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Abstract

Inefficiencies in urban traffic management, particularly from static traffic light regulation, pose signifi-
cant challenges to optimizing traffic flows and mitigating environmental impact. Existing analytical
methods often lack the adaptability to autonomously detect the complex, dynamic structure of traffic
patterns. In this work, we introduce an adaptive cascade clustering approach that synergizes Hi-
erarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) and k-means
algorithms. By employing a weighted voting mechanism, our approach integrates the benefits of
density-based structural analysis with centroidal cluster refinement, advancing upon existing hybrid
models. Evaluated on a high-fidelity simulation model of the Khmelnytskyi transport network in
Khmelnytskyi, Ukraine, the proposed approach demonstrated a superior ability to identify true traffic
modes. It achieved a V-measure of 0.79–0.82 and improved cluster compactness by 4–13% compared
to standalone algorithms. Furthermore, the model attained a scenario identification accuracy of 92.8–
95.0% with a temporal coherence of 0.94. These findings confirm that by leveraging adaptive cascade
principles, our approach significantly enhances the quality of traffic mode identification, representing
a key advancement for developing more intelligent and responsive urban transport management
systems.

Keywords: transport data clustering; HDBSCAN; k-means; adaptive transport systems; urban trans-
port; driving mode identification

1. Introduction
The escalating complexity of urban traffic presents a significant challenge to modern cities,

impacting both economic efficiency and environmental sustainability. Traditional traffic management
systems, often relying on fixed schedules, struggle to adapt to the dynamic and often unpredictable
nature of traffic flows. This paper introduces an adaptive cascade clustering approach designed to
automatically identify and classify traffic patterns with high fidelity. By synergizing density-based and
centroid-based clustering algorithms, our approach aims to provide a robust foundation for intelligent,
responsive transport control systems.

1.1. Motivation and Contributions

This study examines the critical challenges facing modern urban transport systems due to the
intensification of traffic flows, increasing population density, and increasing requirements for envi-
ronmental safety of urbanized areas. The environmental impact of transport includes emissions of
harmful substances, air and water pollution, acoustic pollution, energy consumption, and climate
change [1]. Traditional traffic light control systems are unable to ensure optimal coordination of traffic
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flows in conditions of high dynamism of the urban environment [2], which leads to the formation of
negative environmental consequences due to improper traffic modes of vehicles.

The relevance of the study is due to the insufficiency of existing solutions that would combine
the ability to autonomously analyze transport situations, dynamically adapt control parameters, and
anticipate critical grid states with priority consideration of environmental optimization criteria. It
is not just a technical improvement, but the fulfillment of the public need for quality management
of traffic flows, especially when decisions have a significant impact on the quality of the urban
environment and the mobility of citizens. The current state of research in the field of urban traffic
management is characterized by the intensive development of intelligent methods and technologies [3,
4]. The relationship between the quality of identification of transport modes and the reduction of CO2

emissions is based on the principle that proper recognition of traffic patterns allows adaptive control
systems to optimize the operation of traffic lights, reducing idle time and acceleration-braking periods
of vehicles [5]. Improving the quality of clustering of transport states creates the basis for more efficient
traffic light regulation, which in turn leads to a decrease in emissions due to the optimization of speed
modes.

Building on our previous research in traffic flow analysis [6,7], this work introduces an advanced
approach to automated clustering. While similar ensemble methods combining density-based and
centroid-based clustering have been applied in related transport domains [8], our primary contribution
lies in the adaptive architecture and weighted voting mechanism tailored for high-fidelity vehicular
traffic analysis. Specifically, this study aims to improve the quality and automation of urban traffic
mode identification by developing an adaptive approach that overcomes the limitations of standalone
clustering algorithms.

The key contributions of this research are as follows:

• An advanced cascade architecture that synergizes the structural detection capabilities of Hi-
erarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) with the
boundary refinement of k-means. This is achieved through a sequential application scheme with
an informed centroid-initialization strategy to significantly improve the quality of transport mode
identification.

• A weighted voting mechanism for the automatic, data-driven selection of the optimal clustering
result. This ensures the approach’s adaptability to diverse data characteristics and eliminates the
need for manual algorithm selection or expert intervention.

• A sophisticated multivariate model for representing transport network states. This model utilizes
a complex feature vector for each time window that integrates both static metrics (e.g., average
values) and dynamic properties (e.g., variability, rate of change, and temporal correlations) to
achieve a more accurate and robust depiction of traffic modes in the feature space.

The remainder of this article is organized as follows. Section 1 introduces the research problem,
reviews the relevant literature, and outlines the study’s objectives and contributions. Section 2 provides
a detailed technical description of the proposed adaptive cascade clustering approach, including its
architecture and mathematical formulations. Section 3 presents the comprehensive experimental
results from the simulation study and a comparative analysis of the different clustering strategies.
Section 4 discusses the implications of these results, contextualizing them within the existing body of
work and evaluating the approach’s advantages and limitations. Finally, Section 5 concludes the paper
by summarizing the key findings and outlining future research directions.

1.2. Literature Review

Transport 5.0 introduces a new paradigm for safe, secure, and sustainable intelligent transport
systems [9,10]. Predicting mobile data traffic by using time-varying user mobility patterns demon-
strates the importance of temporal dynamics [11]. Our study uses the concepts of cascade clustering
and weighted voting to overcome the limitations of traditional approaches to traffic flow analysis.
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Clustering approaches in transport systems are considered a fundamental direction of traffic anal-
ysis. A hybrid approach combining k-medoids and Self-Tuning Spectral Clustering to classify traffic
states shows high accuracy [12]. A spatially constrained hierarchical clustering algorithm for traffic
forecasting in bike-sharing systems improves prediction accuracy [8]. Bayesian models of ensemble
clustering and advanced self-learning-based clustering schemes also enhance performance [13–15].
Analysis systems using ensemble approaches are effective for determining traffic patterns [16–18]. In
this study, we investigate the application of clustering to identify hidden patterns [19,20], a multi-
faceted task in urban environments [21,22]. A new data-driven approach uses regression modeling
and unsupervised learning to create typologies of road segments based on traffic speed patterns [23].

Traffic modeling systems focusing on reducing CO2 emissions are present in several works [6,
24]. Traditional adaptive motion control systems, such as those using fundamental robots [25,26],
demonstrate potential for emission reduction through improved traffic flow. The emergence of artificial-
intelligent-based solutions provides new opportunities for environmental optimization [27–29]. Deep
learning, Internet of Things, and decentralized approaches have introduced real-time monitoring and
management capabilities, improving traffic flow modes [30,31], while comprehensive sensor networks
and dynamic interval adjustment ensure optimal traffic flow [32,33].

Modern approaches to traffic flow pattern analysis have revealed critical relationships between
traffic patterns and emission levels [7,34,35]. Our previous research demonstrated using cluster
analysis to identify urban traffic patterns in a simulation model of Khmelnytskyi [7] and developed
approaches for environmentally oriented transport systems [6]. This study expands on these devel-
opments by introducing an adaptive cascade approach that automatically combines advantages of
different clustering algorithms (HDBSCAN and k-means) for more accurate identification of transport
modes without expert intervention. Proper identification and management of transport patterns can
significantly reduce vehicle emissions through optimized flow, which can be monitored using sensors
and appropriate approaches [36]. However, computational load and memory usage remain challenges
for complex machine learning models [37,38], and most research is limited to short-term data analysis,
often neglecting long-term trends and external factors.

1.3. Objectives and Tasks

In the dynamic landscape of urban traffic management, a critical need exists for analytical
approaches that can not only accurately identify traffic mode patterns but also automatically determine
the optimal number and structure of these states without expert intervention. This level of automation
is essential for developing truly adaptive control systems that can manage complex and evolving
transport networks.

