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Abstract: Skin cancers, including melanoma, and non-melanoma- cutaneous basal cell carcinoma and
cutaneous squamous cell carcinoma, are a diverse group of malignancies characterized by variations in their
molecular and cellular features. Melanoma is a highly heterogenous tumor characterized by the dysregulation
of a myriad of cell-cycle associated signaling pathways. In the non-melanoma skin cancers, such as cutaneous
basal and cutaneous squamous cell carcinoma, the role of cyclin-dependent kinases and cyclins remains poorly
understood with relatively limited investigation. Although revolutionary therapies against diverse molecular
targets have been introduced over the last decade leading to significant prognostic benefit, advanced stages of
melanoma remain exceptionally difficult to treat. The three cancers are united by evidence of stem-like, cancer
initiating cell populations which dictate highly dynamic microenvironments and rely on disrupted cell cycle
signaling to support treatment resistance and cancer progression. Potential of cell cycle targeting in skin cancer
in underexplored in terms of identification of specific mechanisms supporting the maintenance of skin cancer
stem cell pools and could offer potential targets to advance the therapy in these malignancies. In this review,
we comprise the existing data on major cell of cell cycle regulators in skin cancer, the regulation of cancer stem
cells and most recent developments and limitations surrounding cell cycle-targeted therapies, with a focus on
the application of CDK inhibitors.
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1. Skin Cancer - Overview of Pathophysiology and Epidemiology
1.1. Melanoma

Melanoma is currently the fifth most common malignancy in both men and women [1].
Although the 5-year overall survival of early-stages of melanoma (94%) has significantly improved
thanks to advances in therapeutical strategies, the prognosis of metastatic melanoma remains dire,
with the 5-year survival hovering near 30% [2,3].

Melanoma is classified into subtypes by distinguishable histopathological characteristics, with
variable genetic profiles depending on the primary tumor site (cutaneous, mucosal and uveal types).
Clinically recognized histopathological subtypes of cutaneous melanoma (CM) include the most
common superficial spreading (41%), nodular melanoma (16%), lentigo maligna (2.7-14%) and acral
lentiginous melanoma (1-5%), in addition to less frequently observed subtypes such as desmoplastic
and amelanotic melanoma (Table 1) [4,5].
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The incidence of melanoma continues to rise globally, and is currently reported at 21.2 per
100,000 adults in the USA [6]. Fair-skinned (Fitzpatrick phenotype I and II) adults in developed
countries represent the predominant demographic of melanoma. Ultraviolet radiation exposure
remains the dominant risk factor of CM, with other contributory risk factors being indoor tanning,
presence of melanocytic or dysplastic naevi, chronic immunosuppression, and a personal or familial
history of melanoma [5,7]. Interestingly, some subtypes of melanoma are independent of UV-
exposure, such as acral lentiginous, mucosal and uveal melanomas [?].

Embryologically, melanocytes originate from a neural crest precursor, beginning as pluripotent
melanoblasts that migrate to the basal epidermis and hair follicles to ultimately mature into pigment-
producing skin cells [8]. The photoprotective pigment, melanin, is packaged into small granular
organelles known as melanosomes, that are transported into neighbouring keratinocytes, to absorb
UV radiation. In addition to skin, melanin is synthesized in the retina, meninges, gastrointestinal
tract, among other tissues [9]. Epidermal melanocytes transform into cancerous cells primarily
through the accumulation of somatic oncogenic driver mutations. CM houses a high mutation
burden, which is more than mucosal or uveal melanomas. Oncogenic signaling in human CM, results
from a variety of somatic mutations, the most frequent includeCDKN2A (germline mutation), the
serine/threonine kinase BRAF (driving ERK/MAPK signaling), NRAS, NF-1, TERT promoter, PTEN
(driving PI3K signaling), TP53, APC (driving Wnt/ 3-catenin signaling) [10]. These driver mutations
are used to classify CM into subtypes: the most common are mutant BRAF (classically, the V600E
mutation), mutant RAS (NRAS, KRAS, HRAS) and mutant NF1 [11].

With early diagnosis, surgical resection of localized melanoma is associated with a good
prognosis [6]. However, melanoma can spread quickly and aggressively, and advanced melanoma is
associated with poor patient prognosis. Analyses of the transcriptomes and mutations of melanoma
subtypes has carved a path for the development of targeted therapies. Accordingly, recent prognosis
of early and metastatic melanoma has improved relative to previous treatment with non-specific
chemotherapies (e.g. dacarbazine, fludarabine, Bcl-2 anti-sense) [12]. The introduction of targeted
therapy such as small molecule inhibition of mutant BRAF (vemurafenib) and immunotherapy (e.g.
PD-1 checkpoint inhibitor antibodies such as ipilimumab, nivolumab, pembrolizumab) has provided
significant prognostic benefit [13,14]. For example, patients suffering from advanced melanoma have
seen their median prognosis rise from 6 months to 6 years. However, a prominent issue that remains
is the frequent therapy resistance exhibited by this highly mutated and genomically unstable
malignancy [15].

1.2. Cutaneous Basal Cell Carcinoma (cBCC)

Cutaneous basal cell carcinoma is the most common malignant neoplasm worldwide, primarily
arising from sun-exposed regions of the skin. Although it bears a highly mutated genome, it has a
limited tendency for metastasis and is defined by its slow rate of growth and local invasion allowing
for earlier detection and treatment while accounting for the low mortality rate [16]. cBCC, which
bears a high de novo mutation burden, arises in a cancerized field of resulting in frequent recurrence
post initial treatment [17,18]. Classification of BCC is broad, with numerous subtypes mentioned in
literature, though the more frequently discussed histopathological subtypes include the lower-risk
nodular (most common), superficial, pigmented BCCs, and the higher-risk sclerosing/morpheaform,
infiltrating and micronodular types (Table 1) [16,19].

In North America, the incidence of BCC in all age groups has increased at an approximate annual
rate of 2%, and as high as 5% in Europe, with millions of new cases each year in the USA alone [20-
22]. It is grouped with cutaneous squamous cell carcinoma as a non-melanoma skin cancer (NMSC),
with BCC alone comprising nearly 80% of such tumors [23]. Most commonly, BCC occurs in high UV
geographic regions, as UVB-induced injury is the leading cause of BCC formation, primarily on the
head and neck. Like melanoma, BCC is most prevalent in fair-skinned adults. Additional risk factors
include personal history of BCC (10-fold more likely recurrence), family history of skin malignancy,
and heritable mutations (basal cell nevus syndrome, xeroderma pigmentosum) [24].
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Identifying the cellular lineage of BCC has remained challenging, but it is presently thought that
the malignancy arises from UV-induced mutation of multipotent stem cells found the bulge of hair
follicles [25]. The initiation and progression of sporadic BCC is primarily mediated via mutational
activation of of Sonic Hedgehog (SHH signalling, with 85% of tumors possessing SHH-related gene
mutations. The majority of these occur in the cBCC suppressor gene, PTCHI1 (Patchedl), and to a
lesser extent in SMO (Smoothened) [26]. Inactivation of PTCH1 results in constitutive activation of
SMO (SmoM2), normally suppressed by PTCHI, that drives oncogenic transformation [27,28].
Additional mutations have been implicated in cBCC, including the tumour suppressor TP53 (found
in over half of tumors and required for sustained cBCC transformation in experimental models), as
well as to a lesser extent in GLI1, SUFU, RAS, ERBB2, PIK3CA. Aberrant signaling through Hippo-
Yap and APC pathways may also contribute to cBCC [29,30].

