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Abstract: Early-season crop-type data are required for a variety of agricultural monitoring and de-

cision-making applications. The early season in this study referred to the prophase and middle of a 

growth season. Early-season detection of crop types remains challenging because of limited dis-

criminative features, especially for landscapes that are characterized by complex cropping patterns. 

In fact, different remote-sensing satellites can increase the frequency of data acquisition, which can 

provide more information in the early season. Moreover, optical and radar sensors have different 

degrees of sensitivity to crop parameters. Therefore, the integration and application of two types of 

multitemporal data are of great significance to improve the accuracy and timeliness of crop type 

detection. In deep learning (DL), convolutional neural network (CNN) and recurrent neural net-

work (RNN) models have great potential for temporal feature extraction. Compared with RNNs, 

CNNs usually have fewer parameters and are more conducive to determining early-season detec-

tion dates of different crop types, which requires a lot of training because of the need to model on 

different dates. Nevertheless, revisit dates and temporal intervals of different satellites are usually 

different, resulting in different data acquisition time series; these data cannot be directly used as 

input for the same convolutional layer. To address this challenge, a Dual-1DCNN was built based 

on the CNN model in this study. Moreover, an incremental training method was used to attain the 

network on each data acquisition date and obtained the best detection date for each crop type in the 

early season. A case study for Hengshui City in China was conducted using time series of Sentinel-

1A (S1A) and Sentinel-2 (S2). To verify this method, classical methods support vector machine 

(SVM) and random forest (RF) were implemented. The results demonstrated the following: (1) the 

Dual-1DCNN extracted discriminative features from S1A and S2 time series at the early season by 

producing the highest overall accuracy (OA: 87.23%); (2) for summer maize, cotton, and common 

yam rhizome, the Dual-1DCNN achieved F1 values of 92.39%, 87.71%, and 84.38%, respectively, at 

the early season (moreover, the early seasons were almost 40, 70, and 80 days before the end of the 

growth seasons, respectively). These findings suggested that the Dual-1DCNN is promising for the 

accurate and timely detection of crop types. 
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1. Introduction 

Crop-type mapping is an important component of agricultural monitoring and man-

agement. Early-season crop-type information are required for a variety of monitoring and 

decision-making applications, such as yield estimation, agricultural disaster assessment, 

and crop rotation, which is important for food security [1,2]. At present, there is no clear 

international definition for the early detection of crop types. Except for tropical or very 

arid regions, most crop systems have one or two growing seasons each year. According 

to the extant literatures [3–5] and the actual needs of agricultural monitoring, the early 
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detection of crop types in this study refers to the provision of crop-type maps between the 

prophase and middle of a growing season. 

Remote-sensing technologies have greatly improved crop-type mapping for decades 

at the regional to continental scale [6–9]. Multitemporal data have proved effective for 

crop-type mapping given that the phenological evolution of each crop produces a unique 

temporal profile of reflectance or the radar-backscattering coefficient [10,11]. Early detec-

tion of crop types, however, remains challenging in agricultural remote-sensing monitor-

ing because it needs to extract distinguishable features from the limited data in the early 

season. Moreover, for landscapes dominated by smallholder agriculture, such as those in 

China, with characteristics of complex cropping patterns and a high degree of land frag-

mentation, the timely and accurate mapping of crop types represents an especially chal-

lenging task [12–14]. 

The launch of optical and synthetic aperture radar (SAR) remote-sensing satellites 

with high spatial and temporal resolutions, such as the Sentinel-1A/B (S1) and Sentinel-

2A/B (S2) in the European Copernicus project [15], provides more opportunities for early 

crop-type detection [16]. S1 and S2 can provide SAR and optical (multispectral) images, 

respectively, at 10 m spatial and 5-day (S2) or 6-day (S1) temporal resolutions. The inte-

gration and application of the two types of data hold great significance for improving the 

accuracy of early crop-type detection. First, the wealth of crop phenology information of 

dense time series data (TSD) can be used to identify different crop types with the same 

spectrum [17,18]. Second, compared with single-source remote-sensing data, the multi-

source data has a higher time frequency of data acquisition, which directly improves time-

liness. Third, different sensors have different degrees of sensitivity to crop parameters, 

and optical data can be used to estimate crop chemical components, such as chlorophyll 

and water [19]; additionally, SAR data are more sensitive to crop structure (e.g., height, 

porosity, coverage), and field conditions (e.g., field moisture content) [20]. Understanding 

how to effectively combine the complementary information of S1 and S2, however, re-

mains a challenge in the field of early-season mapping. 