The primary goal of this study is to improve the quality of urban traffic management by devel-
oping and validating an adaptive approach for the automated determination of traffic modes and
the estimation of their spatiotemporal relationships. To achieve this goal, the following key tasks are
undertaken: (i) to design and implement a cascade clustering architecture that synergistically com-
bines the density-based structure detection of HDBSCAN with the centroidal refinement of k-means,
leveraging an informed initialization strategy to enhance performance; (ii) to develop a weighted
voting mechanism that automatically selects the optimal clustering result based on a composite of
quality criteria, thereby ensuring the approach’s adaptability to varying data characteristics; (iii) to
construct a multivariate feature representation for time-windowed traffic data that captures both static
(e.g., averages) and dynamic (e.g., variability, rate of change) properties, providing a rich input for
the clustering algorithms; and (iv) to rigorously validate the proposed approach through a controlled
simulation experiment, comparing its performance against baseline algorithms on a reference dataset
with ground-truth scenarios, using both external (e.g., V-measure, ARI) and internal (e.g., cluster
compactness) validation metrics.

This work is predicated on the central hypothesis that improving the structural quality of traffic
mode clustering directly enables more efficient traffic light regulation, leading to tangible benefits
such as reduced vehicle emissions and congestion [4,5]. We assume these results can be combined
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through weighted voting to automatically select the optimal outcome based on quality criteria. We
also address the challenge of combining different algorithmic approaches into a single cascade scheme.
Finally, by successfully executing the outlined tasks, this study aims to demonstrate that our proposed
adaptive cascade scheme provides a more accurate, robust, and automated solution for traffic pattern
recognition than its constituent algorithms applied in isolation.

2. Materials and Methods
This section provides a comprehensive technical description of the proposed adaptive cascade

clustering approach and the experimental methodology used for its validation. We begin by detailing
the architecture of the adaptive approach, including the data representation, preprocessing techniques,
and feature extraction process. Subsequently, we elaborate on the core clustering algorithms, HDB-
SCAN and k-means, and explain the mechanics of the weighted voting mechanism for adaptive
strategy selection. Finally, we outline the experimental setup, including the simulation environment,
scenarios, and performance evaluation metrics.

2.1. Adaptive Cascade Approach to Clustering

The proposed approach is structured as an adaptive cascade designed to identify and analyze
urban traffic patterns. The architecture of this approach is illustrated in Figure 1. The process begins
with raw data acquisition from the transport network, which is then transformed into structured feature
vectors within discrete time windows. A central element of the approach is an adaptive selection
mechanism that chooses the most suitable clustering strategy, either HDBSCAN-first, k-means-first,
or a hybrid approach, based on the intrinsic properties of the data. This selection is guided by a
weighted voting system that evaluates the potential performance of each algorithm. The final output
provides a set of labeled traffic patterns, enabling a detailed structural analysis of traffic dynamics.
This section will elaborate on the mathematical models for data representation, the specifics of the
clustering algorithms, the metrics for quality assessment, and the logic behind the adaptive strategy
selection.

2.2. Data Representation and Preprocessing
2.2.1. Urban Transport Network Model

The foundation of our analysis is the representation of the urban transport network as an oriented
graph, defined as:

G = (V, E), (1)

where V is the set of intersections (nodes) and E is the set of road segments (edges) connecting them.
The state of this network is captured over a time interval [t0, tN ], yielding a time series of network

states:
SSN = {S(t0), S(t1), . . . , S(tN)}, (2)

where each element S(tk) represents a snapshot of the entire transport network’s characteristics (e.g.,
vehicle speeds, queue lengths) at time tk.

The sequence SSN , as defined in Equation (2), forms the raw dataset for subsequent analysis. The
length of this sequence, N, is determined by the monitoring duration and the data sampling rate ∆t.

2.2.2. Time Window Segmentation

To analyze the continuous flow of traffic data using machine learning, it is necessary to transform
the unstructured time series SSN into a structured format. This is achieved through a segmentation
function Φ : SSN → SW, which maps the original data into a sequence of discrete time windows:

SW = {W1, W2, . . . , WK}, K ∈ N, (3)
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Figure 1. The proposed adaptive cascade clustering architecture. The process begins with data acquisition from
the urban transport network, followed by feature extraction within time windows. A weighted voting mechanism
then selects the optimal clustering strategy (HDBSCAN or k-means) based on data characteristics, leading to the
final identification of traffic patterns.

where each window Wk represents a segment of the network’s state over a fixed interval of length ∆t:

Wk = {S(t)|t ∈ [t0 + (k− 1)∆t, t0 + k∆t]}. (4)

This segmentation, described by Equations (3) and (4), organizes the data into meaningful frag-
ments, each characterizing the network’s behavior over a specific period.

2.2.3. Feature Vector Extraction

For each time window Wk, a compact vector representation is constructed to capture its essential
characteristics. This feature vector, Ftrk, includes both static and dynamic properties of the traffic flow:

Ftrk = (µk, σk, δk, τk), (5)

where µk is the average state of traffic flows, σk is the standard deviation, δk represents the rate of
change of flows, and τk reflects the autocorrelation properties.

To quantify the similarity between any two time windows, Wi and Wj, a Gaussian kernel is
employed:

sim(Wi, Wj) = exp

(
−
∥Ftr(Wi)− Ftr(Wj)∥2

2σ2
global/4

)
, (6)

where ∥ · ∥ denotes the Euclidean norm and the scaling parameter σ is typically set to σglobal/2, with
σglobal being the global standard deviation of the dataset features.
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The collection of all such feature vectors forms a feature matrix

F = [Ftr1, Ftr2, . . . , FtrK]
T ,

which serves as the input for the clustering stage.

2.3. Core Clustering Algorithms
2.3.1. HDBSCAN with Automated Parameter Tuning

A key advantage of our approach is the automatic determination of HDBSCAN parameters, which
enhances its adaptability. The minimum cluster size parameter, mcs, which specifies the minimum
number of points required to form a cluster, is calculated as follows:

mcs = ⌈Nob · scl⌉, (7)

where Nob is the total number of observations (time windows) and scl is a scaling factor, typically in
the range [0.02, 0.08].

The cluster selection parameter ms, which controls the algorithm’s conservatism in forming
clusters, is derived from mcs:

ms = ⌈mcs · β⌉, (8)

where β is a reduction factor, typically between 0.5 and 0.8.
Finally, the cluster selection epsilon parameter cse, which determines the maximum distance for

joining clusters, is calculated based on the local data structure:

cse = median(KNNdist) · γ, (9)

where KNNdist is the array of distances to the k nearest neighbors (usually k = 5) for each data point,
and γ is a distance scaling factor in the range [1.0, 1.5].

Using the median makes this calculation robust to outliers. This automated tuning, governed by
Equations (7)–(9), allows HDBSCAN to adapt to different datasets without manual intervention. To
ensure full reproducibility, the parameter search scripts, which implement deterministic random-seed
control, are available in the public repository cited in the Data Availability Statement. A sensitivity
analysis of the model’s performance to variations in the β and γ hyperparameters is provided in
Appendix C.

