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Abstract: In this paper, we propose an active touch sensing algorithm designed for robust hole
localization in 3D objects, specifically aimed at assembly tasks such as peg-in-hole operations. Unlike
general object detection algorithms, our solution is tailored for precise localization of features like
hole openings, using sparse tactile feedback. The method builds on a prior 3D map of the object and
employs a series of iterative search algorithms to refine localization by aligning tactile sensing data with
the object’s shape. It is specifically designed for objects composed of multiple parallel surfaces located
at distinct heights; a common characteristic in many assembly tasks. In addition to the deterministic
approach, we introduce a probabilistic version of the algorithm, which effectively compensates for
sensor noise and inaccuracies in the 3D map. This probabilistic framework significantly improves the
algorithm’s resilience in real-world environments, ensuring reliable performance even under imperfect
conditions. We validate the method’s effectiveness for several assembly tasks, such as inserting a
plug into a socket, demonstrating its speed and accuracy. The proposed algorithm outperforms
traditional search strategies, offering a robust solution for assembly operations in industrial and
domestic applications with limited sensory input.

Keywords: active tactile sensing; peg in hole assembly; 3D object localization; deterministic and
probabilistic search algorithms; robustness to sensor and map uncertainty

1. Introduction

In robotics various sensors are employed to enable the execution of complex tasks [1]. These
sensors include 2D and 3D cameras, force sensors, tactile sensors, laser scanners, and similar devices.
Among these, cameras have proven to be particularly effective and cost-efficient for applications such
as bin picking [2], automated robot assembly [3], and quality control [4]. However, challenges arise
when objects are not visible due to overlap, poor lighting conditions, or suboptimal camera positioning
[5,6]. Accurate hand-eye camera calibration is a critical yet frequently underestimated challenge in
robotics, which can present problems for operations requiring high precision, such as when assembling
objects with low tolerance [7].

In such cases, reliance must shift to alternative sensors, such as force and touch sensors, which do
not provide information as rich or comprehensive as that from cameras [8,9]. This paper addresses this
issue and proposes a tactile localization method that does not rely on cameras.

A typical assembly operation, such as inserting a peg into a hole, can be divided into two primary
phases: positioning the peg near the opening and the actual insertion. This paper does not address the
insertion phase, which requires force sensors and that has already been well studied in robotics [10].
Instead, we focus on the approach phase, i.e. the localization of the opening, using only force sensors
or touch detection.

Several heuristic and statistical search methods are commonly employed for this purpose, in-
cluding random search [11], spiral search [12], genetic algorithms based search [13], ergodic search
[14] and others. Among them, only random and spiral searches do not require prior knowledge of
the environment. In contrast, ergodic search utilizes a probability distribution indicating where the
assembly object is likely to be located in space, making it more effective than the other two methods.
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Rather than relying primarily on heuristics or statistical priors, our approach assumes the avail-
ability of an accurate geometric model of the environment, although its position and orientation
relative to the robot are initially unknown. The goal is to localize this model through systematic
exploration.

2. State of the Art

The problem of object localization in assembly operations has been widely studied in prior
research, with diverse approaches proposed depending on available sensing modalities and application
contexts. Early methods, such as those by [15,16], utilized pre-acquired contact maps combined with
particle filters to enable precise localization using sparse tactile data. Similarly, [17] introduced a
computationally efficient iterative Bayesian Monte Carlo technique for six degree-of-freedom (6-DOF)
pose estimation, demonstrating robustness in tactile localization tasks. Other approaches, such as
the Gaussian mixture model-based contact state detection method proposed by [18], leverage wrench
signals to facilitate peg-in-hole assembly localization.

