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Abstract 

With recent developments in fusion engineering, interest has sparked in development of fusion 

devices for deterrent. Enormous amount of energy generated by combining two light nuclei could 

be contained and manipulated at will to trigger and accelerate micro explosions (from shock 

wave, x-rays or ion beam focusing) which finally result in full scale blast. Materials required to 

make such device are critical. They must possess high strength, high hardness, ductility, 

formability, drawability, and anisotropic properties. High entropy alloys (HEA) are new class of 

materials which nicely fulfils this requirement. Essentially, they are solid solutions of multi 

principal elements (usually > 5) eliminating the need of base metal as in conventional alloys. 

This gives them many unique properties which may be tailored at will (heat treatment, cold 

rolling, precipitation, irradiation). They also exhibit excellent directional properties with 

formation of distinct bands along certain preferred crystallographic planes even in hexagonal 

close packed structures. These anisotropic properties are strong function of rolling, working, or 

forging (swaging) direction and can be utilized to benefit. This study encompasses making outer 

shell of a typical fusion device selected on the basis of the weight, which is a function of area of 

pay load bay of carrier aircraft.   

Keywords: bands, anisotropy, cold rolling, texture, pole figures, fusion  

1. Introduction 

Fusion is promising to be an important source of limitless energy for future. It is fuel efficient, 

quick, and voluminous process with ability to be scaled up and controlled to yield high amount 

and throughput of energy. In its native form, it may be harnessed to build reactors (contained 

devices) or untamed form to build devices [1-3] which is an area of interest here. Historically, 

these devices have been made in many ways such as famous cylindrical configuration (Teller – 

Ulam design (Fig 1)) [4], modified Teller Ulam design (Ivy Mike (Fig 2 and 3)) [4], oval, cone 

and dual cone configuration [5-7] all on the basis of principle to contain plasma [8] or x-ray shock 

wave produced, focus them (e.g. by curved walls [9] or implosion of disk [10]) for [11] ignition 

of micro explosions [10, 12]. These micro explosions are used as a means for large explosion.   
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Fig – 1: Teller – Ulam design 

 

Fig – 2: (a) Modified Teller – Ulam design (Mike Ivy) (Two stage device ignition, micro 

explosion, detonation, and explosion mechanisms explained schematic)  
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Fig – 2: (b) Modified Teller – Ulam design (Mike Ivy) (Two stage device parts explained 

schematic)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig – 3: Modified Teller – Ulam design (Mike Ivy) [4] 

Devices may be designed and build on many principles some of them include (a) energy basis, 

(b) yield basis and (c) weight basis. The latter is considered here. This is chosen on the basis of 

aircraft (High altitude plane B 52). Pay load bay area of plane serves as start point to determine 
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the dimensions of shell of device. This is described briefly here (assuming it is rectangular 

section). Using standard arithmetic  

Volume of rectangle = length x width x height   (1) 

As no direct measurements are available, indirect measurements are made. It is known that 

payload bay area can accommodate 51 Mk 82 bombs each 500 llbs, totaling 25,500 lbs – weight 

carrying capacity of typical B52G stratosphere. This is used as benchmark. Dimensions of typical 

Mk 82 are (Fig 4) 

 

  

  

 

 

 

 

 

   Fig – 4: Typical Mk 82  

From this dimension of payload bay area are calculated which can contain our device.  

 

 

     5920 mm 

Fig – 5: Typical payload dimensions of B52G [3 x 1 Layer (One layer = 20 devices)] 

Putting in equation 1  

  Volume of rectangle = 5920 mm x 948 mm x 819 mm 

948 

mm    
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Further design is carried out using these dimensions and weight.  

2. Design and materials  

From above calculations it is inferred that roughly a rolled piece of 24 m x 1 m is required which 

may be cut into further dimensions. Thickness of plate is determined from energy release and 

energy release rate which is determined by heat transfer pattern upon explosion and any effects 

of implosion (Section 3). This is manufactured from HEA in cold rolled and annealed condition 

with pronounced texture and elongated grains along rolling direction. Furter, a definite 

orientation relationship is ascertained and maintained along the rolling direction. HEAs selected 

for this are chosen from a wide variety of HEAs available. This is briefly described here. 

