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Article
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Abstract: This paper develops a novel probabilistic theory of belief formation in social networks,
departing from classical opinion dynamics models in both interpretation and structure. Rather than
treating agent states as abstract scalar opinions, we model them as belief adoption probabilities with
clear decision-theoretic meaning. Our approach replaces iterative update rules with a fixed-point
formulation that reflects rapid local convergence within social neighborhoods, followed by slower
global diffusion. We derive a matrix logistic equation describing uncorrelated belief propagation and
analyze its solutions in terms of mean learning time (MLT), enabling us to distinguish between fast local
consensus and structurally delayed global agreement. In contrast to memory-driven models where
convergence is slow and unbounded, uncorrelated influence produces finite, quantifiable belief shifts.
Our results yield closed-form theorems on propaganda efficiency, saturation depth in hierarchical trees,
and structural limits of ideological manipulation. By combining probabilistic semantics, nonlinear
dynamics, and network topology, this framework provides a rigorous and expressive model for
understanding belief diffusion, opinion cascades, and the temporal structure of social conformity
under modern influence regimes.

Keywords: two-timescale theory of consensus; structural limits of propaganda efficiency; bounded vs.
divergent learning times; logistic-optimal centrality and autopoietic amplification

1. Introduction

Information has been used as a tool of power in human society since the dawn of times. Informa-
tion, as a power tool, goes hand in hand with disinformation. Plato, in the third book of his Republic,
writes that disinformation, provided sparingly by the enlightened authoritarian ruler, can be beneficial
for society much like an unpleasantly-tasting medicine can be beneficial for the patient [1], 389b:

... So if anyone is entitled to tell lies, the rulers of the city are. They may do so for the benefit of the city, in
response to the actions either of enemies or of citizens. No one else should have anything to do with lying, and for
an ordinary citizen to lie to these rulers of ours is ... a mistake ...

So, in plain words, Plato believed that the rulers, and only the rulers, are allowed to provide
the citizens with medicinal lies. Almost 2500 years later, most people in democratic societies would
certainly disagree with that assessment. It is not hard to agree that the possession of accurate infor-
mation is the foundation for the well-functioning society. However, Plato’s description of ‘'medicinal
lies” was not just for ruling the country - it was also the tool for forming the citizens of the right
character. Throughout the history, various rulers have tried shape the society they govern and the
citizen’s thinking and behavior to their will.

In order to reach that desired outcome, for almost two and a half millenia since Plato, the societies
provided their citizens with messages that were designed to shape their populace in a certain way.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Some of these messages achieved positive results and improve the society, whereas some of the social
experiments leading to disastrous outcomes for the societies and their citizens. Until very recently,
the message was centralized, coming from the very top of the government. The more autocratic the
government was, the more uniform the centralized messages tend to be. The nature of technology
delivering this message changed with the progress, from the literature, statues and even coins in the
Roman empire to the radio and then television in the present day [2]. Still, the essence of the method
was the same. A centralized message is presented to the citizens and that message, to large extent, is
unchanged on the time scale compared to the dynamics of opinion formation in the society.

While centralized message can be effective, it has its limitations that stems from the theory of
opinion dynamics. The centralized message can be viewed as a member of the community which has
infinite obstinacy, whereas other members of the community can change their opinions accordingly.
In the modern models of opinion dynamics utilizing the bounded confidence hypothesis [3-6] the
agents interact and exchange opinions only with other agents that have the opinions that are close to
their own. If the centralized message deviates from the opinion of the people it tries to influence, that
centralized message will have very little to no effect.

That paradigm of centralized message has changed recently with the advent of social media. The
presence of such bots on social media platforms such as X (formerly Twitter) and Instagram has been
known for a long time [7-9]. While some bots are relatively harmless, many are used for propaganda
purposes in order to spread the desired message among the community. The advantage of bots versus
a centralized message is their efficiency: these bots align with the local opinion and can influence it
much more precisely compared to the centralized message. In terms of opinion dynamics theory, such
bots can act as an agent that is tuned to be close to a certain group of people and can influence the
opinions of the groups that are unreachable by the centralized message [10].

The efficiency of bots can also be understood in terms of alternative models of consensus formation,
such as Friedkin-Johnsen [11] and deGroot models [12]. These models do not pose restriction on the
interaction of agents such as the bounded confidence models do, but the interaction between the
agents is much slower if the opinion difference is large. Thus, in the agent spreading the centralized
message is far from the opinion of a given group, that group is likely to take a long time to align with
the centralized message. In contrast, the bot’s message will be closer to the group’s opinion and thus
can influence the opinion of the group faster.

A closely related mechanism in the digital manipulation of public perception is the phenomenon
of astroturfing, the artificial simulation of grassroots support or opposition. Astroturfing involves
coordinated efforts to create a false impression of widespread public backing or resistance to particular
ideas, policies, or products. By leveraging bots, fake accounts, and paid influencers, astroturfing cam-
paigns can distort the perceived popularity of a movement, misleading individuals and policymakers
alike. This practice is especially effective in the age of social media, where engagement metrics such as
likes, shares, and retweets serve as heuristics for credibility and influence [13,14]. The term astroturfing
originated in 1985 when Texas Senator Lloyd Bentsen, referring to a flood of letters sent to him under
the guise of public advocacy but actually orchestrated by insurance industry lobbyists, remarked: "
A fellow from Texas can tell the difference between grass roots and "AstroTurf ... this is generated mail." [15].
Bentsen’s analogy highlighted the artificial nature of such orchestrated campaigns, comparing them to
AstroTurf™, a synthetic surface designed to mimic real grass.

The mechanisms underpinning models of social opinion formation and the corresponding effi-
ciency of bots can also relate to the theories of social influence, going beyond bounded confidence
models. The "spiral of silence" theory proposed by Noelle-Neumann [16] suggests that individuals,
fearing social isolation, are less likely to express dissenting opinions if they perceive their views to be in
the minority. In an environment where bot-driven interactions artificially amplify certain viewpoints,
real users may misinterpret the distribution of social preferences, leading to a cycle of self-censorship
and consensus reinforcement. Similarly, Cialdini’s principle of social proof [17] suggests that people
rely on cues from their social environment to guide their behavior and opinions—an effect magnified
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in online spaces where engagement metrics can be artificially manipulated. Bots artificially inflate the
perceived number of people having certain opinions for an individual, and thus force the individual
state their alliance to certain beliefs. Whether such allegiance is sincere or not is a complex question,
and is likely dependent how far the perceived majority opinion for the individual is from their true
beliefs.

The structural dynamics of social influence and consensus formation can be understood through
network models. For example, in bounded confidence models, the agents establish connections
between them if their opinions are close enough. Clearly, the connections between these individuals
are dynamic, i.e., the network is changing from one time step to another. Another way to treat
social networks is to have graphs that are static and are independent of the opinion dynamics; these
are the interactions due to, for example, family, long-term friendships, and employment. Graph
theory provides a powerful framework for analyzing the diffusion of opinions in complex systems,
where individuals (nodes) influence one another through their connections (edges), forming clusters
of agreement or polarization [18-20]. This general representation allows to examine how external
interventions—such as bot-driven campaigns—can shift collective attitudes by altering perceived
majorities. Studies on online polarization have demonstrated that artificial amplification reinforces
ideological segregation, fostering echo chambers that inhibit cross-group dialogue [21,22]. Furthermore,
empirical research on information cascades suggests that once a critical mass of perceived consensus is
established, individuals may conform to majority opinion despite personal skepticism [23,24].

