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Abstract 

With the rapid adoption of electric vehicles (EVs), optimizing charging infrastructure and route 
planning has become increasingly crucial. Traditional methods such as Linear Programming (LP) 
have been widely used to address these challenges. However, these approaches often struggle with 
scalability, computational efficiency, and the ability to handle complex logical constraints involving 
multiple decision factors like distance, time, cost, battery levels, and charging station compatibility. 
To overcome these limitations, this study proposes a novel Boolean Satisfiability (SAT)-based 
optimization framework for intelligent EV charging station recommendation. Unlike conventional 
approaches, the proposed model encodes real-world constraints into Conjunctive Normal Form 
(CNF) using De Morgan’s Theorem, allowing efficient processing through the CP-SAT solver. This 
logical transformation enables the systematic representation of intricate relationships between 
variables, ensuring better compatibility and computational efficiency. The SAT-based framework 
was applied to intercity EV routing scenarios, where it demonstrated substantial improvements over 
traditional methods in terms of route optimization, cost reduction, and charging station relevance. 
Notably, the SAT model was effective in avoiding redundant charging recommendations, selecting 
only those stations necessary to complete the route while satisfying all energy and infrastructure 
constraints. Moreover, the solver showed rapid convergence and greater adaptability under varied 
operational scenarios. In conclusion, this study highlights the effectiveness of SAT-based modeling—
particularly its CNF formulation and logical expressiveness—in delivering a scalable, intelligent, and 
efficient solution for real-time EV route planning and charging station optimization. 

Keywords: electric vehicles (EV); charging station recommendation; route optimization; state-of-
charge (SoC); Boolean Satisfiability (SAT); Conjunctive Normal Form (CNF); CP-SAT solver; linear 
programming 
 

1. Introduction 

The global shift toward sustainable transportation has propelled the adoption of electric vehicles 
(EVs) at an unprecedented rate, especially across regions like China, the European Union, and the 
United States. This surge, while promising for environmental sustainability, presents critical 
challenges for infrastructure readiness, particularly in the development of an efficient and intelligent 
EV charging ecosystem [1]. As EVs play a pivotal role in reducing greenhouse gas emissions and 
minimizing dependency on fossil fuels, their widespread integration into mainstream mobility 
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necessitates accessible, strategically placed charging stations that support uninterrupted travel and 
alleviate range anxiety [2,3]. 

Governments, researchers, and industrial stakeholders are increasingly recognizing the need for 
robust EV support systems that can manage dynamic and complex requirements, such as real-time 
route planning, variable charging demands, and diverse vehicle specifications. Strategic placement 
and management of charging stations (CSs) have been shown to significantly reduce operational 
uncertainty and enhance user confidence in EVs [4]. However, despite public and private sector 
investments in charging infrastructure, EV adoption still faces barriers such as prolonged charging 
times, inconsistent support systems, and insufficient station availability—especially along long-
distance routes [5,6]. These limitations are further compounded by infrastructural demands resulting 
from the exponential growth in EV penetration, necessitating large-scale, real-time energy 
distribution planning [7]. 

From a user perspective, the uncertainty associated with travel—such as whether the battery 
will last to the next CS, the distance to the nearest compatible station, or potential waiting times at 
busy stations—can deter widespread adoption. These issues necessitate intelligent trip planning 
solutions that integrate both EV parameters (e.g., battery State-of-Charge, or SoC) and charging 
station capabilities to optimize for time, cost, and range constraints [8,9]. 

Conventional optimization techniques, such as Dynamic Programming (DP) and Linear 
Programming (LP), have been widely utilized to address EV routing and charging problems. 
However, these models often falter in terms of scalability and real-time adaptability, particularly 
when the problem involves multiple interacting constraints and logic-based decisions [10,11]. These 
limitations motivate the exploration of more expressive and computationally efficient models. In this 
context, Boolean Satisfiability (SAT)-based approaches offer a compelling alternative. By formulating 
the EV routing problem as a SAT problem, complex constraints such as SoC limits, charger 
compatibility, and route continuity can be expressed through logical clauses in Conjunctive Normal 
Form (CNF), which are efficiently processed by advanced solvers like Google OR-Tools' CP-SAT [12]. 

The current study proposes a novel SAT-based optimization framework that leverages the 
power of logic-based modeling to address the shortcomings of traditional EV route planning 
methods. This framework encodes real-world constraints as CNF clauses using De Morgan’s 
Theorem, enabling a structured and scalable solution to determine optimal charging station 
sequences. Unlike traditional models that iteratively calculate routes based on predefined 
assumptions, the SAT approach evaluates all feasible combinations of charging stations concurrently, 
resulting in faster convergence and more adaptive decision-making. 