At present, in mainstream machine learning (ML) approaches, such as the support 

vector machine (SVM) and random forest (RF), the sequential relationship of time series 

imagery is not clearly considered, which means that we might ignore some useful infor-

mation during crop-type detection [21,22]. In recent years, as a breakthrough technology 

in ML, deep learning (DL) has shown great potential in the field of remote-sensing infor-

mation extraction [23–25]. Among DL models, recurrent neural networks (RNNs) and 

convolutional neural networks (CNNs) have demonstrated unprecedented performance 

in the extraction of temporal features [26,27]. Long short-term memory (LSTM) and gated 

recurrent unit RNNs (GRU) [28] are variants of the RNN unit that solve the problem of 

gradient disappearance or explosion seen with an increasing time series. 

In crop-type mapping, these models have been explored mainly by using single-

source data, such as microwave data [21,27,29], optical data (or vegetation index) [18,22], 

or filling gaps of optical images by converting SAR data to normalized difference vegeta-

tion index (NDVI) using a hybrid architecture of CNN and LSTM [30]. These methods are 

not available for multisource data because the sequence length and time interval of differ-

ent spectral bands (or polarization characteristics) of single-source time series are the 

same; meanwhile, the time series from different sources usually have different sequence 

lengths and time intervals. In addition, although Ienco et al. [31] proposed an architecture 

based on the GRU and CNN to boost the land cover classification task by combining S1 

and S2 images, their method is not exercisable for the task of early detection of crop types. 

The main reason for this is that compared with CNNs, RNNs have more parameters de-

termined by the length of the time series [32]. Different time series are usually input into 

architectures to find the best date, and therefore, if there are many parameters in DL ar-

chitectures, the training becomes time-consuming, especially for long time series. 

In a previous work [14], we evaluated CNNs, LSTM RNNs, and GRU RNNs for early 

crop-type classification using S1A time series data. Results confirmed that the training of 
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CNNs used less time, and CNNs performed better for evenly distributed time series sig-

nals. In the present work, we described an architecture based on the CNN (called Dual-

1DCNN) to integrate the time series data of S1A and S2, and used an incremental training 

method to attain the network on each data acquisition date. The aim of the Dual-1DCNN 

architecture is to improve the early crop-type detection by taking advantage of S1A and 

S2 from three levels: (1) ensuring that more information can be used in the early season; 

(2) complementing sensitivities of optical and radar data for different parameters; and (3) 

improving the timeliness of detection by having more data acquisition dates. We con-

ducted a case study for Hengshui City, a main cropping city in North China. 

2. Materials 

2.1. Study site 

Hebei Province is a main cropping province located in North China. Hengshui City 

occupies an area of 8.12 × 10� ���(Figure 1) and is a typical wheat–maize rotation area; 

its main economic crops are cotton, common yam rhizome, fruit trees, and vegetables. The 

growing season for winter wheat is from early October to the middle of the following 

June, and summer maize is planted at the end of the winter wheat season and harvested 

in late September. The growing seasons of cotton and common yam rhizome are from late 

April to the end of October and early April to the end of October, respectively. The growth 

periods of fruit trees generally last all year. In this study, we categorized the phenology 

of summer maize, cotton, and common yam rhizome into three periods: sowing, develop-

ing, and maturation. The details of these periods are shown in Figure 2. 

  
(a) (b) 

Figure 1. The study area and sample distribution: (a) Hebei Province; (b) Samples in Hengshui City. 

 

Figure 2. Crop calendar of maize, cotton, and common yam rhizome in Hengshui, China. DOY, day 

of year. 
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2.2. Ground reference data 

A field investigation in the study area was conducted in July 2019, when the main 

summer crops were in their reproductive period. To obtain sampling points distributed 

across the entire region, we designed a sampling route based on expert knowledge and 

recorded the main crop types and corresponding geographic coordinates on the route. A 

total of 1186 samples from the field survey were acquired. Afterward, 756 samples were 

taken by manual interpretation from the surveyed parcels on the platform Google Earth 

Map. Therefore, a total of 1942 sample points for five main types of local vegetation in the 

summer season: (1) forest, (2) summer maize, (3) cotton, (4) fruit tree, and (5) common 

yam rhizome were used in this study. The distribution of the number of samples per type 

is shown in Table 1, and the calendars are expressed in Figure 2. All geographic coordi-

nates of samples were re-projected to WGS 84/UTM zone 50N.  

Table 1. Number of samples per type. 