Although rarely fatal, delayed management can lead to local disfiguration and damage,
depending on proximity to surrounding tissue. BCC is highly curable in the early stage, with
treatment primarily consisting of surgical resection. If excision is not sufficient, alternative techniques
such as electrodesiccation and curettage, cryosurgery, and Mohs micrographic surgery can be
applied with high success rates (95%) [7]. The recurrence rates of cBCC are as follows: Mohs, 1.0%;
surgical excision, 10.1%; electrodesiccation and curettage, 7.7%; radiation therapy, 8.7%; and
cryosurgery, 7.5% [31]. Within the last decade, targeted therapy against the SHH pathway, primarily
SMO inhibitors such as vismodegib and sonidegib, results in initial tumor control but recurrence was
noted in 20-30% of cases treated with vismodegib, and high-rates of development of resistance within
the first year of therapy [32,33].

1.3. Cutaneous Squamous Cell Carcinoma (¢SCC)

Cutaneous squamous cell carcinoma (cSCC) is a keratocyte carcinoma and is the second most
common human malignancy, trailing only behind BCC.In contrast to cBCC,, c<SCC can progress to an
advanced stage, exhibiting higher rates of metastasis (5%) and mortality [34]. Like cBCC, Precursor
lesions, including actinic keratosis, spontaneously involuting keratoacanthomas and cSCC in situ
(e.g. Bowen’s disease) arise in a cancerized field of UV-induced somatic mutations While the primary
risk factor for actinic keratosis and ¢SCC is chronic UV exposure, additional factors include chronic
infection and immunosuppression, primarily in fair-skin individuals, as well as genetic
predisposition [35,36]. Like melanoma and c¢cBCC, the incidence of ¢cSCC continues to rise, with rates
similar to that of BCC [20,21]. There is debate over the annual rate of progression of actinic keratosis
to cSCC, though it is evident that a stepwise progression exists, emphasizing that early diagnosis is
imperative [37,38].

Generally there is a good prognosis for most cSCC patients, though prognosis is difficult due to
heterogeneous presentation [34]. Attempts to risk-stratify have been made but objective measures
such as tumor size and depth of invasion provide more accurate prognostic information [39].

Histologically, c¢SCC is the abnormal proliferation of keratinocytes in the spinous or outer layer
of the epidermis. The variants can be classified based on differentiation status into the more invasive
acantholytic type, or the more differentiated spindle cell and verrucous types. As seen in CM and in
BCC, UV exposure results in genetic damage of squamous cells, promoting cell cycle dysregulation
[40]. The majority of cSCC possess a UV-signature mutation (cytosine to thymine) in TP53, which
implicates aberrant p53 functions with NMSC tumor initiation [41]. Additional cSCC driver
mutations include inactivating mutations in NOTCH1/2 and CDKN2A, and less frequently in PTEN,
as well as activating mutations in RAS, ERBB4, and PIK3CA (Table 1). Although mutations in EGFR
(40-80% of cases) have also been reported, a phase II clinical trials using EGFR inhibitors for
metastatic cSCC yielded poor response rates [42].

Topical imiquimod and 5-fluorouracil containing agents are successfully used on AK to prevent
progression to tumorigenesis. Surgical excision of tumors is the preferred tumor management,
including Moh’s micrographic surgery for higher-risk SCC to ensure tumor margin assessment [43].
Alternative but less frequent treatments include local radiation therapy, cryosurgery and laser
treatment.


https://doi.org/10.20944/preprints202409.1661.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2024

2. Cell Cycle Deregulation in Skin Cancer

Control of the cell cycle hinges on the tight regulation of cyclin-dependent kinases (CDKs) and
their dynamic interactions with oscillating cyclins, which together orchestrate cellular division (Table
2). Targeting these various functional complexes at different checkpoints restricts aberrant
proliferation. When this intricate signaling network is compromised, CDK-cyclin complexes are
detached from protective cellular mechanisms to drive uncontrolled growth. Cutaneous
malignancies, particularly melanoma, demonstrate substantial dysregulation of the cell cycle
network, which contributes to tumor initiation and progression.

2.1. CDKs and p16Nk4

The cyclin-dependent kinase-2A gene (CDKN2A) is clustered in the region of chromosome
9p21.3. This tumor suppressor gene encodes p16'NK4, a pivotal regulator of the G1-S checkpoint. The
loss of regulation at this checkpoint is critical in the progression of cancer. pl6™K4 prevents
proliferation by binding to CDK4 and CDKS®, inhibiting their interaction with cyclin D and thus
preventing the formation of an activated complex.

Undoubtedly, progression of melanoma is closely linked to direct cell cycle regulators. Walker
etal., found that 43 of 45 melanoma cell lines exhibited genetic aberrations in CDK2NA, with deletions
being more prevalent than point mutations or methylations [44]. Over 50% of melanomas were found
to have deletions in this locus, implicating CDKN2A as one of the most common alterations in
cutaneous melanoma. The inactivation of this protective gene is a key factor in melanoma
susceptibility, particularly in familial cases due to heterozygous germline mutations, and to a lesser
extent, in sporadic melanoma. Despite the pivotal role of pl6™k4 in melanoma progression, its
expression alone has not proven to be a reliable indicator of tumor recurrence or patient survival [45].
It is more common to see multiple mutations rather than an isolated p16!Nk4 aberration. An in vivo
murine model mimicking human somatic loss of p16!Nk4 and activation of RAS in human melanoma
demonstrated rapid growth and development of unpigmented melanomas from adult melanocytes
[46]. This highlighted the potential oncogenicity throughout cell maturity and the synergy of different
genetic alterations used by melanocytes to exploit cell cycle regulation.

As noted, binding partners CDK4/6 and cyclin D1 are crucial propellors of the G1-S transition
point, via sequential inactivating phosphorylation of the stage-specific tumor suppressor,
Retinoblastoma (Rb), ultimately leading to expression downstream transcription factors [47]. Acting
as independent oncogenes, CDK4 and CCND1 amplifications are most common in acral melanomas,
where median survival of patients with CDK4 amplification and pl6™NK% loss is significantly
decreased [48]. Activation of CDK4 can result from various mutations, such as loss of CDK4
sensitivity to p16™k4A or the germline CDK4R2C mutation that disrupts binding of CDK4-p16™K4, both
preventing negative regulation of the G1-S transition [49]. In studies, homozygous mouse knock-in
of CDK4R*C mutation led to widespread formation of tumors within 8 to 10 months, including skin
tissue. The dependency of melanoma progression on CDK4 is further emphasized in the work of Zou
et al.,, where CDK4 and cyclin D1 null mice experienced significant reduction in tumorigenic foci
relative to wildtype CDK4, and similarly did not lead to tumor production in vivo [50]. The team of
Sauter et al. demonstrated the oncogenic potential of cyclin D1, using anti-sense therapy to target
cyclin D1 in melanoma lines overexpressing this protein. Importantly, targeting of cyclin D1 induced
apoptosis in vitro with significantly decreased tumor burden in mice models observed selectively in
the mutated melanocytes [51,52]. With upwards of 90% of melanomas demonstrating mutation in
various segments of the CDK4/6 pathway, the deep investigation of cyclin-dependent kinase
inhibitors (CKlIs) in targeted therapy is of no surprise [53]. Notably, both the independent and
concurrent amplification of these cell cycle regulators has been implicated in enhancing therapy
resistance in variously mutated melanomas [54,55].

Though not as classically defined, deregulation of the G1-S cell cycle transition also contributes
to the progression of the non-melanoma cutaneous malignancies. Screening of the CDKN2A locus for
genetic aberrancy in 15 cases of freshly-frozen BCC tissue by Kanellou et al. revealed a previously
described G442 (Ala148Thr) polymorphism in three cases that did not hamper the regulatory role of
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pl6™K4a on CDK4/6-cyclin D1 [56]. In this same study, a decrease in p16 transcript levels was observed
in 14 of 15 samples, implying potential inactivation of the tumor suppressor similar to what is seen
in melanoma. In contrast, the team of Eshkoor et al. found that ten samples of paraffin-embedded
skin BCCs had significantly increased pl6é protein in the nucleus and cytoplasm, with a
corresponding significant increase in gene expression [57]. Additionally, when assessing the role of
HPV in BCC, Paolini et al. found that dysregulated keratinocytes overexpressing p16™Nk44 in 94% of
samples (35 of 37), with 8 samples exhibiting elevated protein levels in >30% of the immunostained
cells [58]. Notably, this variable expression between different research teams may have been a result
of differing sample processing and experimental methods.