Building on these foundations, tactile sensing for object localization has been further advanced by
[19], who introduced the Next Best Touch (NBT) strategy to identify the most informative subsequent
contact for efficient pose estimation. Extensions of this concept to 2D visual maps were explored by
[20] using recursive Bayesian filtering to estimate belief distributions over possible locations, with [21]
refining this framework to address both localization and shape uncertainty in active tactile sensing.
Recent works have incorporated deep learning techniques to process tactile data more effectively;
for example, [22,23] demonstrated the use of deep neural networks (DNNs) for tactile object pose
estimation from high-resolution sensor arrays, achieving significant accuracy improvements. Other
studies, such as [8] and [24], have successfully applied tactile contact sensing for object recognition
and classification, highlighting the growing capabilities of tactile perception.

In parallel, related research in robotic grasping and manipulation has emphasized the integration
of multimodal sensory inputs, combining vision, force, and tactile data to enhance pose estimation
accuracy and robustness under uncertainty [25,26].

Despite these significant advancements, the majority of existing work — apart from [15,16] —
does not explicitly target the challenge of assembly pose search using sparse binary touch sensors,
which provide extremely limited and discrete information. This sparse sensing modality imposes
unique challenges in developing algorithms capable of robust, efficient localization under minimal
sensory input. Consequently, this remains a critical open problem in automated assembly, motivating
further research into probabilistic and adaptive methods tailored for sparse tactile feedback.

Binary touch sensing, despite its simplicity, offers several key advantages in constrained envi-
ronments. Unlike visual-tactile sensing, which requires cameras with clear line-of-sight, adequate
lighting, and often precise calibration between visual and robot coordinate frames, binary contact
sensors can operate in complete darkness, through occlusions, and without complex setup. This makes
them particularly well-suited for tasks where cameras cannot be reliably deployed, such as operations
in enclosed fixtures, poorly illuminated areas, or behind physical obstructions. Furthermore, visual-
tactile systems generally require high-fidelity calibration and often depend on higher-bandwidth
communication and processing pipelines, whereas binary touch sensing enables lightweight, reactive
implementations that are easier to deploy and maintain in industrial environments. These trade-offs
motivate the development of efficient localization algorithms that rely solely on binary tactile feedback.

3. Materials and Methods

In this section, we present our original algorithms for detecting the 3D position of objects using
touch sensing. We begin by introducing a basic search algorithm for 2D position detection and
subsequently extend it to handle 3D position estimation. We then enhance these algorithms with a
probabilistic search framework designed to robustly manage sensor noise, inaccuracies in the object
map, and variations due to object rotation.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1105.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2025 d0i:10.20944/preprints202506.1105.v1

30f19

Figure 1. Left: 3D representation of the object’s surface. Right: A 2D map with color-coded regions S; based on
their height. Note that some regions may be disjoint (e.g., S3).

3.1. Map Registration

In this section, we present a deterministic 2D search method that serves as a foundation for 3D
search introduced in Section 3.2 and its further enhancement into a probabilistic framework described
in Section 3.3. Our approach shares similarities with Next Best Touch (NBT) methods [19], as it
systematically refines the search region through geometric region elimination in consecutive steps.

We assume the availability of a 3D map of the object where the assembly operation takes place.
Furthermore, we consider that the 3D object consists of a finite number of horizontal faces (quasi-
iso-height regions). These surfaces are represented as a 2D model map M = {S;}V, in the x-y
plane, where S; denote the partitions of the map and N is the number of partitions. Each partition
is defined as an area of the object having the same height z{" when put on the horizontal surface,
Si = {p:”] }]I-\]:il, pl”; = [xZ}, yZ}, z"T and N; is the number of discrete points within the partition S;. In
practice we obtain these points by discretization directly from a CAD model or, alternatively, using a
scanner device. An example of such a region-based map is depicted in Fig. 1.

While the 2D map M representing the object’s geometry and the object’s orientation is known, the
position of the object in the robot’s coordinate system is unknown. There are many practical examples
in industry that satisfy these requirements, for example all objects that are rotationally invariant. There
is also a common case when we can provide the exact orientation of the object, but not its position. We
consider a scenario where the robot must determine any point on the target region Sg, which centroid
is denoted by pg' in the map coordinate system. Initially, we are given an estimate of a point above the
target region Sg in the robot’s coordinate system, which we denote here by p"(0). However, due to
uncertainty in this initial position, the robot might initially contact a different region. Note that we are
not specifically looking for a centroid of S but for any point in S,.