The main contribution of the study is, 

• Proposes a SAT-based optimization model that selects optimal EV charging stations by encoding 
real-world constraints (SoC, cost, distance, charger type). 

• Integrates Google OR-Tools CP-SAT solver to efficiently evaluate feasible charging routes and 
minimize travel time, distance, and cost. 

2. Literature Review 
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Table 1. Summary of the exisiting studies. 

Ref Method SoC 
Estimation 

Charging 
Time 

Cost Distance Charger Type 
Compatibility

Real-time 
Optimization 

Gap 

[13]MILP for CS Network Design ✘ ✔ ✔ ✔ ✔ ✘ SoC and dynamic decision-making not modelled; logic rules 
not encoded. 

[14]Constraint Programming ✔ ✔ ✘ ✔ ✔ ✘ Scalable for depot use only; lacks integration of CNF/logical 
structure. 

[15]Queuing Theory + Simulation ✘ ✔ ✔ ✔ ✘ ✘ SoC, charger compatibility, and logic constraints not 
modelled. 

[16]ILP with Grid + Traffic Inputs ✔ ✘ ✔ ✔ ✔ ✘ Static planning; doesn’t model constraints as logic 
expressions. 

[17]ε-constraint Multi-objective Optimization ✘ ✔ ✔ ✔ ✔ ✘ Cannot adapt to real-time SoC/state or handle CNF-based 
decisions. 

[18]Game Theory ✘ ✔ ✔ ✔ ✔ ✘ Highly theoretical; lacks direct integration of SoC or logical 
feasibility checks. 
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Most of the existing models do not pose the problem as a coherent logic-based decision system. 
Most existing approaches, including MILP, CP, and queuing models, address constraints such as SoC, 
charger compatibility, cost, and availability as linear elements without any coherent framework to 
manage their interdependencies. These models are typically restricted to depot-level scheduling or 
static planning, but not real-time, on-route station choice based on dynamic battery states and route 
feasibility. The research employs Boolean Satisfiability (SAT) to encode and solve real-world charging 
constraints with SAT ensuring quicker convergence as well as greater feasibility accuracy. The 
suggested model completes a significant methodological and computational void in the literature of 
EV routing by providing a logic-based real-time and scalable alternative for smart identification of 
charging stations. 

3. Preliminaries 

To enhance the efficiency and personalization of electric vehicle (EV) charging station 
recommendations, we reformulate the proposed multi-objective preference model into a SAT-based 
optimization framework. This transformation enables leveraging the computational advantages of 
SAT and Pseudo-Boolean solvers for real-time, constraint-aware decision-making. 

3.1. Problem Definition 

Let the region of interest contain S candidate charging stations, each denoted by s ∈ {1, 2..., S}. 
For each station s, we define three evaluation criteria: 

• Td(s): Total driving distance to and from the station 
• Tt(s): Total travel time including driving, waiting, and charging 
• Tr(s): Charging fee rate in USD/kWh 

These criteria are normalized to ensure comparability: 𝑇෨ௗሺ𝑠ሻ = 𝑇ௗሺ𝑠ሻ𝑚𝑎𝑥௝∈ௌ 𝑇ௗ ሺ𝑗ሻ , 𝑇෨௧ሺ𝑠ሻ = 𝑇௧ሺ𝑠ሻ𝑚𝑎𝑥௝∈ௌ 𝑇௧ ሺ𝑗ሻ ,  𝑇෨௥ሺ𝑠ሻ = 𝑇௥ሺ𝑠ሻ𝑚𝑎𝑥௝∈ௌ 𝑇௥ ሺ𝑗ሻ (1)

A user’s preference over these criteria is expressed through a weight vector (wd, wt, wr), where 
wd+wt+wr=1. The objective function for station s is then defined as: 𝐿ሺ𝑠ሻ = 𝑤ௗ .𝑇෨ௗሺ𝑠ሻ + 𝑤௧ .𝑇෨௧ሺ𝑠ሻ + 𝑤௥ .𝑇෨௥ሺ𝑠ሻ (2)

The study’s main goal is to determine the optimal charging station s0  that minimizes the user-
specific objective function L(s). 

To express this problem in a SAT-based optimization framework, we introduce a set of Boolean 
decision variables: 𝑥௦ ∈ ሼ0,1ሽ,  ∀𝑠 ∈ ሼ1, . . . . , 𝑆ሽ (3)

where xs=1 indicates that charging station sss is selected. The model must satisfy the following unique 
selection constraint: ∑ 𝑥௦ௌ௦ୀଵ = 1  (4)

The multi-objective function L(s) is incorporated into the SAT model via a pseudo-Boolean 
objective function: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑥௦ௌ௦ୀଵ ⋅ ቀ𝑤ௗ .𝑇෨ௗሺ𝑠ሻ + 𝑤௧ .𝑇෨௧ሺ𝑠ሻ + 𝑤௥ .𝑇෨௥ሺ𝑠ሻቁ  (5)