Typically, material for device must possess high strength, high hardness, ductility, formability, 

drawability, and anisotropic properties. High entropy alloys (HEA) are new class of materials 

[13-18] which nicely fulfils this requirement. Essentially, they are solid solutions of multi 

principal [17] elements (usually > 5) in equiatomic percentages [19, 20] eliminating the need of 

base metal as in conventional alloys. This gives them many unique properties which may be 

tailored at will (heat treatment, cold rolling [21-26], precipitation [27-31], irradiation [32]). They 

also exhibit excellent directional properties [33] with formation of distinct twins [34-36], faults 

[37], dislocation evolution sites, texture [22, 23, 25, 26, 33, 38-45] and bands along certain 

preferred crystallographic planes even in hexagonal close packed structures [34-36, 46]. These 

anisotropic properties are strong function of rolling [21-26], working, or forging (swaging) [47] 

direction and annealing temperature and can be utilized to benefit. This study encompasses 

making outer shell of a typical fusion device selected on the basis of the weight, which is a 

function of area of pay load bay of carrier aircraft. As a combination of excellent strength, 

hardness and low to moderate ductility is required, two phase Al0.5CoCrFeNi [21] is chosen as 

model alloy. It has two phases namely BCC and FCC which gives it’s a unique place in alloys 

category. It has excellent mechanical properties especially cold workability. It can be 

successfully cold reduced to 80$ reduction without any failure. This is one of main reasons to 

employ it as material of outer shell of device. At this reduction, it is reported to have maintained 

480 Hv hardness, 1396 MPa yield strength and 1461 MPa tensile strength indicating cold 

working substantially increase its properties. These superior properties are attributed to strong 

dislocation interaction due to dislocation pile up and accumulation and deformation twinning and 

lattice distortion. A strong texture is generated by cold rolling along {110}<112>and 

{111}<110>. This can be effectively removed through fully recrystallization in which case weak 

<110>//ND and <111>// RD texture is detected. Poles figures describing evolution of this texture 

are described below 
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 Fig – 6: Pole figure of Al0.5CoCrFeNi annealed at (a) 900oC and (b) 1200oC [21] 

   

 

Fig – 7: (a) Engineering stress Vs Engineering strain plots and (b) Engineering stress and 

UTS varying with annealing temperature [21] 

Figure 7, part a describes relationship of engineering stress with engineering strain for named 

alloy and part b of figure describes its variation with annealing temperatures. It can be easily seen 

that Engineering stress decreases while UTS increases with rise of annealing temperature 

indicating activation of softening (dislocation assimilation) and strengthening (dislocation pile 

up and twining [34, 35, 41, 48-51]) mechanisms.   
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3. Heat transfer analysis  

Heat transfer analysis is performed to determine effective thickness which will not undergo gross 

rupture upon exposure to intense amount of heat radiation. Instead, its rupture is determined by 

initiation of crack of certain length which will exceed critical length, grow and then propagation 

along certain preferred crystallographic planes only (pre-determined from texture studies and 

calculations and orientation relationships). Rupture along these planes will help determine and 

optimize device parameters (set earlier) for effective explosion, blast, and yield. This is described 

elsewhere. 

4. Conclusion 

High entropy alloys with ability to exhibit and manifest anisotropy and directional properties 

along a certain crystallographic plane parallel to rolling direction are chosen as material 

(Al0.5CoCrFeNi) of choice. They can be reduced to less than 80% without failure. They are 

proposed to exhibit texture as measured by pole and inverse pole figures and orientation 

relationships. They are formed by combination of rolling (cold) and annealing heat treatment. 

Dislocation pileup and twinning mechanisms are attributed to increased strength in these during 

cold working while dislocation assimilation are attributed to softening during annealing. 
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