Next the robot moves in the —z direction in the map coordinate system until it touches the surface
of the object. By calculating the z coordinate of this initial contact point p"(0) in the map coordinate
system (see Eq. (4)), the robot can identify which of the regions has been touched.! We denote the
touched region as S;(0) = S;, where i is the index determined by the measured height. The region S;
is defined as {p}" }?[:[1, so each point p* € S(0) corresponds to a point in S;.

In the following we apply notation where vectors with superscript (.)" are expressed in the robot’s
coordinate system, while the corresponding vectors with the superscript (.)™ are expressed in the
map’s coordinate system.

1 This assumes that a mapping between the map’s z coordinate and the robot’s z coordinate is available. However, this

assumption is necessary only to explain the basic algorithm. In later sections, we extend the algorithm to cases where this
mapping is initially unknown.
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Initially, we determine the touched position in the map coordinate system as a point closest to
the centroid of the touched region and ensure it is also contained in the that region. We denote this
position as p}'. The algorithm then computes the displacement vector:

d" =pg —pe- 1
Next the robot moves to the next estimate of the position above the target region:
p'(1) = p'(0) + Rod"™, ()

where the rotation matrix Ry € R3*3 accounts for the rotation between the robot and the map
coordinate system. The robot then moves again along the —z coordinate of the map coordinate system
until it touches the surface of the object. The z coordinate of the new contact point p,(1) in the map
coordinate system determines the next touched region S(1).
To refine the estimate, we update the search region Ss(0) by selecting all points p™ within S; that
satisfy:
S:(1) = {p" € S:(0) | p}' +d" € Si(1) }. ®)

The updated search region Ss(1) contains only the points that fulfill the above condition. The next
estimate of p}' is computed as the centroid of Ss(1). Like before, if the centroid is not contained within
Ss(1), we take a random point from S;(1) as the estimate of p?. This operation is repeated until the
robot hits a point on the target region S;. We denote the iteration index by k.

In the appendix we show that the last touched position p” (k) is guaranteed to lie within the target
region Sq.

The above procedure defines an iterative algorithm outlined in Algorithm 1.

Algorithm 1: Map Registration Algorithm Using Touch Sensing

Input: Map M representing the object’s geometry, initial estimate for the position above the target
region p’(0), the centroid of the target region pg', and rotation matrix Ry and height z¢ of the
map in the robot coordinate system.

Output: Estimated position p}*, robot touch position p” (k) at goal region S.

z"™(0), p"(0) < TouchFloor(p"(0))

Ss(0) + GetRegion(z"(0))

k<0

while 2" (k) # z{ do
p + GetPoint(S; (k))
d" < pg' — p¢'
p'(k+1) «+ p’"(k) + RdA™
z"(k+1),p"(k+1) + TouchFloor(p"(k + 1))
Ss(k+ 1) < RegisterRegions(S;(k),d™, z™(k+ 1))
k+—k+1

return p', p" (k)

© ® N o U R W N
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In Algorithm 1, we apply the following functions:

*  TouchFloor is a function that involves the motion of the robot from the initial position p” (k)
along the —z axes in the map coordinate system until it touches the surface of the object. It also
computes the z" (k) coordinate of the touch point in the map coordinate system. This calculation
involves the transformation

x™ (k) 0
y" (k)| =Ry(p'(k)— |0 ), 4
2" (k) 20
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where z is a constant that defines the z-component of the map coordinate system origin expressed
in robot coordinates. Note that x and y coordinates of the map coordinate system origin are
unknown.
®  GetRegion returns the region index based on measured z" (k) coordinate at the contact point.
*  GetPoint returns a point from S;(k) closest to the centroid of S, (k).
* RegisterRegions returns the region composed of all points p}” that satisfy the condition p}” €

Ss(k), p;-" +d" € Si(k+1).

