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Abstract: Early-season crop-type data are required for a variety of agricultural monitoring and de-
cision-making applications. The early season in this study referred to the prophase and middle of a
growth season. Early-season detection of crop types remains challenging because of limited dis-
criminative features, especially for landscapes that are characterized by complex cropping patterns.
In fact, different remote-sensing satellites can increase the frequency of data acquisition, which can
provide more information in the early season. Moreover, optical and radar sensors have different
degrees of sensitivity to crop parameters. Therefore, the integration and application of two types of
multitemporal data are of great significance to improve the accuracy and timeliness of crop type
detection. In deep learning (DL), convolutional neural network (CNN) and recurrent neural net-
work (RNN) models have great potential for temporal feature extraction. Compared with RNNs,
CNNs usually have fewer parameters and are more conducive to determining early-season detec-
tion dates of different crop types, which requires a lot of training because of the need to model on
different dates. Nevertheless, revisit dates and temporal intervals of different satellites are usually
different, resulting in different data acquisition time series; these data cannot be directly used as
input for the same convolutional layer. To address this challenge, a Dual-IDCNN was built based
on the CNN model in this study. Moreover, an incremental training method was used to attain the
network on each data acquisition date and obtained the best detection date for each crop type in the
early season. A case study for Hengshui City in China was conducted using time series of Sentinel-
1A (S1A) and Sentinel-2 (52). To verify this method, classical methods support vector machine
(SVM) and random forest (RF) were implemented. The results demonstrated the following: (1) the
Dual-1DCNN extracted discriminative features from S1A and S2 time series at the early season by
producing the highest overall accuracy (OA: 87.23%); (2) for summer maize, cotton, and common
yam rhizome, the Dual-IDCNN achieved F1 values of 92.39%, 87.71%, and 84.38%, respectively, at
the early season (moreover, the early seasons were almost 40, 70, and 80 days before the end of the
growth seasons, respectively). These findings suggested that the Dual-IDCNN is promising for the
accurate and timely detection of crop types.

Keywords: early-season detection; crop types; convolutional neural network; Dual-IDCNN; SAR;
optical image; Sentinel-1; Sentinel-2

1. Introduction

Crop-type mapping is an important component of agricultural monitoring and man-
agement. Early-season crop-type information are required for a variety of monitoring and
decision-making applications, such as yield estimation, agricultural disaster assessment,
and crop rotation, which is important for food security [1,2]. At present, there is no clear
international definition for the early detection of crop types. Except for tropical or very
arid regions, most crop systems have one or two growing seasons each year. According
to the extant literatures [3-5] and the actual needs of agricultural monitoring, the early
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detection of crop types in this study refers to the provision of crop-type maps between the
prophase and middle of a growing season.

Remote-sensing technologies have greatly improved crop-type mapping for decades
at the regional to continental scale [6-9]. Multitemporal data have proved effective for
crop-type mapping given that the phenological evolution of each crop produces a unique
temporal profile of reflectance or the radar-backscattering coefficient [10,11]. Early detec-
tion of crop types, however, remains challenging in agricultural remote-sensing monitor-
ing because it needs to extract distinguishable features from the limited data in the early
season. Moreover, for landscapes dominated by smallholder agriculture, such as those in
China, with characteristics of complex cropping patterns and a high degree of land frag-
mentation, the timely and accurate mapping of crop types represents an especially chal-
lenging task [12-14].

The launch of optical and synthetic aperture radar (SAR) remote-sensing satellites
with high spatial and temporal resolutions, such as the Sentinel-1A/B (S1) and Sentinel-
2A/B (52) in the European Copernicus project [15], provides more opportunities for early
crop-type detection [16]. S1 and S2 can provide SAR and optical (multispectral) images,
respectively, at 10 m spatial and 5-day (52) or 6-day (S1) temporal resolutions. The inte-
gration and application of the two types of data hold great significance for improving the
accuracy of early crop-type detection. First, the wealth of crop phenology information of
dense time series data (TSD) can be used to identify different crop types with the same
spectrum [17,18]. Second, compared with single-source remote-sensing data, the multi-
source data has a higher time frequency of data acquisition, which directly improves time-
liness. Third, different sensors have different degrees of sensitivity to crop parameters,
and optical data can be used to estimate crop chemical components, such as chlorophyll
and water [19]; additionally, SAR data are more sensitive to crop structure (e.g., height,
porosity, coverage), and field conditions (e.g., field moisture content) [20]. Understanding
how to effectively combine the complementary information of S1 and S2, however, re-
mains a challenge in the field of early-season mapping.