This formulation can be effectively handled using solvers that support Pseudo-Boolean 
Optimization (PBO) or MaxSAT variants. By solving this formulation, we obtain the index s0 of the 
charging station that yields the lowest value of the objective function, thus aligning with the user’s 
preferences. 
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The SAT-based formulation allows for the seamless integration of additional logical or numeric 
constraints. For instance, it is straightforward to introduce restrictions such as: 

Minimum charger power capacity: 𝑥௦ = 0𝑖𝑓 𝑝ሺ𝑠ሻ < 𝑝௠௜௡ 
Maximum allowable waiting time:𝑠 𝑖𝑓 𝜏ሺ𝑠ሻ > 𝜏௠௔௫ 

Such flexibility supports both hard and soft constraint modeling, enabling a personalized and 
context-aware recommendation system. 

4. Mathematical Model for the Charging Station 

The objective of this study is to identify an optimal set of electric vehicles (EV) charging stations 
based on the state-of-charge (SoC), user-defined preferences, and infrastructure constraints. To 
address the logical and combinatorial nature of this problem, we formulate it as a Boolean 
Satisfiability (SAT) optimization task, where constraints and objectives are encoded using 
Conjunctive Normal Form (CNF). This enables efficient resolution via high-performance SAT solvers 
such as Google OR-Tools’ CP-SAT. The architecture diagram of the proposed methodology is 
depticted in the Figure 1. 

4.1. Data Modeling and Problem Setup 

The SAT-based EV charging station recommendation system uses three types of input 
parameters: EV parameters include battery capacity, initial SoC, energy consumption rate, 
compatible charger types, and required final SoC. Route parameters include source, destination, 
maximum deviation (δ) from the shortest path, and allowed number of charging stops. Charging 
station attributes include geographic location, availability, charger type (AC/DC), power capacity, 
strategic importance, and normalized features like distance (Norm Distance), capacit. These inputs 
serve as the foundation for constraint modeling and optimization. 

4.2. Decision Variable Definition 

These structured input parameters provide a solid basis for modeling the EV charging 
suggestion issue in a SAT framework. Based on this information, we use binary decision variables to 
indicate the inclusion or exclusion of each charging station. 

Let S={1,2,...,n} be the set of candidate charging stations. We define a binary decision variable: 𝑥௜ = ቄ1𝑖𝑓𝑐ℎ 𝑎𝑟𝑔 𝑖 𝑛𝑔𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑖𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  ∀𝑖 ∈ 𝑆 

These variables represent the inclusion or exclusion of each station in the planned EV route. 

4.3. Objective Function 

The optimization goal of the proposed SAT-based EV charging framework is to select the 
optimal subset of charging stations from a candidate pool by minimizing a weighted cost function. 
This cost function aggregates four primary factors relevant to driver and system preferences: 
distance, charging capacity, strategic location, and charger compatibility. 

We denote: 

• S= {1, 2, n}: the set of all candidate charging stations. 
• Xi ∈ {0,1}: a binary decision variable indicating whether charging station i is selected (xi=1) or not 

(xi=0). 

The objective function is given by: 

𝑚𝑖𝑛෍(𝜔ௗ ⋅ 𝑁𝑜𝑟𝑚𝐷𝑖𝑠 𝑡𝑎𝑛 𝑐 𝑒௜ + 𝜔௖ ⋅ 𝑁𝑜𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦௜ + 𝜔௦ ⋅ 𝑁𝑜𝑟𝑚𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑐௜ + 𝜔௧ ⋅ 𝑁𝑜𝑟𝑚𝑇𝑦𝑝𝑒௜) ⋅ 𝑥௜௡
௜ୀଵ  

where: 
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• NormDistancei ∈ [0,1]: normalized spatial distance from the route or EV location, 
• NormCapacityi ∈ [0,1]: inverse normalized power capacity of station iii, 
• NormStrategici ∈ [0,1]: normalized strategic importance of the station’s location, 
• NormTypei ∈ [0,1]: normalized compatibility score between station i’s charger and the EV’s 

supported charging standard. 

Each component is multiplied by its corresponding weight: 

• wd: weight for distance (minimize deviation from the route), 
• wc: weight for charger performance (prefer higher capacity), 
• ws: weight for strategic importance (e.g., proximity to highways), 
• wt: weight for charger type compatibility. 

These weights can be user- or system-defined, and should satisfy the following constraint to 
ensure a convex combination: 𝑤ௗ + 𝑤௖ + 𝑤௦ + 𝑤௧ = 1 𝑎𝑛𝑑 𝑤ௗ ,𝑤௖ ,𝑤௦ ,𝑤௧ ≥ 0 

This ensures each criterion contributes proportionally to the overall cost, while maintaining a 
normalized scale across all dimensions. 