To illustrate the proposed method, we apply it to the search for the socket where a robot should
insert an audio jack plug, as shown in Fig. 2. Fig. 3 shows the iterative refinement process. The search
area Ss(k) (marked in white) is gradually reduced until the estimated location p} is within the target
region Sg, ensuring successful insertion of the plug.

Figure 2. Audio plug and socket used in the example. The shaded square determines the search area for insertion
of the pin into the socket and corresponds to the black area in Fig. 3

3.2. Map Registration with Unknown Object Base Plane Height

The algorithm presented in the previous section assumes that the z-coordinate of the object’s
surface can be directly determined from the touch sensor’s reading. In other words, it requires prior
knowledge of the height of the object’s base plane in the robot coordinate system so that each touch
immediately reveals which region was contacted. However, if the exact height is unknown, the
robot cannot directly ascertain which region it has touched. In such scenarios, estimating the object’s
base z-coordinate (height) becomes a necessary step before proceeding with precise localization. The
algorithm presented in this section overcomes this limitation by eliminating the need for prior height
information, thus ensuring that the robot can still identify the contacted region.

We propose an iterative algorithm to estimate an object’s base height using a 3D map and
successive touch operations. As, before, we assume that the object consists of a finite number of
uniform height regions, denoted as S;, where i = {1, ..., N} denotes the region index, each located at
a distinct height z}". From the 3D map, the algorithm first identifies the number of these regions, N,
and their corresponding heights z! in the robot coordinates.

The algorithm begins by selecting an arbitrary position above the object, establishes the contact
point pf, using the TouchFloor procedure and records the z coordinate as height zj,. At this stage, it is
unclear which of the map’s regions S;,i = {1, ..., N} the robot has touched. Therefore, the algorithm
initializes a candidate region S; ; for each i, effectively treating all N regions as potential matches. In
subsequent steps, the algorithm narrows down the feasible candidate regions by eliminating regions
that are inconsistent with additional measurements.

The robot touches the object at another arbitrary point p}, and a displacement vector in the map
frame is computed as:

d" =R(p; — py)- (5)

The new contact point yields a height measurement zj. We calculate height difference:
dz = zj — z{), (6)
For each candidate region, the height z!"; is updated as

zg; =z +dz, (7)
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Figure 3. Example of the search process for the audio plug socket with progressive refinement of the search region
over five steps (k = 0,1,2,...). Each step includes two views: the left shows the object map with the robot’s
contact point (red circle), which is unknown to the algorithm and displayed only for illustration; the right shows
the current search region Ss(k) in white, the estimated point p$, as a red square, and the direction vector d,,. The
map includes three regions: the dark brown socket hole (target), the light brown enclosure, and a black area where
the robot misses the socket. At k = 0, the robot touches the object, and the algorithm identifies the touched region
Ss(0). Tt selects p¢, near the centroid of Ss(0) and computes d, toward the goal point pj,, located at the center.
This guides the next move to p;(1).The touched region is updated using Eq. (3), shrinking the search area to Ss(1).
The process repeats, with the algorithm refining p$, and d;, at each step, until the robot reaches the goal region S¢
at k = 4, where the search area converges to zero.

where 2" is the height (z coordinate) of the i—th region S;. Additionally, each candidate region S, ; (k)
is updated by retaining only those points that satisfy the condition:

p" € Ssi(k), p"+d" eSS, 8)

where S, ; € M represents the set of regions at height z ;.

This process is repeated until all but one of the candidate region have been eliminated (i.e., their
S, ; areas are reduced to zero). The remaining candidate region is then identified as the correct match
for the initial contact point pf; and the height associated with S; can be used to estimate the base
z-coordinate of the object.

The algorithm is outlined in Algorithm 2. In addition to the functions already used in Algorithm 1,
the following new functions are defined *:

e Area(S;) returns the area of the region S;.
. rand(m,n) returns a m X n matrix with random numbers.