The mechanism behind the upregulation of p16™NK4 remains undetermined. An alternate study
by Eshkoor et al. of ten BCC tissue samples displayed significantly increased protein and mRNA
expression of CDK6 and cyclin D1 [59]. Considering this, BCC appears to be influenced by the
plemNKe-cyclin D/CDK-pRb signaling pathway to an extent. Accordingly, one might postulate an
elevation in p16NK4 Jevels as the expected response to increased proliferation within the tumor cells.
Upon investigating for regional variability in p16 levels among different subtypes of BCC, Svensson
et al. note a correlation of expression with invasiveness, as protein levels were highest in cells along
the infiltrating tumor periphery. Persistence of p16™k4 functionality in this aggressive tumor edge
was associated with downregulation of the proliferative marker Ki-67, indicating an inverse
relationship between proliferation and infiltration that may be influenced by p16™Nk4a [60].

The risk of BCC, like melanoma, which is augmented by UV radiation-induced DNA damage
[61]. results in augmented pl6 expression in comparison to non-sun-exposed skin. Hence,
upregulation of p16™k4 could indicate a broad cellular stress response. An increased expression of
p16!NK42 was observed in recurrent BCC lesions relative to non-recurrent, suggesting an association
with therapy resistance and/or tumor recurrence [62]. Most research on BCC has focused upon the
role of chronic activation of SHH signaling although the common development of resistance to SMO
inhibitors predicts the involvement of other factors such as deregulation of the cell cycle. This
possibility remains understudied. An instructive role for aberrant cell cycle regulation in cSCC is also
not well investigated although an association of dysregulated cell cycle is broad range of dysplastic
cells (10-80%) isolated from samples of actinic keratoses (pre-cancerous lesions), Bowen’s carcinoma
(squamous cell carcinoma in situ) and cutaneous squamous cell carcinoma cells displayed
overexpression of p1l6™&# relative to normal tissue [63]. As well, the involvement of pl16™k4, cyclin
D1 and Rb has been demonstrated in other SCC [64]. Importantly, in vitro targeting of cyclin D1 in
SCC lines (head and neck, facial and vulvar tissue) and in vivo immunodeficient mice revealed
significant reduction in tumor growth [52].

Both ¢BCC and cSCC often bear allelic loss at the CDKN2a locus [65]. although the consequence
to tumor initiation or progression is not yet clear. Immunohistochemical staining by Zheng et al.
suggested a variability in p16!NK% expression between BCC and SCC. Here, 15% of BCC (47 cases)
revealed low levels of positive staining (1+), relative to 80% of cSCC (44 cases) while 20% of cSCC
exhibit significantly protein expression [66]. These results suggest cSCC progression is associated
with deregulation of cell cycle mediators but establishing cause and effect requires further study.

2.2. p144RF and p53

The CDKN2a locus is alternatively known as ARF-INK4a, due to the alternatively spliced
product being p144FF, a tumor suppressor with identified inactivating mutations demonstrated in
various cancers. Importantly, p144RF functions to inhibit the p53-degrading protein MDM?2, thereby
stabilizing p53 and stabilizing its activity as a crucial cell-cycle and apoptotic regulator [67].
Moreover, p144RF is recognized as a connector of Rb and p53 [68,69]. Upon phosphorylation of Rb,
associated E2F transcription factors are untethered, which then induce expression of p144RF. This
increase in p14ARF activates the p53/p21 pathway, providing an additional layer of control to inhibit
cellular proliferation, underscoring the interplay between these regulators in maintaining cellular
homeostasis [70,71].
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There is strong evidence highlighting an inverse relationship of pl4ARF with melanoma
progression. In general, exon mutations impacting p16™k#A function are more frequent than in p144®F,
although a downregulation of p14ARF expression can contribute to melanoma oncogenesis [72,73].
However, some studies of metastatic melanoma have reported increased mutation of ARF relative to
pl6NK4e  which is perhaps sample-dependent [74]. Regardless, mutations in both genes are
significant, and their concurrent inactivation is reported in upwards of 40% of melanoma. [75]
Dobrowolski et al. compared pl14ARF protein levels in increasingly aggressive human melanomas,
revealing 11 of 14 benign nevi, 3 of 12 melanomas and 0 of 6 metastatic melanomas showing positive
staining for p14ARF, supporting a role for this protein in melanoma progression [76]. Moreover, the
introduction of FLAG-tagged truncated p144%F constructs into the NM39 melanoma cell line resulted
in blunted G1 arrest relative to wild-type p14ARF [75].

Upon comparison of select tumor suppressor genes in AK and ¢SCC, Kanellou et al. found
downregulation of both p144RF and p53 in SCC relative to the pre-cancerous AK lesions [77] Likewise,
investigation of the CDKN2A locus in 40 human ¢SCC samples revealed alterations in 76% of samples,
with variable point mutations and promoter methylation representing the most common causes of
inactivation. [78] Similarly, Pacifico et al. show a similar inactivation in BCC, with only 1 of 16 sun-
exposed patient tumors staining positively for protein expression of pl44RF [79]. These studies
highlight the potential role of inactivation of p144RF in the tumourigenic process for both melanoma
and NMSCs.

Nevertheless, mutations in p16 or its loss of expression is likely insufficient for cutaneous
tumorigenicity. For example, individuals homozygous for the CDKN2A germline mutation can
remain disease-free. Thus, inactivation of this tumor suppressor in humans is presumed to cooperate
with additional driving or spontaneous mutations to orchestrate tumor initiation and progression
[80]. However, experimentally, genomic loss of ARF in mice (murine p194KF is equivalent to human
pl4) led to increased ¢SCC tumor formation at multiple cutaneous sites when treated with the
carcinogen DMBA [81]. Loss of ARF was found to be independent of p53 signalling, which remained
functional via alternate activation pathways, as demonstrated by the continued induction of p21
expression in the context of non-functional p14ARF [75,82].

TP53 is one of the most frequently inactivated regulators in cancer, yet an association of TP53
function loss in melanoma is controversial. Early studies reported variable TP53 mutations in
melanoma (0-20%). More recent and higher resolution whole exome sequencing analysis have
detected inactivating p53 mutation in 15-20% of melanoma samples [83,84]. In contrast to NMSCs,
which exhibit early mutations of TP53, these mutations are more often detected as late events
associated with advanced melanoma [85]. The current consensus is that wildtype TP53 predominates
in over 80% of melanomas [86]. Moreover, elevated p53 expression is detected with increasing tumor
progression [87,88]. These results imply that wildtype TP53 function is aberrant in melanoma. This
possibility is supported by one study that demonstrated failure of p53 to induce apoptosis. Other
studies implicate p53 as a driver of therapy resistance and aggressiveness through expression of
shorter isoforms [86,89,90]. Additional mechanisms include disrupted p14ARF signaling, which causes
persistent MDM2-mediated inactivation of p53 [91]. However, as mentioned earlier, alternative
studies have demonstrated p53 can retain its normal function in the presence of inactivated p14ARF
[81].

In skin cancer, deletions of CDKN2A are more common than point mutations, the latter more
commonly associated with UV exposure [92]. UV-signature mutations (C to T and CC to TT
dipyrimidine sequences) are present in NMSCs and pre-cancerous lesions, likely serving as an early
step in carcinogenesis [79]. Comparison of mutant p53 in aggressive and non-aggressive BCCs
revealed detection in 38% and 66% of human samples, respectively [93]. Moreover, increased
tumorigenicity of NMSC was exhibited in heterozygous p53 mutant mice compared to wildtype [94].
In ¢SCC, mutant p53 has been reported to be found in greater than 50% of human tumor samples
analyzed [93,95]. This early involvement implicates p53 in tumor initiation, as noted by the detection
of mutations in actinic keratosis, Bowen'’s disease and ¢SCC in situ [96,97]. Progression is influenced
by additional tumor suppressor mutations at the CDKN2A locus, especially in the presence of loss-
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of-function p53 mutants resulting in elevated proliferation, metastatic potential and drug-resistance
[92,98,99]. In experimental models of cBCC loss-of-function mutations in Trp53 is required for
sustained tumor transformation. Unlike NMSCs, mutant p53 is less significantly implicated in
melanoma.

