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Abstract

With recent developments in fusion engineering, interest has sparked in development of fusion
devices for deterrent. Enormous amount of energy generated by combining two light nuclei could
be contained and manipulated at will to trigger and accelerate micro explosions (from shock
wave, x-rays or ion beam focusing) which finally result in full scale blast. Materials required to
make such device are critical. They must possess high strength, high hardness, ductility,
formability, drawability, and anisotropic properties. High entropy alloys (HEA) are new class of
materials which nicely fulfils this requirement. Essentially, they are solid solutions of multi
principal elements (usually > 5) eliminating the need of base metal as in conventional alloys.
This gives them many unique properties which may be tailored at will (heat treatment, cold
rolling, precipitation, irradiation). They also exhibit excellent directional properties with
formation of distinct bands along certain preferred crystallographic planes even in hexagonal
close packed structures. These anisotropic properties are strong function of rolling, working, or
forging (swaging) direction and can be utilized to benefit. This study encompasses making outer
shell of a typical fusion device selected on the basis of the weight, which is a function of area of
pay load bay of carrier aircraft.
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1. Introduction

Fusion is promising to be an important source of limitless energy for future. It is fuel efficient,
quick, and voluminous process with ability to be scaled up and controlled to yield high amount
and throughput of energy. In its native form, it may be harnessed to build reactors (contained
devices) or untamed form to build devices [1-3] which is an area of interest here. Historically,
these devices have been made in many ways such as famous cylindrical configuration (Teller —
Ulam design (Fig 1)) [4], modified Teller Ulam design (Ivy Mike (Fig 2 and 3)) [4], oval, cone
and dual cone configuration [5-7] all on the basis of principle to contain plasma [8] or x-ray shock
wave produced, focus them (e.g. by curved walls [9] or implosion of disk [10]) for [11] ignition
of micro explosions [10, 12]. These micro explosions are used as a means for large explosion.
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Fig — 1: Teller — Ulam design
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Fig — 2: (a) Modified Teller — Ulam design (Mike lvy) (Two stage device ignition, micro
explosion, detonation, and explosion mechanisms explained schematic)
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Fig — 2: (b) Modified Teller — Ulam design (Mike lvy) (Two stage device parts explained
schematic)

Fig — 3: Modified Teller — Ulam design (Mike Ivy) [4]

Devices may be designed and build on many principles some of them include (a) energy basis,
(b) yield basis and (c) weight basis. The latter is considered here. This is chosen on the basis of
aircraft (High altitude plane B 52). Pay load bay area of plane serves as start point to determine
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the dimensions of shell of device. This is described briefly here (assuming it is rectangular
section). Using standard arithmetic

Volume of rectangle = length x width x height (1)

As no direct measurements are available, indirect measurements are made. It is known that
payload bay area can accommodate 51 Mk 82 bombs each 500 llbs, totaling 25,500 Ibs — weight

carrying capacity of typical B52G stratosphere. This is used as benchmark. Dimensions of typical
Mk 82 are (Fig 4)
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Fig — 4: Typical Mk 82

From this dimension of payload bay area are calculated which can contain our device.
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Fig — 5: Typical payload dimensions of B52G [3 x 1 Layer (One layer = 20 devices)]
Putting in equation 1

Volume of rectangle = 5920 mm x 948 mm x 819 mm
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Further design is carried out using these dimensions and weight.
2. Design and materials

From above calculations it is inferred that roughly a rolled piece of 24 m x 1 m is required which
may be cut into further dimensions. Thickness of plate is determined from energy release and
energy release rate which is determined by heat transfer pattern upon explosion and any effects
of implosion (Section 3). This is manufactured from HEA in cold rolled and annealed condition
with pronounced texture and elongated grains along rolling direction. Furter, a definite
orientation relationship is ascertained and maintained along the rolling direction. HEAS selected
for this are chosen from a wide variety of HEAs available. This is briefly described here.
Typically, material for device must possess high strength, high hardness, ductility, formability,
drawability, and anisotropic properties. High entropy alloys (HEA) are new class of materials
[13-18] which nicely fulfils this requirement. Essentially, they are solid solutions of multi
principal [17] elements (usually > 5) in equiatomic percentages [19, 20] eliminating the need of
base metal as in conventional alloys. This gives them many unique properties which may be
tailored at will (heat treatment, cold rolling [21-26], precipitation [27-31], irradiation [32]). They
also exhibit excellent directional properties [33] with formation of distinct twins [34-36], faults
[37], dislocation evolution sites, texture [22, 23, 25, 26, 33, 38-45] and bands along certain
preferred crystallographic planes even in hexagonal close packed structures [34-36, 46]. These
anisotropic properties are strong function of rolling [21-26], working, or forging (swaging) [47]
direction and annealing temperature and can be utilized to benefit. This study encompasses
making outer shell of a typical fusion device selected on the basis of the weight, which is a
function of area of pay load bay of carrier aircraft. As a combination of excellent strength,
hardness and low to moderate ductility is required, two phase AlosCoCrFeNi [21] is chosen as
model alloy. It has two phases hamely BCC and FCC which gives it’s a unique place in alloys
category. It has excellent mechanical properties especially cold workability. It can be
successfully cold reduced to 80$ reduction without any failure. This is one of main reasons to
employ it as material of outer shell of device. At this reduction, it is reported to have maintained
480 Hv hardness, 1396 MPa vyield strength and 1461 MPa tensile strength indicating cold
working substantially increase its properties. These superior properties are attributed to strong
dislocation interaction due to dislocation pile up and accumulation and deformation twinning and
lattice distortion. A strong texture is generated by cold rolling along {110}<112>and
{111}<110>. This can be effectively removed through fully recrystallization in which case weak
<110>//ND and <111>// RD texture is detected. Poles figures describing evolution of this texture
are described below
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Fig — 6: Pole figure of AlosCoCrFeNi annealed at (a) 900°C and (b) 1200°C [21]
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Fig—7: (a) Engineering stress Vs Engineering strain plots and (b) Engineering stress and
UTS varying with annealing temperature [21]

Figure 7, part a describes relationship of engineering stress with engineering strain for named
alloy and part b of figure describes its variation with annealing temperatures. It can be easily seen
that Engineering stress decreases while UTS increases with rise of annealing temperature
indicating activation of softening (dislocation assimilation) and strengthening (dislocation pile
up and twining [34, 35, 41, 48-51]) mechanisms.
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3. Heat transfer analysis

Heat transfer analysis is performed to determine effective thickness which will not undergo gross
rupture upon exposure to intense amount of heat radiation. Instead, its rupture is determined by
initiation of crack of certain length which will exceed critical length, grow and then propagation
along certain preferred crystallographic planes only (pre-determined from texture studies and
calculations and orientation relationships). Rupture along these planes will help determine and
optimize device parameters (set earlier) for effective explosion, blast, and yield. This is described
elsewhere.

4. Conclusion

High entropy alloys with ability to exhibit and manifest anisotropy and directional properties
along a certain crystallographic plane parallel to rolling direction are chosen as material
(AlosCoCrFeNi) of choice. They can be reduced to less than 80% without failure. They are
proposed to exhibit texture as measured by pole and inverse pole figures and orientation
relationships. They are formed by combination of rolling (cold) and annealing heat treatment.
Dislocation pileup and twinning mechanisms are attributed to increased strength in these during
cold working while dislocation assimilation are attributed to softening during annealing.
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