Class label 1 2 3 4 5 Total 

Class type Forest Summer maize Cotton Fruit tree 
Common yam rhi-

zome 
 

Number 289 897 385 286 85 1942 

2.3. Sentinel-1A/2 data and preprocessing 

The S1A and S2 data was downloaded from the European Space Agency (ESA) Sen-

tinels Scientific Data Hub website. The Interferometric Wide Swath (IW) Ground Range 

Detected (GRD) product of S1A was used in this study. This product with 10 m resolution 

contained both VH and VV polarizations and had a 12-day revisit time. The S2 (Level-1C) 

product included blue, green, red, and near-infrared 1 (NIR1) bands at 10 m; red edge 

(RE) 1 to 3, NIR2, and shortwave infrared 1 (SWIR1) and SWIR2 at 20 m; and three atmos-

pheric bands (band 1, band 9, and band 10) at 60 m. For this study, the three atmospheric 

bands were not used because they were dedicated to atmospheric corrections and cloud 

screening the three atmospheric band [15]. There were 15 S1A mosaics images and 35 S2 

mosaics images over Hengshui from day of year (DOY) 103 to 273 (13 April to 30 Septem-

ber) 2019. Note that DOY 273 was at the late season of the three crop types, and we used 

the data before DOY 273, which met the requirements of early crop-type detection. 

We preprocessed the S1A data in the Sentinel Application Platform (SNAP) open 

source software version 7.0.2. The preprocessing stages included (1) radiometric calibra-

tion; (2) speckle filtering, in which case we applied the Gamma-MAP (maximum a poste-

riori) speckle filter with a 7 × 7 window size to all images to remove the granular noise; 

(3) orthorectification, for which we applied range Doppler terrain orthorectification to the 

images; and (4) re-projection, for which we projected the orthorectified SAR image to the 

Universal Transverse Mercator (UTM) coordinate system, Zone 50 North, World Geodetic 

System (WGS) 84. 

The preprocessing stages for the S2 images were as follows:  

(1). Atmosphere calibration: We used the sen2cor plugin v2.5.5 to process reflectance 

images from Top-of-Atmosphere (TOA) Level 1C S2, to Bottom-of-Atmosphere (BOA) 

Level 2A following Sentinel-2 for Agriculture (Sen2-Agri) protocols [33] (http://www.esa-

sen2agri.org/).  

(2). Masking clouds: We used Function of mask (Fmask) 4.0 [34] to mask clouds and 

cloud shadow (the cloud probability threshold was set to 50%). Note that compared with 

cloud confidence layers in the output of sen2cor, Fmask 4.0 results were more accurate in 

our study area.  

(3). Resampling: We resampled images of RE1, RE2, RE3, NIR2, SWIR1, and SWIR2 

from step (1) and cloud masks from step (2) to 10 m.  

(4). Filling gaps: Because linear interpolation is usually appropriate for short gaps 

[35], we adopted the Savitzky–Golay filter to reconstruct each band value using a moving 
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window of seven observations and a filter order of 2 [36]. Note that we used S-2A/B im-

ages observed in March and October 2019 because of missing values in early April and 

late September. 

3. Methodology and experiments 

3.1. CNN for multivariate 

The four main types of layers in the CNN architecture are the convolutional (Conv) 

layer, rectified linear unit (ReLU) layer, pooling layer, and fully connected (FC) layer [37]. 

For classification tasks, CNNs are typically composed of various combinations of these 

four types followed by a softmax logistic regression layer, which acts as a classifier that 

produces the predictive probabilities of all the object categories in the input data [38,39]. 

Moreover, it is common to incorporate some other components, such as dropout and batch 

normalization (BN) [40], into CNN architectures to improve the generalization ability and 

prevent overfitting. 

The one-dimensional CNN (1D CNN) is a special form of the CNN, and it employs a 

1D convolution kernel to capture the temporal pattern or shape of the input series [41]. 

The Conv layer of 1D CNN is usually expressed as Conv1D. The convolutional operation 

is actually the dot products between kernels and local regions of the input. A basic 1D 

convolutional block always consists of a Conv1D layer followed by a ReLU layer. We ex-

pressed a multivariate time series with 0D variables of length 0T as ),...,,(
021 Txxx , 

where 0D
tx  denotes the t-th observations of all variables,

d
tx  represents the value of 

d-th variable of tx , and 00 Tt  . Here, all variables had the same 0T  For illustrative 

purposes, we assumed k1 kernels for all Conv1D layers; however, different kernel sizes 

also could be assigned if desired. Considering L Conv1D layers, the kernels for each 

Conv1D layer were parameterized by tensor 1 ll DkDlW and biases 1Dlb  , 

where ),...,1( Ll . For the l -th layer, the i-th component of the activation 1

,
Dl

tiE 

can be calculated by the following function: 
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where 111    ll TDlE is from the previous layer, and Conv1D (…) is a regular 1D 

convolution without zero padding on the boundaries. 