Collectively these reports suggest that both the initiation and progression of human melanoma
and NMSCs may be impacted by dysregulated cell cycle protein functions. Additional studies
focusing on specific growth pathways and stemness regulation further implicate the discussed
proteins, though are out of the scope of this review.

3. Skin Cancer Stem Cells (sCSCs) and Therapy Resistance
3.1. CSC and sCSCs

The intricate processes of tissue regeneration and homeostasis require the presence and activity
of resident adult stem cell (ASC) populations. Cellular turnover in tissues balances rates of cellular
renewal and death, a process that is heavily modulated by crosstalk between the ASCs and the niche
microenvironment they occupy. [100,101] This warrants that for tissues to be replenished, resident
ASCs must have the inherent plasticity to reconstitute tissue-specific cells following damage while
maintaining persistent, equipotent stem cells and/or oligopotent transit-amplifying (TA) progenitor
populations. [102] Tissue regeneration by ASCs can be represented as a hierarchical organization, a
model initially developed by Till and McCullough in 1961 to explain hematopoietic stem cells [103].
At the apex of the hierarchy lies a quiescent multipotent ASC capable of establishing progenies
through asymmetrical or symmetric division [102,104]. Asymmetrical division describes the
formation of an equipotent stem-cell and a more differentiated progenitor of a certain lineage. On the
other hand, symmetric division can see the formation of either two equipotent stem cells from a
parent or two less-plastic progenitors [105]. While many tissue types in the body have some capability
to regenerate; the epithelium is one of the organs with the highest regenerative capacity [104]. This is
in large part because there is a constant need to replenish lost cells that following continuous stressor
insults from the environment, such as ultraviolet radiation on the epidermal or microbial stressors
faced by intestinal epithelia [106,107].

Spatial organization of distinct stem cell populations within a tissue is evident in epithelial
structures. In skin, both the interfollicular epidermis and sebaceous glands have a high turnover to
regenerate the stratified skin barrier and sebaceous glands. The interfollicular epidermis (IFE)
regenerates from a stem cell pool in the basal layer while sebaceous gland regenerate from hair follicle
stem cells [108,109]. On the other hand, the hair follicle (HF) is unique in this organization as it follows
a cyclic process of hair growth (anagen) and death that does not warrant the same frequency of
resident SC recruitment as seen in the IFE or SG[110]. The hair follicle stem cells (HFSCs) are resident
at the base of the follicle in a permanent structure known as the hair bulge in addition to the distally
placed hair germ (HG)[111]. While SCs in both the bulge and HG are multipotent and express
stemness markers including Lgr5 and Sox9 their plasticity vary given their unique target niche
[112,113]. This is clearly demonstrated by bulge SCs which are capable of migrating from their
primary microenvironment at the base of the follicle to other areas within the structure during the
hair growth cycle as well as into the epidermis during cutaneous wound healing. [104,114,115] This
highlights that not all stem cells permanently reside in their primary niche and are capable of homing
tonew areas. Hence, the fate and potency of a SC is greatly influenced by the niche it currently resides
in. Remarkably, Morris et al. demonstrated that engraftment of bulge SCs into transgenic mice
exhibited increased potency within the non-resident niche, with the capability of giving rise to all cell
lineages found in the cutaneous structure, including those in the IFE and SG [116]. Contrary to the
classical model that explains a unidirectional differentiation pattern of stem cells, recent data has
supported the idea lineage dedifferentiation or switching, as observed in the epithelia of the lung and
skin [117,118]. For instance, melanocyte stem cells (McSC) demonstrate a high level of plasticity,
capable of switching between a TA and multipotent phenotype depending on the SC niche the McSC
resides [118]. Provided specific signalling programmes within a microenvironment, the plastic
potential of a SC is highly dynamic.
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Skin cancers remarkably demonstrate similar hierarchical architectures and mechanisms like
those used in the regeneration of the epidermis [102]. However, it is clear that cancerous masses do
not respond the same way to the processes that control tissue homeostasis. Research has shown that
within various cancers exists a high degree of intratumoural heterogeneity and plasticity[110]. This
is in large part due to populations of tumor-initiating or cancer stem cells that have the ability to self-
renew and give rise to various committed lineages within the skin lesion. Along the tumoral CSC
hierarchy lies a spectrum of differing plastic and differentiated cellular states, providing multiple
integration points by which an oncogenic event can drive neoplastic growth with differing levels of
malignancy [102]. The accumulation of oncogenic triggers in highly plastic cells leads to a significant
proportion of cancer stem cells (CSCs) forming malignancies, primarily arising from the bulge area
of the hair follicle (HF) [119]. In contrast, an increased mutational burden in the interfollicular
epidermis (IFE) has been implicated in the development of benign papillomas [120]. Understanding
the fundamental molecular mechanisms behind the transformation of CSC in tumor initiation and
progression will shed greater insight into phenomena like chemoprotection and relapse.

3.2. Molecular Mechanisms of Stemness in sCSC
3.2.1. Melanoma Cancer Stem Cells

Research has been increasingly focused on the role of CSCs and their potential to initiate and
recapitulate a heterogenous tumor post-treatment. Initial work with melanoma cell cultures lead to
the discovery of the presence of such CSC subpopulations, which exhibit a multipotent and self-
renewal plasticity that is similar to their lineage progenitor, neural crest. Work by Fang et. al clearly
demonstrated the existence of multipotent melanoma cell subsets from clinical tumor samples.
Spheroids, which are non-adherent subpopulations, of these multipotent melanoma cells exhibited
persistence after serial cloning in vitro and demonstrated self-renewal both in vitro and in vivo [121].
Several subpopulations in human melanomas are capable of self-renewal, differentiation,
tumorigenicity and/or drug resistance. One subset is enriched for the B-cell lineage marker, CD20,
that has been implicated in B-cell lymphomas and that is linked to melanoma metastasis [122,123]. In
comparison to differentiated adherent melanoma cells which were CD20 deficient, in vivo
engraftment of CD20+ cells had increased tumorigenic potential and ability to initiate and maintain
tumors with sustained plastic potential, which is characteristic of CSC. The role of CD20 in the
maintenance of cancer stem cell subpopulations is not well understood, but is associated with poor
prognosis and increased aggressiveness of melanoma tumors [124]. These findings not only
underscore the tumor-initiating potential of certain cells within the tumor mass, but it also establishes
CD20 as a non-canonical melanoma CSC marker which can be targeted by combination therapies
such as nanoparticle and immunotherapy technologies [9,126].

