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In this article it is shown, first, that a change of basis in Minkowski space is equivalent to a change
of basis in Euclidean space if a basis element is replaced by its dual element, constituting a mixed
basis set.

Second, that such mixed bases can be interpreted as a measurement system used by local, flat
observers whose direct distance measurements are restricted to an (n — 1)-dimensional submanifold
in an n-dimensional Euclidean space.

Combining these steps, it is concluded that a local, flat observer in a four-dimensional Euclidean
space measures a Minkowski spacetime. This interpretation could be useful for theories in special
relativity and related fields that rely on spacetime concepts, as it offers a more intuitive geometric

understanding of the Minkowski metric.

I. INTRODUCTION

Relativistic covariant theories contain an intrinsic diffi-
culty in the interpretation of length measurements. Con-
sider the scalar product on a Minkowski space R(3,1),
defined by:

dv.-dw = Zg;‘fudvudw”
v (1)
with Gy = diag (=1, +1,+1,+1).

This measurement rule is not positive definite, which
implies that the norm induced by the scalar product
[dv]| = Vdv - dv can assume imaginary values (Figure
1). Therefore imaginary distances between two points
can occur in this vector space, and there is no intuitive
geometric interpretation of such occurrences. A direct
trigonometric interpretation in the Euclidean sense is not
possible.

This is an unsatisfactory situation for concepts that
seek geometric interpretations of spacetime (e.g. as in
[1] and references therein, [2], [3], [], [B]). Moreover, any
framework that relies on spacetime concepts could benefit
from a new geometric interpretation of the Minkowski
metric by making complex notions more accessible and
visually understandable.

In order to develop an interpretation of the negative
sign in the metric tensor g, (Eq. , the following steps
are performed:

It is first shown in Section[[Ilthat the Minkowski metric
could appear when a four-dimensional Euclidean space
is measured with a mixed basis {€°,e,,e,,€;}. As a
possible interpretation, Section [[T]] considers the hypoth-
esis of a flat observer that has no spatial extent in one
dimension, but who may still be able to measure the ad-
ditional dimension indirectly by using a contravariantly
transforming scale.
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II. MAPPING BETWEEN SPACES WITH
MIXED COVARIANT AND CONTRAVARIANT
BASES

A. Basics and notation

The following proof requires a precise notation for co-
and contravariant transforming objects. Since there are
different conventions, a brief summary of the nomencla-
ture used in this article is given.

Co- and contravariant vectors are written in bold, sec-
ond order tensors are written in bold and have capital
letters; Greek indexes run from 0 to 3, Latin indexes
from 1 to 3, unless otherwise noted.

Let R* be a four-dimensional Euclidean vector space
with states v € R*. These states are expressed as a
linear combination of a canonical basis {e,} € R** with
elements from the dual space (orig. [6], available at [7];
introductions e.g. in [8], [9]):

V= E eux“ where
m

8 8 8 8
I CI S

The scalar coefficients z* are called the coordinates
of state v with respect to the basis {e,}. They can be
summarized as a coordinate vector x (Eq. [2]last term).
The coordinates are generated by the dual basis {e"} €
R*, which is defined by the Euclidean metric tensor gfgz

(en), =D g (e with gl =due.  (3)
:
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scalar product induces

vew= Zng“wv

norm

:‘> ||v||=m:jm :}

d0i:10.20944/preprints201809.0417.v4

induces metric

dw,w) = |lv-wll = \/Z G (W —wh) (v —wV)

FIG. 1. Relation between scalar product, induced norm and metric.

Analogously, any dual state w € R** can be expressed
with respect to a canonical dual basis:

w = E y,et where
o

o) S, ) @

y:(yo Y1 Y2 93)-

The coefficients y,, are called dual coordinates of the
dual state w with respect to the dual basis {e*}. They
can be consolidated as a dual coordinate vector y (Eq.
EI last row). Thus, scalar and tensor products can be
defined directly:

y-x:Zyﬂw”GR X®y =M e R
" (5)
with M", =2y, .

The state v does not vary when there’s a change of
basis. For this to be the case, the coordinates x must
change inversely to the basis.