The historical use of graphs to represent social and organizational structures dates back to the 19th
century. In 1855, Daniel McCallum, the General Superintendent of the New York and Erie Railroad,
developed an organizational diagram (Figure 1) that visually depicted hierarchical authority and
communication flows [25]. In terms of our discussion, such a network would be static with the
interactions are forced by the organizational structure of their work. This early attempt to structure
administrative complexity laid the groundwork for modern network analysis, illustrating how visual
representations of influence and control can elucidate hidden patterns within large systems.

By analyzing the interplay of algorithmic amplification, artificial engagement, and human psy-
chology, this paper seeks to explore the mechanisms driving opinion shifts in digital environments.
Graph-based approaches allow for a systematic examination of social conformity, consensus forma-
tion, and influence propagation, providing crucial insights into how disinformation networks can
manipulate public perception on a large scale. This phenomenon of disinformation-driven conformity
raises important theoretical and practical questions about the relationship between perceived majority
opinion and actual individual belief. Why do individuals align so readily with signals of collective
support, even when those signals may be artificially engineered? What structural properties of social
networks amplify or mitigate these effects? And how does the temporal structure of belief formation,
fast local convergence versus slow global consensus, affect the resilience or vulnerability of populations
to manipulation?

Our paper develops a comprehensive theoretical framework to explore how structural and tempo-
ral factors influence consensus formation and belief propagation in networked societies, emphasizing
correlated and uncorrelated social influence. While classical opinion dynamics models typically treat
the agent state x;(t) € [0,1] as an abstract scalar "opinion" lacking clear semantics, our approach
adopts a distinctly probabilistic interpretation. Here, P;(t) explicitly represents the probability of belief
adoption or the agent’s readiness for action, embedding a rigorous Bayesian or decision-theoretic
meaning into social influence modeling. Although we describe equilibrium beliefs through a static
fixed-point equation, the variable ¢ refers to discrete or continuous cycles of external interventions
(such as media influence rounds), each sufficiently spaced in time to ensure that local probabilities
equilibrate almost instantaneously compared to the scale of these cycles. Thus, our use of t marks
successive cycles of global information exposure rather than the short internal equilibration time
within local social groups, clearly distinguishing between rapid local consensus formation and slower
global belief dynamics.
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Figure 1. Organizational diagram of the New York and Erie Railroad, created by D. C. McCallum and G. H.
Henshaw in 1855. Retrieved from the Library of Congress (https://www.loc.gov/item /2017586274 /).

Furthermore, whereas standard frameworks describe iterative processes converging gradually
to equilibrium, we formulate our model (4) as a static fixed-point equation. This explicitly captures
instantaneous local consensus formation, modeling equilibrium states reached rapidly within social
neighborhoods after each cycle of external influence. Consequently, our approach emphasizes the
separation of two distinct timescales: fast local adaptation within immediate social circles and slower
global diffusion of beliefs across the broader network, a crucial distinction often absent in standard
homogeneous models.

We introduce a novel nonlinear continuous-time formulation, referred to as the matrix logistic
differential equation, derived as the limiting case of frequent but independent interventions. The
equation is termed matrix logistic because it describes the evolution of a vector of belief probabilities
P(t) € [0,1]V, governed by a fixed row-stochastic matrix S that encodes the structure of influence.
While P can be formally represented asa 1 x N or N x 1 array, we use the term vector in the standard
linear-algebraic sense, i.e., in the sense of an element of the real vector space RN, referring simply to an
ordered tuple of real-valued belief components, without implying any coordinate transformations or
geometric structure as in physical contexts. This allows analytical exploration of belief trajectories,
precise estimation of mean learning times (MLT), and optimal convergence trajectories, further enriched
through the introduction of a logit-transformation linking our probabilistic model with geometric and
information-theoretic interpretations.

Moreover, we propose a novel network centrality metric termed logistic-optimal centrality. Unlike
traditional centrality measures such as degree or eigenvector centrality, this metric dynamically
quantifies a node’s temporal responsiveness, indicating how efficiently it transforms weak initial
signals into sustained belief states, and explicitly depends on initial belief distributions.

Our analysis introduces several rigorous results: we derive structural thresholds limiting propa-
ganda effectiveness in conformist groups, demonstrating inherent resilience in large heterogeneous
populations and vulnerability in smaller ones. Another key finding, formalized as Theorem 2, demon-
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strates that correlated belief dynamics lack a finite temporal scale, leading to slow, subexponential
convergence and divergent learning times due to cumulative social memory effects. Conversely, we
prove that belief propagation under uncorrelated influence exhibits strictly bounded convergence
times, enabling rapid consensus even from marginal initial beliefs, a phenomenon termed autopoietic
convergence.

The manuscript is structured as follows: Sec. 2 revisits statistical foundations underpinning
collective intelligence; Sec. 3 presents our probabilistic model of instantaneous local equilibrium
formation; Sec. 4 analytically delineates structural constraints on propaganda efficiency; Sec. 5 examines
temporal divergence under correlated dynamics; Sec. 6 analyzes rapid logistic shifts and bounded
learning in uncorrelated scenarios. Thus, our approach represents an information-theoretic and
probabilistic theory of social conformity, explicitly separating temporal scales, focusing on structural
influence topology, and deriving rigorous analytical bounds on the speed and robustness of social
consensus formation against systematic manipulation.

2. The Power of Majority: From Local Agreement to Global Consensus

We instinctively align with the majority, as prevailing beliefs often shape perceived truth, an
example of argumentum ad populum. This tendency acts as both a cognitive shortcut and a social
reinforcement mechanism, fostering acceptance and reducing social risk [26]. Evolution has favored
conformity, as adherence to group norms enhanced survival in cooperative societies [27]. Over
time, this ingrained bias has driven cultural traditions and institutional structures that sustain social
cohesion.

The statistical rationale behind the superiority of collective judgment over individual estimations
is rooted in aggregation theory: a group’s prediction is always at least as accurate as the mean
individual prediction [28], if the individual predictions have a strong stochastic component. The
mathematical foundation of this principle can be derived from the analysis of squared errors. Given
a random variable x € [0,c0) representing the uncertain outcome of some process and a set of
n individuals each making an independent prediction x;, the collective estimate is defined as the

arithmetic mean ¥ = % Y"1 xi- The squared error of the collective estimate is given by (x — X)?, while
1

the mean squared individual error is + Y7 ; (x — x;)?. By applying Jensen’s inequality for convex

functions, it follows that
1 n
(x=%)2 <) (r—x)% (1)

where the equality holds if and only if all individuals produce identical predictions. Thus, the existence
of a majority implicitly assumes a diversity of perspectives, ensuring that (1) remains a strict inequality
in most practical cases. This phenomenon, often referred to as the wisdom of the crowd, has been
rigorously analyzed within the framework of error theory, where random individual errors tend to
cancel out, resulting in a collective estimate that converges toward the true value [29].

This statistical advantage is further enhanced when individual predictions are uncorrelated, as
demonstrated by the variance reduction principle. If individual estimates are characterized by variance
o and correlation coefficient p between errors, the variance of the collective prediction [30] is given by

N

2
_o 211
e <1 n)' )

Aslong as p ~ 0, the aggregation mechanism significantly reduces the uncertainty, explaining why
heterogeneous groups with independent perspectives tend to outperform even the most knowledgeable
individuals. However, if errors are highly correlated (0 — 1), the variance reduction becomes
negligible, and the collective judgment offers little to no improvement over individual estimates [31].
In cases of extreme social influence, such as echo chambers and groupthink, the wisdom of the crowd
may fail, highlighting the necessity of preserving diversity in decision-making.
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The preference for majority alignment is not just statistical optimization but an entropic force
driving social cohesion [32]. Evolution has reinforced conformity, as adherence to group norms
enhances collective welfare and survival [33], while deviation often leads to exclusion and reduced
evolutionary success. However, real-world decision-making rarely operates under ideal conditions
of independence and diversity; instead, social influence shapes individual beliefs, leading to varying
degrees of conformity.

