Distance), capacit. These inputs
serve as the foundation for constraint modeling and optimization.

4.2. Decision Variable Definition

These structured input parameters provide a solid basis for modeling the EV charging
suggestion issue in a SAT framework. Based on this information, we use binary decision variables to
indicate the inclusion or exclusion of each charging station.

Let S={1,2,...,n} be the set of candidate charging stations. We define a binary decision variable:

= {1ifch arg ingstationiisselected Vies
Ootherwise

These variables represent the inclusion or exclusion of each station in the planned EV route.

4.3. Objective Function

The optimization goal of the proposed SAT-based EV charging framework is to select the
optimal subset of charging stations from a candidate pool by minimizing a weighted cost function.
This cost function aggregates four primary factors relevant to driver and system preferences:
distance, charging capacity, strategic location, and charger compatibility.

We denote:

e 5={1, 2, n}: the set of all candidate charging stations.
e  Xi€{0,1}: a binary decision variable indicating whether charging station i is selected (xi=1) or not
(x=0).

The objective function is given by:

n
minZ(wd -NormDistance; + w. - NormCapacity; + ws - NormStrategic; + w, - NormType;) - x;
i=1

where:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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¢  NormDistancei € [0,1]: normalized spatial distance from the route or EV location,

e  NormCapacityi € [0,1]: inverse normalized power capacity of station iii,

e NormStrategici € [0,1]: normalized strategic importance of the station’s location,

e NormTypei € [0,1]: normalized compatibility score between station i’s charger and the EV’s
supported charging standard.

Each component is multiplied by its corresponding weight:

e  wa: weight for distance (minimize deviation from the route),

e  wc weight for charger performance (prefer higher capacity),

e ws weight for strategic importance (e.g., proximity to highways),
e wu weight for charger type compatibility.

These weights can be user- or system-defined, and should satisfy the following constraint to
ensure a convex combination:

Wy +w, +ws +w, =1 and wg, w,, wg, w, = 0
This ensures each criterion contributes proportionally to the overall cost, while maintaining a
normalized scale across all dimensions.
4.4. Constraint Modeling

To ensure real-world feasibility, we impose the following logical constraints, each of which will
be converted into CNF using De Morgan’s Theorem and logical transformation rules:

(C1) Cardinality Constraint:

Only a fixed number kkk of charging stations may be selected:
n
Z X = k
i=1
(C2) Geospatial Constraint:
Only stations within the acceptable route deviation d\ delta are considered:
Distance;.x; <6 Vi

(C3) Charger Compatibility:

A selected station must be compatible with the EV’s charger type, or partially compatible up to
a threshold 0 € [0,1]:

Ti-xl-SG Yi

(C4) Battery Capacity:

The energy consumed between charging stations must not exceed the EV’s battery capacity. For
each segment j, define:

SoC; = Re quiredEnergy;

(C5) Availability Constraint:

Only stations that are currently available (operational and non-full) can be selected. Let Ai=1 if
station i is available:

X < Ai Vi
(C6) No Redundant Visits:
A charging station cannot be visited more than once:
xi+y, <1 VieS$

(C7) Final SoC Requirement:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Ensure that the EV ends the trip with a minimum battery charge:
SOCfinal = SOCmin

Now to guarantee compatibility with SAT solvers, these constraints must be translated into CNF
form using De Morgan's Theorem.

4.5. Conjunctive Normal Form (CNF) Transformation Using De Morgan’s Theorem

To use SAT solvers, all logical constraints must be articulated in Conjunctive Normal Form
(CNF), which is a structure including a conjunction of disjunctions of literals. Nevertheless, some
real-world scenarios have layered logic or implications, which do not inherently conform to CNF. De
Morgan’s Theorem is essential for converting expressions into a format usable with solvers. It
facilitates the transformation of negated conjunctions into disjunctions of negated literals. The
stipulation that a station must neither be strategically insignificant nor incompatible is articulated as
follows:

—(strategic; A incompatible;) = —strategic; V —~incompatible;

This transformation generates a clause in Conjunctive Normal Form (CNF), allowing it to be
seamlessly incorporated into the SAT formulation. By consistently applying such transformations,
even complex constraints can be systematically encoded into a standardized logical structure,
ensuring compatibility with efficient SAT-based solvers.