Orientation preserving changes of orthonormal bases in
four-dimensional Euclidean space are isomorphic to the
Lie-group SO(4), which can be represented by the spe-
cial orthogonal matrices of fourth order SO(4) = {R €
GL(4) | RTR =1, det R = 1}. Consider the change of
basis from {e,} to {e},}. The elements of the new basis
can be written as a linear combination of the elements of
the old basis:

e’u:Zeu R,". (6)

This translates into the following transformation rule
for coordinate vectors (overall and componentwise):

x =R '.x

= (Rt g
13

which in the case of orthogonal bases becomes:

x=RT.x

o I3 8
x”—ZRugx. (8)
13

The transpose of matrix R is expressed by the index
interchange in the last line of Eq. [8] The components of
the transformation matrix and its inverse are:

It is said that the basis {e,} transforms covariantly,
whereas the coordinates x transform contravariantly. As
required, the state v remains unchanged:

V=Yl = Y o, B R
H TR RS

:Zev o x¢ :Zeux”:v.
v, v

(10)

B. Definitions

The transformation properties of mixed bases consist-
ing of co- and contravariant transforming elements are
examined. For this purpose, the following definitions are
introduced:

Definition 1 (Mixed Dbasis). A mized basis
{€% e,,e,,e3} is defined as a basis where all ele-
ments belong to the canonical basis, except one which is

replaced by its dual element, with (ey), = ngg (eo)g.
13

Definition 2 (Mixed change of basis). Let a mized
change of basis be the change of basis between two mized
bases {€%,e,,e,,e,} and {e’°, €}, €}, el}.

It is clear that mixed bases as in Definition [I] do not
change like regular bases in Euclidean space; nor can the
scalar or tensor product of the Euclidean space be applied
to the mixed bases. The task is to define a vector space
in which the mixed bases can be described in a coherent
mathematical manner. Hence the following proposition:
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C. Proposition and proof

Proposition 1. A mized basis {€°,e,,e,,e5} in
Euclidean space as the one in Definition [1] under-
going mized changes of basis as the ones in Defini-
tion[q behaves just like a regular basis {f,} would in
Minkowski space, where the scalar product is defined
as:

Yy x=> gy’
Nz

with Gy = diag (=1, +1,+1,+1).

Proof. Let R* be an Euclidean space with canonical basis
{e,} and dual basis {e*}; R(3, 1) a Minkowski space with
orthonormalized basis {f,}. It is to be shown that, upon
a change of basis, the element e® of the dual Euclidean
basis transforms like the element f; of the Minkowski
basis.

The orientation preserving changes of basis in Eu-
clidean space SO(4) = {R € GL(4) | RTR = 1,det R =
1} can be expressed as an exponential series:

R =¢4 R™!=RT =¢tA (11)
Where t is the transformation parameter and A is a
skew symmetric matrix (AT = —A). The skew symme-

try of these matrices is what leads to the orthogonality
of the finite transformations and the coordinate vectors
to change with the transposed transformation rule (Eq.
).

'The matrices A build, together with the commutator
[A,B] = AB — BA, the Lie-algebra so(4) of the Lie-
group SO(4): the algebra that generates the infinitesimal
orientation preserving coordinate transformations in R*,
which through exponential mapping span the whole Lie-
group SO(4) (for introductions see e.g. [10], [11]).

In the case of infinitesimal transformations (¢ < 1) it
is sufficient to only consider the first terms of the expo-
nential series. The special role of the Lie-algebra is seen
here:

R=c®~(1+tA) R 1=¢"x(1-tA) (12)

The elements A of the Lie-algebra can once more be
expressed as a linear combination of a basis, which in the
case of so(4) consists of six skew symmetrical matrices,

e.g.:

0000 0000 0000
0000 0001 00 -10
Li=looo0-1|™=oo0o00]®=|0100
0010 0-100 000 0

(13)