2 In function TouchFloor, an unknown value z, appears. However, since the results of this function are subtracted in

algorithm 2, the value of zj does not affect the result and can be set to 0.
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Figure 4. A set of contact points uniquely determines the identity of each plane. In this example, py was the first
touch, p; the second, and p, the third. This sequence, along with the detected height differences that identify the
planes, is consistent only if py belongs to region S,.

* CountFeasibleRegions returns the number of feasible candidate regions, i.e. regions with area
greater than 0.

Algorithm 2: Map registation with unknown object base plane height using touch sensing

Input: Map of the surface M with N regions, region heights z/", initial point in robot coordinates p”(0)
Output: Estimated z-coordinate of the region S(0) and the region index ix

1 z{) < TouchFloor(p”(0))
2 S S, i={1...N}
3k« 0
4 while CountFeasibleRegions() # 1 do
5 d™ < rand(2,1)
dm
6 p¥<—pr(0)+{0}
7 z} + TouchFloor(p})
8 dz + Z’t’ — 26
9 | for1<i<Ndo
10 2zt +dz
1 SS,i(k +1) « RegisterRegions(Ss,i(k), dm, zm)

[ar'F)

2 | k+k+1

13 ix < indexOf(Area(S; ;(k) > 0))
14 return zj} + z{), ix

The underlying intuition behind this approach is that once the robot touches all planes constituting
the object, we can uniquely determine the identity of each plane. In practice, the identity of a certain
plane can often be determined by touching only some of the planes. By tracking the sequence of
detected planes and their relative displacements, the algorithm ensures reliable plane identification.
This process is illustrated in Fig. 4.

By estimating the z-coordinate before searching for the x- and y-coordinates (as described in
Section 3.1), the algorithm significantly reduces the initial search space, minimizing computational
complexity. Experimental results in Section 4 show that this additional step of determining z coordinate
of the object’s base plane only marginally increases the total number of search iterations.

3.3. Probabilistic Map Registration

In an idealized, noise-free environment, deterministic map registration can achieve arbitrarily
high accuracy. However, real-world robotic assembly is affected by measurement noise, actuation
errors, and map inaccuracies. These factors can lead to inconsistencies in which the search area S;

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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is prematurely reduced to zero before reaching the goal. To address these challenges, we propose a
probabilistic extension of the deterministic approach.

Unlike the deterministic approach, where the map M is partitioned in regions S;, we now model
the likelihood that a point belongs to the search region. Let P(p™ € S;(k)) denote the probability that
a point p™ belongs to the search region S, (k) at k-th iteration. Rather than assuming p?' is in the center
of S;(k), the algorithm selects p2' € S;(k) with the highest probability P.

In the deterministic map registration algorithm, the displacement vector d” is computed according
to Eq. (1). In the probabilistic framework, we instead model the displacement length |/d|| as a random
variable with a continuous probability distribution. It is sampled from the range [||d|| i, ||d||max]
assuming a normal distribution NV (y, 0;), where 1, is taken as the displacement length calculated
with Eq. (1) (see Fig. 5). The parameter ¢; models the uncertainty in the robot’s position and map
inaccuracies by controlling the spread of the Gaussian distribution used to sample the displacement
length ||d||. Intuitively, o; defines the width of this distribution, determining how broadly the search
region is updated around the expected displacement. Typically, it is chosen such that the Gaussian
covers approximately 20-30% of the nominal displacement vector length ||d|. At this scale, the
Gaussian falls to about 5% of its peak height at the distribution’s edges, ensuring that the probabilistic
update accounts for realistic positional errors without overly broadening the search space. This setting
balances robustness against robot and map uncertainties with the efficiency of the search, and while
the exact choice can be tuned experimentally, the described range provides a principled guideline.

Pd.n 7777777777777777777777777777 [

| |
]} in ld], ez ||

Figure 5. A distance ||d|| is modeled to be normally distributed. We sample the probability for each discrete

distance ||dy || from the interval from ||d,,;, | to ||dmax||-

The search region is updated accordingly. It is obtained by marginalizing over all possible
displacement lengths. That is, instead of using a single displacement vector, we integrate the effect of
sampled displacements weighted by their probability.