Consensus formation in the models of opinion formation unfolds in two stages. First, a local con-
sensus emerges rapidly within an individual’s immediate social circle, driven by frequent interactions.
Over time, these local clusters interact, leading to a slower process of global consensus formation across
the broader network[4,11,12]. Yet, true unanimity remains elusive, as isolated clusters of opinion,
while established far apart from each other, have very little chance to merge to a single consensus.

This inherent delay between local and global consensus creates a window of opportunity for
manipulating public opinion. Temporary dominance of certain narratives within local clusters can
fabricate an illusion of widespread agreement, leading individuals to conform to misleading social
signals before a genuine consensus emerges. Such artificially induced perceptions reinforce the
appearance of majority support even where none truly exists. Individuals that are more focused on the
consumption of social media compared to other sources are more vulnerable to such manipulation,
as it is relatively easy for the bot campaign to give an impression that there is a global consensus
by isolating them from perceiving the true state of variability of opinions. Thus, understanding the
structural and temporal dynamics of consensus formation is crucial. While collective intelligence
fosters stability of the information flow, its susceptibility to distortion highlights the need for critical
awareness in shaping resilient social and informational networks.

3. Fast Timescale of Local Consensus Formation in Networked Belief Dynamics

Understanding how cognitive biases interact with statistical principles in decision-making calls
for a refined probabilistic model that accounts for both individual conviction and social influence.
This model advances traditional conformity theories by incorporating network dynamics, resistance
to persuasion, and iterative belief updating. A key insight is that consensus forms in two stages: a
rapid local alignment shaped by frequent interactions, followed by a slower global convergence. The
focus here is on the initial phase, where local consensus emerges within one’s immediate social sphere,
laying the groundwork for broader agreement.

To formalize the mechanisms underlying local consensus formation, interactions among individu-
als can be represented as a graph G = (V,E), wherenodes V =1,2,..., N correspond to individuals,
and edges E denote influence relationships. The topology of this network — whether centralized, decen-
tralized, or modular — plays a critical role in determining the rate and extent of opinion convergence.
To incorporate these structural features into a formal model, we define the influence weight of an edge
(i,7) as Aji > 0, representing the degree to which individual 7 affects individual j. The social conformity
matrix A satisfies the row-stochastic constraint, Zfil /\]-i = 1, ensuring that each individual’s posterior
probability of adopting a belief or behavior is derived from a weighted sum of social inputs. This
constraint guarantees that belief updating follows a Markovian process, enabling iterative convergence
to equilibrium.

Building on the probabilistic model of social conformity developed in [34], we assume that each
individual j initially holds a prior probability 0 < Py; < 1 of adopting a particular course of action.
Upon interacting with their social neighborhood, this prior is updated to a posterior probability P;,
reflecting the combined influence of personal conviction and external social pressure. To account for
resistance to influence, we introduce an obstinacy parameter. Let M;; = y; denote the level of obstinacy,
where 0 < p; <1, with y; = 1 signifying complete independence and y; = 0 total conformity. This
resistance reflects empirical findings in social psychology, where cognitive complexity correlates with
a lower susceptibility to social pressure [35]. Obstinacy thus acts as a stabilizing force, preventing
rapid opinion shifts driven by a single interaction.
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While our model shares a formal similarity with opinion dynamics models [11,12] in that P;(¢) €
[0,1] represents an evolving state, its interpretation and underlying dynamics are fundamentally
different. Unlike those models, where the state is typically treated as an abstract scalar opinion,
here P;(t) is modeled as the probability of adoption, with a clear Bayesian or decision-theoretic
interpretation.

For fully independent individuals, the posterior remains equal to the prior, P].(” =D = Py;. For
fully conforming individuals, the belief is determined entirely by the collective stance of the group,
weighted by the social conformity matrix: P].(y =0 — YN, AjiPoi. A general formulation incorporating
both individual obstinacy and social influence is given by:

N
Pj = piPoj + (1 —u) Z; Aji Poj.- (©)
i=

This equation captures the weighted balance between an individual’s intrinsic beliefs and the influence
exerted by their social neighborhood. It naturally extends to a vector formulation, where the full
network is described by P = (P, P,,...,Py)T and Py = (Py1, Py, ..., Pon)T. The key relationship
governing posterior belief updating is:

P=MP+ (1-M)AP (4)

Eq. (4) expresses the fixed-point relation for posterior belief distribution after integrating personal
conviction with social influence. While structurally similar to iterative update models (e.g., [19]),
where each step is defined by

ﬁ(kﬂ)

— MPinit + (1— M)APY, 5)
our formulation describes the convergence limit P* = limy_, P(k), assuming the process reaches
equilibrium. The presence of P on both sides in (4) is not a modeling error but reflects this equilibrium
assumption.

Unlike previous models (e.g., [19]), which treat obstinacy as a fixed damping parameter relative
to the initial opinion, we allow it to dynamically shape the influence aggregation by embedding it
directly in the resolvent operator that governs the effective belief integration. This structure allows us
to solve the system (4) explicitly:

P=SP;, S=[-(I-M)A] M= [i(u—M)A)"} M, (6)
k=0

using the Neumann series expansion for the inverse. This implicit formulation enables the analysis
of structural parameters (e.g., obstinacy and conformity topology) shape final belief states without
simulating the full time evolution. While structurally similar to the standard iterative models of
opinion dynamics, our model is inherently probabilistic, not diffusive. It computes the posterior
probability of belief adoption, rather than an abstract scalar opinion. The underlying logic is rooted in a
Bayesian interpretation, where each individual integrates their prior conviction with aggregated social
input. The resulting linear system does not describe a time-stepped iteration but rather a fixed-point
constraint, a stationary outcome of fast local learning.

In traditional opinion models, agents update their states gradually over time. In contrast, we
assume that each individual’s immediate social neighborhood rapidly reaches local equilibrium. From
the perspective of our model, this convergence occurs on a fast timescale and is treated as instantaneous
relative to the slower dynamics of belief propagation across the global network. Thus, the primary
entities in our analysis are not individuals per se, but socially embedded neighborhoods that have
already stabilized internally. The long-term evolution of beliefs emerges not from moment-to-moment
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updates, but from slower "media cycles" or rounds of global exposure, each of which triggers a new
local equilibrium. This distinction justifies the presence of posterior beliefs P n both sides of the update
equation (4) and explains why the model retains its probabilistic nature even when written in linear
algebraic form.

Since each row sum of (1 — M)A in (6) equals one, the sum over each row in S is also bounded,
ensuring that it is indeed a stochastic matrix. The eigenvalues of S remain strictly positive for all
u; > 0, and the matrix reflects how the interplay of personal conviction and social conformity shapes
the equilibrium belief state. The expansion in (6) reveals that local consensus forms rapidly through
repeated interactions within close-knit groups. Early iterations in the series are dominated by direct
social inputs, leading to belief synchronization at a fast timescale. In contrast, global convergence
unfolds more slowly, shaped by network topology and communication bottlenecks.