Following chemotherapy, a multitude of melanoma CSC biomarkers play significant roles in
renewal, metastasis and therapeutic resistance. Aldehyde dehydrogenase (ALDH) isoenzymes
mediate oxidation of intracellular aldehyde pools which has been linked to increased metabolism of
cytostatic agents, increased retinoic acid synthesis, and adaptation of core metabolic pathways [127].
ALDH overexpression within CSC subpopulations serve as stemness biomarkers and has been
implicated in increased tumorigenic potential, with ALDH1Al being one of the most well
documented isoforms in cancers not limited to melanoma [128-131]. Certain isoforms, such as
ALDHIL2, have been shown to mediate melanoma metastasis when adapting to oxidative stress
[132]. Lu et al. recently demonstrated using a zebrafish melanoma model that tumor cell
subpopulations exhibited ALDH1A3"s" phenotype following BRAF targeted therapy, in addition to
increased stemness markers like SOX2, SOX10 and TFAP2B. Consequently, the ALDH"s" tumors
became vulnerable to ALDH inhibition using nifuroxazide, highlighting the importance of
identifying changes in CSC subpopulations as a tumor management approach [133]. Melanoma CSCs
upregulate expression of other multidrug resistance associated proteins, such as drug efflux ABC
transporters like ABCB5, which confer increased tumorigenic and plastic potential [134,135,136].
ABCB?5 is a reliable marker for isolating CSCs as it identifies quiescent, slow-cycling melanoma
subsets and correlates with the expression of stemness markers such has nestin, CD144, CD20, and
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PECAM1[137]. Recent studies have delineated a unique role for ABCB5 in melanoma where its
activity leads to upregulated interleukin-8 (IL-8) in a Wnt-dependent fashion, maintaining quiescent
melanoma subpopulations [135]. IL-8 induces inflammation in the niche environment which has been
implicated in increased malignancy potential, angiogenesis, immune evasion and metastatic
potential in late melanoma stages [135,138,139]. Melanoma CSC confer the heterogenous tumor mass
with protective mechanisms that in the end provide mechanisms of chemoresistance and immune
evasion to occur, leading to poorer prognostic outcomes.

3.2.2. Basal Cell Carcinoma Stem Cells

Experimental models suggest that CSC initiating cBCC occur in both the IFE basal layer and also
HF stem cell niches such as the bulge [102,140]. A BCC origin in human c¢cBCC has not yet been
conclusively demonstrated. CBCC is a highly mutated human cancer that initiates from oncogenic
driver mutations in sonic Hedgehog (SHH)/GLI signalling. As noted, the majority of human ¢cBCC is
driven by loss-of-function mutations of Patchedl (PTCHI) and/or gain-of-function Smoothened
(SMO) mutations [24,99,141]. Although Ptchl mutations are sufficient to initiate cBCC in
experimental models exposed to UVB, the acquisition of secondary mutations in Glil and Gli2,
Notchl, Trp53 and elevated MYCN expression are required for stable tumor progression by
hyperactivating SHH signaling, and promoting tumor persistence, genomic instability and
proliferation respectively [142]. The SHH targets, GIi1 and Gli2 are members of the zinc finger family
transcriptional factors and their elevated expression in mouse models is sufficient to induce BCC-like
lesions UV exposure [141].

As previously discussed, cancers tend to mirror the hierarchical SC organization observed
during tissue homeostasis. CBCC and cSCC clearly reflect this phenomenon. Mounting evidence
suggests that in addition to a cancerized field of mutations established by UV exposure, chronic and
acute wounding of the epidermis primes the injured area for the formation of keratinocyte tumors
bearing driver mutations in the SHH pathway [143]. Lineage tracing techniques have established that
Lgr5+ bulge SCs regenerate the IFE following a cutaneous wound while IFE stem cells do not.
Interestingly, using an inducible Cre-flox Ptchl mouse model driven by an epithelial-specific
promoter, Ptchl-deficient Lrg5+ cells demonstrated the ability to develop cBCC. These included the
expression of the bulge stemness marker Sox9 and the HG-specific marker P-cadherin [143]. KRT15+
bulge stem cells also contribute to repair of IFE wounds and can initiate cBCC in the context of a
wound microenvironment. Hence, tumor-initiating cells are capable of migrating from the bulge
niche into the IFE microenvironment, contributing to the formation of neoplastic lesions [143,144].
Several studies suggest a contextual dependency of the Lrg5+ bulge SC this tumorigenesis. For
instance, work by Wong and Reiter show that activating mutations of SmoM?2 driven by a KRT15
promoter was not sufficient to induce ¢cBCC in mice while mice expressing SmoM2 driven by KRT14
promoter formed tumors. However, following wounding and migration of mutant bulge CSCs into
the IFE area, SmoM2 driven by a KRT15 promoter was capable of initiating cBCC [119]. Given the
absence of Glil expression in the HF niche, it has been postulated that the varying tumorigenic
potential of SmoM2 may result from differential Glil expression between the HF and IFE niches
[141,145,146]. This emphasizes the nuanced complexity and relevance of considering the niche
microenvironment when studying BCC tumor initiation and the contribution of specific stem cells as
tumor initiators.

3.2.3. Cutaneous Squamous Cell Carcinoma Stem Cells

Research over the past decade has begun to delineate the role of multipotent tumor-initiating
cells in cSCC neoplasia using transgenic mouse models and shown that stem cell compartments in
HF and IEF can give rise to ¢SCC in a mutation and niche-specific manner. Unlike BCC which is
driven by CSCs harbouring Ptch1/Smo mutations in SHH signaling pathway cSCC requires two
critical mutations for oncogenic transformation. For example, in mouse models, KRT15+ stem cells
from the HF bulge bearing a KRas¢'?® mutation form benign papillomas while an additional and p53
loss develop invasive cSCC[147]. KRT14 driven KrasG12D or Lrg5 driven Kras12G12D combined
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with Trp53 loss result in ¢SCC initiation from the IEF and outer root sheath of the HF respectively.
Thus, both IEF and HF stem cells are competent to initiate cSCC when these two critical mutations
occur. In synergy with mutant RAS, ectopic expression of NFKBIA inactivates NFKB1 signalling,
which is an inhibitor of epidermal growth, thereby producing cSCC lesions [148].

The maintenance of CSC subpopulations in ¢SCC is dependent on aberrant Wnt/S-catenin
signalling. [99,102] Malanchi et al. demonstrated that murine HF stem cells that expressed the surface
marker, CD34, define a subset of cells within the HF bulge niche capable of initiating SCC following
tumor initiation and promotion by DMBA (7,12-dimethylbenz[a]anthracene) and TPA (12-O-
tetradecanoylphorbol-13-acetate) treatment, respectively [149]. Interestingly, [-catenin loss
sensitized CD34+ CSC pools to depletion, causing loss of their tumorigenic potential to produce
secondary lesions [149]. It has been postulated that constitutively active -catenin in cSCC lesions
acts through the B-catenin/LEF/TCF transcription factor axis, directly upregulating Wnt-responsive
targets and aiding tumor progression [102,149-151].

Other CSC-associated genes are reliable prognostic markers and targets to isolate cSCC-
initiating subpopulations, including CD133, CD44 and CD29. CD133 is a putative stemness and
tumor burden marker extensively studied in a variety of cancers [152-154]. In ¢<SCC, CD133+ tumor-
initiating cells, which demonstrate stemness by limiting dilution cloning, have tumorigenic potential
[155]. Work by Geng and colleagues explored the role of CD29 and CD44 in promoting epithelial to
mesenchymal transition (EMT) of c¢SCC tumor-initiating cells. CD29high/CD44"ish CSCs demonstrated
a mesenchymal phenotype and transcriptome, (e.g., reduced E-cadherin and increased vimentin, N-
cadherin, fibronectin and nuclear B-catenin) [156]. These CSCs exhibit increased Wnt/B-catenin
signalling and became largely localized at the tumor-stromal interface [156]. While the mechanisms
of EMT and how crosstalk with the microenvironment niche triggers this phenotype is poorly
understood, a significant area of research has become devoted to understanding these underlying
processes [157].

Although most SCC mouse models use CD34 as a biomarker for identifying hair follicle CSC,
there is currently no evidence in the literature for CD34 expression in human hair follicle or IEF CSC
subpopulations, complicating translation of experimental models to humans and prompting studies
that broaden the array of human CSC biomarkers [102,158]. Siegle and colleagues demonstrated that
the stemness marker, SOX2, is essential for initiating invasive human and mouse ¢SCC [159]. By
inducing angiogenic mimicry through the Nrpl/VEGF pathway, SOX2 facilitates the expansion of
tumor-initiating cell populations along the tumoral boundary [159]. Given that SOX2 is not expressed
in murine and human epidermal homeostasis it has emerged as an important marker of tumor-
initiating cells in ¢cSCC neoplasms [160].