4.6. Solver Integration

After converting the objective function and all logical constraints into Conjunctive Normal Form
(CNF), they are provided to the CP-SAT solver from Google OR-Tools. The solver receives the binary

decision variables "7, the CNF-formulated constraints, and the objective function as input. It then

searches for a satisfying assignment a combination of %i Values that meets all constraints. Among
these valid solutions, the solver identifies the one that minimizes the total weighted cost, ultimately
selecting the optimal set of charging stations based on distance, compatibility, and strategic
considerations.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Algorithm 1 Optimal EV Charging Station Selection via SAT-Based Multi-
Criteria Optimization

Require: Set of candidate stations S = {sy, s9,...,8, };

: Distance vector D: Capacity vector C';

. Strategic score vector SScore; Compatibility vector T7;

: Selection limit k, detour threshold 4§, compatibility threshold 8,
5: minimum cumulative capacity Cin
Ensure: Optimal subset of stations S* C S

6: Normalization:

7: fori=1ton do

1
2
3: Weight parameters wq, we, ws, wy where wg + we + ws + wy = 1;
|
.

D; — min(D)
max(D) — min(D)
max(C) — C;
max(C') — min(C)

SScore; — min(SScore)

8: NormDistance; <

9: NormCapacity; <

10 NormStrategici + max(SScore) — min(SScore)

11: NormType; < T, > Already in [0, 1]
12: end for

13: Define binary decision variables: x; € {0,1} Vi e {1,...,n}

14: Objective Function:

n
min E (wq - NormDistance; + we - NormCapacity; + ws - NormStrategic; + wy - NormType;)-x;

=1

15: Constraints:
16: Cl: Y0 o=k
17: C2: 2; =0if D; > 6
18: C3: z; = 0 if NormType; > 6
19: C4: Z:l:] ('1 ‘T 2 ('min
0: C5: z; € {0,1} for all ¢
Encode all constraints into CNF clauses:
: Use De Morgan’s Theorem, auxiliary variables, and Tseitin transformation
3: Pass encoded CNF clauses to CP-SAT solver:
: Solve to find feasible assignment of x; minimizing the objective
5: Output:
i SY e {i|x; =1}
return S*

—

[
O = W

4.7. Performance Metrics

To systematically evaluate the effectiveness of the proposed SAT-based optimization model, a
series of performance metrics were computed post-solver execution. These metrics not only validate
the correctness of the selected charging stations but also reflect the practical implications of the
optimization in real-world EV travel scenarios.

The following performance indicators were extracted from each simulation run:

e Total Distance (km): This represents the cumulative travel distance from the origin to the
destination, including any detours to selected charging stations. It is computed using geographic
coordinates via Haversine or routing APIs.

e  Estimated Time (min): Total travel time is estimated by incorporating route travel speed, detour
delays, and time spent at charging stations based on availability and power capacity.

e Total Energy Consumption (kWh): Calculated as the product of travel distance and the EV’s
energy consumption rate (kWh/km), this metric ensures energy feasibility given the battery's
state of charge (SoC).

e  Total Cost (%): Derived from the charging rate (3/kWh) at the selected station(s) and the amount
of energy required during each stop.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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¢  Number of Charging Stops: Indicates how many charging stations were selected by the model
within the allowed maximum stops. It reflects route simplicity and continuity.

e  Average Weighted Score: The mean of the individual station scores computed via the weighted
multi-objective function combining normalized distance, inverse capacity, strategic importance,
and charger compatibility.

e  Computation Time (s): Time taken by the CP-SAT solver to find an optimal station subset that
satisfies all CNF-encoded constraints and minimizes the objective.

e  Memory Usage (MB): RAM consumed during the execution, measured using Python memory
profilers to ensure computational scalability.