This two-timescale structure reflects a fundamental distinction between fast local adaptation
and slower global convergence. Rapid local agreement emerges through frequent interpersonal
interactions and the reinforcement of shared beliefs. Empirical research on influence networks shows
that individuals tend to quickly align their expressed views with those of their immediate social circles,
often converging exponentially toward a local consensus [36,37]. Moreover, homophily, the tendency to
associate with like-minded peers, further accelerates this process by fostering self-reinforcing opinion
clusters that stabilize over short timescales [38]. These findings underscore the critical role of local
network structure and interpersonal influence in shaping early belief alignment before any broader
consensus takes hold.

4. Structural Limits of Propaganda in Fully Connected Conformist Groups

The probabilistic model of social influence developed in the previous section enables us to assess
the structural efficiency of propaganda in tightly connected groups. In such networks, belief formation
is shaped by frequent mutual interactions and exposure to persistent external messaging. We focus
here on fully connected graphs with uniform influence and obstinacy levels to derive analytical insights
into the conditions under which propaganda succeeds or fails.

Consider a fully connected network of N¢ individuals, where each agent interacts symmetrically
with all others. This setup represents a homogeneous peer group, such as a political community,
workplace, or family unit, where individuals share equal exposure to mutual influence. The conformity

matrix takes the form:

Ai =
Jt 7
Nf—1

where §j; is the Kronecker delta ensuring no individual prioritizes their own opinion. Under these
conditions, the general belief-updating equation (3) simplifies to:

N
Yy Poini
Pj=Pojpj+ (1 —uj)f, f= ﬁf )
21’:1 Hi

where f represents the expected fraction of individuals who conform to the dominant opinion, given
their initial beliefs Py; and obstinacies ;. This result formalizes a key mechanism of social persuasion:
the final stance of an individual is a weighted average of their initial belief and the group’s dominant
opinion. Highly conformist individuals (¢; ~ 0) quickly align with the majority, whereas highly
obstinate individuals (y; ~ 1) maintain their initial positions. To incorporate external media influence,
following [34], consider a scenario where a family-like group of Ny individuals is exposed to a
dominant external source (e.g., television or online media), modeled as a perfectly obstinate (N + 1)-
th agent with belief fixed at Py = 1 and obstinacy u = 1. The external source exerts influence but
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remains unaffected by the group. Adjusting the normalization to exclude this external source (as it
does not update), we have the effective group-level adoption fraction after one exposure cycle:

B 1+NfP0‘Z/l—‘Z/l

. 8
1—,14+ny ®

The terms —y and 1 — p explicitly reflect the exclusion of the self-influence of the external agent.

Persuasion rarely occurs in a single step. Instead, the media landscape may evolve iteratively
through repeated exposure, where dominant narratives are reinforced over multiple cycles, gradually
eroding independent belief formation. In contrast to standard opinion dynamics models [11,12], where
iterative averaging governs the process, our formulation treats the belief state as a probability of
adoption. We therefore model the evolving adoption fraction as:

FlD) = f®0) (1 fRya—p), FO = p, ©)

which expresses that each round persuades a (1 — p) fraction of individuals who remain unconvinced.
Solving this recursion yields:
fO=1= (1= R i, (10)

indicating exponential convergence to unanimity with a convergence rate set by p.
To determine the conditions under which a target adoption level fpi, is reached after k rounds
of media exposure, we impose f ) =1 — (1= Py)p* > finin, which yields an upper bound on the

1—- fmin 1/k
< (1130) . (11)

admissible level of obstinacy:

This condition guarantees that the iterative reinforcement process achieves the desired threshold fmin
within k exposures.

An alternative constraint on group size Ny follows from the single-cycle equilibrium (8). Requiring
that the adoption level after one round satisfies

1—#+nyP0

> min-s 12
1—p+ Nsp = (12)

and rearranging terms, we obtain the inequality: N¢p(fmin — Po) < (1 — #)(1 — fmin). The structural
implications of this bound depend on the relationship between the target threshold fpin and the initial
support Py:
If fmin < Po, the group already satisfies the target level of belief prior to any exposure. The inequality
is trivially satisfied for all N¢, and persuasion is guaranteed regardless of group size.
If fmin > P, the campaign aims to raise adoption beyond its initial level. The inequality yields an
upper bound on group size Ny < (1 — fmin)/#(fmin — Po), which exhibits the scaling Ny = O(1/u),
highlighting structural resistance to influence in large conformist populations.

These observations can be summarized as follows:

Theorem 1 (Breakdown of Mass Propaganda in Large Conformist Groups). Let a homogeneous group of

size Ny with uniform obstinacy p € (0,1) and initial belief level Py € (0,1) be exposed to persistent external

influence. Suppose the campaign seeks to elevate belief adoption to a target threshold fmin € (Po,1). Then:
After a single exposure cycle, the goal is achievable only if

1—- fmin

1
Ne < — —2
f= |2 (fmin*PO)

(13)
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After k exposure rounds, a complementary constraint on obstinacy ensures success:
/k
1-— fmin !
g . 14
“<1_% (14

The analysis given above highlights a key fragility of top-down persuasion: in sufficiently large or
resistant populations, even persistent messaging fails to shift public belief.

Such dynamics help explain why top-down ideological enforcement often fails in large, homo-
geneous groups and why authoritarian regimes seek to fragment communities, making centralized
narratives easier to impose. Propaganda assumes it can influence broad, diverse populations, yet
studies show its effectiveness diminishes in such settings due to varied opinions and social dynamics.
This conclusion aligns with the findings of [39], who observed that while terrorist propaganda follows
predictable patterns, its impact varies across groups, highlighting the challenge of uniform messaging
in diverse populations. Similarly, studies on media exposure in politically varied contexts suggest that
greater media diversity weakens propaganda. Mutz and Martin [40] found that exposure to opposing
viewpoints fosters broader political knowledge, counteracting propagandistic effects. Recent research
[41] further supports this, showing that even market-driven media diversity can challenge political
narratives and limit propaganda’s reach. These examples underscore propaganda’s limitations in
large social groups. While small communities may absorb uniform messaging, larger, heterogeneous
populations resist centralized narratives due to varied beliefs and complex social dynamics [42].

5. Consensus Without Clocks: Absence of Temporal Scale in Correlated Belief
Dynamics

Within the framework of Markovian consensus dynamics,
Py = S*Py, (15)

the belief trajectory converges toward a global ideological equilibrium. If the stochastic matrix S is
aperiodic and irreducible, the process admits a unique stationary distribution = € RN satisfying
S7t = 7, to which all belief vectors Py converge as k — co. In the context of equation (15), the term
stochastic matrix refers not to a randomly generated matrix (as in random matrix theory or Gaussian
ensembles), but rather to a deterministic row-stochastic matrix: a nonnegative matrix S in which each
row sums to 1. This structure encodes normalized influence weights in a Markovian belief update
model. We do not assume any probabilistic distribution over the entries of S; it is fixed and derived
from the network’s interaction topology. Although such a stochastic transition matrix guarantees
eventual convergence, persistent individual obstinacy, heterogeneous influence aggregation strategies,
and structural asymmetries within the interaction network may prevent full unanimity. Propaganda
exploits these dynamics by injecting targeted narratives, effectively altering transition probabilities
and reinforcing selected patterns of consensus.

In a fully correlated learning scenario, individuals continuously draw on prior experiences when
assimilating new arguments. Belief adoption thus depends not only on immediate influence but on
the entire history of social interactions. Let us consider the probability

N N
Pi(t) =1-1(t), L(t) = /[0 1]N(1 — pl‘)t (Z Sz]ﬁ]) Hdp] (16)
' =) e

accepts a belief precisely at time t. Here, I;(t) represents the probability that i has remained uncon-
vinced up to time ¢, with belief acceptance governed by the aggregated influence of peers through the
matrix S.