The concept of cancer stem cells has become a central paradigm in probing the hierarchical
organization of tumors. While major strides have been made to understand the roles of CSCs in the
etiologies of melanoma, BCC, and ¢SCC, major questions remain about the complex interactions
between CSCs and their niche microenvironments, their role immune evasion, metastasis, and
relapse, as well as defining the events modulating lineage commitment of CSC compartments.
Identification of stemness biomarkers will help in isolating and studying sCSC biology but also serve
as potential targets for theragnostic approaches to treatment in skin cancers.

3.3. Mechanisms of Therapy Resistance in sCSCs

Distinct features of sCSCs are pivotal in therapy resistance of all three major forms of skin cancer.
Despite numerous therapy treatments designed to specifically target the molecular mechanisms
behind unregulated cell cycle progression, these unpredictable cells have taken advantage of various
alternative pathways, leading to a quickly developed resistance to common primary therapies. In
fact, it is suggested that cases of metastatic or recurring melanoma show an expression of CD133 that
is two-fold higher compared to non-recurring instances [155].

Melanoma therapy treatments often involve the use of BRAF inhibitors (e.g. vemurafenib),
blocking RAS-RAF signaling, a frequently overexpressed pathway in CM that serves to augment cell
proliferation and survival [161]. Although this treatment has demonstrated promising efficacy, use
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of these therapies eventually leads to tumor recurrence through secondary signaling pathways
[162,163]. Stem cells utilize CD133 in activating PI3K pathways, which are known to inhibit multiple
MAPKs (p38 and JNK) and influence other tumor suppressor genes such as p53. Other pathways
related to tumor recurrence directly reactivate the RAS-RAF pathway blocked by the BRAF
inhibitors. RHOB, a gene found to be overexpressed in melanoma cells treated with BRAF-inhibitors,
desensitizes the effects of BRAF inhibitors, leading to a reversal of expression that was previously
suppressed by therapy treatments, or a lack of proper execution to begin [152,164]. Evidently,
melanoma cells, specifically those that exhibit recapitulation when treated with current therapies,
exploit the heterogeneity of tumors to override anti-proliferative mechanisms and increase survival.

Basal cell carcinoma demonstrates similar resistance to current therapies. Targeted primary
therapies such as vismodegib exhibit a response rate of 43% in ¢cBCC patients but resistance to this
treatment is common [165]. Functionally, SMO-inhibitors effectively deactivate mutant
Hedgehog/Gli-1 signaling but resistant tumor cells promote signaling through transcription factors
such as AP-1 to reactivate expression of SMO target genes initially blocked by therapy [166]. In cBCC,
a key player in promoting stemness in the sCSC subpopulation is the transcription factor SOX2.
Direct targeting of SOX2 has led to reduced tumor invasion, migration, and survival. Thus, factors in
stem cells contribute greatly the resistance and regrowth of tumors initially targeted through primary
therapies, as they demonstrate a unique subpopulation that monotherapies struggle to effectively
treat. Not sure what this means.

sCSCs in SCC develop unique mechanisms to evade primary therapies and promote tumor
recurrence. TGF-{3 is a stem-cell regulator that can drive tumorigenesis when expression levels are
low, and promote therapy resistance by increasing expression levels and stemness characteristics
[167,168]. Furthermore, stem cells contain properties that enhance tumor survival. Many resistant
forms of cSCC utilize the NF-kB pathway mediated by NOTCH, a key stem-cell factor [169]. Upon
activation of NF-kB by NOTCH, tumors have been shown to demonstrate increased angiogenesis
and metastasis, and thus overall strength and resistance to therapies [170]. Clearly, sCSCs are crucial
in avoiding complete tumor-elimination and promoting tumor recurrence following therapy.

In melanoma and NMSCs, therapy resistance is promoted by stem-like subpopulations with a
capacity to overcome targeted therapies through exploitation of alternative mechanisms known to
reverse or directly combat primary treatment. Although each driving force is unique, sCSCs all
demonstrate the ability to resist anti-tumorigenic effects. Currently, research behind these
mechanisms is limited, especially in NMSCs, and a better understanding is essential in determining
the measures to combat these heterogenous systems.

4. Cell Cycle Targeting Approaches
4.1. Concept of Cell Cycle Targeting in Skin Cancer

Cell cycle targeting is a promising strategy for skin cancer therapy, focusing on the regulation
of CDKs and other key cell cycle regulators (Table 4) [171,172]. A key focus is on CDKs such as
CDK4/6 and CDK2, which are crucial for the regulated progression through different phases of the
cell cycle [53,171,172]. CDK4/6 inhibitors, including palbociclib (PD0332991), ribociclib (LEE011), and
abemaciclib (LY2835219), have shown efficacy in preclinical and clinical studies, particularly in
melanoma [53,171,173]. These inhibitors work by preventing the phosphorylation of the
retinoblastoma (Rb) protein, thereby halting cell cycle progression from the G1 to the S phase [53].
Additionally, CDK2 inhibitors like dinaciclib have shown promise in preclinical models by inducing
apoptosis in cancer cells [174]. CDK2 plays a significant role in the transition from the G1 to the S
phase, and its inhibition can lead to cell cycle arrest and subsequent cell death [174].

Another strategy involves targeting G2-M checkpoint kinases such as CHK1 and CHK2, which
are integral to the DNA damage response and repair mechanisms [172,175]. Inhibitors like
prexasertib (LY2606368) and AZD7762 aim to restore normal cell cycle checkpoints that are often
bypassed in cancer cells, leading to increased tumor cell death [176-178]. Studies have shown that
these inhibitors can enhance the efficacy of other treatments, such as chemotherapy and radiation, by
preventing cancer cells from repairing DNA damage [176-178].


https://doi.org/10.20944/preprints202409.1661.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2024

12

Reactivating tumor suppressor proteins, particularly p53, is another crucial approach in cell
cycle targeting. MDM2 inhibitors, such as nutlin-3 and RG7388, work by blocking the interaction
between MDM2 and p53, thereby restoring p53’s ability to induce cell cycle arrest and apoptosis
[172,179,180]. This strategy is particularly relevant in cancers where p53 is inactivated due to MDM2
overexpression. Clinical trials have demonstrated that these inhibitors can reactivate p53 function,
leading to significant antitumor effects in various cancer types [179]. Each of these cell cycle targeting
strategies holds potential for improving the efficacy of existing treatments and achieving better
therapeutic outcomes for skin cancer patients.

4.2. Synthetic CKlIs

The development of synthetic cyclin-dependent kinase inhibitors (CKIs) has evolved from
broad-spectrum pan-CKIs to highly specific agents targeting individual CDKs [171,172,181]. Early
examples include roscovitine (seliciclib), which inhibits CDK1/2/5/7/9 but showed limited efficacy
and high toxicity in phase I clinical studies. Flavopridol (alvocidib), a pan-CKI targeting
CDK1/2/4/7/9, showed greater promise in preclinical studies but did not achieve the desired response
in phase II trials [172]. The failure of multiple broad-spectrum CKIs in clinical trials has led to a shift
towards more selective CDK-targeting approaches [173].

Current research is focused on several specific CKIs for melanoma therapy. CDK4/6 is of
particular interest due to its role in mediating cell progression through the G1 phase of the cell cycle.
The most developed CDK4/6 inhibitors for melanoma include palbociclib, abemaciclib, and ribociclib
[53,172]. These orally available selective inhibitors bind to the ATP-binding domain of CDK4/6,
leading to cell cycle arrest at the G1/S checkpoint. Notably, abemaciclib and ribociclib exhibit greater
selectivity for CDK4 over CDK®6, while palbociclib inhibits both CDK4 and CDK6 with similar
potency [182].