0-100 00-10 000
1000 000O0 000
Ki=loo0o00/%=l1000]%={000
00O00O0 00O0O0 100
(14)
with [Li, Lj] = ;5L
[Ki,Kj] = Eijk:Lk (15)
[Li, K;] = €4u Kk,
and therefore
tA= Y (tLi+5K;). (16)

i=1,2,3

To apply a change of the mixed basis, a transformation
rule has to be constructed which transforms the element
eg of the basis with the same coefficients that a normal-
ized coordinate vector v0 = (1,0,0,0)T is transformed
with. Using transformation rule Eq. [7] and definition Eq.
the infinitesimal change of coordinate vector v® can
be written as follows:

v0=(1-tA)v°

1-— Z SK; | v°

i=1,2,3 (17)
=1+ Z siKi_1 vO.
i=1,2,3
The (pseudo-)inverse K; ' = —K; denotes the inverse

of K; on the subspace spanned by e; and e,. In compo-
nentwise notation this reads:

0

(") =

(60" —tAp") (UO)

6" — Z s'(Ki)y " (”0)0

i=1,2,3 (18)
=6+ > s, )"
i=1,2,3
Eq. is rearranged to show the change

dv = (v/% — v9%) caused by the transformation. It holds
for the individual components:

dv” =

i=1,2,3

On the other hand, the transformation rule to obtain
eg is given by (from Eq. @:

d0i:10.20944/preprints201809.0417.v4
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o= e, (6" +t4")
(20)
6"+ Z s' (Ki)y "

=2
v 1=1,2,3
Rearrangement of Eq. provides the change
de = ej — e, induced by the transformation:

de =ej — ¢, = Zeusi (Ki)o " (21)

which results in component notation:

deu = (66 - eO)IJ = Z (el/)lj Si (K’L)O v (22)

i=1,2,3

Sought is an infinitesimal basis transformation with
which the individual entries of change dv” of the vector
(Eq. coincide with the entries of change de, of the
basis vector (Eq. . In order for this to be true for all
transformations, the comparison of these two equations
yields that the entries of the first row (K;), " of matrices
K; must be equal to the corresponding entries (K Iy 1)0 v

of their inverted matrices K, L

As expected, this condition cannot be fulfilled by regu-
lar (non-trivial) Euclidean transformations, since in this
case the K;j are skew symmetric and orthogonal, and
thus K~ ! = _K;. To nonetheless find a change of basis
which has the same effect on e, as it has on v, one must
depart from changes of basis in the ordinary Euclidean
sense and search for a new set of transformations.

In order for the new base transformations to be useful,
they must again function as a Lie algebra, such that finite
transformations can be generated from the infinitesimal
transformations using the exponential map. The starting
point is thus given by a new set of infinitesimal generators
A (marked with a bar) of the same form as in Eq.

tA = Z (tiLi + §iKi) . (23)
i=1,2,3

According to the previous considerations, different el-
ements K; of the basis are sought, which are their own
inverses in their spanned subspace:

— 1 —
(K)," = (K7h," (24)
Since this condition alone does not give a unique form
for the matrices Kj, some additional requirements can be
applied. The transformation of the other basis vectors
should remain the same as before, thus the coefficients in
columns j # 0 stay unchanged with respect to Eq.

v !

L (),

(K:) ; j=1,2,3. (25)

Furthermore, volume conservation can be preserved:

0

(Ki), " = (Ki)," =0. (26)

Considering conditions Egs. and [26] the follow-
ing new transformation matrices can be constructed:

5
I

K, = Ks =

oo ~=O
[l er el
[ el e an]
(=N el ian]
o= OO
oSO o OO
SO O
(= elienllan]
—_— o oo
SO o OO
(=il

0
0
0
0 .
(27)

The new elements retain the matrix form of the trans-
formations, yet without orthogonality, since the skew
symmetry of the Lie-algebra’s elements had to be aban-
doned. The generators Eq. are inserted back into
Eq. 23] which now describes the infinitesimal basis trans-
formations between mixed bases according to Defini-
tion

On the other hand, the unchanged matrices {L;} (Eg.
build, together with the new matrices {K;} (Eq.
and the commutator as a Lie bracket, the Lie-algebra
50(3,1) with elements A € so0(3,1). By means of the
exponential mapping this Lie-Algebra translates into the
proper Lorentz group SO(3,1), where:

A=cth A €SO(3,1). (28)

Yet the elements of the proper Lorentz group A are
defined as those orientation preserving changes of basis
taking place in the Minkowski space R(3,1), with metric
tensor g, = diag (—1,+1,+1,+1) (see e.g. [12]).