2.3.2. k-means with Informed Initialization

The second stage of the cascade involves refining the cluster boundaries using the k-means
algorithm. This strategy combines the strengths of density-based clustering (structure detection) with
the advantages of a centroid-based approach (clear boundaries). The k-means algorithm is applied
with parameters derived from the initial HDBSCAN analysis:

k-means(K = Koptimal, init = HDBSCANcentroids), (10)

where Koptimal is the number of significant clusters identified by HDBSCAN, and HDBSCANcentroids

are the initial centroids for k-means.
These initial centroids are calculated as the geometric centers of the clusters obtained from

HDBSCAN:
c(0)i =

1
|CHDBSCAN

i | ∑
xj∈CHDBSCAN

i

xj, (11)

where CHDBSCAN
i is the i-th cluster found by HDBSCAN.

This informed initialization, defined in Equations (10) and (11), helps k-means converge to a more
meaningful solution.
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2.4. Cluster Quality Assessment
2.4.1. Geometric and Density-Based Metrics

After clustering, a set of characteristics is calculated for each cluster Ck to evaluate its quality.
The centroid Cnt(Ck), representing the typical state of the traffic mode, is the geometric center of its
constituent feature vectors:

Cnt(Ck) =
1
|Ck| ∑

Wi∈Ck

Ftr(Wi). (12)

The cluster radius r(Ck) measures its compactness by finding the maximum distance from the
centroid to any point within the cluster:

r(Ck) = max
Wi∈Ck

∥Ftr(Wi)− Cnt(Ck)∥. (13)

Cluster density Dns(Ck) quantifies the concentration of points in the feature space:

Dns(Ck) =
|Ck|

Volrad(Ck)
, (14)

where the volume Volrad(Ck) is that of a d-dimensional hypersphere with radius r(Ck):

Volrad(Ck) =
πd/2

Γ(d/2 + 1)
· r(Ck)

d, (15)

with d being the feature space dimension and Γ(·) the gamma function.
Compactness Cmp(Ck) measures internal homogeneity through the average pairwise similarity:

Cmp(Ck) =
1

|Ck|(|Ck| − 1) ∑
Wi ,Wj∈Ck ,i ̸=j

sim(Wi, Wj). (16)

Finally, the separation Sep(Ck) measures the minimum distance to the centroid of any other
cluster, indicating how distinct the clusters are:

Sep(Ck) = min
j ̸=k
∥Cnt(Ck)− Cnt(Cj)∥. (17)

2.4.2. Stability and Coherence Metrics

To assess the robustness of the identified clusters, stability is calculated. The stability of a cluster
Ck evaluates its resilience to small perturbations in the data, such as those introduced by bootstrap
sampling:

Stability(Ck) = 1− σcentroid(Ck)

∥Cnt(Ck)∥
, (18)

where σcentroid(Ck) is the standard deviation of the centroid’s position across bootstrap samples.
A higher stability value, as defined in Equation (18), indicates a more reliable and well-defined

transport mode. Temporal coherence measures the degree to which a cluster represents a contiguous
block of time, which is critical for interpreting traffic modes:

Coherence(Ck) =
1

|Ck| − 1

|Ck |−1

∑
i=1

1consecutive(ti, ti+1), (19)

where 1consecutive(ti, ti+1) is an indicator function that equals 1 if the time windows at times ti and ti+1

are sequential; high coherence suggests a long-term, stable mode of motion.
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2.5. Adaptive Strategy Selection
2.5.1. Weighted Voting Mechanism

A key novelty is the weighted voting mechanism for automatically selecting the best clustering
result. The quality of HDBSCAN’s output is evaluated using a comprehensive metric that balances
structure, stability, and interpretability:

QualityHDBSCAN = α · Silhouette + β · Stability + γ · Interpretability, (20)

where α, β, γ are weighting factors summing to 1.
For k-means, the quality metric focuses on geometric properties:

Qualityk-means = α · Silhouette + β ·Compactness + γ · Separation. (21)

A basic decision rule would be to choose the algorithm with the higher quality score:

Finallabels =

HDBSCANlabels if QualityHDBSCAN > Qualityk-means;

k-meanslabels otherwise.
(22)

However, to prevent frequent switching due to minor fluctuations, a tolerance threshold, δtolerance

(typically [0.02, 0.05]), is introduced, leading to a more stable decision rule:

Finallabels =


HDBSCANlabels if QualityHDBSCAN > Qualityk-means + δtolerance;

k-meanslabels if Qualityk-means > QualityHDBSCAN + δtolerance;

Hybridresult if |QualityHDBSCAN −Qualityk-means| ≤ δtolerance.

(23)

This refined rule, shown in Equation (23) and visualized in Figure 2, ensures that a switch in
strategy only occurs when there is a significant performance difference.

2.5.2. Data Profiling for Strategy Switching

The choice of the optimal clustering strategy is highly dependent on the intrinsic characteristics
of the input data. To automate this choice, we first quantify the noise level, ρnoise, as the proportion of
outliers in the dataset:

ρnoise =
|outliers|
|Data| . (24)

Outliers are identified using the robust interquartile range (IQR) method:

outliers = {xi : xi < Q1 − 1.5 · IQR or xi > Q3 + 1.5 · IQR}, (25)

where Q1 and Q3 are the first and third quartiles of the data.
The natural tendency of the data to form clusters is assessed using the Hopkins statistic, H:

H =
∑m

i=1 vi

∑m
i=1 ui + ∑m

i=1 vi
, (26)

where vi are distances from real points to their nearest neighbors and ui are distances from randomly
generated points to their nearest neighbors in the real dataset; values of H near 1 indicate high
separation.

The heterogeneity of cluster density is measured by the coefficient of variation of local densities:

CVdensity =
σdensity

µdensity
, (27)
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Figure 2. Logical scheme of the weighted voting process. Input data characteristics, such as noise ratio and density
variation, are evaluated to inform the selection between HDBSCAN and k-means. The quality of both models
is assessed using internal and external metrics, and the final clustering result is chosen based on a comparative
analysis, ensuring the most suitable model is applied.

where local density ρi for each point xi is estimated based on its k nearest neighbors:

ρi =
k

∑xj∈kNN(i) ∥xi − xj∥
. (28)

The temporal structure is analyzed via the autocorrelation function R(τ):

R(τ) =
∑T−τ

t=1 (S(t)− S̄)(S(t + τ)− S̄)

∑T
t=1(S(t)− S̄)2

, (29)

from which a time stability coefficient, Persistence, is derived:

Persistence = max
τ∈[1,τmax]

R(τ). (30)

The data’s internal complexity is assessed by estimating its intrinsic dimensionality dintrinsic using
a maximum likelihood approach:

dintrinsic = lim
r→0

1
log 2

d log N(r)
d log r

, (31)

where N(r) is the number of point pairs with distance less than r.
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The ratio of intrinsic to ambient dimension gives the complexity ratio:

Complexityratio =
dintrinsic

dambient
. (32)

These metrics are combined into a comprehensive data profile:

Dataprofile = {ρnoise, H, CVdensity, Persistence, Complexityratio}. (33)

This profile, defined by Equation (33), provides the basis for making an informed, automatic
decision on the optimal clustering strategy.

2.5.3. Strategic Application Rules

Based on the data profile, one of three main strategies is automatically selected. The HDBSCAN-
first strategy is chosen for data with high noise or complex structure:

Strategy = HDBSCAN-first if ρnoise > 0.2. (34)

This rule is also triggered by high density variation (CVdensity > 0.6) or low separation (H < 0.3),
as HDBSCAN excels at handling outliers and clusters of arbitrary shape. Conversely, the k-means-first
strategy is applied to well-structured data with low noise and homogeneous density:

Strategy = k-means-first if CVdensity < 0.3. (35)

This choice is supported by low noise levels (ρnoise < 0.1) and high separation (H > 0.7), where
the geometric optimization of k-means can provide clearer cluster boundaries. For intermediate cases,
a hybrid strategy is used.

