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Technical Note

The CMB Temperature Is Simply the Geometric Mean:
Tcmb =

√
TminTmax of the Minimum and Maximum

Temperature in the Hubble Sphere
Espen Gaarder Haug 1,2

1 Norwegian University of Life Sciences, Christian Magnus Falsensvei 18, 1430 Ås, Norway; espenhaug@mac.com
2 Tempus Gravitational Laboratory, 1433 Ås, Norway

Abstract: In the Hubble sphere, we assume that the wavelength of pure energy spreads out in all
directions. The maximum wavelength in the Hubble sphere is then the circumference of the Hubble
sphere. We assume the minimum wavelength occurs in a Planck mass black hole, which is given by
4πRs,p = 8πlp. Here, we build further on the geometric mean CMB approach by Haug and Tatum
and conclude that the CMB temperature is simply given as: Tcmb =

√
TminTmax, which is the geometric

mean of the minimum and maximum physically possible temperatures in the Hubble sphere. This is
again means the CMB temperature simply is the geometric mean of the Hawking temperature of the
Hubble sphere (in black hole cosmology) and the Hawking temperature of the Planck mass black hole,
se we have also Tcmb =

√
THaw,HTHaw,p.

Keywords: CMB temperature; geometric mean temperature; minimum temperature; maximum
temperature; Hubble sphere; cosmology

1. Introduction
The Λ-CDM model, despite its success in many areas, is not able to predict the CMB temperature

today. See, for example, Narlikar and Padmanabhan [1], which states:

“The present theory is, however, unable to predict the value of T at t = t0. It is therefore a free
parameter in SC (Standard Cosmology).”

The CMB temperature is likely the most precisely measured cosmological parameter [2–5], but it
is clearly not fully understood within Λ-CDM cosmology. In recent years, however, there has been a
breakthrough in understanding the CMB temperature and its connection to the Hubble parameter,
which we will soon revisit.

We will be operating within a black hole RHt = ct cosmology. Although black hole cosmology is
much less well-known than Λ-CDM, it is not new; it dates back at least to 1972 with a paper by Pathria
(1972) [6]. The topic continues to be actively discussed by various researchers to this day [7–16].

There are also multiple variations of RHt = ct cosmologies, all of which share the common feature
that the universe has expanded—or is at least related to—the speed of light; see [17–22]. The Melia
RH = ct model is the best known among these, and he has done a tremendous job demonstrating that
RH = ct cosmology can perform at least as well as, and often better than, the Λ-CDM model.

However, in this work, we will focus specifically on black hole RHt = ct cosmology, as described
by Haug and Tatum [23], which is a subcategory within RHt = ct cosmologies.

2. The CMB Temperature as a Geometric Mean of the Minimum and Maximum
Temperature in the Hubble Sphere

The geometric mean plays an important role in thermodynamics and in other areas of physics
[24–27]. For example, the optimal reheating pressure is given as the geometric mean of the maximum
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and minimum pressure: Preheating =
√

PmaxPmin, and the optimal intercooling in an ideal two-stage
compressor is also given by the geometric mean pressure, Pintercooling =

√
PmaxPmin, see [28]. The

geometric mean temperature:
√

ThotTcold play a central role in Carnot engines where it defines a type
of equilibrium, see [29,30]. That geometric means could also potentially play an important role in the
thermodynamics of cosmic temperatures should not come as a surprise.

Haug and Tatum [31] have recently shown that the CMB temperature, at a deeper physical level,
is likely just linked to the geometric mean of the shortest and longest possible wavelengths in the
Hubble sphere. They presented their formula as:

Tcmb = h̄
c√

λ̄minλ̄max

1
4πkb

= h̄
c

λ̄gm

1
4πkb

(1)

where they assumed the shortest wavelength λ̄min = lp =
√

Gh̄
c3 was the Planck [32,33] length and the

maximum wavelength was the diameter of the Hubble sphere λ̄max = 2RH , they mention also the
circumference could be the limiting factor. This, again, they demonstrate to be consistent with the
CMB formula heuristically first suggested by Tatum et al. [34]. Haug and Wojnow [35] have further
demonstrated the CMB formula fully consistent with this can be derived from the Stefan-Boltzmann
law. The Stefan-Boltzmann law holds for a perfect black body and the CMB is the closest we likely get
to a perfect black body in the real world as stated by for example Muller et al. [36] :

“Observations with the COBE satellite have demonstrated that the CMB corresponds to a nearly
perfect black body characterized by a temperature T0 at z = 0, which is measured with very high
accuracy, T0 = 2.72548 ± 0.00057k."

Haug [37] has recently expanded on the geometric mean approach of Haug and Tatum and shown
that the CMB formula can even be written directly in the form:

Tcmb =

√
TmaxTmin

4π
=

√
TpTmin

4π
(2)

Where he suggested Tmax = Tp = 1
kb

=
√

h̄c5

G =
mpc2

kb
=

Ep
kb

, which is the Planck [32,33] temperature,

and Tmin = h̄ c
2RH

1
kb

. Furthermore kb is the Boltzmann constant.
The question is: why does the geometric mean temperature have to be multiplied by the constant

1
4π ? We now think we have an answer to that. Electromagnetic waves (such as CMB radiation), as well
as matter waves, tend to spread out in all directions—like throwing a stone into a lake, where the waves
propagate in all directions. If a Planck-mass Schwarzschild black hole is the smallest black hole and
the Hubble sphere is a cosmic black hole, then the maximum wavelength is the circumference of the
Hubble sphere, λ̄max = 4πRH , and the minimum wavelength is the circumference of a Schwarzschild
Planck-mass black hole, which is λ̄min = 4πRs,p = 8πlp.