4.4. Constraint Modeling 

To ensure real-world feasibility, we impose the following logical constraints, each of which will 
be converted into CNF using De Morgan’s Theorem and logical transformation rules: 

(C1) Cardinality Constraint: 

Only a fixed number kkk of charging stations may be selected: 

෍𝑥௜௡
௜ୀଵ = 𝑘 

(C2) Geospatial Constraint: 

Only stations within the acceptable route deviation δ\delta are considered: 𝐷𝑖𝑠 𝑡𝑎𝑛 𝑐 𝑒௜ . 𝑥௜ ≤ 𝛿 ∀𝑖 
(C3) Charger Compatibility: 

A selected station must be compatible with the EV’s charger type, or partially compatible up to 
a threshold θ ∈ [0,1]: 𝑇௜ ⋅ 𝑥௜ ≤ 𝜃 ∀𝑖 
(C4) Battery Capacity: 

The energy consumed between charging stations must not exceed the EV’s battery capacity. For 
each segment j, define: 𝑆𝑜𝐶௝ ≥ 𝑅𝑒 𝑞 𝑢𝑖𝑟𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦௝ 
(C5) Availability Constraint: 

Only stations that are currently available (operational and non-full) can be selected. Let Ai=1 if 
station i is available: 𝑥௜ ≤ 𝐴௜ ∀𝑖 
(C6) No Redundant Visits: 

A charging station cannot be visited more than once: 𝑥௜ + 𝑦௜ ≤ 1 ∀𝑖 ∈ 𝑆 

(C7) Final SoC Requirement: 
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Ensure that the EV ends the trip with a minimum battery charge: 𝑆𝑜𝐶௙௜௡௔௟ ≥ 𝑆𝑜𝐶௠௜௡ 

Now to guarantee compatibility with SAT solvers, these constraints must be translated into CNF 
form using De Morgan's Theorem. 

4.5. Conjunctive Normal Form (CNF) Transformation Using De Morgan’s Theorem 

To use SAT solvers, all logical constraints must be articulated in Conjunctive Normal Form 
(CNF), which is a structure including a conjunction of disjunctions of literals. Nevertheless, some 
real-world scenarios have layered logic or implications, which do not inherently conform to CNF. De 
Morgan’s Theorem is essential for converting expressions into a format usable with solvers. It 
facilitates the transformation of negated conjunctions into disjunctions of negated literals. The 
stipulation that a station must neither be strategically insignificant nor incompatible is articulated as 
follows: ¬(𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑐௜ ∧ 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒௜) ≡ ¬𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑐௜ ∨ ¬𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒௜ 

This transformation generates a clause in Conjunctive Normal Form (CNF), allowing it to be 
seamlessly incorporated into the SAT formulation. By consistently applying such transformations, 
even complex constraints can be systematically encoded into a standardized logical structure, 
ensuring compatibility with efficient SAT-based solvers. 

4.6. Solver Integration 

After converting the objective function and all logical constraints into Conjunctive Normal Form 
(CNF), they are provided to the CP-SAT solver from Google OR-Tools. The solver receives the binary 

decision variables ix , the CNF-formulated constraints, and the objective function as input. It then 

searches for a satisfying assignment a combination of ix values that meets all constraints. Among 
these valid solutions, the solver identifies the one that minimizes the total weighted cost, ultimately 
selecting the optimal set of charging stations based on distance, compatibility, and strategic 
considerations. 
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4.7. Performance Metrics 

To systematically evaluate the effectiveness of the proposed SAT-based optimization model, a 
series of performance metrics were computed post-solver execution. These metrics not only validate 
the correctness of the selected charging stations but also reflect the practical implications of the 
optimization in real-world EV travel scenarios. 

The following performance indicators were extracted from each simulation run: 

• Total Distance (km): This represents the cumulative travel distance from the origin to the 
destination, including any detours to selected charging stations. It is computed using geographic 
coordinates via Haversine or routing APIs. 

• Estimated Time (min): Total travel time is estimated by incorporating route travel speed, detour 
delays, and time spent at charging stations based on availability and power capacity. 

• Total Energy Consumption (kWh): Calculated as the product of travel distance and the EV’s 
energy consumption rate (kWh/km), this metric ensures energy feasibility given the battery's 
state of charge (SoC). 

• Total Cost (₹): Derived from the charging rate (₹/kWh) at the selected station(s) and the amount 
of energy required during each stop. 
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• Number of Charging Stops: Indicates how many charging stations were selected by the model 
within the allowed maximum stops. It reflects route simplicity and continuity. 

• Average Weighted Score: The mean of the individual station scores computed via the weighted 
multi-objective function combining normalized distance, inverse capacity, strategic importance, 
and charger compatibility. 