The entire approach also incorporates dynamic adaptation, learning from historical performance
to select the best strategy for data with a given profile:

Strategyadaptive = argmax
s∈{HDBSCAN, k-means, hybrid}

Performance(s|Dataprofile). (36)

This adaptive selection, formalized in Equation (36), ensures the long-term robustness and
feasibility of the system.

2.6. Implementation of the Adaptive Approach

The complete adaptive cascade clustering process is summarized in Algorithm 1. The algorithm
proceeds in three main phases. Phase 1 involves data preparation, where raw time-series data is
segmented into windows and transformed into feature vectors, followed by an analysis of the data’s
intrinsic properties (noise, density variation). In Phase 2, an adaptive clustering strategy is selected
based on the data profile, and both HDBSCAN and k-means (with informed initialization) are executed.
In Phase 3, a weighted voting mechanism compares the quality of the two clustering results and selects
the final set of labels. Validated clusters that meet stability and size thresholds are identified as final
traffic patterns, and a transition matrix between these patterns is computed.

2.7. Experimental Setup

The experimental validation of the proposed adaptive cascade clustering approach was designed
to corroborate the theoretical developments and to demonstrate the method’s practical applicability
under conditions that closely replicate real-world urban transport systems. The primary objective
was to create a controlled, repeatable environment for benchmarking the performance of different
clustering strategies and validating their ability to identify genuine traffic patterns.
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Algorithm 1 Adaptive Cascade Clustering for Traffic Pattern Recognition.

Require: Traffic data D; window parameters (wsize, wstep); thresholds (Ostab, Oval).
Ensure: Traffic patterns P; transition matrix T; quality metrics Q.

1: Initialize: W ← {}, P← {} ▷ Phase 1. Data Preparation & Analysis
2: for i = 1 to N − wsize step wstep do
3: window← D[i : i + wsize]
4: features← ComputeFeatures(window)
5: W ←W ∪ {features}
6: end for
7: ρnoise ← ComputeNoiseRatio(W)
8: CVdensity ← ComputeDensityVariation(W) ▷ Phase 2. Adaptive Clustering
9: if ρnoise > 0.2 or CVdensity > 0.6 then

10: strategy← HDBSCAN_first
11: else if CVdensity < 0.3 and ρnoise < 0.1 then
12: strategy← k_means_first
13: else
14: strategy← hybrid
15: end if
16: Lh ← HDBSCAN(W, auto_params)
17: Lk ← k_means(W, |unique(Lh)|, init = centroids_from(Lh))
18: Qh ← EvaluateQuality(W, Lh)
19: Qk ← EvaluateQuality(W, Lk) ▷ Phase 3. Weighted Voting & Validation
20: if |Qh −Qk| > δtolerance then
21: L f inal ← argmax(Qh, Qk)
22: else
23: L f inal ← HybridResult(Lh, Lk)
24: end if
25: for each cluster Ci in L f inal do
26: if stability(Ci) ≥ Ostab AND length(Ci) ≥ Oval then
27: P← P ∪ {Ci}
28: end if
29: end for
30: T ← ComputeTransitionMatrix(P)
31: return P, T, ComputeQualityMetrics(P, T)

The simulation and subsequent data analysis were conducted on a high-performance workstation
equipped with an Intel Core i9-12900K processor, 64 GB of DDR5 RAM, and an NVIDIA GeForce
RTX 3090 GPU, running a 64-bit Linux distribution. Although the GPU was not strictly necessary for
the clustering algorithms themselves, it facilitated accelerated data visualization and is provisioned
for future work involving deep learning models. All data processing and analysis were performed
using Python v3.11. The core of the experimental framework relied on a suite of specialized open-
source software. The microscopic traffic simulation was carried out using SUMO v1.22.0 [39]. Data
manipulation, feature extraction, and aggregation were managed using the pandas v2.2.0 [40] and
NumPy v1.26.0 [41] libraries. The implementation of the clustering algorithms and the calculation
of quality metrics were handled by scikit-learn v1.4.0 [42] for the k-means algorithm and related
validation scores, and the hdbscan v0.8.33 [43] library for the HDBSCAN algorithm. Visualizations of
clustering results and performance metrics were generated using Matplotlib v3.8.2 [44] and seaborn
v0.13.2 [45].

The research methodology was structured as a multi-stage process:

1. Simulation Modeling: A detailed simulation model of the transport network of Khmelnytskyi,
Ukraine, was implemented in SUMO. The Khmelnytskyi transport network features a mixed
topology, characteristic of many historical European cities. It is primarily a radial-concentric
system, with major arterial roads radiating from a central urban core and interconnected by ring
roads. This structure influences traffic flow, often leading to predictable congestion points at
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the core and along key arteries during peak hours. The model encompassed 15 major traffic
light-controlled intersections and a total road length of 45.7 km. The simulation parameters,
including vehicle types, routing behavior, and signal timings, were calibrated using historical
traffic count data provided by the Khmelnytskyi municipal transport authority to ensure the
model reflects realistic traffic dynamics and congestion levels. The simulation was run for a
continuous 22-hour period with a data sampling interval of 10 minutes, yielding 132 distinct
time-stamped observations for the analysis of traffic flow dynamics.

2. Experimental Scenarios: To ensure a comprehensive evaluation, the experimental scenarios were
crafted to cover a full spectrum of typical urban traffic situations. These included morning and
evening peak hours, periods of mixed traffic modes, and intervals of low activity. A specific
transport corridor, designated the “Hrechany scenario,” was modeled to represent a characteristic
route from a large residential area to the city center and a major clothing market, providing a
well-defined traffic pattern for validation.

3. Dual Data Presentation: To assess the impact of data representation on clustering performance, a
dual approach to data aggregation was employed. The first representation consisted of average
values, which provided a compact summary of the global state of the network. The second used
combined values, which preserved detailed spatial information for each intersection, resulting in
a higher-dimensional feature space. This dual strategy allowed for a nuanced evaluation of how
data granularity affects the efficacy of different clustering algorithms.

4. Comprehensive Quality Assessment: The quality of the clustering results was evaluated using
a combination of external and internal validation metrics. External metrics, including the V-
measure, Adjusted Rand Index (ARI), and Normalized Mutual Information (NMI), were used
to compare the algorithm’s output against the ground-truth labels derived from the simulation
scenarios. Internal metrics, such as the Silhouette Score, Davies-Bouldin Index, and Calinski-
Harabasz Index, were used to assess the geometric properties of the resulting clusters, such as
their compactness and separation. Furthermore, the temporal coherence and stability of cluster
assignments were analyzed to ensure the practical relevance of the identified patterns.

5. Statistical Validation and Robustness Testing: The Wilcoxon signed-rank test was employed
to determine the statistical significance of the performance differences observed between the
proposed cascade approach and the baseline algorithms. To evaluate the robustness of the
algorithms, the experiments were repeated after introducing varying levels of Gaussian noise to
the input data, allowing for an analysis of performance degradation under imperfect conditions.

6. Comparative Analysis: The performance of the adaptive cascade approach was benchmarked
against its underlying algorithms applied in isolation: HDBSCAN with automatic parameter
tuning and k-means with a prespecified number of clusters (K=5 and K=7). This comparative
analysis focused on the semantic interpretation of cluster assignments and the ability of each
algorithm to produce meaningful and actionable insights into the urban transport system’s
behavior.

Furthermore, we placed special emphasis on validating how well the clustering results corre-
sponded to real-world traffic modes. This involved a detailed analysis of the cluster assignments
for each scenario, where we assessed the stability of recognizing similar traffic events, analyzed the
temporal coherence of the detected modes, and evaluated each algorithm’s ability to distinguish
between traffic states that were semantically distinct yet quantitatively similar.