The determined infinitesimal transformation rule ac-
cording to Eq. [23] for mixed bases in Euclidean space
as specified in Definition [1| thus corresponds exactly to
the infinitesimal transformation rule for a canonical base
{fu} of Minkowski space. Moreover, since only the basis
vector eg has been changed, the Euclidean space with
mixed basis can be directly substituted by a Minkowski
space with canonical basis:

eor—>f0
29
ei»—>fi ( )

1=1,2,3.

e? transforms like the element fy of the Minkowski
basis and vice versa, and the discovered transformation
is equivalent to a regular change of basis in Minkowski
space. O

d0i:10.20944/preprints201809.0417.v4
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FIG. 2. Illustrative example in three dimensions with a two-dimensional submanifold: an infinitesimally thin rod in eq direction,
consisting of black and white elements of length dl. The flat observer at point Pys in a submanifold M with basis {e;,e2}
(red) measures the thin rod only as a point or very small disk. The observer can determine whether the disk is black or white.
Now imagine the flat observer and the rod moving relative to each other along the eq direction (situation on the right). By
counting the black and white elements that have passed through, the flat observer is given a measuring rule for distances which
are not in its submanifold. In this example, the length of a black or white element serves as the standard length, the count
corresponds to determining any distance as a multiple of the standard length. On the bottom left in gray the basis system
{eg, €1, €3} of a local observer is shown, whose measurement is not limited to a submanifold.

III. INTERPRETATION AS DISTANCE
MEASUREMENT BY A FLAT OBSERVER

The transition between co- and contravariant measure-
ment scales outlined in Section [[T]is a tangible geometric
operation that can be further interpreted. One possible
interpretation is detailed in this section.

A. Definitions

Definition 3 (Local observer). Let R* be a four-
dimensional Fuclidean vector space with the metric ten-
sor g, = diag (+1,+1,+1,+1) and the metric

d(dv,dw) = ||dv — dw]||

= ngw(dvH — dwh)(dv¥ — dw?) . (30)

nv

In this space, a local observer is defined as a device that
performs distance measurements within the infinitesimal
neighborhood € of a point P using metric Eq. [30,

Definition 4 (Flat observer). Let M be a be a con-
nected, analytic submanifold of this vector space R* with
dim(M) = 3.

A flat observer is defined as a local observer at point
Py according to Definition[3, with the restriction that the
flat observer as well as its measurement neighborhood e py
are elements of M. Thus Pyy € M and ey € M.

Corollary 1. The measurement neighborhood €,; of a
flat observer is defined through the tangential space of
the submanifold M at the position of observer Pyy.

Since M is analytical and connected, a canonical basis
{e;,e,,e3} can be found for the flat observer, where e
is normal to M.

Definition 5 (Measurable objects). Measurable objects
are constructs which trigger a measurable signal that can
be evaluated by a local observer according to Definition[3.

Corollary 2. According to Eq. the only quantities
which can be inputted in a measurement procedure carried
out by a local observer are vectors, thus measurable ob-
jects according to Definition [5 must be inherently defined
as vectorial quantities.

B. Proposition and proof

By Definition [] a flat observer cannot directly take
distance measurements along the direction normal to its
submanifold parallel to ey. Under certain conditions,
however, indirect distance measurements in this direction
may become possible:

Lemma 1. A flat observer according to Definition[{] can
make distance measurements in the e direction if:

A) A measurable object O according to Definition @
with spatial extent in the e, direction is present, it

intersects the measurement neighborhood ey of the
flat observer (O Ney # {}), and
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FIG. 3. Illustrative example: an infinitesimally thin rod tilted at a small angle from the eq direction. From the situation on the
left to the situation on the right there is a relative displacement between the submanifold of the flat observer M and the rod.
After defining the distance measurement outside of its submanifold M by counting black and white elements on the rod, the
flat observer has to assume that the distance from black (situation on the left) to white (situation on the right) has remained
the same as in Figure[2] In addition, the observer has covered the distance dz’ within its submanifold to follow the rod. Thus,
according to this measuring rule, the total distance covered is given by ds'? = dI? + dz'?, which can be expected when using
a mixed basis and choosing the length element e® = dlI as the basis vector for lengths outside of M. In contrast, the local
observer can use the basis vector ey as a reference and finds that the distance traveled in the eq direction is slightly shorter

than the one in Figure (dI’ < dl). The local observer thus makes Euclidean measurements ds =

in gray).

B) there is relative displacement between ep; and the
object in the e direction.

Proof.  A) As per Definition|3} to perform any measure-
ment, the metric in Eq. must be used. Measur-
able objects are defined as the input quantities for
this metric. They are also the only way the flat
observer can measure distances in the e, direction,
since a basis vector is not available. Hence, for the
measurement in this direction, a measurable object
O must be present.

To measure a distance other than zero in some di-
rection, the two vectors inserted into the metric
must differ in the coordinate of interest. A length
d(dv,dw) normal to M can only be defined by two
vectors dv, dw with different values in the eg com-
ponent. This difference between the two vectors
dv — dw can just as well be defined as a measur-
able object O with a non zero spatial extent in the
e, direction. Finally, a flat observer can only per-
form measurements in its neighborhood e, thus
the measurable object must intersect that neigh-
borhood.

B) Since the flat observer only has the overview of one
single coordinate in the e, direction, a relative shift
between O and £, is necessary to observe at least
two different coordinate values.

For further illustration of this concept, see the three-
dimensional schematic example in Figure

dl’* + da'* = dI* (indicated

Lemma 2. The measurement of a distance normal to the
submanifold according to Lemmal[l] by a flat observer ac-
cording to Definition[f] produces a contravariantly trans-
forming scale.

Proof. For a flat observer, the only measurable relation
to the outside of its submanifold M is given by the mea-
surable object O. The basis vector e is by Definition El
not available for measurement.

Since there are no further references, a standard length
in the e, direction can only be defined using object O,
and any additional distance measurement is subsequently
quantified as multiples of this standard length. However,
the measured standard length used as the basis element
and the resulting scale transform contravariantly, since a
measurable object O is a vectorial quantity, as stated in
Corollary O

The effect of a contravariant measurement is illustrated
in Figure [3| with a three-dimensional example. These
considerations lead to the following proposition:

Proposition 2. [t is possible to interpret Minkowski
spacetime as a four-dimensional Fuclidean space
measured by a flat observer according to Definition[]}

Proof. The proof is divided into two parts. The first part
is to show that the Minkowski metric can be understood
as a measurement rule in an Euclidean space if a mixed
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basis {€°, e,, e,, €3} is used when carrying out the mea-
surement. This part was proven in Section [[TC]

The second part is covered by Lemma [2] which shows
that a flat observer uses such a mixed basis, where the
scale for distance measurement is covariant within its
submanifold and contravariant when normal to its sub-
manifold. Thus, the argumentation is consistent and
Proposition [2] is proven. O

IV. CONCLUSION

In this article it is shown that local, flat observers with-
out extension in one direction e, of an Euclidean space
R* can measure the extra dimension, provided there is
an interaction with other objects possessing extension in
that very direction.

To achieve this, the flat observer employs a measure-
ment rule that uses mixed transforming basis elements
{€% e,,e,,€e;}. It is shown that the thereby formed
mixed basis transforms like a regular basis of Minkowski
space.

d0i:10.20944/preprints201809.0417.v4

This derivation allows the interpretation of the map-
ping between Minkowski and Euclidean spaces in physi-
cal contexts as a change of perspective between flat and
local observers.

More generally, this rationale provides a general phys-
ical interpretation for the sign inversion of individual or
all entries of the metric tensor. The sign inversion corre-
sponds to the role reversal between physical objects (vec-
tors) and the abstract measurement scale (covectors).
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