This integral spans all possible combinations of individual acceptance probabilities p;, thereby
encoding the entire ensemble of hypothetical opinion trajectories. Initially, I;(0) = 1, indicating total
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resistance and thus P;(0) = 0. As time progresses, I;(t) decreases monotonically, while P;(t) — 1,
reflecting the eventual adoption of belief. To evaluate I;(¢) analytically, observe that the integral
decomposes into a sum of N integrals, with each term of the form S;; [, 0,1]N (1- pj)tpj H]-Iil dp;. When
j = i, only the integration over p; is nontrivial, yielding

1 S..
B o . — ii
Sii Jy L= PP = gy 72y (17)
For i # j, the integrals factor due to independence, so that each term becomes S;;/2(t + 1). Summing

over all i # j, we obtain:
Si]' 1-— Sii

Y = . (18)
iz 2(t4+1)  2(t+1)
Combining both contributions, we find the closed-form solution:
P(t)=1— Sii _ (1-Si) (19)

(t+1)(t+2) 2(t+1)

where the diagonal entry S;; quantifies the level of autonomy, the extent to which individual i adopts
arguments independently of social input.
In the limiting case of complete autonomy (S;; = 1), belief adoption accelerates:

1 1
indicating rapid, quadratic convergence. By contrast, under complete social dependence (S;; = 0),
adoption slows:

1 1

revealing a markedly slower, hyperbolic trajectory. Intermediate values 0 < S;; < 1 yield mixed
dynamics: initial progress is dominated by autonomous reasoning, but long-term convergence is
shaped increasingly by social influence.

Importantly, in all correlated scenarios, belief adoption ultimately reaches certainty, yet does so
without a characteristic timescale. Convergence remains slow and subexponential, in contrast to the
fast, bounded dynamics of uncorrelated influence flows (see Sec. 6). This phenomenon is formalized in
the following result:

Theorem 2 (Lack of Temporal Scale under Correlated Learning). Let P;(t) denote the belief adoption
probability under fully correlated learning with stochastic influence matrix S. Then for any S;; € [0,1],the
expected time to convergence diverges:

/OootP,»(t) dt = . 22)

Despite eventual convergence P;(t) — 1, the mean learning time diverges, indicating the absence of a character-
istic temporal scale.

This slow, memory-driven convergence reveals a fundamental limitation of collective belief
formation: although consensus is structurally guaranteed, its realization is temporally unbounded.
The absence of a finite timescale makes belief adoption arbitrarily slow—constrained not by the lack of
persuasive content, but by the inertia of accumulated social influence.

Empirical findings support this theoretical insight. Even modest social exposure can reduce
opinion diversity without improving collective accuracy, thereby impeding the efficiency of group-
level learning [43]. Similarly, studies of adaptive performance in Kaggle contests reveal that groups
often respond more sluggishly than individuals to changing conditions, struggling to incorporate


https://doi.org/10.20944/preprints202504.1928.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 April 2025 d0i:10.20944/preprints202504.1928.v1

12 of 23

feedback effectively [44]. The sheer complexity of informational interactions dilutes clarity, further
delaying convergence.

Crucially, while unanimity is ultimately assured regardless of autonomy levels, the rate of ideo-
logical alignment depends on the dominant cognitive mechanism: independent reasoning accelerates
belief change, whereas cumulative social memory retards it. This tension reveals a structural trade-off:
autonomous individuals, resistant to external pressure, internalize beliefs rapidly; whereas in tightly coupled
social systems, where updates incorporate full historical memory, convergence slows dramatically.

Under such fully correlated learning regimes, the only path to rapid consensus lies in reduc-
ing social cohesion—weakening mutual influence, amplifying individual autonomy, and effectively
fragmenting the network to escape the inertia of its own collective memory.

6. Uncorrelated Propaganda Scenarios - Fast Logistic Opinion Shifts

To derive the nonlinear update in the uncorrelated scenario, we model belief formation as a
sequence of independent Bernoulli trials, where the probability of conversion at each step depends
only on the current state and not on prior exposures. Let P;(t) denote the probability that individual
i has adopted the belief by time t. Importantly, we do not define §P;(t + 1) as a finite difference,
ie, 6P;(t+1) # Pi(t +1) — Pi(t). Instead, we interpret it probabilistically: JP;(t + 1) denotes the
probability that the agent converts specifically at step t 4 1, given that they have not yet converted by
time f. This corresponds to the standard formulation in hazard-rate models and stochastic decision
processes. Under this assumption, we write:

SP(t+1) = (1—P(t))Pi(t+1), (23)

where P;(t + 1) is interpreted as the instantaneous probability of conversion given that node i is still
unconverted, and it depends solely on the current social input.

Under the assumption of memoryless influence, we model this quantity by taking: P;(t + 1) =
Y SijPj(t), so that the belief adoption process is driven by the current average belief level among
neighbors. Substituting this expression back into (23) yields a nonlinear update rule:

SP(t+1) = (1—Pi(t))-)_SiiPi(t). (24)
j

This expression captures the instantaneous probability gain under a memoryless influence process,
where the likelihood of belief adoption at each step is proportional both to the residual capacity for
change and to the aggregate social pressure exerted by the network. Since the update is derived from a
probabilistic transition model, it imposes no algebraic constraint on S or P; rather, it defines a distinct
nonlinear process with logistic growth characteristics.

As the frequency of interventions increases and the timescales of social influence and media
exposure begin to overlap, the model transitions naturally into a continuous-time framework. In this
limit, the discrete update rule converges to a matrix-valued logistic differential equation:

P (1-Pyo(sP), 25)
dt
where o denotes elementwise (Hadamard) multiplication. Importantly, S is not time-dependent and
does not evolve stochastically in this formulation. It is drawn once (e.g., from a structural model
or empirical network) and then held constant, reflecting persistent patterns of social conformity or
communication. The system is therefore governed by an ordinary differential equation rather than a
stochastic one, and the dynamics are fully deterministic once the initial condition is specified.

The differential formulation (25) captures the continuous adaptation of belief probabilities under
persistent uncorrelated influence. This approximation is valid when the characteristic timescale of
belief equilibration within social neighborhoods is much shorter than the timescale over which new
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influence is introduced. In other words, we assume that local belief states adjust rapidly to each round
of influence, allowing the process to be approximated by a smooth trajectory rather than a sequence of
discrete steps. In classical models, such separation holds when propaganda efforts and social signals
are delivered in distinct, well-separated rounds. However, in contemporary media environments,
characterized by high-frequency messaging, algorithmic curation, and real-time information exposure,
this assumption is no longer strictly valid. Social input arrives continuously, and belief updates are not
confined to discrete events but occur as a fluid response to overlapping streams of stimuli. Despite
this, if local equilibration remains fast compared to the rate of external variation, the continuous-time
model remains a good approximation of the average dynamics.

This passage to continuous time mirrors the classical transition from discrete-time Markov chains
to continuous-time diffusion processes in the limit of vanishing step size. Conceptually, it reflects a
shift from punctuated interventions to ongoing adaptation: public opinion is no longer shaped by
isolated messages but by a cumulative informational flow, where even rapid media cycles can be
integrated into a smooth dynamical framework provided that belief adaptation remains locally fast.

6.1. Bounded Learning Times in Uncorrelated Logistic Dynamics

In continuous-time opinion dynamics governed by matrix logistic propagation, the transition
from uncertainty to belief can be quantified by the Mean Learning Time (MLT), the expected time at
which an individual adopts a belief under persistent social influence.