• Computation Time (s): Time taken by the CP-SAT solver to find an optimal station subset that 
satisfies all CNF-encoded constraints and minimizes the objective. 

• Memory Usage (MB): RAM consumed during the execution, measured using Python memory 
profilers to ensure computational scalability. 

 
Figure 1. Block diagram of the proposed method. 

5. Results and Discussion 

5.1. Results 

This section describes the results of our SAT-based optimization strategy. Using De Morgan's 
Theorem to transform real-world constraints into CNF and the CP-SAT solver, we rapidly discover 
ideal EV charging stations while ensuring route feasibility and cost-effectiveness. And we are 
comparing our method result with existing methods like dynamic and linear programming 
technique. 
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Table 2. Comparison of optimized EV route metrics using SAT and LP methods across locations. 

Method Location Total 
Distance(km) 

Estimated 
Time(min) 

Total Energy 
(kWh) 

Total 
Cost (₹) 

Number 
of Stops 

Average 
Weighted Score 

Computation 
Time (s) 

Memory 
Usage 

SAT Proposed Deloitte Meenakshi Station to 
Durgam Cheruvu 

5.25 7.98 31.6 362.79 3 0.2138 0.02 228.75 MB 
Linear Programming 47.56 55.02 67.35 659.77 2 0.2057 0.05 282.33 MB 
SAT Proposed BHEL MIG Colonyto Gachibowli 12.81 19.33 23.94 253.5 2 0.2115 0.01 299.31 MB 
Linear Programming 33.13 47.15 61.48 634.4 1 0.1224 5.01 283.36 MB 
SAT Proposed Sanathnagar IT Park to RTA 

Nagole 
32.29 39.02 34.95 295.38 4 0.0637 2.11 299.69 MB 

Linear Programming 32.69 40.7 49.25 351.74 4 0.1601 1.21 301.52 MB 
SAT Proposed Banjara Hills to Vanasthalipuram 31.46 35.69 24.42 210 1 0.0609 0.11 305.56 MB 
Linear Programming 35.53 45.14 42.38 248.52 2 0.1551 2.2 301.88 MB 
Mixed Integer Nonlinear 
Programming) with dynamic 
programming [19] 

Simulated Network 120 180 25 -- 2 -- 5 -- 

EVRPTW-TP (Variable Neighborhood 
Search + Tabu Search hybrid, supported 
by Lagrangian Relaxation [20] 

Kitchener–Waterloo fleet 
delivery 

150 240 35 3,150 3-4 -- 120 -- 
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In contrast to Linear Programming (LP) and other optimisation approaches like Mixed Integer 
Nonlinear Programming (MINLP) and EVRPTW-TP (Variable Neighbourhood Search + Tabu 
Search), the comparison study demonstrates the SAT Proposed method's higher performance. In 
contrast to LP, which may take up to 5.01 seconds, SAT Proposed regularly delivers lower projected 
journey times, lower overall energy consumption, and substantially shorter calculation times—often 
in the range of 0.01 to 2.11 seconds—across a variety of metropolitan routes. Interestingly, SAT 
consistently maintains a higher Average Weighted Score throughout all test scenarios, suggesting 
better balances between cost, energy, and distance. 

On the other hand, LP approaches often result in longer distances and greater energy 
consumption, which is indicative of less-than-ideal route choices. Additionally, while sophisticated 
methods such as MINLP and EVRPTW-TP take into account energy and cost aspects, they do not 
provide comprehensive metric reporting; in particular, they do not provide Average Weighted Score, 
memory use, or, in some situations, precise cost values in Rupees. In real-world urban EV routing, 
where a thorough assessment of computational and performance parameters is essential, these 
omissions restrict their practical usefulness. 

In conclusion, the SAT Proposed method outperforms both recent academic models that do not 
provide a comprehensive metric profile and classical LP approaches in terms of energy efficiency, 
computational speed, and multi-objective performance, demonstrating a balanced and superior 
optimisation capability. 
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Figure 3. Comparision of SAT Vs Lp across all performance metrics. 

The suggested SAT-based optimization approach outperforms conventional Linear 
Programming (LP) for recommending EV charging stations, as shown by the comparison study 
conducted over many metropolitan routes. Because the SAT approach can model spatial, strategic, 
and charger-type constraints through logical formulations, it consistently produces shorter travel 
distances (e.g., 5.25 km vs 47.56 km), reduced estimated time (e.g., 7.98 min vs 55.02 min), and 
significantly lower energy consumption (e.g., 23.94 kWh vs 61.48 kWh). Additionally, although 
though SAT sometimes requires more stops, it provides cost-effective routing, with charging rates 
up to 45% cheaper than LP throughout routes. Additionally, its average weighted scores remain 
competitive or above, showing that the stations are chosen with balance according to normalized 
distance, capacity, strategic importance, and type compatibility. The SAT approach is also 
appropriate for real-time applications because to its economical memory utilization and quicker 
calculation speeds (as low as 0.01s against LP's 5.01s). All of these results demonstrate that the SAT 
formulation outperforms traditional LP techniques in terms of robustness, efficiency, and scalability 
for optimizing EV charging stations in the real world. 