3.2. The Dual-1DCNN 

As noted, the sequence length of the S1A time series data with a 12-day interval was 

14, and the sequence length of S2 time series data with a 5-day interval was 35. The two 

types of time series data could not be input into a 1D CNN at the same time because their 

data acquisition dates were different. Therefore, the Dual-1DCNN model developed in 

this study integrated the time series data of S1A and S2 by building two 1D CNN modules: 

an S1A module, and an S2 module (Figure 3). 

Both the S1A module and S2 module had three Conv1D blocks and a flattened layer. 

A Conv1D block contains a Conv1D layer, a BN layer, and a ReLU layer. In the S1A mod-

ule, the kernel sizes of three Conv1D layers were 64, 128, and 64, and in the S2 module 

they were 256, 512, and 256. In each module, kernel durations of three Conv1D layers were 

set to 5, 4, and 3. The outputs of S1A and S2 modules were concatenated by the concate-

nate layer and passed to a dropout layer (the dropout rate was set 0.8) and an FC layer 

with 100 neurons. Finally, data were passed to a softmax classification layer with five neu-

rons, which produced the predictive probabilities of all of the crop types in the input data. 
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Figure 3. The Dual-1DCNN model. 

As stated in Section 3.1, a sample can be expressed by ),...,,(
021 TxxxX  , where 

0T 35 or 14, 
D

tx  denotes the t-th observations of all variables, and
d
tx represents 

the value of the d-th variable of tx . For all samples (1942), we first performed channel L2-

norm (Equation (2)) before inputting them into the model. Note that the channel here is a 

band of S2 or a polarization of S1A in a data acquisition date, as follows: 

2/12
1942

2
2

2
1

2 )||...|||(||||| d
t

d
t

d
t xxxX   (2)

Figure 4 shows the flow of data in each module. The input of the S1A module is a 

three-dimensional matrix with the shape of )2,,( 1Lbatchsize ; here, batchsize  is the 

number of input samples in a batch, 1L is the sequence length of S1A time series with a 12-

day interval, and 2 indicates the two polarizations (variables) of S1A. The input shape of 

the S2 module is )10,( 2，Lbatchsize ; here, 2L is the sequence length of S2 time series with 

a 5-day interval, and 10 indicates the ten spectrum bands (variables) of S2. Note that to 

find the best date for early crop-type classification, 1L and 2L are variables (see details in 

Section 3.4). In addition, the input was a pixel-wise image for the following reasons: (1) 

the main objective in this study was to investigate how early in the growing season the 

Dual-1DCNN could achieve optimal accuracy in crop-type classification by integrating 

S1A and S2 time series data; and (2) it was challenging to define the optimal size of spatial 

regions because the agriculture parcel was usually small in the study area—parcel seg-

mentation is a direction for our future work. 

The flattened layer converted the output of Conv1D block-3 in each module into a 

1D single vector. Therefore, the output shape of the S1A module is )64,( 1Lbatchsize , 

the output shape of the S2 module is )256,( 2 Lbatchsize , and the output of the concat-

enate layer is ))25664(,( 21  LLbatchsize . 
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Figure 4. Flow of S1A time series data and S2 time series data. 

3.3. Evaluation 

To make a comparative analysis, the Dual-1DCNN model was compared with two 

classical machine learning methods for crop-type mapping, including SVM and RF. The 

two metrics overall accuracy (OA) and F1-score (F1) were adopted. OA was used to eval-

uate the performance of different models for crop-type classification, and F1 was used to 

evaluate the best date for early-season detection of each crop type. The corresponding 

calculation formulas are as follows:  

FNFPTNTP

TNTP
OA




  (3)

FNFPTP

TP
F



2

2
1  (4)

where TP, TN, FP, and FN denote numbers of pixels belonging to true positive, true 

negative, false positive, and false negative, respectively, in the confusion matrix.  

3.4. Experimental design 

We called the DOY when S1A or S2 data was acquired in the growing season a “train 

date.” There were a total of 46 train dates excluding overlapping dates (Table 2). The first 

train date (DOY 103) was called the “start date.” From the start date to each train date, the 

number of times S1A or S2 data obtained was the length of the corresponding sequence 

(i.e., L1 or L2, respectively). The time series of dates is shown in Table 2. 
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Table 2. Time series of dates when we acquired S1A or S2 data. DOY: day of year in 2019; L1: the 

length of S1A time series imagery; L2: the length of S2 time series imagery. 