At present, in mainstream machine learning (ML) approaches, such as the support
vector machine (SVM) and random forest (RF), the sequential relationship of time series
imagery is not clearly considered, which means that we might ignore some useful infor-
mation during crop-type detection [21,22]. In recent years, as a breakthrough technology
in ML, deep learning (DL) has shown great potential in the field of remote-sensing infor-
mation extraction [23-25]. Among DL models, recurrent neural networks (RNNs) and
convolutional neural networks (CNNs) have demonstrated unprecedented performance
in the extraction of temporal features [26,27]. Long short-term memory (LSTM) and gated
recurrent unit RNNs (GRU) [28] are variants of the RNN unit that solve the problem of
gradient disappearance or explosion seen with an increasing time series.

In crop-type mapping, these models have been explored mainly by using single-
source data, such as microwave data [21,27,29], optical data (or vegetation index) [18,22],
or filling gaps of optical images by converting SAR data to normalized difference vegeta-
tion index (NDVI) using a hybrid architecture of CNN and LSTM [30]. These methods are
not available for multisource data because the sequence length and time interval of differ-
ent spectral bands (or polarization characteristics) of single-source time series are the
same; meanwhile, the time series from different sources usually have different sequence
lengths and time intervals. In addition, although Ienco et al. [31] proposed an architecture
based on the GRU and CNN to boost the land cover classification task by combining S1
and S2 images, their method is not exercisable for the task of early detection of crop types.
The main reason for this is that compared with CNNs, RNNs have more parameters de-
termined by the length of the time series [32]. Different time series are usually input into
architectures to find the best date, and therefore, if there are many parameters in DL ar-
chitectures, the training becomes time-consuming, especially for long time series.

In a previous work [14], we evaluated CNNs, LSTM RNNs, and GRU RNNs for early
crop-type classification using S1A time series data. Results confirmed that the training of
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CNNs used less time, and CNNs performed better for evenly distributed time series sig-
nals. In the present work, we described an architecture based on the CNN (called Dual-
1DCNN) to integrate the time series data of S1A and S2, and used an incremental training
method to attain the network on each data acquisition date. The aim of the Dual-1IDCNN
architecture is to improve the early crop-type detection by taking advantage of S1A and
S2 from three levels: (1) ensuring that more information can be used in the early season;
(2) complementing sensitivities of optical and radar data for different parameters; and (3)
improving the timeliness of detection by having more data acquisition dates. We con-
ducted a case study for Hengshui City, a main cropping city in North China.

2. Materials
2.1. Study site

Hebei Province is a main cropping province located in North China. Hengshui City
occupies an area of 8.12 x 103 km?(Figure 1) and is a typical wheat-maize rotation area;
its main economic crops are cotton, common yam rhizome, fruit trees, and vegetables. The
growing season for winter wheat is from early October to the middle of the following
June, and summer maize is planted at the end of the winter wheat season and harvested
in late September. The growing seasons of cotton and common yam rhizome are from late
April to the end of October and early April to the end of October, respectively. The growth
periods of fruit trees generally last all year. In this study, we categorized the phenology
of summer maize, cotton, and common yam rhizome into three periods: sowing, develop-
ing, and maturation. The details of these periods are shown in Figure 2.
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Figure 1. The study area and sample distribution: (a) Hebei Province; (b) Samples in Hengshui City.
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Figure 2. Crop calendar of maize, cotton, and common yam rhizome in Hengshui, China. DOY, day
of year.
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2.2. Ground reference data

A field investigation in the study area was conducted in July 2019, when the main
summer crops were in their reproductive period. To obtain sampling points distributed
across the entire region, we designed a sampling route based on expert knowledge and
recorded the main crop types and corresponding geographic coordinates on the route. A
total of 1186 samples from the field survey were acquired. Afterward, 756 samples were
taken by manual interpretation from the surveyed parcels on the platform Google Earth
Map. Therefore, a total of 1942 sample points for five main types of local vegetation in the
summer season: (1) forest, (2) summer maize, (3) cotton, (4) fruit tree, and (5) common
yam rhizome were used in this study. The distribution of the number of samples per type
is shown in Table 1, and the calendars are expressed in Figure 2. All geographic coordi-
nates of samples were re-projected to WGS 84/UTM zone 50N.