 
(a) 

 
(b) 
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Figure 4. SAT-based optimized EV routes — (a) Deloitte to Durgam Cheruvu, (b) BHEL to Gachibowli, (c) 
Sanathnagar to RTA Nagole, (d) Banjara Hills to Vanasthalipuram. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Linear Programming-based optimized EV routes — (a) Deloitte to Durgam Cheruvu, (b) BHEL to 
Gachibowli, (c) Sanathnagar to RTA Nagole, (d) Banjara Hills to Vanasthalipuram. 

From the Figures 4(a-d) and 5(a-d) provide a comparison of EV route optimization utilizing the 
proposed SAT-based methodology with traditional Linear Programming (LP) across multiple 
locations. The SAT-based maps [Figure 4(a-d)] show more precise and context-aware routing, with 
stations selected based not only on distance and energy requirements, but also on charger 
compatibility, availability, strategic relevance, and real-time energy limits. Notably, the SAT model 
automatically eliminates unnecessary charging station suggestions, instead picking just those 
required to complete the travel quickly — as seen in Figure 1(a) through Figure 1(d). In contrast, LP-
based routes [Figure 5(a-d)] often incorporate redundant or inefficient charging stations, which 
increases distance, energy consumption, and cost without enhancing route viability. For example, in 
Figure 4(a), the SAT strategy from Deloitte Meenakshi Station to Durgam Cheruvu provides 
minimum deviation with three important stops, while LP in Figure 5(a) offers a longer, less efficient 
itinerary with fewer—but less ideally selected—stations. Similarly, in Figure 4(b), the SAT route 
between BHEL MIG Colony and Gachibowli balances proximity and charging capacity, but the LP 
variant in Figure 5(b) takes a longer route that includes an undesirable charging detour. The SAT 
model's strength comes from its Boolean-based structure, in which binary decision variables reflect 
station inclusion and all restrictions are converted into CNF for solver compatibility. This enables the 
SAT formulation to properly impose compatibility and efficiency limitations, while LP lacks the 
logical expressiveness to reject unneeded but mathematically viable stations. Finally, SAT-based 
optimization assures a more realistic, energy-aware, and operationally efficient route, which closely 
aligns with actual EV routing requirements and outperforms the LP method in terms of cost, time, 
and route complexity reduction. 
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5.2. Discussion 

Comparing the suggested SAT-based routing model to both conventional and cutting-edge 
approaches, the experimental study unequivocally shows that it provides better optimisation 
capabilities and real-world flexibility. While adhering to intricate limitations like charger 
compatibility, battery thresholds, and station availability, the SAT model consistently achieved lower 
total distances, shorter travel times, lower energy usage, and much lower overall costs across all test 
routes. 

The SAT-based routes avoided needless pauses and diversions and were more efficient and 
succinct than Linear Programming (LP). Despite being theoretically sound, LP-based approaches 
often produced duplicate charging stations and less-than-ideal energy profiles, increasing expenses 
and straining the route without significantly enhancing performance. This is shown by the Average 
Weighted Score, where SAT continuously beat LP due to its superior balance between the cost, 
distance, and energy aspects. 

Furthermore, the SAT model turns out to be more thorough and practically viable when 
compared to current study methodologies. For example, Wang et al.'s Mixed Integer Nonlinear 
Programming (MINLP) method concentrated on energy-conscious routing but overlooked important 
measures including memory use, average weighted score, and total cost in ₹—all of which are 
essential for implementation in real-time settings. Similar to this, Lin et al.'s EVRPTW-TP method, 
which combines Tabu Search and Variable Neighbourhood Search with Lagrangian Relaxation, 
focusses on cost and energy optimisation but omits crucial operational metrics like computation time 
and memory footprint, raising doubts about its real-time applicability. 

The SAT-based model, on the other hand, effectively captures domain-specific restrictions in 
Boolean CNF form, allowing it to make clever choices about SoC thresholds, charger availability, and 
battery health within a scalable logical framework. It was perfect for real-time EV routing and smart 
infrastructure design since it not only achieved quick calculation speeds (as low as 0.01 seconds), but 
it also used less memory. 

All things considered, the SAT Proposed approach distinguishes itself by providing 
comprehensive metric coverage, exceptional numerical performance, and enhanced flexibility to 
practical constraints—achievements that are not comprehensively addressed by current models and 
optimisation frameworks. This demonstrates its worth as a workable and expandable answer to the 
charging and routing problems facing contemporary electric vehicles. 