DOY 103 106 108 113 118 123 128 130 133 138 142 143 148 153 154 158 

L1 0 1 1 1 2 2 2 3 3 3 4 4 4 4 5 5 

L2 1 1 2 3 4 5 6 6 7 8 8 9 10 11 11 12 

DOY 163 166 168 173 178 183 188 190 193 198 202 203 208 213 214 218 

L1 5 6 6 6 7 7 7 8 8 8 9 9 9 9 10 10 

L2 13 13 14 15 16 17 18 18 19 20 20 21 22 23 23 24 

DOY 223 226 228 233 238 243 248 250 253 258 262 263 268 273   

L1 10 11 11 11 12 12 12 13 13 13 14 14 14 14   

L2 25 25 26 27 28 29 30 30 31 32 32 33 34 35   

 

Figure 5 presents an overview of our experiments. First, we randomly selected 70% 

and 10% of samples of each crop type to form the training set and the validation set, re-

spectively. The remaining samples (20%) constituted the test set because the distribution 

of the number of samples of the different crop types was uneven. Then, we conducted 

incremental training—that is, starting from the start date, the model wsa trained on each 

train date; the input data included all of the S1A and S2 data from the start date to the 

train date. The following training strategies were employed: 

(1). For the Dual-1DCNN model, the number of epochs was set to 10,000 with a batch 

size of 128 and Adam optimizer [42]. We initially set the learning rate as
55 e and applied 

a global adaptation during each epoch. If the training cross-entropy error did not decrease 

for 100 epochs, we reduced it by 20% for the next epoch (the minimum learning rate was
61 e ). In addition, each training process was monitored through a callback function 

named ModelCheckpoint [43], and the model was saved when a better model of the train-

ing set was found. 

(2). For the SVM, we used the radial basis function (RBF)-based SVM (RBF-SVM), 

which requires two hyperparameters (i.e., penalty parameter C and kernel parameter ) 

to be tuned. During the optimization process, we selected from 234 10...,1010 ，， 
, and 

selected C from 412 10...,1010 ，， 
. 

(3). The primary parameters of the RF model were the number of predictors at each 

decision tree node split (max_features) and the number of decision trees (n_estimators) to 

run. The features in this study were all channels of each input, and therefore, we set the 

parameter “max_features” with the default value b  (b is the number of channels) [44]. 

Additionally, the range of the grid search value for the “n_estimators” parameter varied 

from 100 to 10,000 with an interval of 100 [45]. 

To reduce the influence of random sample splitting bias, we performed five random 

splits to conduct five trainings and five corresponding tests. This allowed us to compute 

average performances of the five test sets. Finally, we evaluated the three types of models 

and attained the best date for each crop type for early-season mapping. 
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Figure 5. Overview of experiments. L1: the length of S1A time series imagery; L2: the length of S2 

time series imagery. 

4. Results 

4.1. Temporal profiles of S1A and S2 data 

Figure 6 summarizes the temporal profiles of VV and VH polarizations of the five 

crop types. We observed the following: (1) compared with VH curves, VV curves had less 

overlap or intersection, which was more conducive to the identification of five crop types; 

(2) both VV and VH had the highest similarity for fruit tree and forest; and (3) for VH 

curves, common yam rhizome had a high similarity with winter wheat before DOY 130 

(i.e., mid-May), whereas after DOY 190 (i.e., mid-July), it showed a similarity with fruit 

tree and forest. 

  
a. VV b. VH 

Figure 6. Temporal profiles of the five crop types with respect to (a) VV and (b) VH backscatter 

coefficients (dB). 

Figure 7 summarizes the temporal profiles of ten spectrum bands of the five crop 

types. Each profile obtained by time series linear interpolation and Savitzky-Golay 

smoothing illustrated the potential for gap-filling dense time series to contribute to crop-

type classification.  
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As observed in the figure, the curves of different crop types from visible bands (Fig-

ure 7(a)–7(c)) show obvious differences before DOY 183 (i.e., early July) and more inter-

sections and overlaps after DOY 183, because all types were in the developing stage. The 

curves of RE1 were similar to the red spectrum curves, RE2 and RE3 were more similar 

with each other, and RE3 had the widest range of reflectivity. Furthermore, although the 

curves of NIR1 and NIR2 were very similar, those of SWIR1 and SWIR2 showed large 

differences, with the range of reflectivity of SWIR1 being larger. 

Regarding different crop types, from DOY 103 to DOY 158, the visible and SWIR1/2 

spectrum bands of cotton and common yam rhizome were significantly different from 

those of other crop types because they were in the growth phase. In addition, the RE2/3 

and NIR1/2 spectrum bands of cotton were significantly enhanced during the period from 

DOY 218 to DOY 243 when cotton was maturing. The RE2/3 and NIR1/2 spectrum bands 

of fruit tree and forest showed a big difference from DOY 148 to DOY 178 but were very 

similar in other bands. Last, the visible, RE1, and SWIR1/2 spectrum bands of summer 

maize were significantly enhanced from DOY 163 to DOY 183, when summer maize was 

in the growth phase. In the same period, the curves of its other spectrum bands greatly 

overlapped with those of common yam rhizome. 

   
a. Blue b. Green c. Red  

  
d. RE1 e. RE2 f. RE3 

  
g. NIR1 h. NIR2 i. SWIR1  

 
j. SWIR2 
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Figure 7. Time series profiles. RE, red edge; NIR, near-infrared; shortwave infrared, SWIR1. 