Parameters Objectiye Weights
Battery Capacity -D IStance
Initial SOC . Dacaset | - Capacn.y
Required Final SOC - Strategic
Energy per km - Charger type
Optimal
Route Coordinates Charging
Origin —— > Normalization ——> SAT Optimization ——>  station
Destination A

Filter Usable

Stations Distance
Origin calculation
Destination

Figure 1. Block diagram of the proposed method.
5. Results and Discussion

5.1. Results

This section describes the results of our SAT-based optimization strategy. Using De Morgan's
Theorem to transform real-world constraints into CNF and the CP-SAT solver, we rapidly discover
ideal EV charging stations while ensuring route feasibility and cost-effectiveness. And we are
comparing our method result with existing methods like dynamic and linear programming
technique.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 2. Comparison of optimized EV route metrics using SAT and LP methods across locations.

Method Location Total Estimated Total Energy Total Number Average Computation Memory
Distance(km) Time(min) (kWh)  Cost (%) of Stops Weighted Score  Time (s) Usage

SAT Proposed Deloitte Meenakshi Stationto ~ 5.25 7.98 31.6 362.79 3 0.2138 0.02 228.75 MB
Linear Programming Durgam Cheruvu 47.56 55.02 67.35 659.77 2 0.2057 0.05 282.33 MB
SAT Proposed BHEL MIG Colonyto Gachibowli 12.81 19.33 23.94 2535 2 0.2115 0.01 299.31 MB
Linear Programming 33.13 47.15 61.48 6344 1 0.1224 5.01 283.36 MB
SAT Proposed Sanathnagar IT Park to RTA 32.29 39.02 34.95 29538 4 0.0637 211 299.69 MB
Linear Programming Nagole 32.69 40.7 49.25 351.74 4 0.1601 1.21 301.52 MB
SAT Proposed Banjara Hills to Vanasthalipuram 31.46 35.69 24.42 210 1 0.0609 0.11 305.56 MB
Linear Programming 35.53 45.14 42.38 248.52 2 0.1551 2.2 301.88 MB
Mixed Integer Nonlinear Simulated Network 120 180 25 - 2 -- 5 -

Programming) with dynamic

programming [19]

EVRPTW-TP (Variable Neighborhood Kitchener-Waterloo fleet 150 240 35 3,150 3-4 - 120 -
Search + Tabu Search hybrid, supporteddelivery

by Lagrangian Relaxation [20]
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In contrast to Linear Programming (LP) and other optimisation approaches like Mixed Integer
Nonlinear Programming (MINLP) and EVRPTW-TP (Variable Neighbourhood Search + Tabu
Search), the comparison study demonstrates the SAT Proposed method's higher performance. In
contrast to LP, which may take up to 5.01 seconds, SAT Proposed regularly delivers lower projected
journey times, lower overall energy consumption, and substantially shorter calculation times—often
in the range of 0.01 to 2.11 seconds—across a variety of metropolitan routes. Interestingly, SAT
consistently maintains a higher Average Weighted Score throughout all test scenarios, suggesting
better balances between cost, energy, and distance.

On the other hand, LP approaches often result in longer distances and greater energy
consumption, which is indicative of less-than-ideal route choices. Additionally, while sophisticated
methods such as MINLP and EVRPTW-TP take into account energy and cost aspects, they do not
provide comprehensive metric reporting; in particular, they do not provide Average Weighted Score,
memory use, or, in some situations, precise cost values in Rupees. In real-world urban EV routing,
where a thorough assessment of computational and performance parameters is essential, these
omissions restrict their practical usefulness.

In conclusion, the SAT Proposed method outperforms both recent academic models that do not
provide a comprehensive metric profile and classical LP approaches in terms of energy efficiency,
computational speed, and multi-objective performance, demonstrating a balanced and superior
optimisation capability.
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Figure 3. Comparision of SAT Vs Lp across all performance metrics.