Table 1. Number of samples per type.

Class label 1 2 3 4 5 Total
Common yam rhi-

Class type Forest Summer maize Cotton Fruit tree Jome

Number 289 897 385 286 85 1942

2.3. Sentinel-1A/2 data and preprocessing

The S1A and S2 data was downloaded from the European Space Agency (ESA) Sen-
tinels Scientific Data Hub website. The Interferometric Wide Swath (IW) Ground Range
Detected (GRD) product of SIA was used in this study. This product with 10 m resolution
contained both VH and VV polarizations and had a 12-day revisit time. The 52 (Level-1C)
product included blue, green, red, and near-infrared 1 (NIR1) bands at 10 m; red edge
(RE) 1 to 3, NIR2, and shortwave infrared 1 (SWIR1) and SWIR2 at 20 m; and three atmos-
pheric bands (band 1, band 9, and band 10) at 60 m. For this study, the three atmospheric
bands were not used because they were dedicated to atmospheric corrections and cloud
screening the three atmospheric band [15]. There were 15 S1A mosaics images and 35 S2
mosaics images over Hengshui from day of year (DOY) 103 to 273 (13 April to 30 Septem-
ber) 2019. Note that DOY 273 was at the late season of the three crop types, and we used
the data before DOY 273, which met the requirements of early crop-type detection.

We preprocessed the S1A data in the Sentinel Application Platform (SNAP) open
source software version 7.0.2. The preprocessing stages included (1) radiometric calibra-
tion; (2) speckle filtering, in which case we applied the Gamma-MAP (maximum a poste-
riori) speckle filter with a 7 x 7 window size to all images to remove the granular noise;
(3) orthorectification, for which we applied range Doppler terrain orthorectification to the
images; and (4) re-projection, for which we projected the orthorectified SAR image to the
Universal Transverse Mercator (UTM) coordinate system, Zone 50 North, World Geodetic
System (WGS) 84.

The preprocessing stages for the S2 images were as follows:

(1). Atmosphere calibration: We used the sen2cor plugin v2.5.5 to process reflectance
images from Top-of-Atmosphere (TOA) Level 1C S2, to Bottom-of-Atmosphere (BOA)
Level 2A following Sentinel-2 for Agriculture (Sen2-Agri) protocols [33] (http://www.esa-
sen2agri.org/).

(2). Masking clouds: We used Function of mask (Fmask) 4.0 [34] to mask clouds and
cloud shadow (the cloud probability threshold was set to 50%). Note that compared with
cloud confidence layers in the output of sen2cor, Fmask 4.0 results were more accurate in
our study area.

(3). Resampling: We resampled images of RE1, RE2, RE3, NIR2, SWIR1, and SWIR2
from step (1) and cloud masks from step (2) to 10 m.

(4). Filling gaps: Because linear interpolation is usually appropriate for short gaps
[35], we adopted the Savitzky—Golay filter to reconstruct each band value using a moving
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window of seven observations and a filter order of 2 [36]. Note that we used S-2A/B im-
ages observed in March and October 2019 because of missing values in early April and
late September.

3. Methodology and experiments
3.1. CNN for multivariate

The four main types of layers in the CNN architecture are the convolutional (Conv)
layer, rectified linear unit (ReLU) layer, pooling layer, and fully connected (FC) layer [37].
For classification tasks, CNNs are typically composed of various combinations of these
four types followed by a softmax logistic regression layer, which acts as a classifier that
produces the predictive probabilities of all the object categories in the input data [38,39].
Moreover, it is common to incorporate some other components, such as dropout and batch
normalization (BN) [40], into CNN architectures to improve the generalization ability and
prevent overfitting.

The one-dimensional CNN (1D CNN) is a special form of the CNN, and it employs a
1D convolution kernel to capture the temporal pattern or shape of the input series [41].
The Conv layer of 1D CNN is usually expressed as Conv1D. The convolutional operation
is actually the dot products between kernels and local regions of the input. A basic 1D
convolutional block always consists of a Conv1D layer followed by a ReLU layer. We ex-

pressed a multivariate time series with [, variables of length T as (x;,X,,...,X7 ),

where x, = R™ denotes the t-th observations of all variables, x,d represents the value of
d-th variable of x,, and 0<r< To . Here, all variables had the same T0 For illustrative

purposes, we assumed 1 x k kernels for all Conv1D layers; however, different kernel sizes
also could be assigned if desired. Considering L Conv1D layers, the kernels for each

ConvlD layer were parameterized by tensor W' =R"Pr and biases b' e R™,
where [ €(l,...,L) . For the [-th layer, the i-th component of the activation El.l’t e R"

can be calculated by the following function:

k
E!, =Relu(b + Y coml DWW/, E/;; ) )

k=1

where E'™ € R?7is from the previous layer, and Conv1D (...) is a regular 1D
convolution without zero padding on the boundaries.