3. Results
This section presents the empirical findings from our comprehensive evaluation of the proposed

clustering approach. We begin with a comparative analysis of the standalone HDBSCAN and k-means
algorithms on two different data representations to establish a performance baseline. We then delve
into a detailed analysis of the cluster assignments, examining how well each approach identifies
distinct, real-world transport scenarios. The section concludes by validating the performance of the
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integrated cascade approach, showcasing its improvements in accuracy, robustness, and temporal
coherence over the individual algorithms.

3.1. Comparative Analysis of Basic Clustering Approaches

The initial stage of the experiment focused on evaluating the core clustering algorithms, HDB-
SCAN and k-means, using two distinct data representations: aggregated average values for a global
network view and high-dimensional merged values for detailed intersection-level analysis.

3.1.1. Results for Aggregated Average Data

When analyzing traffic data aggregated into average values, the choice of clustering algorithm
significantly impacts the interpretability and validity of the results. As detailed in Table 1, a clear
trade-off emerges between external validation, which measures alignment with ground-truth scenarios,
and internal validation, which assesses geometric cluster quality.

Table 1. Clustering performance on aggregated average traffic data. External and internal validation metrics are
presented for HDBSCAN, k-means (K=5), and k-means (K=7). Higher values are better for V-measure, Rand Index,
ARI, NMI, Fowlkes–Mallows, Silhouette, and Calinski–Harabasz scores; lower is better for the Davies–Bouldin
Index.

Approach V-
measure

Rand
Index ARI NMI Fowlkes–

Mallows SilhouetteCalinski–
Harabasz

Davies–
Bouldin

HDBSCAN 0.79 0.93 0.73 0.79 0.78 0.52 124.95 0.92
k-means (K=5) 0.73 0.90 0.70 0.73 0.76 0.57 292.23 0.65
k-means (K=7) 0.70 0.89 0.63 0.70 0.70 0.53 265.10 0.84

The HDBSCAN algorithm demonstrated superior performance on most external validation met-
rics, suggesting its output aligns more closely with the ground-truth transport modes embedded in the
simulation scenarios. A key advantage was its ability to automatically determine the optimal number
of clusters, identifying K=8, which correctly corresponded to the number of distinct experimental
scenarios. This automated detection resulted in a high V-measure of 0.79, an ARI of 0.73, and a Rand
Index of 0.93, confirming the high quality of the identified data structure. The visual representation of
this clustering, provided in Figure 3, shows a clear separation of traffic modes that corresponds well
with the simulated events.

Figure 3. Clustering of aggregated average traffic data using HDBSCAN. The algorithm automatically identified
eight distinct clusters, effectively separating different simulated traffic modes and demonstrating a strong
alignment with the ground-truth data structure.
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In contrast, the k-means algorithm, which requires the number of clusters to be specified a priori,
excelled in internal quality metrics. When configured with K=5, it achieved a higher Silhouette Score
(0.57) and a notably better Calinski-Harabasz Index (292.23), alongside a lower (better) Davies-Bouldin
Index of 0.65. This indicates that k-means produced clusters that were more compact and geometrically
spherical, a direct consequence of its objective function, as shown in Figure 4. However, this geometric
optimization came at the cost of merging semantically distinct traffic scenarios into single clusters,
thus reducing its external validity.

Figure 4. Clustering of aggregated average traffic data using k-means with K=5. This approach produced
compact, well-defined spherical clusters, leading to high internal validation scores, but merged some distinct
traffic scenarios into single groups.

Attempting to refine the k-means result by increasing the cluster count to K=7 did not yield
significant improvements. Instead, it led to the over-detailing of traffic states, where minor fluctuations
were classified as separate clusters, thereby reducing the overall quality of semantic separation
(Figure 5). This fragmentation is reflected in the lower V-measure (0.70) and ARI (0.63), making the
results more difficult to interpret.

Figure 5. Clustering of aggregated average traffic data using k-means with K=7. Increasing the cluster count
resulted in over-detailing, where minor variations in traffic flow were incorrectly classified as separate patterns,
reducing semantic clarity.
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A direct comparison of the key quality metrics across the three approaches is summarized in
Figure 6. This visualization confirms that while k-means (K=5) can generate more compact groupings
(higher Silhouette Score), HDBSCAN provides a more accurate and meaningful representation of the
underlying traffic patterns (higher V-measure and ARI), making it better suited for automated pattern
recognition without prior knowledge.

Figure 6. Comparison of quality metrics for clustering approaches on aggregated average data. This chart
highlights the trade-off between algorithms: HDBSCAN excels in external validation (V-measure, ARI), while
k-means (K=5) performs better on internal metrics like the Silhouette Score.

3.1.2. Results for High-Dimensional Merged Data

The analysis of combined (merged) values, which retain detailed intersection-level information,
introduced the challenge of high dimensionality. As shown in Table 2, this led to a general degradation
across most quality metrics for all algorithms. The Silhouette Score, for instance, dropped dramatically
from the 0.52–0.57 range to 0.19–0.26, confirming the “curse of dimensionality” effect, where distances
in high-dimensional space become less meaningful (see Appendix A for visualizations). In this
challenging scenario, k-means (K=5) showed slightly better adaptability, achieving a V-measure of
0.67 and an ARI of 0.62, marginally outperforming HDBSCAN. This highlights the critical importance
of data representation and substantiates the need for an adaptive approach that can select the best
algorithm for a given data structure.

Table 2. Clustering performance on high-dimensional combined traffic data. The table presents validation metrics
for HDBSCAN and k-means, illustrating the impact of increased data dimensionality on algorithm performance.

Approach V-
measure

Rand
Index ARI NMI Fowlkes–

Mallows SilhouetteCalinski–
Harabasz

Davies–
Bouldin

HDBSCAN 0.64 0.88 0.61 0.64 0.68 0.26 42.83 1.49
k-means (K=5) 0.67 0.87 0.62 0.67 0.71 0.23 34.79 1.59
k-means (K=7) 0.66 0.88 0.59 0.66 0.67 0.19 26.84 2.14
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3.2. Detailed Analysis of Clustering Results

A complex experimental analysis revealed significant performance differences between the clus-
tering approaches that were dependent on the data representation. The choice of clustering algorithm
critically depends on the nature of the initial information aggregation about the transport network’s
state. As demonstrated in Figure 7, which compares key structural quality metrics, HDBSCAN achieves
significantly higher V-measures (0.79 vs. 0.73) and ARIs (0.73 vs. 0.70) for average values compared to
the best k-means configuration (K=5).

Figure 7. Comparative analysis of clustering quality using V-measure and ARI metrics. The chart displays
the performance of HDBSCAN, k-means (K=5), and k-means (K=7), illustrating that HDBSCAN is superior for
lower-dimensional average data, while the performance gap narrows for high-dimensional data.

For average values, as detailed in Table 3, HDBSCAN demonstrated clear superiority across most
external validation metrics. The high Rand Index (0.93) and Normalized Mutual Information (0.79)
confirm its feasibility in capturing the true data structure. In contrast, k-means (K=5) excelled on
internal quality metrics, such as the Silhouette Score (0.57) and the Calinski-Harabasz Index (292.23),
indicating the formation of more compact, spherical clusters.
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Table 3. Comprehensive performance metrics for clustering algorithms on aggregated average traffic data. A full
suite of external and internal validation metrics for HDBSCAN and k-means.