For computational reasons the length d on the interval [||d||;uin, ||d|lmax] is divided into N
intervals, d,, n = 1--- Ny, each with an associated probability P, ,, providing that

Ny
Y Pi,=1
n=1

In each k-th search step, for each length d,, , we obtain region S; , (k + 1) using the Eq. (3), following the
same procedure as in the deterministic case. This way, we obtain N, regions Ss,,(k + 1) and compute:

Ny
Ss(k+1) = U Ss,n(k“l‘ 1) (9)

n=1

The probabilities are updated recursively as:

N4
P(p" € Si(k+1)) = P(p" € Si(k)) - ) (P(p™ € Ssu(k+1))), (10)

n=1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Similar as before in the deterministic approach, the algorithm narrows the search region S (k) until
the robot hits the goal region S,.

Fig. 6 illustrates the probabilistic map registration process in an audio pin insertion task, similar
to the deterministic approach in Section 3.1.

Figure 6. Example of probabilistic map registration for inserting an audio pin into a socket. The registration
process is illustrated across sub-figures for k = 0. ..4. In the left sub-images, the gray region represents the socket
center, the white region denotes the socket body, and the black region indicates the exterior. Red dots mark
contact points, which are unknown to the algorithm. In the right sub-images, the search region Ss is shown as
a shaded 3D area tilted by 30° around the x-axis, where shading intensity represents the probability estimates
P(p™ € (S)s(k). The red vector represents d//, while the red square indicates p?’. In this probabilistic case, the
search region is represented with varying probabilities of robot position, accounting for sensor noise and map
inaccuracies. The transition between steps (k to k+1) shows how the search space is adjusted dynamically, with
increasing confidence in p}*.

4. Experimental Results

In this section, we experimentally validate the performance of the proposed algorithm and
compare it with a random search strategy. For all experiments, we used a 7-DOF Franka Research 3
robot controlled by an enhanced Cartesian impedance control law. The applied control law is detailed
in [27] and [28]. Enhancements to the original control law include bidirectional friction compensation,
which improved positional accuracy for small displacements with low stiffness. The touch motion
was implemented by setting the velocity command in the direction of the surface normal of the object
and monitoring the force in the same direction. Motion was halted whenever the force exceeded a
predefined threshold, and impact forces were mitigated by setting low stiffness in the impedance
control law in the direction of the surface normal. A touching probe with a known geometry is attached
to the tip of the robot. This allows us to determine the height of the touched point in the robot base
coordinate system.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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4.1. Inserting the Pin into the Socket

To validate the efficiency and robustness of our algorithm, we first replicated the experiment of
inserting an audio pin into a socket, as described in Section 3.1. The experimental setup is depicted in
Fig. 7, where the socket was positioned on a table with its normal aligned along the z-axis. The socket
was installed within a housing of 2 cm in diameter, with a socket hole measuring 3.5 mm.

Figure 7. Experimental setup for testing the insertion of the audio pin into the socket.

The search area was confined to a 4 x 4 cm square, and the map M was encoded as a 400 x 400
matrix. Therefore, each point in the map corresponds to 0.1 mm. Since the coordinate frames of the
map and the robot were aligned, the rotation matrix R was set to the identity matrix. The robot’s initial
search position in robot coordinates was randomly selected within the defined search area.

In a set of 100 experimental trials, the algorithm successfully located the socket opening within
one to ten attempts. Fig. 8 illustrates the convergence behavior and standard deviation of the search
process. In this experiment, the results are virtually identical when using deterministic or probabilistic
search.

1

08 4

0.6 - n

04 g

0.2 4

0 1 1 1 Il Il Il I Il
1 2 3 4 5 6 7 8 9 10

Figure 8. Convergence analysis of the proposed search algorithm. The x-axis represents the number of attempts,
while the ly-axis shows the probability of locating the target. The mean number of attempts is 5.83 and the
standard deviation 2.04.