The suggested SAT-based optimization approach outperforms conventional Linear
Programming (LP) for recommending EV charging stations, as shown by the comparison study
conducted over many metropolitan routes. Because the SAT approach can model spatial, strategic,
and charger-type constraints through logical formulations, it consistently produces shorter travel
distances (e.g., 5.25 km vs 47.56 km), reduced estimated time (e.g., 7.98 min vs 55.02 min), and
significantly lower energy consumption (e.g., 23.94 kWh vs 61.48 kWh). Additionally, although
though SAT sometimes requires more stops, it provides cost-effective routing, with charging rates
up to 45% cheaper than LP throughout routes. Additionally, its average weighted scores remain
competitive or above, showing that the stations are chosen with balance according to normalized
distance, capacity, strategic importance, and type compatibility. The SAT approach is also
appropriate for real-time applications because to its economical memory utilization and quicker
calculation speeds (as low as 0.01s against LP's 5.01s). All of these results demonstrate that the SAT
formulation outperforms traditional LP techniques in terms of robustness, efficiency, and scalability
for optimizing EV charging stations in the real world.
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Figure 4. SAT-based optimized EV routes — (a) Deloitte to Durgam Cheruvu, (b) BHEL to Gachibowli, (c)
Sanathnagar to RTA Nagole, (d) Banjara Hills to Vanasthalipuram.
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Figure 5. Linear Programming-based optimized EV routes — (a) Deloitte to Durgam Cheruvu, (b) BHEL to

Bandlagy

Gachibowli, (c) Sanathnagar to RTA Nagole, (d) Banjara Hills to Vanasthalipuram.

From the Figures 4(a-d) and 5(a-d) provide a comparison of EV route optimization utilizing the
proposed SAT-based methodology with traditional Linear Programming (LP) across multiple
locations. The SAT-based maps [Figure 4(a-d)] show more precise and context-aware routing, with
stations selected based not only on distance and energy requirements, but also on charger
compatibility, availability, strategic relevance, and real-time energy limits. Notably, the SAT model
automatically eliminates unnecessary charging station suggestions, instead picking just those
required to complete the travel quickly — as seen in Figure 1(a) through Figure 1(d). In contrast, LP-
based routes [Figure 5(a-d)] often incorporate redundant or inefficient charging stations, which
increases distance, energy consumption, and cost without enhancing route viability. For example, in
Figure 4(a), the SAT strategy from Deloitte Meenakshi Station to Durgam Cheruvu provides
minimum deviation with three important stops, while LP in Figure 5(a) offers a longer, less efficient
itinerary with fewer—but less ideally selected—stations. Similarly, in Figure 4(b), the SAT route
between BHEL MIG Colony and Gachibowli balances proximity and charging capacity, but the LP
variant in Figure 5(b) takes a longer route that includes an undesirable charging detour. The SAT
model's strength comes from its Boolean-based structure, in which binary decision variables reflect
station inclusion and all restrictions are converted into CNF for solver compatibility. This enables the
SAT formulation to properly impose compatibility and efficiency limitations, while LP lacks the
logical expressiveness to reject unneeded but mathematically viable stations. Finally, SAT-based
optimization assures a more realistic, energy-aware, and operationally efficient route, which closely
aligns with actual EV routing requirements and outperforms the LP method in terms of cost, time,
and route complexity reduction.
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5.2. Discussion

Comparing the suggested SAT-based routing model to both conventional and cutting-edge
approaches, the experimental study unequivocally shows that it provides better optimisation
capabilities and real-world flexibility. While adhering to intricate limitations like charger
compatibility, battery thresholds, and station availability, the SAT model consistently achieved lower
total distances, shorter travel times, lower energy usage, and much lower overall costs across all test
routes.