In preclinical studies, palbociclib reduces Rb phosphorylation and the Ki67 proliferation marker,
as well as downregulate E2F target genes at nanomolar concentrations, indicating effective inhibition
of CDK4/6 activity [171]. In addition to cell cycle arrest, palbociclib can induce senescence and
increase cell death in melanoma cell lines [53]. Abemaciclib achieves CDK4/6 inhibition at nanomolar
concentrations with higher potency and has been shown to cross the blood-brain barrier, which is
significant for potentially treating brain metastases, a common issue in melanoma [182,183].
Moreover, abemaciclib has broader activity against other cyclin-dependent kinases such as CDK1,
CDK2, CDK?7, and CDK9, which may contribute to more comprehensive tumor cell proliferation
inhibition and enhanced efficacy in combination therapies. Ribociclib exhibits inhibitory activity
against CDK4/cyclin D1 and CDK6 complexes at sub-micromolar concentrations and has
demonstrated in vivo antitumor activity in melanoma, although it requires functional Rb protein
[184,185]. Phase I studies have established recommended dosing levels: 125 mg daily for 3-4 weeks
or 200 mg daily for 2-3 weeks for Palbociclib; 200 mg twice daily continuously for Abemaciclib; and
600 mg daily for 3-4 weeks for Ribociclib [171,172]. Phase II clinical trials for all three CDK4/6
inhibitors are ongoing.

Genetic alterations, particularly in the MAPK pathway, are critical in the development of
metastatic melanomas. The BRAFV6F mutation occurs in approximately 66% of melanoma cases,
making it a key therapeutic target.'® Vemurafenib, an FDA-approved BRAFV60E inhibitor, is effective
but often leads to tumor relapse due to acquired resistance [187,188]. Research by Yoshida et al. has
shown that vemurafenib-resistant tumors remain sensitive to palbociclib, suggesting that sequential
treatment with vemurafenib followed by palbociclib could potentially overcome resistance [189].
Similarly, a study by Yadav et al. found that abemaciclib could also overcome vemurafenib resistance
in V60OE-mutant melanoma cell lines, indicating the potential of combining CDK4/6 inhibitors with
MAPK pathway inhibitors [190].

Activating NRAS mutations, which occur in approximately 15% to 20% of melanomas, drive
tumor progression through the MAPK pathway [191]. Combining CKIs with mitogen-activated
protein kinase (MEK) inhibitors has shown promise in treating this subtype [172]. A preclinical study
by Kwong et al. found that while MEK inhibition induces apoptosis in murine models of NRAS-
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mutant melanoma, it fails to effectively arrest the cell cycle [192]. The combination of MEK and CDK4
inhibitors, however, demonstrated significant in vivo synergy, addressing the limitations of MEK
inhibition alone by targeting both apoptotic pathways and cell cycle progression. In clinical studies,
the combination of ribociclib and MEK inhibitor binimetinib in NRAS-mutant melanoma showed
favorable efficacy and manageable toxicity, with a 35% partial response rate and a median
progression-free survival of 6.7 months [193,194]. Additionally, the triple combination of encorafenib
(BRAFi) and binimetinib (MEKi) with ribociclib in BRAFV6E-mutant melanoma achieved an objective
response rate of 52% [195]. These combination therapies provide promising approaches for effectively
treating specific melanoma subtypes.

Although CDK2 inhibition is less studied in melanoma compared to CDK4/6 inhibition, it could
offer significant benefits for controlling melanoma cell proliferation. Dinaciclib, a selective CKI
targeting CDK2 while also affecting CDK1/5/9, has shown significant anti-tumor activity in
preclinical melanoma models [173]. Desai et al. found that while CDK2 is dispensable for most
tumors, it is essential for melanoma cell proliferation, regulated by MITF [174]. Dinaciclib inhibited
melanoma cell growth, induced G2/M cell arrest and apoptosis, and caused tumor regression in
mouse xenografts by reducing Rb phosphorylation and Bcl-2 expression. The drug's pro-apoptotic
effects require p53 activation, as knocking down p53 completely abolished apoptosis. Newly
synthesized quinazolinone-based CDK2 inhibitors are also being investigated for their potential anti-
cancer effects through selective CDK2 inhibition [196].

Of importance to therapeutical regulation of CDK activity are non-canonical CDK binding
partners such as Spyl. Spy1 directly binds and activates both CDK1 and CDK2 independent of post-
translational modification known to regulate access to the CDK active site [197,198,199,200] and
regulates expansion of CSC populations in different types of cancer [201,202]. Although this unique
activation of CDKs may render Spyl-CDK complex insensitive to inhibition with synthetic CKls,
designed to target canonical cyclin-CDK complexes, it offers a new and attractive therapeutical target.

While most research on CKIs has focused on melanoma, BCC and cSCC are less studied despite
sharing disrupted pathways involving cell cycle regulation. Given the similarities in the molecular
mechanisms driving these skin cancers, CDK4/6 and CDK2 inhibitors hold potential as effective
treatments. Further research is essential to evaluate their efficacy and safety specifically in BCC and
¢SCC, ensuring a comprehensive understanding of their therapeutic potential in these more common
forms of skin cancer.

4.3. Other Cell Cycle Targeting Drugs

As discussed, an important target in melanoma therapy is the inhibition of the MAPK signal
transduction pathway, of which the ubiquitously known kinase, BRAF, is a member of. Additional
pathway members include RAS, RAF, MEK and ERK, all of which have been previously targeted
using small molecular inhibition, antisense therapy and antibodies [203]. Examples described in
literature include both mono- and combination therapy with vemurafenib (BRAFV60E mutation), anti-
angiogenics such as sorafenib and bevacizumab, RAF-265 inhibitor, as well as trametinib and
binimetinib (MEKi) [188,204-206]. Using a fluorescent cell cycle reporter (FUCCI), Haass et al. found
that melanoma cells arrested in G1 through MAPKi exhibited resistance to G2-M phase drugs
(bortezomib, temozolomide), highlighting cell cycle phase-specific drug sensitivity in melanoma
[207]. Moreover, some studies have taken advantage of cell cycle dysregulation in melanoma. Tumor
cells with an abrogated G1 checkpoint rely on G2-M for DNA repair, presenting the opportunity of
G2-M specific targeting. Barnaba et al. showed that these checkpoint-deficient melanoma cells were
more successfully eliminated with inhibition of the G2-M kinase, CHK1 [208]. These studies
emphasize the use of sequential and/or combination therapy to counter-act therapy resistance.

The focus toward additional cell cycle targeting in NMSCs is relatively inadequate. Existing
therapy of BCC includes targeting of the Hedgehog pathway with inhibitors such as vismodegib and
sonidegib [209]. Some studies have suggested exploring the potential of combination regimens
through simultaneous inhibition of other signaling pathways indirectly related to Hh, such as
PI3K/Akt/mTOR, EGFR and the MAPK pathways [210,211]. Darido et al. demonstrated that the
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inhibition of PI3K/mTOR signalling with a dual inhibitor (NVP-BEZ235) successfully prevented
tumor initiation in carcinogen exposed mice, as well as delaying progression of induced papillomas.
However, when applied to mice with existing cSCC, this oncogenic inhibitor displayed minimal effect
[212]. Zou et al. revealed similar anti-proliferative success with administration of the
PI3K/Akt/mTOR inhibitor LY3023414, blocking tumor initiation in immunodeficient mice [213].

Overall, there is some promise in preliminary studies that validate a need for further exploration
of cell cycle associated intricacies, although quantity and replicability of existing studies does remain
limited.

5. Active Clinical Trials and Potential of Cell Cycle Trageting

Emerging advancements in the treatment of skin cancer are notable in immunotherapy and
target-specific treatments. The effects of short-term fasting in combination with PD-1/PD-L1
inhibitors like pembrolizumab, nivolumab, and others were studied in patients with advanced or
metastatic skin cancer. The impact of those therapies on cell cycle or potential combination with cell
cycle targeting approaches are understudied. Here we present the most current clinical trials using
novel therapy approaches and include potential therapy approaches using treatment combined with
cell cycle targeting reported in other types of cancer (Table 5).