3.2. The Dual-1IDCNN

As noted, the sequence length of the S1A time series data with a 12-day interval was
14, and the sequence length of 52 time series data with a 5-day interval was 35. The two
types of time series data could not be input into a 1D CNN at the same time because their
data acquisition dates were different. Therefore, the Dual-1IDCNN model developed in
this study integrated the time series data of S1A and S2 by building two 1D CNN modules:
an S1A module, and an S2 module (Figure 3).

Both the S1A module and S2 module had three Conv1D blocks and a flattened layer.
A Conv1D block contains a ConvlD layer, a BN layer, and a ReLU layer. In the S1A mod-
ule, the kernel sizes of three Conv1D layers were 64, 128, and 64, and in the S2 module
they were 256, 512, and 256. In each module, kernel durations of three Conv1D layers were
set to 5, 4, and 3. The outputs of S1A and S2 modules were concatenated by the concate-
nate layer and passed to a dropout layer (the dropout rate was set 0.8) and an FC layer
with 100 neurons. Finally, data were passed to a softmax classification layer with five neu-
rons, which produced the predictive probabilities of all of the crop types in the input data.
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Figure 3. The Dual-IDCNN model.

As stated in Section 3.1, a sample can be expressed by X = (xl,xz,...,xTO), where

T, =350r 14, x, € R” denotes the t-th observations of all variables, and xtd represents

the value of the d-th variable of x, . For all samples (1942), we first performed channel L2-
norm (Equation (2)) before inputting them into the model. Note that the channel here is a
band of 52 or a polarization of S1A in a data acquisition date, as follows:

FXIP= (i P+ [P et [ xion ) 2)

Figure 4 shows the flow of data in each module. The input of the SIA module is a
three-dimensional matrix with the shape of (batchsize,L,,2) ; here, batchsize is the

number of input samples in a batch, L, is the sequence length of S1A time series with a 12-
day interval, and 2 indicates the two polarizations (variables) of S1A. The input shape of
the S2 moduleis (batchsize, L,,10); here, L, is the sequence length of S2 time series with
a 5-day interval, and 10 indicates the ten spectrum bands (variables) of S2. Note that to
find the best date for early crop-type classification, L, and L, are variables (see details in

Section 3.4). In addition, the input was a pixel-wise image for the following reasons: (1)
the main objective in this study was to investigate how early in the growing season the
Dual-1DCNN could achieve optimal accuracy in crop-type classification by integrating
S1A and S2 time series data; and (2) it was challenging to define the optimal size of spatial
regions because the agriculture parcel was usually small in the study area—parcel seg-
mentation is a direction for our future work.

The flattened layer converted the output of Conv1D block-3 in each module into a

1D single vector. Therefore, the output shape of the S1A module is (batchsize, L, x 64),
the output shape of the S2 module is (batchsize, L, x 256) , and the output of the concat-
enate layer is (batchsize,(L, x 64+ L, X 256)).
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Figure 4. Flow of S1A time series data and S2 time series data.

3.3. Evaluation

To make a comparative analysis, the Dual-1IDCNN model was compared with two
classical machine learning methods for crop-type mapping, including SVM and RF. The
two metrics overall accuracy (OA) and Fl-score (F1) were adopted. OA was used to eval-
uate the performance of different models for crop-type classification, and F1 was used to
evaluate the best date for early-season detection of each crop type. The corresponding
calculation formulas are as follows:

_ TP+IN o
TP+TN + FP+FN
2TP @

1=
2TP+ FP+ FN

where TP, TN, FP, and FN denote numbers of pixels belonging to true positive, true
negative, false positive, and false negative, respectively, in the confusion matrix.