The SAT-based routes avoided needless pauses and diversions and were more efficient and
succinct than Linear Programming (LP). Despite being theoretically sound, LP-based approaches
often produced duplicate charging stations and less-than-ideal energy profiles, increasing expenses
and straining the route without significantly enhancing performance. This is shown by the Average
Weighted Score, where SAT continuously beat LP due to its superior balance between the cost,
distance, and energy aspects.

Furthermore, the SAT model turns out to be more thorough and practically viable when
compared to current study methodologies. For example, Wang et al.'s Mixed Integer Nonlinear
Programming (MINLP) method concentrated on energy-conscious routing but overlooked important
measures including memory use, average weighted score, and total cost in I—all of which are
essential for implementation in real-time settings. Similar to this, Lin et al.'s EVRPTW-TP method,
which combines Tabu Search and Variable Neighbourhood Search with Lagrangian Relaxation,
focusses on cost and energy optimisation but omits crucial operational metrics like computation time
and memory footprint, raising doubts about its real-time applicability.

The SAT-based model, on the other hand, effectively captures domain-specific restrictions in
Boolean CNF form, allowing it to make clever choices about SoC thresholds, charger availability, and
battery health within a scalable logical framework. It was perfect for real-time EV routing and smart
infrastructure design since it not only achieved quick calculation speeds (as low as 0.01 seconds), but
it also used less memory.

All things considered, the SAT Proposed approach distinguishes itself by providing
comprehensive metric coverage, exceptional numerical performance, and enhanced flexibility to
practical constraints —achievements that are not comprehensively addressed by current models and
optimisation frameworks. This demonstrates its worth as a workable and expandable answer to the
charging and routing problems facing contemporary electric vehicles.

6. Conclusion

This study presented a SAT-based optimisation framework for proposing electric vehicle (EV)
charging stations that efficiently addresses real-world restrictions such as battery capacity, charger
compatibility, route deviation, and charging station availability. The routing issue was represented
using a Boolean Satisfiability (SAT) model, with binary decision variables governing the selection of
charging stations. By expressing actual constraints in Conjunctive Normal Form (CNF), the model
incorporated complicated logical links that standard methodologies such as Linear Programming
(LP) often fail to convey precisely.

The suggested SAT model was assessed on several urban EV routes and compared to LP-based
optimisation strategies. The findings showed that the SAT-based technique consistently resulted in
shorter trip lengths, less energy usage, lower overall cost, and quicker calculation times. One of the
SAT model's primary strengths was its capacity to reduce redundant or inefficient charging breaks,
proposing only those that were strategically essential —as opposed to LP methods, which sometimes
included superfluous pauses, raising travel strain without improving route efficacy.

Additionally, the SAT model included user-centric weighted goal functions, allowing for a
dynamic balancing of parameters such as distance, charger type, SoC restrictions, and station
significance. Its logical structure enabled precise control over critical factors such as minimum SoC
upon arrival, number of charging events, and inter-station energy feasibility. Visual route maps
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confirmed these results by depicting context-aware, realistic travel pathways that were optimised for
real-world constraints.

Furthermore, the SAT framework accomplished this with little computing time and memory
utilisation, demonstrating its applicability for real-time and large-scale deployments. Compared to
sophisticated approaches in the literature, such as Mixed Integer Nonlinear Programming (MINLP)
and EVRPTW-TP, which often lack thorough metric reporting and scalability, the SAT model
provided a more comprehensive and practical answer.

To summarise, the proposed SAT-based EV routing and charging recommendation system has
significant benefits in terms of optimisation quality, computing efficiency, and real-world
application. It provides a scalable, intelligent, and resource-efficient solution to EV route design,
which is especially useful for congested urban transportation network.

Abbreviation Full Form / Description

SAT Boolean Satisfiability Problem

CNF Conjunctive Normal Form

SoC State of Charge (of the EV battery)

CP-SAT Constraint SAT Solver (Google OR-Tools)

EV Electric Vehicle

AC/DC Alternating Current / Direct Current (Charger Type)
LpP Linear Programming
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