Metric HDBSCAN k-means (K=5) k-means (K=7)

V-measure 0.79 0.73 0.70
Rand Index 0.93 0.90 0.89
Adjusted Rand Index (ARI) 0.73 0.70 0.63
Mutual Information 1.53 1.21 1.26
Normalized Mutual Information (NMI) 0.79 0.73 0.70
Adjusted Mutual Information (AMI) 0.75 0.70 0.67
Fowlkes–Mallows scores 0.78 0.76 0.70
Silhouette Score 0.52 0.57 0.53
Davies–Bouldin Index 0.92 0.65 0.84
Calinski–Harabasz Index 124.95 292.23 265.10

However, for the high-dimensional combined values (Table 4), this performance ratio reversed.
Here, k-means (K=5) performed better on most external validation metrics, including V-measure (0.67
vs. 0.64) and NMI (0.67 vs. 0.64). This reversal is explained by the “curse of dimensionality,” where the
high-dimensional feature space makes density estimation challenging. Under such conditions, the
geometric optimization of k-means proves to be more dimensionally stable than the density-based
approach of HDBSCAN.

Table 4. Comprehensive performance metrics for clustering algorithms on high-dimensional combined traffic
data. The results illustrate the performance shift caused by the ’curse of dimensionality.

Metric HDBSCAN k-means (K=5) k-means (K=7)

V-measure 0.64 0.67 0.66
Rand Index 0.88 0.87 0.88
Adjusted Rand Index (ARI) 0.61 0.62 0.59
Normalized Mutual Information (NMI) 0.64 0.67 0.66
Adjusted Mutual Information (AMI) 0.61 0.64 0.62
Fowlkes–Mallows scores 0.68 0.71 0.67
Silhouette Score 0.26 0.23 0.19
Davies–Bouldin Index 1.49 1.59 2.14
Calinski–Harabasz Index 42.83 34.79 26.84

3.3. Analysis of Cluster Assignments for Transport Scenarios

A detailed study of cluster assignments reveals deep patterns in the recognition of specific
transport modes by various algorithms. The Hrechany district scenarios, representing a well-defined
corridor from a residential area to the city center and a major clothing market, showed remarkable
uniformity of recognition. As seen in Table 5, these periods were consistently assigned to Cluster 1 by
all approaches, indicating a clear and dominant spatiotemporal structure.

Table 5. Cluster assignments for key transport scenarios on aggregated average data. The table shows the
categorization of different time periods and scenarios by the HDBSCAN, k-means (K=5), and k-means (K=7)
algorithms.

Time Period Scenario Type HDBSCAN k-means (K=5) k-means (K=7)

00:00–01:30 Morning Cluster 2 Cluster 3 Cluster 4
01:30–02:30 Random No. 1 Cluster 3 Cluster 4 Cluster 7
02:30–04:00 Evening Cluster 4 Cluster 2 Cluster 3
04:20–05:20 Hrechany Cluster 1 Cluster 1 Cluster 1
05:20–06:20 Random No. 2 Cluster 6 Cluster 4 Cluster 5
06:30–07:30 Evening (variation) Cluster 4 Cluster 2 Cluster 6/3
07:30–08:30 Hrechany (variation) Cluster 1 Cluster 1 Cluster 1
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The chronological analysis of cluster assignments in Figure 8 illustrates HDBSCAN’s exceptional
stability. All morning periods (e.g., 0:00–1:30, 8:40–10:00) were consistently grouped into Cluster
2, representing traffic flow towards the city center and the clothing market. In contrast, k-means
distributed these same scenarios across multiple clusters, suggesting a higher sensitivity to minor
variations in traffic intensity. Similarly, HDBSCAN grouped most evening periods, characterized by
return traffic, into a distinct Cluster 4, confirming its ability to detect semantically homogeneous modes
regardless of their specific time of occurrence.

Figure 8. Temporal distribution of transport scenarios and their corresponding cluster assignments by the
HDBSCAN algorithm on aggregated average data. Each colored block represents a specific cluster, showing a
clear, non-overlapping temporal sequence that aligns with distinct traffic patterns throughout the simulated day.

HDBSCAN also demonstrated a superior ability to differentiate between various low-traffic
random scenarios, assigning them to distinct clusters (e.g., Clusters 3, 6, 7, and 8), which indicates its
sensitivity to subtle differences in traffic characteristics. k-means tended to combine these random
periods into a less differentiated structure, potentially limiting the granularity of analysis (a detailed
comparison of assignments across all algorithms is provided in the matrix in Appendix B). The
distribution of scenarios across HDBSCAN’s clusters is visualized in Figure 9, showing distinct groups
for morning, evening, Hrechany, and random/mixed patterns.
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(a) (b)

Figure 9. Distribution of experimental scenarios within clusters identified by HDBSCAN on aggregated average
data. (a) A bar chart detailing the number of scenarios per cluster, showing a balanced distribution. (b) A pie chart
illustrating the proportion of each scenario type in the experiment, highlighting the five primary traffic modes:
Hrechany, Evening, Random, Morning, and Mixed.

3.4. Comparison of Transport Data Representations

The approach to presenting transport data proved to be a critical factor in clustering quality.
Average values, which provide a compact representation of the global network state, were particularly
favorable for density-based approaches. HDBSCAN achieved a V-measure of 0.79 on averaged data
versus 0.64 on combined data, representing a 23% improvement. This is because averaging smooths
out local fluctuations and noise, allowing HDBSCAN to more accurately detect global density patterns.

Conversely, the merged values, which store complete spatial information for each intersection,
form a high-dimensional feature vector. Under these conditions, k-means showed relatively better
adaptability, achieving a V-measure of 0.67 versus 0.64 for HDBSCAN. This constitutes a rare case
where a centroid-based approach is superior to a density-based one in terms of structure detection
quality, primarily due to the latter’s struggles with the “curse of dimensionality.” This degradation
is evident in the sharp drop in internal quality metrics for the combined values; for example, the
Silhouette Score drops from a range of 0.52–0.57 to 0.19–0.26, indicating fundamental difficulties in
determining density and geometric distances in high-dimensional spaces.

3.5. Characteristics of Specific Transport Mode Recognition

An in-depth analysis revealed unique characteristics of each transport mode. Hrechany’s scenarios
were the most distinctive, demonstrating exceptional stability in being assigned to Cluster 1 due to
the specific spatial structure of the transport corridor. Morning scenarios, characterized by movement
toward the city center and the clothing market, were stably recognized as a single group by HDBSCAN,
while k-means was more sensitive to intensity variations. This highlights a fundamental difference:
density-based approaches are better at capturing the semantic homogeneity of modes, while centroid-
based approaches are more sensitive to quantitative characteristics.

Evening scenarios represented reverse traffic from the center and the clothing market, and
HDBSCAN successfully grouped most of these into a separate cluster (Cluster 4), demonstrating
its ability to distinguish opposite directions of movement. HDBSCAN also displayed a unique
ability to distinguish between different random, low-intensity periods by assigning them to separate
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clusters, reflecting subtle differences in spatial patterns. Furthermore, it successfully identified a mixed
morning/evening scenario with reduced intensity as a unique mode (Cluster 5), highlighting its ability
to detect complex hybrid patterns.

3.6. Quality of Automatic Data Structure Detection

A critical advantage of HDBSCAN in the context of transport systems analysis is its ability to
automatically determine the optimal number of clusters without requiring a priori specification. In our
experiments, HDBSCAN automatically identified eight clusters. This result logically corresponds to the
real organization of the simulation scenarios: four main types of transport modes (morning, evening,
Hrechany, mixed) plus four variations of random movement with different characteristics of intensity
and spatial distribution. This precision in automatic structure detection is particularly valuable for
practical applications where expert knowledge of the number of modes may not be available or accurate.
In contrast, k-means with five clusters showed a tendency to combine semantically different scenarios,
which complicates interpretation, while increasing the count to seven led to over-fragmentation
without a significant improvement in semantic understanding.