Short-term fasting induced a state of metabolic stress that affected cancer cells more significantly
than normal cells. The study assessed the impact on tumor response, quality of life, and key
biomarkers related to oxidative stress, insulin, and immune signaling pathways. Additionally, this
novel approach aimed to decrease side effects of immunotherapy and study the cancer-fighting
capability [214]. Fasting mimicking diet (FMD) was shown before to increase treatment efficacy of
triple negative breast cancer and block cancer stem cell escape by potentiating the effects of CDK4/6
inhibitor, palbociclib [215]. In melanoma, palbociclib showed promising synergistic results in vitro
and in vivo with other therapeutics [216]. Hence, a combination of FMD with palbociclib is a potential
approach in skin cancer treatment awaiting assessment. Another, phase I/II clinical trial, is looking at
the efficacy of gene-modified FH-MCVA2TCR T-cells for the treatment of metastatic or unresectable
Merkel cell carcinoma. This trial is designed to explore the safety and effectiveness of these modified
immune cells, which are engineered to target specific antigens on tumour cells. Initially, patients
receive interferon gamma-1b to support immune function, followed by intravenous administration
of the FH-MCVA2TCR T-cells. Subsequent treatment with either avelumab or pembrolizumab, based
on patient response, aims to enhance therapeutic outcomes. This study also includes long-term
follow-up to monitor treatment efficacy and safety [217]. Inhibitors of CDK4/6 can significantly
enhance activation of T cells [218]. Introducing of CDK4/6 inhibitors upon administration of FH-
MCVA2TCR cells could potentially contribute to increased activation of those cells against types of
skin cancer.

Avelumab, a human IgG1 monoclonal antibody immune checkpoint inhibitor, with and without
cetuximab, are tested in a phase II clinical trial that is currently underway in patients with metastatic
squamous cell carcinoma of the skin. Avelumab inhibits PD-L1 therefore enhancing the immune
system's ability to attack cancer cells, while cetuximab inhibits the EGFR. The primary objective of
the trial is to determine if combining avelumab with cetuximab prolongs progression-free survival
compared to avelumab alone. Secondary objectives include evaluating the confirmed objective
response rate, clinical benefit rate, and overall survival for each treatment arm, as well as assessing
toxicity. Combining these therapies may enhance immune response and disrupt cancer cell
proliferation by targeting both immune evasion and growth signaling pathways, potentially leading
to better clinical outcomes [219]. Efficacy of EGFR inhibition was significantly enhanced in
combination with palbociclib which blocked the emergence of EGFR resistance in vitro in oesophageal
squamous cell carcinoma [220]. CDK4/6 activity was also shown to attenuate the effects of EGFR
inhibitor treatment of non-small cell lung cancer [221]. Combining treatment with avelumab with
cetuximab plus CDK4/6 inhibitor, could potentially improve the efficacy of the avelumab-cetuximab
approach. Similarly, a phase II clinical trial is evaluating the efficacy of adjuvant nivolumab, with or
without cabozantinib, in preventing the recurrence of resected mucosal melanoma. Nivolumab is an
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immune checkpoint inhibitor that targets PD-1, assisting the immune system's ability to attack cancer
cells. Cabozantinib is a tyrosine kinase inhibitor that blocks multiple pathways involved in tumor
growth and angiogenesis. The rationale for combining these drugs is to potentially enhance treatment
efficacy. Nivolumab aims to boost immune response against remaining cancer cells, while
cabozantinib targets additional cancer growth mechanisms. This combination may provide a more
comprehensive approach to reducing the risk of melanoma recurrence after surgery [222].

Combination of nivolumab with abemaciclib, a CDK4/6 inhibitor was tested in phase II of clinical
trial in HR+/HER2 breast cancer patients and despite observed antitumour effect it significant
adverse immune effects [223]. However, cabozantinib synergized before with dasatinib an inhibitor
of CDK1,2,4, and 6 to induce tumour regression in renal cell carcinoma, suggesting that targeting of
CDKs could potentiate the effects of cabozantinib allowing for testing of lower doses of the
combination towards reduced side effects. [224,225] A phase Il randomized trial is investigating the
combination of fecal microbiota transplantation (FMT) with immune checkpoint blockade compared
to immune checkpoint blockade alone in patients with advanced melanoma. The rationale behind
this approach is based on emerging evidence that gut microbiota can influence the immune system
and potentially increase responses to immunotherapy. By improving the gut microbiome, FMT may
help boost the efficacy of immune checkpoint inhibitors, leading to better patient outcomes. The trial
aims to determine if this combination provides impressive clinical benefits compared to immune
checkpoint blockade alone [226]. It is hypothesized that FMT can improve response to CDK4/6
inhibitors [227]. With reported priming activity of CDK inhibition for anti PD-L1 treatment,
combination of the three therapeutic approaches can lead to potentiated anti-tumour effects in skin
cancer [228].

The effectiveness of cemiplimab administered prior to surgery is tested in patients with high-
risk skin cancer that is either localized, locally recurrent, or regionally advanced but still resectable
[229]. Cemiplimab is another monoclonal antibody that targets PD-1, a protein that helps cancer cells
evade the immune system. By blocking PD-1, cemiplimab aims to enhance the immune system's
ability to recognize and attack cancer cells. The trial aims to determine whether pre-surgical treatment
with cemiplimab can hopefully improve outcomes by shrinking tumors or enhancing the immune
response, potentially leading to better surgical results and reducing the risk of cancer recurrence.
Although there is no significant data available describeing effects of cemiplimab combined with CDK
inhibition, an ongoing clinical trial is studying the effects of cemiplimab in combination with
palbociclib in patients with liposarcoma [230]. Another study compares two treatment approaches
for resectable stage III melanoma. One group receives neoadjuvant therapy with BCD-217 (a
combination of Nurulimab and Prolgolimab, monoclonal antibodies targeting cytotoxic T-
lymphocyte associated protein (CTLA-4) and a PD-1 inhibitor, respectively) before surgery, while the
other receives standard adjuvant therapy with pembrolizumab after surgery. Treatment continues
for up to 12 months or until disease progression or unacceptable toxicity occurs. The objective of this
study is to assess whether BCD-217 is more effective or safer than pembrolizumab alone in managing
the disease, which again highlights the importance of targeting cell cycle check points in treating skin
cancer [231]. Pembrolizumab was demonstrated previously to synergize with CDK4/6 inhibitor,
abemaciclib, however combination of CDK inhibitors with BCD 217 has not been tested to date [232].

6. Summary

Cutaneous melanoma is a highly dynamic and heterogeneous malignancy. Despite the
revolution of targeted therapy, melanoma poses recurrent difficulty in treatment while maintaining
its notoriously poor prognosis in advanced stages. Improved characterization of the landscape of
driving mutations has been valuable in furthering our understanding of cell cycle dysregulation in
the malignancy, while simultaneous attempt at better deciphering the role of sCSCs in tumorigenesis,
progression and therapy resistance is required. Likewise, our understanding of basal cell and
cutaneous squamous cell carcinoma has continued to expand, yet the impact of a disrupted cell cycle
does not appear to be as profound in tumorigenesis and prognosis relative to melanoma, perhaps
secondary to the clear under-exploration of this conserved cell function. Regarding therapy of
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melanoma, there is apparent promise in checkpoint inhibition with the combined use of CKIs,
particularly noted in the partnership of CDK4/6 and MEK inhibition. There has been a shift from pan-
CKI use to phase-specific inhibition, with discussion of the overall success still pending on-going
clinical trials. Contrastingly, such application has remained limited in NMSCs, with low-volume
evidence suggesting promise in anti-proliferative targeting. Despite acknowledgement of a potential
role, there has been minimal investigation in cBCC and ¢SCC. There is an evident role of the cell cycle
in skin cancer, with promising pre-clinical and clinical data in melanoma. The venue for applied
therapy remains open to further investigation.
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