The minimum and maximum energies and temperatures in the Hubble sphere are then:

Emin = h̄
c

4πRHt

, Tmin =
Emin

kb
(3)

and the maximum energy and maximum temperature is then

Emax = h̄
c

4πRs,p
= h̄

c
8πlp

, Tmax =
Emax

kb
(4)

The CMB temperature is then always given by

Tcmb =
√

TmaxTmin ≈ 2.725K (5)

While the maximum temperature is always constant, Tmax = h̄ c
8πlp

1
kb

, the minimum temperature
varies as we travel along the cosmic epoch as we assume RHt = ct. It is worth mention that the
minimum temperature now always is equal to the Hawking [38] temperature Tmin = h̄c

4πRH
= THaw =
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h̄c
4πRs

when the Hubble radius is equal to the Schwarzschild radius RH = Rs as it will be in a black hole
Hubble universe where the equivalent mass is the critical Friedmann mass.

This means the CMB temperature also can be seen as simply the geometric mean of the Hawking
temperature of the Hubble sphere and a Planck mass black hole. We call the Hawking temperature of
the Hubble sphere for the Hawking Hubble temperature:

Tmin = THaw,H =
h̄c3

kb8πGMBH
= h̄

c
4πRs

1
kb

= h̄
c

4πRH

1
kb

(6)

We here assume that the mass of the Hubble sphere is the critical Friedmann [39] mass, Mcr =
c2RH

2G . If
we solve for the Hubble radius in terms of the critical Friedmann mass, we get RH = 2GMcr

c2 , and we
can see that it must be identical to the Schwarzschild radius of a black hole with mass equal to the
critical Friedmann mass: Rs =

2GM
c2 . This is not a new result, but it is important for understanding

why we can apply the Hawking temperature to a black hole Hubble sphere universe.
This represents the minimum temperature within the Hubble sphere. In addition, we have the

Hawking–Planck temperature, which is the Hawking temperature of a Schwarzschild black hole, given
by:

Tmax = THaw,p = h̄
c

4πRs,p

1
kb

= h̄
c

4π2lp

1
kb

= h̄
c

8πlp

1
kb

(7)

The CMB temperature is then given by:

Tcmb =
√

TmaxTmin =
√

THaw,HTHaw,p ≈ 2.725K (8)

Based on a H0 ≈ 66.9 km/s/Mpc as reported by Haug and Tatum [22]. We further assume it follows
the RHt = ct cosmology, where the circumference of the black hole Hubble sphere was smaller in
the past. The geometric mean formula is consistent with the observed relation Tt = T0(1 + z), see
[4,40–42].

Alternatively we can express the CMB temperature from energies:

Tcmb =
√

EmaxEmin
1
kb

(9)

The maximum energy is naturally much smaller than the energy in the Hubble sphere, this can
be seen as the maximum possible energy from a single particle or photon (or perhaps even graviton)
that we conjecture is linke to the Planck scale and actually a Schwarzschild Planck mass black hole.
It is common for researchers working on quantum gravity to assume the Planck scale will play an
important role, see for example [43–46]. So it should not be a big surprise the Planck scale also play an
important role for the CMB.

It is naturally remarkable that, based on recent years of research on the CMB temperature, we
can now accurately predict the CMB temperature today—something the Λ-CDM model has not been
able to do and still cannot, as it is not compatible with RH = ct black hole cosmology. Even more
important than predicting the CMB temperature is the fact that the approach developed in recent
years has found the exact mathematical relationship between the CMB temperature and the Hubble
parameter. Tatum et al. [47], as well as Haug and Tatum [22], have recently demonstrated that one
can predict the Hubble parameter much more precisely than with other methods. This is possible
because the CMB temperature can be used to determine the Hubble constant due to these new exact
mathematical relationships.

Based on the geometric mean approach above we get:

H0 =
T2

cmb,0

Tmax

kb4π

h̄
=

T2
cmb,0

THaw,p

kb4π

h̄
= 66.8943 ± 0.0287 km/s/Mpc (10)
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we have used the Fixsen [3] measured CMB temperature now (at z = 0): T0 = 2.72548 ± 0.00057K.
This is as expected in line with the research just mentioned above.

3. Conclusion
Based on years of research on the CMB temperature by several authors, we can now conclude that

the CMB temperature, in its simplest and most understandable form, is simply the geometric mean
of the minimum and maximum temperatures possible in the Hubble sphere. The CMB temperature
is given by Tcmb =

√
TmaxTmin. This also means that the CMB temperature is the geometric mean

temperature of the Hawking Hubble temperature and the Hawking Planck temperature: Tcmb =√
TmaxTmin =

√
THaw,HTHaw,p ≈ 2.725K.

This has important implications, as it provides a precise mathematical relationship between the
CMB temperature and the Hubble parameters, as well as a deeper physical understanding of the CMB
temperature. Unlike in the Λ-CDM model, we can now accurately predict the CMB temperature in
black hole RHt = ct cosmology. In addition, we can predict the Hubble parameter much more precisely,
as recentyl demonstrated by Tatum et al. [47] and Haug and Tatum [22].
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