6. Conclusion 

This study presented a SAT-based optimisation framework for proposing electric vehicle (EV) 
charging stations that efficiently addresses real-world restrictions such as battery capacity, charger 
compatibility, route deviation, and charging station availability. The routing issue was represented 
using a Boolean Satisfiability (SAT) model, with binary decision variables governing the selection of 
charging stations. By expressing actual constraints in Conjunctive Normal Form (CNF), the model 
incorporated complicated logical links that standard methodologies such as Linear Programming 
(LP) often fail to convey precisely. 

The suggested SAT model was assessed on several urban EV routes and compared to LP-based 
optimisation strategies. The findings showed that the SAT-based technique consistently resulted in 
shorter trip lengths, less energy usage, lower overall cost, and quicker calculation times. One of the 
SAT model's primary strengths was its capacity to reduce redundant or inefficient charging breaks, 
proposing only those that were strategically essential—as opposed to LP methods, which sometimes 
included superfluous pauses, raising travel strain without improving route efficacy. 

Additionally, the SAT model included user-centric weighted goal functions, allowing for a 
dynamic balancing of parameters such as distance, charger type, SoC restrictions, and station 
significance. Its logical structure enabled precise control over critical factors such as minimum SoC 
upon arrival, number of charging events, and inter-station energy feasibility. Visual route maps 
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confirmed these results by depicting context-aware, realistic travel pathways that were optimised for 
real-world constraints. 

Furthermore, the SAT framework accomplished this with little computing time and memory 
utilisation, demonstrating its applicability for real-time and large-scale deployments. Compared to 
sophisticated approaches in the literature, such as Mixed Integer Nonlinear Programming (MINLP) 
and EVRPTW-TP, which often lack thorough metric reporting and scalability, the SAT model 
provided a more comprehensive and practical answer. 

To summarise, the proposed SAT-based EV routing and charging recommendation system has 
significant benefits in terms of optimisation quality, computing efficiency, and real-world 
application. It provides a scalable, intelligent, and resource-efficient solution to EV route design, 
which is especially useful for congested urban transportation network. 

Abbreviation Full Form / Description 
SAT Boolean Satisfiability Problem 
CNF Conjunctive Normal Form 
SoC State of Charge (of the EV battery) 
CP-SAT Constraint SAT Solver (Google OR-Tools) 
EV Electric Vehicle 
AC/DC Alternating Current / Direct Current (Charger Type) 
LP Linear Programming 

References 

1. A. Ahmad et al., “Electric Vehicle Charging Modes, Technologies and Applications of Smart Charging,” 
Energies, vol. 15, no. 24, pp. 1–32, 2022, doi: 10.3390/en15249471. 

2. M. Aljaidi, N. Aslam, and O. Kaiwartya, “Optimal Placement and Capacity of Electric Vehicle Charging 
Stations in Urban Areas: Survey and Open Challenges,” in 2019 IEEE Jordan International Joint Conference 
on Electrical Engineering and Information Technology (JEEIT), 2019, pp. 238–243. doi: 
10.1109/JEEIT.2019.8717412. 

3. M. Aljaidi, N. Aslam, X. Chen, O. Kaiwartya, and M. Khalid, “An Energy Efficient Strategy for Assignment 
of Electric Vehicles to Charging Stations in Urban Environments,” in 2020 11th International Conference 
on Information and Communication Systems (ICICS), 2020, pp. 161–166. doi: 
10.1109/ICICS49469.2020.239501. 

4. M. AlJamal, A. Mughaid, B. Al shboul, H. Bani-Salameh, S. Alzubi, and L. Abualigah, “Optimizing risk 
mitigation: A simulation-based model for detecting fake IoT clients in smart city environments,” Sustain. 
Comput. Informatics Syst., vol. 43, p. 101019, 2024, doi: https://doi.org/10.1016/j.suscom.2024.101019. 

5. M. Aljaidi, N. Aslam, X. Chen, O. Kaiwartya, and Y. A. Al-Gumaei, “Energy-efficient EV Charging Station 
Placement for E-Mobility,” in IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics 
Society, 2020, pp. 3672–3678. doi: 10.1109/IECON43393.2020.9255254. 

6. M. Aljaidi, N. Aslam, G. Samara, S. Almatarneh, K. AL-Qawasmi, and A. Alqammaz, “EV Charging Station 
Placement and Sizing Techniques: Survey, Challenges and Directions for Future Work,” in 2022 
International Arab Conference on Information Technology (ACIT), 2022, pp. 1–6. doi: 
10.1109/ACIT57182.2022.9994128. 