3.4. Experimental design

We called the DOY when S1A or S2 data was acquired in the growing season a “train
date.” There were a total of 46 train dates excluding overlapping dates (Table 2). The first
train date (DOY 103) was called the “start date.” From the start date to each train date, the
number of times S1A or S2 data obtained was the length of the corresponding sequence
(i.e., L1 or L2, respectively). The time series of dates is shown in Table 2.
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Table 2. Time series of dates when we acquired S1A or S2 data. DOY: day of year in 2019; L1: the
length of S1A time series imagery; L2: the length of S2 time series imagery.

DOY 103 106 108 113 118 123 128 130 133 138 142 143 148 153 154 158
L1 0 1 1 1 2 2 2 3 3 3 4 4 4 4 5 5
L2 1 1 2 3 4 5 6 6 7 8 8 9 10 11 11 12

DOY 163 166 168 173 178 183 188 190 193 198 202 203 208 213 214 218
L1 5 6 6 6 7 7 7 8 8 8 9 9 9 9 10 10
L2 13 13 14 15 16 17 18 18 19 20 20 21 22 23 23 24

DOY 223 226 228 233 238 243 248 250 253 258 262 263 268 273
L1 10 11 11 11 12 12 12 13 13 13 14 14 14 14
L2 25 25 26 27 28 29 30 30 31 32 32 33 34 35

Figure 5 presents an overview of our experiments. First, we randomly selected 70%
and 10% of samples of each crop type to form the training set and the validation set, re-
spectively. The remaining samples (20%) constituted the test set because the distribution
of the number of samples of the different crop types was uneven. Then, we conducted
incremental training —that is, starting from the start date, the model wsa trained on each
train date; the input data included all of the S1A and S2 data from the start date to the
train date. The following training strategies were employed:

(1). For the Dual-IDCNN model, the number of epochs was set to 10,000 with a batch

size of 128 and Adam optimizer [42]. We initially set the learning rate as 5¢” and applied
a global adaptation during each epoch. If the training cross-entropy error did not decrease
for 100 epochs, we reduced it by 20% for the next epoch (the minimum learning rate was

le™®). In addition, each training process was monitored through a callback function
named ModelCheckpoint [43], and the model was saved when a better model of the train-
ing set was found.

(2). For the SVM, we used the radial basis function (RBF)-based SVM (RBF-SVM),

which requires two hyperparameters (i.e., penalty parameter C and kernel parameter ')
to be tuned. During the optimization process, we selected y from {10_4,10_3 s 07 }, and

selected C from {1072,107,...,10*}.

(3). The primary parameters of the RF model were the number of predictors at each
decision tree node split (max_features) and the number of decision trees (n_estimators) to
run. The features in this study were all channels of each input, and therefore, we set the

parameter “max_features” with the default value \/Z (b is the number of channels) [44].
Additionally, the range of the grid search value for the “n_estimators” parameter varied
from 100 to 10,000 with an interval of 100 [45].

To reduce the influence of random sample splitting bias, we performed five random
splits to conduct five trainings and five corresponding tests. This allowed us to compute
average performances of the five test sets. Finally, we evaluated the three types of models
and attained the best date for each crop type for early-season mapping.
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Figure 5. Overview of experiments. L1: the length of S1A time series imagery; L2: the length of 52
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4. Results
4.1. Temporal profiles of S1A and S2 data

Figure 6 summarizes the temporal profiles of VV and VH polarizations of the five
crop types. We observed the following: (1) compared with VH curves, VV curves had less
overlap or intersection, which was more conducive to the identification of five crop types;
(2) both VV and VH had the highest similarity for fruit tree and forest; and (3) for VH
curves, common yam rhizome had a high similarity with winter wheat before DOY 130
(i.e, mid-May), whereas after DOY 190 (i.e., mid-July), it showed a similarity with fruit
tree and forest.

o
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- winter wheal-summer maize - winter wheat-summer maize

4 collon acotlon

VH Backscatter Coefficient (dB)

fruit tree fruit tree
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Figure 6. Temporal profiles of the five crop types with respect to (a) VV and (b) VH backscatter
coefficients (dB).

Figure 7 summarizes the temporal profiles of ten spectrum bands of the five crop
types. Each profile obtained by time series linear interpolation and Savitzky-Golay
smoothing illustrated the potential for gap-filling dense time series to contribute to crop-
type classification.
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As observed in the figure, the curves of different crop types from visible bands (Fig-
ure 7(a)-7(c)) show obvious differences before DOY 183 (i.e., early July) and more inter-
sections and overlaps after DOY 183, because all types were in the developing stage. The
curves of RE1 were similar to the red spectrum curves, RE2 and RE3 were more similar
with each other, and RE3 had the widest range of reflectivity. Furthermore, although the
curves of NIR1 and NIR2 were very similar, those of SWIR1 and SWIR2 showed large
differences, with the range of reflectivity of SWIR1 being larger.