4.2. Overall assessment of classification accuracy 

Figure 8 shows the evolution of average classification accuracies of five test sets as a 

function of DOY time series in Table 2 using Dual-1DCNN (red), SVM (green), and RF 

(blue). The OA value given for each time point was the average from five repetitions. Ac-

cording to our definition of early-season detection of crop types in Section 1 (i.e., the pro-

vision of crop-type maps in the prophase and middle of a growing season) and the crop 

calendar in Section 2.1 (Figure 2), the early seasons of maize, cotton, and common yam 

rhizome were DOY 166–238, DOY 91–233, and DOY 91–233, respectively. The detailed 

results, including the average OA and standard deviation of five test sets from DOY 103–

238, are reported in Table 3. 

Figure 8 shows that the accuracies of the three methods increased with the length of 

the time series. Moreover, the curves of Dual-1DCNN and SVM were higher than that of 

RF overall, and Dual-1DCNN performed best. This was an important result supporting 

Dual-1DCNN as an effective method for crop-type identification by integrating S1A and 

S2 time series data. From Table 3 we can conclude that during the early season, the highest 

OA of the three methods was 87.23%, which was achieved by Dual-1DCNN at DOY 226). 

Conversely, the highest OAs of SVM and RF were 87.02% (DOY 233) and 86.15% (DOY 

238), respectively. These results confirmed that Dual-1DCNN could detect crop types in 

the prophase and middle of a growing season and thus provided more accurate and ear-

lier results than SVM and RF. 

 

Figure 8. OA profiles of the three methods (averaged over five different random splits). 
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Table 3. OA and standard deviation at every train date. OA, average over five different random 

splits; CNN, convolutional neural network; SVM, support vector machine; RF, random forest; DOY, 

day of year. 

DOY 103 106 108 113 118 123 128 130 

Dual-CNN 71.00 ± 1.90 72.09 ± 2.3 76.63 ± 3.41 80.02 ± 3.53 80.49 ± 3.03 81.46 ± 1.41 82.08 ± 1.27 81.93 ± 1.56 

SVM 77.86 ± 2.83 77.96 ± 2.75 79.2 ± 2.05 81.31 ± 2.85 81.00 ± 2.39 82.39 ± 1.94 82.65 ± 1.84 82.85 ± 1.65 

RF 76.67 ± 3.21 78.99 ± 3.68 79.46 ± 3.35 80.33 ± 2.72 81.1 ± 2.72 81.21 ± 2.46 81.51 ± 2.48 80.95 ± 2.65 

DOY 133 138 142 143 148 153 154 158 

Dual-CNN 82.65 ± 2.03 83.42 ± 1.83 83.27 ± 1.48 84.30 ± 1.23 85.32 ± 1.77 84.86 ± 1.46 85.53 ± 1.19 85.58 ± 2.14 

SVM 83.37 ± 1.84 83.99 ± 1.75 83.99 ± 1.24 84.24 ± 1.95 84.66 ± 1.58 84.65 ± 1.72 84.91 ± 1.57 85.53 ± 2.15 

RF 81.31 ± 3.04 83.01 ± 2.31 82.55 ± 2.00 83.21 ± 1.74 83.32 ± 1.02 83.27 ± 1.48 83.68 ± 1.92 84.04 ± 2.13 

DOY 163 166 168 173 178 183 188 190 

Dual-CNN 85.69 ± 1.63 85.79 ± 1.15 86.20 ± 1.55 86.77 ± 2.15 86.10 ± 1.34 86.51 ± 1.95 86.15 ± 2.20 86.25 ± 1.49 

SVM 85.07 ± 1.80 85.43 ± 2.07 85.06 ± 1.87 85.17 ± 1.82 85.63 ± 1.72 85.53 ± 1.64 85.48 ± 1.61 85.43 ± 1.82 

RF 84.45 ± 2.50 84.40 ± 2.26 84.40 ± 2.38 84.55 ± 2.58 84.19 ± 2.72 84.04 ± 2.56 84.86 ± 2.87 84.92 ± 2.56 

DOY 193 198 202 203 208 213 214 218 

Dual-CNN 85.89 ± 2.13 86.72 ± 1.59 86.51 ± 1.64 86.05 ± 1.75 85.99 ± 0.97 86.72 ± 1.23 86.36 ± 1.39 86.72 ± 1.48 