Definition 1 (Mean Learning Time). For monotonic, sigmoidal belief trajectories, the MLT for node i is
defined as the first moment of the belief activation rate:

= [T a= [T ) (sP0), (26)

where P(t) evolves according to the matrix logistic equation (25).

While this integral generally requires numerical evaluation, an explicit expression is available
when P;(t) closely approximates a logistic sigmoid,

1 _1-P(0)

log
P () = 1+ x;exp(—pit)’

1

(27)

where p; > 0 is a growth rate. In this case, the MLT becomes

tx; p; exp( it)
N / (1+ x; exp(—p;t))? at. @8)

To evaluate (28), substitute u = ;e Fi!, yielding

A log(xi/t) 4, _ L (1 45, (29)
piJo  (1+u)? pi

The formula implies that belief convergence under uncorrelated logistic dynamics (25) is both struc-

turally guaranteed and temporally bounded. In sharp contrast to correlated influence, which may

yield diverging learning times, the uncorrelated case exhibits robust convergence for any P;(0) > 0
and p; > 0.

Although the effective instantaneous influence rate p;(t) = (SP(t)), is naturally bounded, 0 <

pi(t) < 1,as P(t) € [0,1]N and S is row-stochastic, the dynamic character of p;(t) implies that the value

of the integral (29) may either exceed or fall below the reference level In(1 + x;), which is determined
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by the initial conditions. The only exception is the case of full obstinacy, = 1, in which the MLT is
dominated entirely by autonomous dynamics, and the inequality becomes sharp:

B = In (1 + 1250 ngo) ) : (30)

In the regime of vanishing initial support P;(0) < 1, the upper bound (30) simplifies asymptotically:
f?bSt ~ In(1/P;(0)), as P;(0) — 0, suggesting that belief formation time scales uniquely with the
information-theoretic surprise of the initial belief.

In summary, the boundedness of ¢; reflects a fundamental temporal regularity: persistent, uncor-
related social influence drives consensus at a rate that is inversely proportional to effective connectivity and

logarithmically sensitive to prior uncertainty.

6.2. Belief Saturation and Temporal Centrality in Hierarchical Networks with a Teacher

We investigate the structural delays inherent in belief propagation along hierarchical chains, where
a marginal node serves as a fully obstinate and initially convinced teacher (11 = 1, P;(0) = 1), while
all other nodes share a uniform low initial support (P(0) = 0.01) and common obstinacy parameter
. Influence is defined by an isotropic bidirectional random walk, yielding a symmetric, localized
averaging structure.

Figure 2 presents representative belief trajectories under two regimes: Panel (a) illustrates the
weakly autonomous case y = 0.05, dominated by neighbor influence, while Panel (b)corresponds
to a balanced regime p = 0.4, where internal conviction begins to contribute appreciably. In both
settings, the teacher remains fixed at full belief P;(t) = 1, while learners evolve gradually under
logistic propagation.

Notably, the propagation dynamics differ qualitatively. In the weakly autonomous regime, early
learners near the teacher (e.g., #2 and #3) are, somewhat counterintuitively, delayed in their belief
acquisition, whereas deeper bulk nodes activate collectively and earlier than the closest followers,
giving rise to a non-monotonic adoption profile. Conversely, in the balanced regime, belief spreads
coherently as a sigmoidal front: early learners convert first, followed sequentially by deeper nodes,
with the order of adoption aligning with topological depth.

1.0 1.0

0.9 0.9/
20.81 ; 2081
§0.7— D %o.7»
506 506 #_2L
505 20.51 43/
-E 0.4 £0.4 /
50.31 5 0.3
%021 u = 0.05 Y02l u=0.4

0.1 0.1-

0 5 10 15 0 5 10 15
Time Time
(a) (b)

Figure 2. Time evolution of belief adoption probabilities Py (), k > 1, in a linear chain of learners, with a fully
obstinate teacher at node #1 (P; (t) = 1), uniform initial beliefs P(0) = 0.01 and fixed influence structure based on
an isotropic random walk. In both panels, despite differing dynamics, most nodes in the chain converge within a
narrow time window, reflecting the emergence of bulk synchronization. (a) At low obstinacy u = 0.05, deeper
nodes activate faster than early learners (e.g., #2 and #3). (b) At moderate obstinacy y = 0.4, belief propagates as a
coherent front, with delays increasing with depth.

These distinctions manifest clearly in the mean learning time (MLT) profiles. Figure 3 plots f; as a
function of depth k for several values of y, revealing how structural synchronization emerges with
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decreasing obstinacy. At u = 0.05, MLTs decrease with depth, reflecting early suppression and delayed
ignition followed by coherent collective activation. At u = 0.4, MLTs increase with depth, as early
learners are privileged by their proximity to the source. A critical transition occurs around y = 0.11,
where MLTs flatten across the chain, signaling temporal synchronization.

6_
(]
E p = 0.05
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Figure 3. Mean learning time f; versus vertex depth k in a chain with a fully obstinate teacher (P; (f) = 1) and
uniform initial beliefs P(0) = 0.01. Each curve corresponds to a different obstinacy parameter ji.

In the autonomous limit 4 — 1, all nodes evolve independently as identical sigmoidal curves,

saturating the autonomous MLT bound Pt = In(1 + 1}53 0), marked by the horizontal dotted line.

Similar bottleneck and synchronization patterns were observed in tree-structured simulations where
the teacher occupied the root node, affirming the generality of the phenomena across hierarchical
topologies.

6.2.1. Coherent Learning in the Limit of Vanishing Individual Autonomy

We now turn to the regime of vanishing individual autonomy, in which the obstinacy parameter
# — 0 and the belief dynamics are entirely governed by mutual influence. In this regime, the system
displays emergent coherence for k > 1, whereby all deep nodes behave synchronously and evolve as
if they were a single logistic unit.

Let the network be a one-dimensional chain of N nodes, with influence governed by a normalized
isotropic bidirectional random walk:

De(t) = (1 — Pe(t)) - Pialt) ;P"”(t), k=2,...,N—1, (31)

with boundary conditions: P;(t) = 1 for a fully obstinate teacher fixed at full belief, while all other
nodes (learners) start from the same low initial belief P;(0) = ¢ < 1, for k > 1, and evolve purely
through peer averaging.

Guided by the numerical results from Figure 2.a), we assume that for sufficiently large k, all
trajectories approximate a common profile P(t). We define the deviation from this profile as d;(t) =
Py (t) — P(t), and aim to estimate its decay as a function of depth k. We consider the limiting trajectory
P(t) as the solution to the standard logistic equation: P(t) = P(t)(1 — P(t)), P(0) = ¢, with solution

_ 1 _l—s
14 Cet’ ¢

P(t) . (32)
Substituting Py (t) = P(t) + d¢(t) into (31) and linearizing in &, we obtain a linear non-autonomous
system:

1—P(t) (

Sk(t) =~ —P(t) . 5k(t) + 5

Ok—1(t) + k1 (1)) (33)
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To analyze the behavior of deviations for large k, we note that as t — oo, the logistic solution satisfies
P(t) — 1and 1 — P(t) ~ Ce~! with exponential accuracy. Substituting this into (33), we obtain the
asymptotic form:

) % —8(0) + 507! (Bea (6) + i (1), 69

This suggests a depth-dependent solution of the form 6 () ~ nxe %, where 7 is independent of time.
Neglecting the forward term Jy ;1 () as subdominant for large k, we obtain a recurrence: —(k — 1)1 ~
Cix—1/2, or i =~ C*"1359/2k=1(k — 1)!. Thus, the deviation decays as

5 (t O S 35
k( ) ~ Zkil(k—l)!noe 7 ( )

ast — oo, for all k > 2. This result confirms exponential coherence in depth under purely diffusive
dynamics with a fixed boundary.