Regarding different crop types, from DOY 103 to DOY 158, the visible and SWIR1/2
spectrum bands of cotton and common yam rhizome were significantly different from
those of other crop types because they were in the growth phase. In addition, the RE2/3
and NIR1/2 spectrum bands of cotton were significantly enhanced during the period from
DOY 218 to DOY 243 when cotton was maturing. The RE2/3 and NIR1/2 spectrum bands
of fruit tree and forest showed a big difference from DOY 148 to DOY 178 but were very
similar in other bands. Last, the visible, RE1, and SWIR1/2 spectrum bands of summer
maize were significantly enhanced from DOY 163 to DOY 183, when summer maize was
in the growth phase. In the same period, the curves of its other spectrum bands greatly
overlapped with those of common yam rhizome.
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Figure 7. Time series profiles. RE, red edge; NIR, near-infrared; shortwave infrared, SWIRI.

4.2. Overall assessment of classification accuracy

Figure 8 shows the evolution of average classification accuracies of five test sets as a
function of DOY time series in Table 2 using Dual-IDCNN (red), SVM (green), and RF
(blue). The OA value given for each time point was the average from five repetitions. Ac-
cording to our definition of early-season detection of crop types in Section 1 (i.e., the pro-
vision of crop-type maps in the prophase and middle of a growing season) and the crop
calendar in Section 2.1 (Figure 2), the early seasons of maize, cotton, and common yam
rhizome were DOY 166-238, DOY 91-233, and DOY 91-233, respectively. The detailed
results, including the average OA and standard deviation of five test sets from DOY 103-
238, are reported in Table 3.

Figure 8 shows that the accuracies of the three methods increased with the length of
the time series. Moreover, the curves of Dual-IDCNN and SVM were higher than that of
RF overall, and Dual-1IDCNN performed best. This was an important result supporting
Dual-1DCNN as an effective method for crop-type identification by integrating S1A and
52 time series data. From Table 3 we can conclude that during the early season, the highest
OA of the three methods was 87.23%, which was achieved by Dual-IDCNN at DOY 226).
Conversely, the highest OAs of SVM and RF were 87.02% (DOY 233) and 86.15% (DOY
238), respectively. These results confirmed that Dual-1DCNN could detect crop types in
the prophase and middle of a growing season and thus provided more accurate and ear-
lier results than SVM and RF.

—t—Dual-CNN —e=5VM —s=RF
88

86

84

i

Overall Accuracy (%)
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Figure 8. OA profiles of the three methods (averaged over five different random splits).
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Table 3. OA and standard deviation at every train date. OA, average over five different random
splits; CNN, convolutional neural network; SVM, support vector machine; RF, random forest; DOY,

day of year.
DOY 103 106 108 113 118 123 128 130
Dual-CNN 71.00+1.90 72.09+23 76.63+3.41 80.02+3.53 80.49+3.03 81.46+1.41 82.08+1.27 81.93+1.56
SVM 77.86+283 7796+2.75 79.2+2.05 81.31+285 81.00+239 8239+1.94 82.65+1.84 82.85+1.65
RF 76.67 +3.21 78.99+3.68 79.46+335 80.33+2.72 81.1+2.72 81.21+246 81.51+2.48 80.95=+2.65
DOY 133 138 142 143 148 153 154 158
Dual-CNN 82.65+2.03 83.42+1.83 83.27+1.48 8430+123 8532+1.77 84.86+1.46 8553+1.19 85.58+2.14
SVM 83.37+1.84 83.99+1.75 83.99+1.24 8424+195 84.66+158 84.65+1.72 84.91+1.57 85.53+2.15
RF 81.31+3.04 83.01£2.31 8255+2.00 8321+1.74 83.32+1.02 83.27+1.48 83.68+1.92 84.04+2.13
DOY 163 166 168 173 178 183 188 190
Dual-CNN 85.69 £1.63 85.79+1.15 86.20+1.55 86.77+2.15 86.10+1.34 86.51+1.95 86.15+2.20 86.25+1.49
SVM 85.07+1.80 85.43+£2.07 85.06+1.87 85.17+1.82 85.63+1.72 85.53+1.64 8548+ 1.61 85.43+1.82
RF 84.45+2.50 84.40+2.26 84.40+238 84.55+258 84.19+272 84.04+2.56 84.86+2.87 84.92+2.56
DOY 193 198 202 203 208 213 214 218
Dual-CNN 85.89£2.13 86.72+1.59 86.51+1.64 86.05+1.75 8599+0.97 86.72+1.23 86.36+1.39 86.72 +1.48
SVM 85.79+2.02 85.27+1.03 85.69+219 8594+1.19 8589+196 85.84x215 86.10+1.54 86.25+1.39
RF 84.35+2.74 84.55+2.81 84.76+2.06 84.66+3.19 84.86+275 84.76+230 84.66+2.95 84.60 +2.36
DOY 223 226 228 233 238
Dual-CNN 87.18 +1.14 87.23+1.50 87.02+1.56 87.23+144 87.13x1.74
SVM 86.61+£1.34 86.56+1.63 86.97+0.69 87.02+0.85 86.97+1.34
RF 84.66+2.36 84.91+234 8574+190 85.63+1.35 86.15+1.35