To further evaluate the algorithm’s performance under more challenging conditions, we consid-
ered a scenario where the object’s height relative to the robot is unknown. In this case, the height
measurement alone is not sufficient to identify which of map partitions has been touched. Therefore,
the algorithm first estimates the correct z-position before proceeding with the x- and y-coordinate
search, following the procedures outlined in Sections 3.2 and 3.1, respectively. The convergence
characteristics and standard deviation of this extended search process are illustrated in Fig. 9.
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A comparative analysis between Figs. 8 and 9 reveals that incorporating the additional z-
coordinate search increases the maximum number of attempts by only two, while the average number
of attempts increases marginally. This demonstrates that the added dimensional complexity does not
significantly degrade the efficiency of the search algorithm.

1

0.8

0.6 - n

0.4

021 N

O L 1 Il Il Il
0 2 4 6 8 10 12

Figure 9. Convergence behavior of the combined search algorithm, which first determines the z-coordinate before
localizing the x- and y-coordinates. The x-axis denotes the number of attempts and the left y-axis represents the
probability of hitting the target. The mean and standard deviation are 6.37 and 2.53, respectively.

As a benchmark, we conducted an additional 100 trials using a purely random search strategy
within a 4 x 4 cm grid with a 0.2 mm resolution. To ensure fairness, no points were tested more than
once. Fig. 10 presents the convergence and standard deviation of the random search. The results

0.8

0.6

04

0.2

0 L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

Figure 10. Convergence behavior of the enhanced random search. The figure shows the probability of hitting the
target related to the number of attempts. The mean and standard deviation are 60 and 45.5 .

clearly highlight the superiority of our proposed search algorithm compared to random search. The
algorithm demonstrates an average convergence speed more than six times faster than random search
and exhibits significantly lower variance. In worst-case scenarios, our approach achieves over twenty
times faster convergence, further validating its efficiency and reliability for real-world robotic assembly
tasks.

In our final experiment, we evaluated the performance advantages of the probabilistic search
algorithm under conditions of imprecise object mapping and positional inaccuracies of the robot.
To simulate these uncertainties, we increased the distance parameter d,; in Eq. (2) by a factor of 1.2,
while retaining the original value of d;, in the registration process described by Eq. (3). We then
conducted 100 experimental trials of inserting an audio pin into a socket, comparing the success rates
and convergence behavior of the deterministic and probabilistic search algorithms. The deterministic
algorithm successfully inserted the pin into the socket in 85 out of 100 attempts, whereas the proba-
bilistic algorithm achieved a success rate of 100 out of 100. Parameters N; and o; were set to 20. These
results, presented in Fig. 11, clearly demonstrate the superiority of the probabilistic search algorithm
in noisy environments, highlighting its robustness in handling uncertainties.

4.2. Inserting the Task Board probe into the socket

The subsequent experiment pertains to the Task Board, an internet-connected device designed to
assess real-world robot manipulation skills [29]. Following the trial protocol, one of the operations
involves extracting a probe from its socket, measuring the probe’s voltage level, wrapping the cable,
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Figure 11. Convergence analysis of the deterministic search algorithm (a) and Convergence analysis of the
deterministic search algorithm (b) in noisy environment. In this case, the deterministic and probabilistic search
algorithms had success rate of 85% and 100%, respectively

and then stowing the probe. The last operation often fails due to factors such as incomplete grasp of
the probe, significant movements during manipulation, environmental contact with the probe, and the
effects of pulling the probe cable. As part of the euRobin project’, numerous Task Board manipulation
solutions employing both in-hand and overhead cameras were introduced. However, these camera
placements are inadequate for monitoring the probe-stowing operation. Consequently, an alternative
solution utilizing touch detection was implemented for this purpose.