SVM 85.79 ± 2.02 85.27 ± 1.03 85.69 ± 2.19 85.94 ± 1.19 85.89 ± 1.96 85.84 ± 2.15 86.10 ± 1.54 86.25 ± 1.39 

RF 84.35 ± 2.74 84.55 ± 2.81 84.76 ± 2.06 84.66 ± 3.19 84.86 ± 2.75 84.76 ± 2.30 84.66 ± 2.95 84.60 ± 2.36 

DOY 223 226 228 233 238    

Dual-CNN 87.18 ± 1.14 87.23 ± 1.50 87.02 ± 1.56 87.23 ± 1.44 87.13 ± 1.74    

SVM 86.61 ± 1.34 86.56 ± 1.63 86.97 ± 0.69 87.02 ± 0.85 86.97 ± 1.34    

RF 84.66 ± 2.36 84.91 ± 2.34 85.74 ± 1.90 85.63 ± 1.35 86.15 ± 1.35    

4.3. Early detection of crop types 

The best date for early mapping is usually different for each crop type. This work 

used F1 to evaluate the classification accuracy of different crop types. Figure 9 shows the 

F1 temporal profiles of each crop type by Dual-1DCNN, SVM, and RF. The F1 value given 

for each time point was the average over five different random splits. 

First, for winter wheat–summer maize, all three methods achieved higher accuracy 

than for other crop types on each date. The Dual-1DCNN, SVM, and RF attained F1 values 

above 90% on the prophase stage, which was when wheat–summer maize had obvious 

phenological differences from other crop types. Second, as analyzed in Section 4.2, before 

DOY 158, cotton and common yam rhizome had obvious feature differences from other 

crop types; therefore, their F1 increased faster in the prophase stage with all three meth-

ods. Dual-1DCNN, however, extracted distinguishable features significantly better than 

the other two methods, especially on cotton. Third, all three methods performed unstably 

on common yam rhizome. As shown in Figure 6(b) and Figure 7, the VH backscatter co-

efficients and reflectance values of common yam rhizome were similar more frequently 

to those of other crop types. This likely was due to the fact that the parcels of common 

yam rhizome usually were small, which resulted in more mixed-pixel samples. Finally, 

compared with other crop types, accuracies for forest and fruit trees were lowest for all 

three methods because the two types had very similar phenological characteristics. 

Table 4 summarizes the maximum values of F1 for each crop type and the corre-

sponding DOYs (i.e., early-season detection DOY) during the early season by Dual-

1DCNN, SVM, and RF. Figure 10 shows the confusion matrices for the early-season de-

tection DOYs. Overall, it was evident that Dual-1DCNN attained the highest F1 values on 

all three crop types. Furthermore, the early-season detection DOYs of the three crop types 

by Dual-1DCNN were all earlier than or the same as those obtained by SVM and RF. These 

results confirmed that Dual-1DCNN was effective for early-season detection of crop 

types. 
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(a) Dual-1DCNN (b) SVM 

 
(c) RF 

Figure 9. F1 values of each crop type at every train date (the average over five different random 

splits). 

Table 4. F1 value of each crop type at every train date (the average over five different random splits). 

CNN, convolutional neural network; SVM, support vector machine; RF, random forest; DOY, day 

of year. 

Methods Indices 
Summer 

maize 
Cotton 

Common yam rhi-

zome 

Dual-1DCNN 

Early-season detection 

DOY 
233 226 178 

F1 value 92.39 87.71 84.38 

SVM 

Early-season detection 

DOY 
 233  226  228 

F1 value 92.33 87.20 84.19 

RF 

Early-season detection 

DOY 
 238  233  228 

F1 value 91.69 85.67 83.24 
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(a) Dual-1DCNN, DOY = 233 (b) Dual-1DCNN, DOY = 226 (c) Dual-1DCNN, DOY = 178 

 

(d) SVM, DOY = 233 (e) SVM, DOY = 226 (f) SVM, DOY = 228 

 

(g) RF, DOY = 238 (h) RF, DOY = 233 (i) RF, DOY = 228 

Figure 10. Confusion matrices for early-season detection DOYs of summer maize, cotton, and com-

mon yam rhizome. Values in matrices indicate the percentage of points available in the “true label” 

and are the average of five test sets. 