4.3. Early detection of crop types

The best date for early mapping is usually different for each crop type. This work
used F1 to evaluate the classification accuracy of different crop types. Figure 9 shows the
F1 temporal profiles of each crop type by Dual-IDCNN, SVM, and RF. The F1 value given
for each time point was the average over five different random splits.

First, for winter wheat-summer maize, all three methods achieved higher accuracy
than for other crop types on each date. The Dual-1DCNN, SVM, and RF attained F1 values
above 90% on the prophase stage, which was when wheat-summer maize had obvious
phenological differences from other crop types. Second, as analyzed in Section 4.2, before
DOY 158, cotton and common yam rhizome had obvious feature differences from other
crop types; therefore, their F1 increased faster in the prophase stage with all three meth-
ods. Dual-1IDCNN, however, extracted distinguishable features significantly better than
the other two methods, especially on cotton. Third, all three methods performed unstably
on common yam rhizome. As shown in Figure 6(b) and Figure 7, the VH backscatter co-
efficients and reflectance values of common yam rhizome were similar more frequently
to those of other crop types. This likely was due to the fact that the parcels of common
yam rhizome usually were small, which resulted in more mixed-pixel samples. Finally,
compared with other crop types, accuracies for forest and fruit trees were lowest for all
three methods because the two types had very similar phenological characteristics.

Table 4 summarizes the maximum values of F1 for each crop type and the corre-
sponding DOYs (i.e., early-season detection DOY) during the early season by Dual-
1DCNN, SVM, and REF. Figure 10 shows the confusion matrices for the early-season de-
tection DOYs. Overall, it was evident that Dual-1IDCNN attained the highest F1 values on
all three crop types. Furthermore, the early-season detection DOYs of the three crop types
by Dual-1DCNN were all earlier than or the same as those obtained by SVM and RF. These
results confirmed that Dual-IDCNN was effective for early-season detection of crop

types.
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Figure 9. F1 values of each crop type at every train date (the average over five different random
splits).

Table 4. F1 value of each crop type at every train date (the average over five different random splits).
CNN, convolutional neural network; SVM, support vector machine; RF, random forest; DOY, day
of year.

Summer Common yam rhi-

Methods Indices ) Cotton
maize zome

Early-season detection

Dual-1DCNN DOY
F1 value 92.39 87.71 84.38

Early-season detection

SVM DOY 233 226 228
F1 value 92.33 87.20 84.19
Early-season detection

RF DOY
F1 value 91.69 85.67 83.24

233 226 178

238 233 228
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Figure 10. Confusion matrices for early-season detection DOYs of summer maize, cotton, and com-
mon yam rhizome. Values in matrices indicate the percentage of points available in the “true label”
and are the average of five test sets.

5. Discussion
5.1. Performance of the Dual-1DCNN algorithm

The performance of the Dual-1DCNN algorithm can be discussed from the following
two points:

1. Compared with the classic SVM and RF algorithms, the Dual-1IDCNN model
achieved higher classification accuracy on most of the data (S1A and S2) acquisition dates,
and attained higher and earlier in the early season; for early-season detection of different
crop types, the Dual-IDCNN also attained higher and earlier F1 values on summer maize,
cotton and common yam rhizome. As described in Section 4.1, we conducted a wide range
of value training on the hyperparameters of SVM and RF on each train date, that is to say,
all results on each train date were the maximum values that SVM and RF could achieve
in this study. The hyperparameters (including the architecture) of Dual-1DCNN were de-
termined based on empirical parameters [14,27,46—48] and the hyperparameters on each
train date were the same (except for the learning rate and dropout rate). We used these
two methods to train the hyperparameters of the model because the DL algorithm re-
quired a lot of computing resources, in addition, to obtain an unbiased estimation of the
generalization error in the Dual-1DCNN model, we conducted five-fold cross-validation
[49]. When computing resources were met, our Dual-IDCNN model showed greater po-
tential than SVM and RF.