Theorem 3 (Coherent Learning in the Limit u — 0). Let Py(t) evolve under matrix logistic dynamics with
1 = 0 on a finite chain, with Py (t) = 1 and all P,(0) = & < 1 for k > 2. Then, for all nodes k > ko > 1, the
deviation 0y (t) = Py(t) — P(t), where P(t) is the logistic solution (32), satisfies the estimate:

k1
C —kt

[ok(t)] < me , (36)

exhibiting exponential decay in depth and time.

Corollary 1 (Asymptotic Learning Time in the Collective Limit). In the limit y — O, for all k > ko > 1,
the mean learning times converge to:

fe o /Oth(t)dt zlog(i>. 37)

That is, the entire chain behaves as a single logistic unit with initial support ¢,converging syn-
chronously to full belief in finite expected time.

Empirical studies of innovation diffusion in structured communities suggest that direct followers
of a pioneering agent (such as a teacher or opinion leader) may exhibit slower adoption than more dis-
tant actors. In particular, [45] shows that highly connected individuals, due to reputational constraints,
often delay adoption until reinforced by multiple peers, while downstream actors adopt rapidly once
the innovation gains visibility. Similarly, classic diffusion studies by [46] and summarized by [47]
observe that early adopters initiate the awareness phase, but the bulk of the population accelerates
adoption after the innovation has been socially legitimized. This phenomenon supports our observa-
tion that, in low-autonomy regimes, deep learners within a network may convert earlier than those
directly adjacent to the source.

6.2.2. Belief Saturation and Bottlenecks in the Regime 1 < 1

In the regime where autonomous dynamics are present but not overwhelming (4 < 1), belief
propagation along the chain exhibits a sharply different pattern. Each node approximately follows an
independent logistic curve delayed in time, Py (t) = [1 + xe~°(=2)] =1 where the delays Ay accumulate
recursively based on the integration of upstream trajectories. For small initial belief P(0) < 1, these
delays grow sublinearly with depth and eventually saturate beyond a structural threshold.
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Remark 1 (Asymptotic Estimate for the Saturation Depth for p < 1). Let belief propagate over a chain
under matrix logistic dynamics with fixed obstinacy y < 1 and small initial belief P(0) = ¢ < 1. Then the
mean learning time t(k) at depth k saturates beyond a critical depth approximately given by

kK ~ 1lnln<1>. (38)
u e

The above estimate is asymptotic and captures the heuristic behavior of saturation observed in
simulations (see Figure 3) and supported by the following asymptotic analytical arguments.

First, the early growth of belief follows P(t) ~ Pyet, yielding the MLT 5 ~ p~!In(1/e).

Second, delays introduced by successive levels decay exponentially, At(k) ~ a* for a < 1, as belief
is inherited with damping due to u < 1. Aggregating these delays gives a convergent geometric sum
lele «®, which stabilizes once a* < 1/1In(1/¢). Inverting yields the estimate (38). While not a rigorous
bound, this expression captures the emergence of a structural bottleneck observed in simulations
(Figure 3).

The saturation depth k* defines the minimal number of hierarchical layers required to overcome
cognitive inertia and initiate autopoietic propagation. Above this threshold, belief spreads rapidly
and near-synchronously. Below it, propagation is significantly slowed by upper-layer resistance. This
phenomenon is analogous to nucleation theory, where growth only becomes self-sustaining once a
critical cluster size is reached [48].

Empirical evidence supports this structural insight. In hierarchical organizations, early adopters,
such as managers or ideological elites, disproportionately influence downstream adoption [49]. Strate-
gic misinformation campaigns exploit these dynamics, prioritizing structural access over volume [50].
Effective belief propagation hinges not on intensity alone, but on timing and topological positioning.
Structural depth and temporal centrality jointly govern the diffusion capacity of a network. Un-
derstanding their interplay enables more accurate modeling of persuasion dynamics in hierarchical
systems.

The MLT offers a natural foundation for defining a dynamic measure of temporal centrality, defined

by the MLT f;: nodes with shorter f; exert greater influence in initiating diffusion cascades.

Definition 2 (Temporal Centrality). In matrix logistic belief dynamics, the temporal centrality score of node i
is given by:

| —

~~|

Vi (39)

1

Nodes with higher v; are temporally more central: they are capable of faster belief adoption and play a dispropor-
tionate role in initiating propagation cascades.

Unlike structural centrality measures such as degree or eigenvector centrality, v; reflects the
network’s dynamical geometry and resistance structure, making it a context-sensitive indicator of
influence.

6.3. Autopoietic Amplification of Marginal Beliefs

An important insight emerging from matrix logistic dynamics is that even weak initial signals
can be amplified through sustained endogenous feedback, leading to rapid convergence without
substantial external pressure. This phenomenon, which we refer to as autopoietic convergence, captures
the capacity of a networked system to self-organize and propagate beliefs, transforming marginal prior
support into systemic consensus.

Consider the matrix logistic equation (25) with uniform obstinacy # € (0,1) and an influence
structure encoded by a row-stochastic matrix A. The effective influence matrix is then given by
S =pll—(1—wuA]"
Markov sense) matrix A. In this context, ergodicity refers to the property that the Markov chain defined

, which is well-defined for any irreducible and aperiodic (i.e., ergodic in the
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by A has a unique stationary distribution and converges to it from any initial state. This ensures that
the matrix inverse exists and the influence dynamics are globally well-posed. As shown in earlier
sections, the belief update rate satisfies p;(t) = (SP(t)); € [0,1], and in particular, its lower bound is
determined by the spectral radius of S. For many structured graphs, the smallest nonzero eigenvalue
of S is bounded below by 11/ (2 — jt), guaranteeing that belief dynamics never become arbitrarily slow.

To estimate the mean learning time for small initial support P;(0) = € < 1, we approximate the
belief trajectory as a logistic sigmoid, so that the MLT is given by

-1 1—e¢ 1 1
tinilog<1+ - )N'log(>, (40)

€

as € — 0. Using the lower bound p; > 11/ (2 — u) then yields a universal estimate:

- _2—-uqu 1
t < i log(e). 41)

This result formalizes a key structural guarantee: even marginal beliefs will be amplified and adopted within
finite time, provided the network is ergodic and agents retain minimal responsiveness. The convergence time
grows only logarithmically in the inverse prior ¢, reflecting the information-theoretic surprise of the
initial condition.

The mechanism becomes particularly transparent in the case of a complete graph of size N,
where the conformity matrix is A = (1 — diag(1))/(N — 1), so that each node is equally influenced
by all others. The corresponding matrix S has leading eigenvalue ¢; = 1 and remaining spectrum
concentrated near y as N — co. In this limit, belief trajectories simplify to P;(t) ~ (14 /) ~! and the

MLT obeys the refined bound:
1

1

These analytic results reinforce empirical observations from social psychology. Effects such as group

polarization [51,52] and pluralistic ignorance [53] illustrate how even unpopular beliefs can rapidly
crystallize into dominant positions under symmetric, decentralized influence structures. The matrix
logistic model provides a generative explanation: belief adoption is driven not by initial volume, but
by feedback-mediated amplification, a hallmark of autopoietic convergence.

6.4. Statistical Isolation of Influence: Techniques for Memory Suppression in Propaganda

Ensuring that each round of propaganda remains statistically independent requires the disruption
of memory effects and the prevention of ideological accumulation over time. This necessitates the use
of statistical de-correlation techniques that fragment public memory, suppress long-term resistance,
and maintain continuous susceptibility to influence. By strategically applying these mechanisms,
regimes can ensure that each intervention stands alone, preventing individuals from forming coherent
counter-narratives or resisting future campaigns effectively.