5. Discussion 

5.1. Performance of the Dual-1DCNN algorithm 

The performance of the Dual-1DCNN algorithm can be discussed from the following 

two points: 

1. Compared with the classic SVM and RF algorithms, the Dual-1DCNN model 

achieved higher classification accuracy on most of the data (S1A and S2) acquisition dates, 

and attained higher and earlier in the early season; for early-season detection of different 

crop types, the Dual-1DCNN also attained higher and earlier F1 values on summer maize, 

cotton and common yam rhizome. As described in Section 4.1, we conducted a wide range 

of value training on the hyperparameters of SVM and RF on each train date, that is to say, 

all results on each train date were the maximum values that SVM and RF could achieve 

in this study. The hyperparameters (including the architecture) of Dual-1DCNN were de-

termined based on empirical parameters [14,27,46–48] and the hyperparameters on each 

train date were the same (except for the learning rate and dropout rate). We used these 

two methods to train the hyperparameters of the model because the DL algorithm re-

quired a lot of computing resources, in addition, to obtain an unbiased estimation of the 

generalization error in the Dual-1DCNN model, we conducted five-fold cross-validation 

[49]. When computing resources were met, our Dual-1DCNN model showed greater po-

tential than SVM and RF. 

2. Since early-season detection of crop types required us to judge the best date for 

each crop type, we had to train the model many times, and the input time series data were 
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different each time. Compared with the RNN series models, the 1D CNN model had fewer 

parameters, which enabled us to improve the training efficiency of the model. In addition, 

the input of the 1D CNN was a regular time series, that is, the time intervals of all features 

(i.e., spectrum or polarization) had to be the same. To address this requirement, we estab-

lished the two-branch architecture, namely Dual-1DCNN in the application of S1A and 

S2 time series data. In addition, the Dual-1DCNN was not limited to the integration of 

S1A and S2. It is applicable to other different data sources, such as optical data sources 

(Landsat and S2) and SAR data sources (S1A and Gaofen-3). Therefore, this model can be 

extended to other regions, such as southern China, which is characterized by frequent 

rainy weather and prolonged cloud cover [50]. Note that the channels in different modules 

should be trained according to the number of input features. 

5.2. Limitations and future work 

Although these results proved the effectiveness and advantages of the algorithm 

Dual-1DCNN for early detection of crop types by integrating S1A and S2 time series data, 

this study had some limitations that need to be overcome. 

First, the classification accuracy was closely related to the crop types and the number 

of samples for each crop type. In this study, two main factors reduced classification accu-

racies: the similar spectrum and polarization characteristics between fruit trees and for-

ests; and the mixed pixels of common yam rhizome. Moreover, the small sample numbers 

of cotton and common yam rhizome affected the classification accuracy. The planting area 

of summer maize in the entire study area, however, was much larger than that of cotton 

and common yam rhizome. We tried to reduce the number of training samples of summer 

maize, but the accuracy of the test samples would be reduced because of the complex 

relationship between geographical conditions and crops, and we required a uniform sam-

ple distribution. In future mapping work, we will conduct regional training of models for 

small areas of crops and build transferring models for large area. 

In addition, we analyzed the Dual-1DCNN algorithm on the pixel scale because our 

main objective was to investigate the use of new DL architecture for early-season detection 

of crop types by integrating S1A and S2 time series data. All of these results confirmed 

that our method performed better than the classical SVM and RF methods. It is challeng-

ing to identify the agricultural parcels in China, and parcel segmentation will be one of 

our future projects. 

6. Conclusions 

Early-season crop type mapping is valuable for agricultural monitoring and manage-

ment and holds great significance for global food security. In the context of the continuous 

growth of the global population, the use of remote-sensing data with high spatial and 

temporal resolution to accurately, timely, and efficiently produce crop-type maps has be-

come an important bottleneck in agricultural management. For smallholder agriculture in 

China, this task is even more challenging because of complex cropping patterns and a 

high degree of land fragmentation. To use more classification features and improve the 

timeliness of crop type detection, we described the Dual-1DCNN model. This algorithm 

offers three advantages: (1) It integrated and applied S1A and S2 time series data to detect 

crop types, which added phenological characteristics and spectral (or polarization) char-

acteristics to the early-season data. (2) Compared with ML models, it explicitly considered 

the sequential relationship of multitemporal observations, which may be useful when 

dealing with time series inputs. (3) Compared with RNN models, the training of the Dual-

1DCNN model was more efficient, which is important for finding the best date of different 

crop types. 

At the early season, the Dual-1DCNN algorithm achieved an acceptable overall ac-

curacy (87.23%). For summer maize, cotton, and common yam rhizome, Dual-1DCNN 

attained the highest F1 values at DOYs 233 (92.39%), 226 (87.71%), and 178 (84.38%), which 
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were almost 40, 70, and 80 days before the end of growth seasons, respectively. Further-

more, compared with RF and SVM models, Dual-1DCNN performed better at most data 

acquisition dates, and thus offered significant potential in the early-season detection of 

crop types. Further improvements to the Dual-1DCNN model could include the use of 

remote-sensing data from different sources. We also could extend this model to regions 

in southern China. 
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