2. Since early-season detection of crop types required us to judge the best date for
each crop type, we had to train the model many times, and the input time series data were
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different each time. Compared with the RNN series models, the 1D CNN model had fewer
parameters, which enabled us to improve the training efficiency of the model. In addition,
the input of the 1D CNN was a regular time series, that is, the time intervals of all features
(i.e., spectrum or polarization) had to be the same. To address this requirement, we estab-
lished the two-branch architecture, namely Dual-IDCNN in the application of S1A and
S2 time series data. In addition, the Dual-1IDCNN was not limited to the integration of
S1A and S2. It is applicable to other different data sources, such as optical data sources
(Landsat and S2) and SAR data sources (S1A and Gaofen-3). Therefore, this model can be
extended to other regions, such as southern China, which is characterized by frequent
rainy weather and prolonged cloud cover [50]. Note that the channels in different modules
should be trained according to the number of input features.

5.2. Limitations and future work

Although these results proved the effectiveness and advantages of the algorithm
Dual-1DCNN for early detection of crop types by integrating S1A and S2 time series data,
this study had some limitations that need to be overcome.

First, the classification accuracy was closely related to the crop types and the number
of samples for each crop type. In this study, two main factors reduced classification accu-
racies: the similar spectrum and polarization characteristics between fruit trees and for-
ests; and the mixed pixels of common yam rhizome. Moreover, the small sample numbers
of cotton and common yam rhizome affected the classification accuracy. The planting area
of summer maize in the entire study area, however, was much larger than that of cotton
and common yam rhizome. We tried to reduce the number of training samples of summer
maize, but the accuracy of the test samples would be reduced because of the complex
relationship between geographical conditions and crops, and we required a uniform sam-
ple distribution. In future mapping work, we will conduct regional training of models for
small areas of crops and build transferring models for large area.

In addition, we analyzed the Dual-1DCNN algorithm on the pixel scale because our
main objective was to investigate the use of new DL architecture for early-season detection
of crop types by integrating S1A and S2 time series data. All of these results confirmed
that our method performed better than the classical SVM and RF methods. It is challeng-
ing to identify the agricultural parcels in China, and parcel segmentation will be one of
our future projects.

6. Conclusions

Early-season crop type mapping is valuable for agricultural monitoring and manage-
ment and holds great significance for global food security. In the context of the continuous
growth of the global population, the use of remote-sensing data with high spatial and
temporal resolution to accurately, timely, and efficiently produce crop-type maps has be-
come an important bottleneck in agricultural management. For smallholder agriculture in
China, this task is even more challenging because of complex cropping patterns and a
high degree of land fragmentation. To use more classification features and improve the
timeliness of crop type detection, we described the Dual-IDCNN model. This algorithm
offers three advantages: (1) It integrated and applied S1A and S2 time series data to detect
crop types, which added phenological characteristics and spectral (or polarization) char-
acteristics to the early-season data. (2) Compared with ML models, it explicitly considered
the sequential relationship of multitemporal observations, which may be useful when
dealing with time series inputs. (3) Compared with RNN models, the training of the Dual-
1DCNN model was more efficient, which is important for finding the best date of different
crop types.

At the early season, the Dual-IDCNN algorithm achieved an acceptable overall ac-
curacy (87.23%). For summer maize, cotton, and common yam rhizome, Dual-1DCNN
attained the highest F1 values at DOYs 233 (92.39%), 226 (87.71%), and 178 (84.38%), which
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were almost 40, 70, and 80 days before the end of growth seasons, respectively. Further-
more, compared with RF and SVM models, Dual-1DCNN performed better at most data
acquisition dates, and thus offered significant potential in the early-season detection of
crop types. Further improvements to the Dual-1DCNN model could include the use of
remote-sensing data from different sources. We also could extend this model to regions
in southern China.
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