3.7. Synthesis of Results and Practical Recommendations

Based on the comprehensive analysis, several practical recommendations can be made. For
real-time systems with limited computing resources, using aggregated average values as the primary
way to represent transport data is recommended. This approach strikes an optimal balance between
analysis quality and processing speed, allowing HDBSCAN to achieve the highest transport mode
identification rates (V-measure 0.79, ARI 0.73), which represent a practicably acceptable level of
accuracy for automatic control systems.

HDBSCAN is recommended as the basic approach for the initial stage of analysis due to its
ability to automatically determine the number of clusters and its high quality of structure detection
for average data representation. For systems with high requirements for cluster compactness and
geometric interpretation of results, k-means can be considered a valuable alternative or complementary
approach. The use of high-dimensional combined values is recommended only in cases where detailed
spatial information is critical and significant computing resources are available for processing.

3.8. Validation of the Cascade Weighted Voting Approach

The proposed cascade approach was tested by modeling the decision-making process of weighted
voting. For the average values, the cascade approach chose HDBSCAN in approximately 85% of cases
because of its superior performance on external validation metrics (V-measure 0.79 > 0.73, ARI 0.73 >
0.70). For the high-dimensional combined values, the selection frequency was more evenly distributed
(approximately 60% HDBSCAN, 40% k-means) due to the reduction of the performance gap between
the approaches. As shown in Table 6, the cascade approach successfully combines the advantages of
both algorithms, improving the structure quality (V-measure) by up to 4% and, more significantly, the
cluster compactness by 4–13% compared to using HDBSCAN alone.

Table 6. Performance comparison between standalone algorithms and the cascade approach. The table showcases
the improvements in clustering structure quality (V-measure) and compactness (Silhouette Score) achieved by the
adaptive approach.

Criterion HDBSCAN
(Standalone)

k-means
(Standalone) Cascade Approach

Structure Quality (V-measure) 0.79 0.73 0.79–0.82 (+0–4%)
Cluster Compactness 0.52 0.57 0.57–0.59 (+4–13%)

The accuracy of identifying different transport scenarios is detailed in Table 7. While the Hrechany
scenario was identified with 98% accuracy by all approaches due to its clear spatial structure, the
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cascade approach achieved an overall improvement in average accuracy to 92.8–95.0% by automatically
selecting the best outcome for each type of scenario.

Table 7. Scenario identification accuracy rates for different clustering approaches. The table shows the percentage
accuracy for identifying five distinct transport scenarios and the average accuracy for each algorithm.

Scenario Type HDBSCAN (%) k-means (K=5)
(%)

k-means (K=7)
(%)

Cascade
Approach 1 (%)

Morning Peaks 95 92 88 95–97
Evening Peaks 93 90 85 93–96
Hrechany Scenario 98 98 98 98
Mixed Modes 91 85 82 91–94
Low-Active Periods 87 83 79 87–90

Average Accuracy 92.8 89.6 86.4 92.8–95.0
1 Range reflects the selection of the optimal result for each scenario type.

Robustness testing, conducted by adding Gaussian noise to the baseline data, confirmed the higher
robustness of the density-based approach to anomalies (Table 8). The performance of HDBSCAN
degraded much more slowly (11% drop in ARI at 35% noise) compared to k-means (21-24% drop). The
cascade approach with weighted voting inherits this advantage by automatically selecting HDBSCAN
in high-noise environments.

Table 8. Robustness of clustering algorithms to noise, measured by the ARI. The table shows quality degradation
for each approach as Gaussian noise levels increase from 0% to 35%.

Noise Level HDBSCAN k-means (K=5) k-means (K=7) Cascade
Approach 1

0% (basic) 0.73 0.70 0.63 0.73
15% 0.71 (–3%) 0.64 (–8%) 0.58 (–8%) 0.71 (–3%)
25% 0.68 (–7%) 0.60 (–15%) 0.53 (–16%) 0.68 (–7%)
35% 0.65 (–11%) 0.55 (–21%) 0.48 (–24%) 0.65 (–11%)

1 Based on preferred HDBSCAN selection at high noise level.

An important indicator of quality is the preservation of the time structure of traffic modes. As
shown in Table 9, HDBSCAN demonstrated the best temporal coherence with a coefficient of 0.94 and
no intersections in the time dimension. The cascade approach inherits this advantage, conserving the
time structure detected by HDBSCAN.

Table 9. Temporal coherence analysis of clustering results. The table compares the temporal consistency of clusters
generated by each approach, measured by a coherence coefficient and the number of temporal intersections.

Approach Coherence Coefficient Intersections in Time

HDBSCAN 0.94 0
k-means (K=5) 0.89 2
k-means (K=7) 0.85 5
Cascade Approach 0.94 0

Finally, statistical validation using the Wilcoxon signed-rank test confirmed the significance of
the advantages of the proposed approach. As presented in Table 10, all key comparisons showed
statistically significant differences (p < 0.01), which confirms the validity of the architectural solutions
of the proposed cascade approach.
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Table 10. Statistical significance of performance differences (Wilcoxon signed-rank test). The table shows the
W-statistic and p-value for key comparisons, confirming the significance of observed advantages.

Comparison W-Statistic p-Value

HDBSCAN vs. k-means (K=5) 78 0.008
HDBSCAN vs. k-means (K=7) 85 0.003
Averages vs. Combined Values 92 0.002

In summary, the experimental results reveal a distinct trade-off between density-based and
centroid-based clustering algorithms, with performance being highly dependent on the data repre-
sentation. By synergistically combining the strengths of HDBSCAN and k-means algorithms through
a weighted voting mechanism, the cascade model consistently delivered superior and more robust
results, showing marked improvements in scenario identification accuracy (up to 95.0%), noise re-
silience, and temporal coherence. These findings collectively validate the feasibility of the adaptive
cascade strategy, establishing it as a more reliable and powerful approach to analyzing complex urban
traffic dynamics than either of its constituent algorithms applied in isolation.

4. Discussion
In this section, we interpret the experimental results presented previously, contextualizing them

within the existing body of research on traffic pattern analysis. We analyze the trade-offs between
density-based and centroid-based clustering, highlighting the critical role of data representation in
algorithmic performance. The advantages and limitations of the proposed adaptive cascade approach
are critically evaluated, and its practical implications for developing environmentally oriented traffic
management systems are explored. Finally, we address the study’s constraints and identify key
questions that pave the way for future research.

The findings of this study underscore the substantial potential of adaptive, hybrid clustering
approaches for deciphering the complex dynamics of urban transport systems. Our proposed cascade
approach, which synergistically integrates HDBSCAN and k-means, demonstrated a marked improve-
ment over standalone algorithms. This outcome aligns with the broader academic consensus favoring
hybrid and ensemble methods in modern traffic analysis [12,16]. However, our work advances this
paradigm by introducing an intelligent adaptive selection layer. This layer, governed by a data-driven
weighted voting mechanism, directly addresses the pivotal challenge of choosing the optimal model
for datasets with heterogeneous characteristics. The experimental results exposed a crucial trade-
off contingent on data representation: on lower-dimensional, aggregated average data, HDBSCAN
proved superior for semantic pattern recognition, achieving an excellent external validation score
with a V-measure of 0.79 and an Adjusted Rand Index (ARI) of 0.73. In contrast, k-means excelled
in internal geometric quality on the same data, producing more compact clusters as evidenced by
a higher Silhouette Score (0.57 vs. 0.52) and a significantly better Calinski-Harabasz Index (292.23
vs. 124.95). This dichotomy confirms our central hypothesis that no single algorithm is universally
optimal. When faced with high-dimensional merged data, the “curse of dimensionality” degraded
the performance of both algorithms, with Silhouette Scores plummeting to the 0.19–0.26 range. In
this challenging scenario, the geometric optimization of k-means proved more resilient, validating the
necessity of our adaptive architecture that can pivot its strategy based on data profiling.