One fundamental approach is stochastic resetting, whereby public opinion is periodically reini-
tialized, either through narrative reversals, purges of ideological figures, or sudden shifts in official
policy. This ensures that prior ideological developments do not persist across multiple rounds of
influence. Imperial Rome implemented this technique under the name damnatio memoriae, where
all images of inconvenient historical figures were purged from records [54]. A more familiar recent
example is given by Stalinist Russia,, erasing purged officials from records and even photographs,
thereby preventing the consolidation of alternative political loyalties [55]. In contemporary contexts,
similar methods manifest in sudden shifts in government rhetoric, where public figures previously
promoted as authoritative sources are swiftly discredited when their stance no longer aligns with the
evolving state narrative.

Closely related is the injection of noise, a technique that floods the information space with
contradictory, overwhelming, or misleading narratives to hinder stable belief formation. By generating
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a high-frequency, high-volume stream of conflicting messages, regimes can create cognitive fatigue,
where the audience disengages from critical analysis and instead follows the dominant message of the
moment. The "firehose of falsehood" model exemplifies this strategy, leveraging state-controlled media
to generate rapid, multi-channel, repetitive, and often contradictory propaganda [56]. This technique,
which prioritizes volume over consistency, ensures that each cycle of influence is self-contained,
rendering past narratives obsolete and reducing resistance to new messaging.

To further disrupt the formation of ideological continuity, regimes employ randomization of social
influence structures. This is achieved through continuous reshuffling of public discourse influencers,
such as political leaders, journalists, or digital personalities, preventing long-term trust from forming
between the public and any particular information source. Frequent rotations in government figures
and controlled opposition movements serve this purpose, ensuring that loyalty does not accumulate
within any specific faction. In the modern era, algorithmic censorship on social media platforms
contributes to this fragmentation by selectively boosting or suppressing different narratives based on
shifting political priorities [57].

To increase the adoption of the message, target segmentation may be used, where smaller groups
receive messages that are fine-tuned to that particular groups. As we mentioned before, bots, exploiting
the algorithmic power of modern social media, may become devastatingly effective in delivering their
messaging to smaller targeted groups.

7. Discussion and Conclusion

The presented research explores the dynamics of belief formation and opinion consensus in social
networks under diverse conditions of social conformity, obstinacy, structural topology, and influence
propagation mechanisms. Our analytical and numerical findings provide several crucial insights
into how individuals integrate social information, form collective judgments, and converge toward
consensus, highlighting both the potential and limits of majority-driven decision-making.

We began our analysis by revisiting the classical result known as the wisdom of crowds, demon-
strating rigorously how the mean squared error of collective predictions consistently outperforms
individual forecasts provided there is diversity and statistical independence among predictions. This
advantage arises fundamentally from the cancellation of random individual errors, a phenomenon
amplified when individual judgments are minimally correlated. The implications are clear: societal
decision-making processes inherently benefit from diversity and decentralization, emphasizing the
societal advantage in maintaining heterogeneous sources of information and opinion. Conversely,
we found that high correlation among individual errors severely diminishes the accuracy advantage,
reflecting situations typical of "echo chambers,” groupthink, or propaganda-saturated environments.
Thus, preserving independent thinking and diverse informational sources is not merely beneficial but
essential for accurate collective judgment.

Our model further decomposed consensus formation into two distinct phases — rapid local
consensus and slow global convergence, clarifying empirical observations that immediate social circles
rapidly synchronize beliefs, creating stable local clusters that are resistant to external influence. Such
localized equilibrium, confirmed through analytical computations, explains why opinions initially
solidify quickly within close-knit groups. However, global consensus emerges much more slowly,
constrained by communication bottlenecks and structural divisions within society. This fundamental
temporal duality offers critical insights into why social influence strategies often first target local
clusters, as rapid internal agreement within smaller communities can then propagate more broadly.

Our detailed study of fully connected conformist networks elucidates the structural limits of
propaganda. We derived exact formulas that quantify the effectiveness of external influence in uniform
social groups, showing that the impact of persuasive efforts is inversely proportional to the size and
obstinacy of the targeted population. Specifically, small, conformist groups rapidly succumb to external
messaging, while larger, more resistant populations remain resilient. Our recursive model of repeated
exposure further highlights how sustained propaganda efforts can erode initial beliefs, eventually
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achieving unanimity if the targeted community remains small and sufficiently conformist. Conversely,
we established a critical threshold in group size, beyond which propaganda rapidly loses effectiveness
due to the prevalence of internal social reinforcement mechanisms.

Examining correlated belief dynamics, we found an unexpected phenomenon: while consensus is
guaranteed structurally, the time required to achieve it diverges. When individuals’ belief adoption
depends on cumulative social memory, their opinions shift at a progressively diminishing rate, ulti-
mately resulting in a convergence that is unbounded in temporal scale. Our rigorous proof reveals a
deep structural constraint of collective cognition: strong dependence on historical interactions creates
inertia that slows belief adaptation. Empirically, this underscores the social dangers of collective mem-
ory saturation, where excessive reliance on past information effectively paralyzes decision-making
processes.

In contrast, our analysis of uncorrelated propaganda scenarios demonstrated that belief adoption
under memoryless influence rapidly converges to certainty, governed by logistic dynamics that impose
strict upper bounds on mean learning times. We provided explicit, closed-form expressions for
the fastest possible convergence trajectories, characterizing conditions under which belief shifts are
maximally accelerated. This result implies that societies subject to continuous, memoryless streams
of external influence, typical of high-frequency social media environments, can experience rapid
ideological shifts. Such conditions amplify marginal initial beliefs into systemic consensus through
what we termed autopoietic convergence, highlighting the powerful potential of continuous external
signals to shape societal beliefs even when initial support is minimal.

These findings collectively provide profound insights into the mechanisms of opinion formation
and manipulation within societies. They demonstrate how structural parameters, such as group size,
connectivity, obstinacy, and influence topology, critically shape societal responsiveness to external
narratives. The intrinsic vulnerability of small, homogeneous communities to external influence
highlights strategic vulnerabilities that are frequently exploited in political propaganda, marketing,
and social engineering contexts. Meanwhile, larger, diverse societies inherently resist top-down ideo-
logical control, emphasizing the societal benefits of heterogeneity and robust internal communication
structures.

Moreover, the demonstrated fragility of collective intelligence under correlated opinion dynamics
cautions against overreliance on consensus-driven decision-making in environments prone to memory
saturation and information overload. The identified critical role of independent thinking and diversity
in maintaining collective accuracy underscores the importance of institutional safeguards that protect
informational plurality and encourage critical engagement.

In conclusion, our study reveals fundamental insights into the structural and dynamic under-
pinnings of consensus formation and social influence. By rigorously deriving explicit conditions for
optimal consensus, exploring the contrasting dynamics of correlated versus uncorrelated influence
scenarios, and identifying robust structural limits to external persuasion, we deepen understanding of
how societal belief systems evolve and stabilize. Our analysis provides essential tools for diagnosing
vulnerabilities in social communication networks and designing resilient informational structures.

Future research should extend these insights empirically, testing model predictions in real-world
social networks and systematically exploring how varying degrees of correlation, structural diversity,
and influence timing shape belief dynamics across different contexts. Additionally, exploring the
ethical implications and policy responses to our findings can further strengthen societal resistance to
undue influence and enhance the robustness of collective decision-making processes.
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