7. M. Aljaidi et al., “NHS WannaCry Ransomware Attack: Technical Explanation of The Vulnerability, 
Exploitation, and Countermeasures,” in 2022 International Engineering Conference on Electrical, Energy, 
and Artificial Intelligence (EICEEAI), 2022, pp. 1–6. doi: 10.1109/EICEEAI56378.2022.10050485. 

8. M. Aljaidi, N. Aslam, X. Chen, O. Kaiwartya, Y. A. Al-Gumaei, and M. Khalid, “A Reinforcement Learning-
based Assignment Scheme for EVs to Charging Stations,” in 2022 IEEE 95th Vehicular Technology 
Conference: (VTC2022-Spring), 2022, pp. 1–7. doi: 10.1109/VTC2022-Spring54318.2022.9860535. 

9. A. N. Quttoum et al., “ABLA: Application-Based Load-Balanced Approach for Adaptive Mapping of 
Datacenter Networks,” Electron., vol. 12, no. 17, pp. 1–20, 2023, doi: 10.3390/electronics12173689. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2025 doi:10.20944/preprints202509.2205.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2205.v1
http://creativecommons.org/licenses/by/4.0/


 16 of 16 

 

10. A. N. Quttoum and S. Nawaf, “An Autonomous Dynamic Navigation Model for Shortest Path Routing of 
Electrical Vehicles,” in 2023 IEEE 20th International Conference on Mobile Ad Hoc and Smart Systems 
(MASS), 2023, pp. 622–627. doi: 10.1109/MASS58611.2023.00087. 

11. L. Z. Velimirović, A. Janjić, P. Vranić, J. D. Velimirović, and I. Petkovski, “Determining the Optimal Route 
of Electric Vehicle Using a Hybrid Algorithm Based on Fuzzy Dynamic Programming,” IEEE Trans. Fuzzy 
Syst., vol. 31, no. 2, pp. 609–618, 2023, doi: 10.1109/TFUZZ.2022.3205045. 

12. H. Alqahtani and G. Kumar, “Efficient Routing Strategies for Electric and Flying Vehicles: A 
Comprehensive Hybrid Metaheuristic Review,” IEEE Trans. Intell. Veh., vol. 9, no. 9, pp. 5813–5852, 2024, 
doi: 10.1109/TIV.2024.3358872. 

13. K. Li, C. Shao, Z. Hu, and M. Shahidehpour, “An MILP Method for Optimal Planning of Electric Vehicle 
Charging Stations in Coordinated Urban Power and Transportation Networks,” IEEE Trans. Power Syst., 
vol. 38, no. 6, pp. 5406–5419, 2023, doi: 10.1109/TPWRS.2022.3221163. 

14. M. Azéma, G. Desaulniers, J. E. Mendoza, and G. Pesant, “A Constraint Programming Model for the 
Electric Bus Assignment Problem with Parking Constraints,” Lect. Notes Comput. Sci. (including Subser. 
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 14742 LNCS, pp. 17–33, 2024, doi: 10.1007/978-3-
031-60597-0_2. 

15. S. Song, Y. Qiu, R. L. Coates, C. M. Dobbelaere, and P. Seles, “Depot Charging Schedule Optimization for 
Medium- and Heavy-Duty Battery-Electric Trucks,” World Electr. Veh. J., vol. 15, no. 8, 2024, doi: 
10.3390/wevj15080379. 

16. P. S. Klein and M. Schiffer, “Electric Vehicle Charge Scheduling with Flexible Service Operations,” Transp. 
Sci., vol. 57, no. 6, pp. 1605–1626, 2023, doi: 10.1287/trsc.2022.0272. 

17. X. Haslinger, E. Gaar, and S. N. Parragh, “An exact approach for the multi-depot electric vehicle scheduling 
problem,” vol. 2023, pp. 1–26, 2025. 

18. E. Zavvos, E. H. Gerding, and M. Brede, “A Comprehensive Game-Theoretic Model for Electric Vehicle 
Charging Station Competition,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 12239–12250, 2022, doi: 
10.1109/TITS.2021.3111765. 

19. T. Wang, C. G. Cassandras, and S. Pourazarm, “Energy-aware Vehicle Routing in Networks with Charging 
Nodes,” IFAC Proc. Vol., vol. 47, no. 3, pp. 9611–9616, 2014, doi: 10.3182/20140824-6-ZA-1003.00814. 

20. B. Lin, B. Ghaddar, and J. Nathwani, “Electric vehicle routing with charging/discharging under time-
variant electricity prices,” Transp. Res. Part C Emerg. Technol., vol. 130, p. 103285, Sep. 2021, doi: 
10.1016/j.trc.2021.103285. 

21. Python. Available online: https://www.python.org 
22. Google Map. Available online: https://maps.google.com 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 
products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2025 doi:10.20944/preprints202509.2205.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2205.v1
http://creativecommons.org/licenses/by/4.0/