A primary advantage of our approach lies in its high degree of automation and its ability to pro-
duce semantically rich interpretations. By automatically determining the optimal number of clusters,
identifying eight distinct modes that corresponded to the four primary and four random scenarios in
our simulation, the approach obviates the need for arbitrary, a priori parameter specification that often
limits the practical utility of algorithms like k-means. This automation directly tackles the challenges
of model complexity and usability highlighted in related research [37,38]. The practical value of this
robust automation is reflected in the high scenario identification accuracy (up to 95.0%) and exceptional
temporal coherence (0.94), which ensures the identified patterns are not merely statistical artifacts
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but are meaningful and actionable. This capability is vital for downstream tasks, such as optimizing
traffic signals to reduce CO2 emissions—a central goal of modern intelligent transport systems [5,34].
By building upon our previous work [6,7], this study delivers a more powerful and refined tool for
realizing environmentally-oriented traffic management.

Despite its strengths, the proposed approach has limitations that define clear trajectories for
future research. A significant limitation is its reliance on a synthetic dataset generated via a SUMO
simulation. While the simulation was carefully calibrated against historical data to reflect realistic
conditions in Khmelnytskyi, this approach creates a degree of circular validation, as the ground-truth
labels are derived from the same predefined scenarios the algorithm is tasked to find. This setting
tests the algorithm’s ability to recover known patterns but does not fully account for the emergent,
non-stationary, and often chaotic phenomena present in real-world traffic. Challenges expected during
real-world deployment include handling noisy or missing sensor data, adapting to unpredictable
events (e.g., accidents, road closures), and ensuring model performance does not degrade over time
due to concept drift. Furthermore, the findings may be specific to the radial-concentric network
topology of Khmelnytskyi. The model’s performance and optimal parameters would likely require
re-evaluation and retuning for cities with fundamentally different layouts, such as the grid-based
systems common in North America. Finally, the feature set, though multifaceted, does not account for
external variables such as weather conditions or public events, which can significantly influence traffic
patterns.

4.1. Computational Complexity and Scalability

A key consideration for practical implementation is the computational cost of the cascade ap-
proach. The principal disadvantage is the increased overhead from executing multiple clustering
algorithms and an evaluation layer, which could pose latency challenges for real-time applications.
The computational complexity of the entire pipeline can be broken down as follows: feature extraction
is linear with respect to the number of time windows (K), i.e., O(K). The dominant cost is HDBSCAN,
which has a worst-case complexity of O(K2 log K) but often performs closer to O(K2) in practice. The
subsequent k-means refinement is relatively efficient, with a complexity of O(I · Nc · K · d), where I is
the number of iterations, Nc is the number of clusters, and d is the feature dimension. Thus, the overall
complexity of the cascade is governed by HDBSCAN, scaling quadratically with the number of time
windows.

To provide a practical sense of the cost, Table 11 reports the actual runtimes on our experimental
dataset. While the total runtime is acceptable for offline analysis and strategic planning, optimization
will be necessary for near real-time control applications. The robustness of the approach under
imperfect conditions was confirmed by its resilience to noise, where the ARI of the cascade-selected
HDBSCAN degraded by only 11% under 35% noise, compared to a 21–24% degradation for k-means.
However, this resilience comes at a computational cost that must be managed for deployment in
resource-constrained environments.

Table 11. Computational performance of the cascade approach on the experimental dataset (K=132 time windows,
aggregated average data).

Processing Stage Execution Time (seconds)

Feature Extraction 1.48
HDBSCAN Clustering 4.72
k-means Refinement (K=8) 0.19
Quality Evaluation and Voting 0.45

Total Runtime 6.84
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5. Conclusions
This study introduced and validated a novel adaptive cascade clustering approach, engineered to

address the critical need for accurate and automated high-fidelity urban traffic pattern recognition.
By synergistically integrating the structural detection capabilities of HDBSCAN with the boundary
refinement of k-means through a data-driven weighted voting mechanism, our method successfully
overcomes the inherent limitations of standalone algorithms. The quantitative success of this approach
was demonstrated through extensive simulation, where it achieved a structural quality V-measure of
0.79–0.82 and a scenario identification accuracy of up to 95.0%. These results represent a significant leap
in aligning algorithmic output with ground-truth traffic states. Furthermore, the cascade architecture
delivered a tangible 4–13% improvement in cluster compactness and yielded an exceptional temporal
coherence coefficient of 0.94, confirming that the identified patterns are not mere statistical artifacts
but chronologically consistent and semantically meaningful modes of traffic behavior. The statistical
significance of these advantages was firmly established (p < 0.01), underscoring the robustness of
our architectural design. However, the study’s current validation within a controlled simulation,
combined with the computational demands of the cascade architecture and its sensitivity to initial
feature engineering, defines the primary challenges for practical implementation.

Future work will directly address these limitations by transitioning to real-world deployment on a
live city sensor network. We will then integrate the system with deep reinforcement learning controllers
for real-time, multi-objective traffic signal optimization. The final research phase will explore advanced
graph neural network architectures to create richer, more context-aware feature representations. By
providing a robust and automated tool for understanding complex traffic dynamics, this research lays
a critical foundation for next-generation intelligent transport systems designed to mitigate congestion,
reduce environmental impact, and build smarter, more sustainable cities.
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AMI Adjusted Mutual Information
ARI Adjusted Rand Index
HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with Noise
NMI Normalized Mutual Information
SUMO Simulation of Urban Mobility

Appendix A. Additional Clustering Results

Figure A1. Visualization of HDBSCAN clustering results on high-dimensional combined traffic data. The plot
illustrates the algorithm’s performance in a more complex feature space.

Figure A2. Visualization of k-means clustering (K=5) on high-dimensional combined traffic data, showing how
the algorithm partitions the data into five clusters.
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Figure A3. Visualization of k-means clustering (K=7) on high-dimensional combined traffic data, illustrating the
effect of increasing the number of clusters.

Appendix B. Cluster Assignment Matrix

Figure A4. A matrix comparing the cluster assignments for each time window across the different clustering
approaches (HDBSCAN, k-means K=5, and k-means K=7). The color-coded matrix visually represents the level of
agreement and disagreement between the algorithms in classifying traffic states.
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Appendix C. HDBSCAN Parameter Sensitivity Analysis
This appendix details the sensitivity of the HDBSCAN algorithm’s performance to variations

in the automated tuning hyperparameters β (for calculating ‘min_samples’) and γ (for calculating
‘cluster_selection_epsilon’). As shown in Table A1, the resulting ARI is stable across a reasonable range
of parameter values, confirming the robustness of the automated tuning approach. The values used in
the main study (β = 0.7, γ = 1.25) fall within the high-performance plateau.

Table A1. Sensitivity of HDBSCAN performance (ARI) to hyperparameter variations.

Reduction Factor (β) Distance Scaling Factor (γ)

1.00 1.15 1.25 1.50

0.5 0.71 0.72 0.72 0.70
0.6 0.72 0.73 0.73 0.71
0.7 0.72 0.73 0.73 0.72
0.8 0.70 0.71 0.71 0.69
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