Initially, a 400 x 400 map with depth information of the socket housing was provided, as depicted
in Fig. 12. In this case, the insertion is along the robot’s x-axis, therefore the rotation matrix was
0 01
1 0 0]. Each unit represented 0.1 mm in robot coordinates, with the socket hole having a

010
diameter of 4 mm. Following the protocol of previous experiments, 100 attempts were made to insert

R =

the probe into the socket, introducing random displacements of the starting point within the search
area. In all attempts, the robot successfully inserted the probe into the socket in two to six attempts.
The convergence and standard deviation of the search algorithm for this scenario are shown in Fig. 13.

As demonstrated, the algorithm identified the target more quickly than in the previous example.
This increased efficiency is attributed to the more complex environment, which provides additional
information about the location during exploration.

Figure 12. Left: Experimental setup for testing the stowing of the probe in the Task Board. The red oval highlights
the socket and the probe. Right: A 3D map of the socket used for registration in the corresponding experiment.
Note that the left and right images are intentionally shown from different viewpoints to emphasize the rotation R
between the robot’s coordinate system and the map’s coordinate system.

3 https:/ /www.eurobin-project.eu/
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Figure 13. The convergence of the proposed search algorithm, showing the the probability to hit the target vs
number of attempts. Mean and the standard deviation are 4.07 and 1.18, respectively

4.3. Inserting the Task Board Connector into the Socket with Continuous Search

In the previous examples, we evaluated the proposed search algorithm on objects with top
surfaces that were not sufficiently smooth to allow for continuous trajectory-based search. However,
the proposed procedure is also applicable and efficient in cases where a continuous trajectory can be
employed to systematically sweep a designated search area. To demonstrate this capability, we again
utilize the Task Board, this time focusing on the insertion of the termination connector of the test probe,
as shown in Fig. 14.

Figure 14. Left:Robot inserting the termination connector with combined spiral search and map registration
algorithm. Right: Model of the socket, as used by the search algorithm

The search procedure is initiated using a spiral search strategy, where the trajectory is continuously
updated at each sampling interval t = kdt according to the following equation:

sin(27yk)
pi (k) = ppy + (0rk) | cos(27tvk) |, (11)
0

where p( represents the initial search position, ér defines the radial increment per step, and y is the
angular frequency governing the spiral motion. The parameters ér and 7y must be carefully tuned to
ensure that the generated trajectory sufficiently covers the search area and reliably intersects the goal
region from any starting position py.

During the spiral search, the robot applies a controlled force in the z-direction while maintaining
compliance along this axis. This allows it to smoothly traverse the surface and conform to any
variations in height. When the probe encounters the socket opening, it slides into place, marking the
successful termination of the search. Further details on controlling the robot’s stiffness and force at the
tool center point can be found in [28].

To further improve the search efficiency, we integrate the spiral search with the map registration
algorithm introduced in Section 3.1. First, we construct an appropriate model of the socket. Given that
the plug is a cylinder with a radius of 4 mm, we account for its insertion by increasing the socket’s
radius accordingly. Additionally, considering the insertion tolerance of € = 2mm, the total radius
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of the socket hole is adjusted to accommodate this clearance. For simplification, we model the plug
as a point mass while ensuring that its physical constraints within the socket are maintained (See
Fig. 14 right). The map registration algorithm runs concurrently with the spiral search, refining the
position estimate dynamically. Specifically, an update is triggered whenever the distance between two
consecutive points exceeds a predefined threshold:

1Pk — Pi—1l > Smin- (12)

The algorithm continuously tracks the area of the current search region S;s, which contains the
initial search point p;. If the area of S; shrinks below the area of the goal region (i.e., the required region
for successful insertion), the next command position is determined using Eq. (2). In this experiment
we applied probabilistic map registration algorithm. This adaptive refinement significantly enhances
search efficiency.

Figure 15. Comparison between the combined search algorithm and the spiral search algorithm for inserting the
TaskBoard connector into the socket, evaluated for two different starting points. The white line represents the
trajectory of the connector’s center during the search. The dark brown area indicates regions where the connector
fails to engage with the socket, while the light brown area represents regions where the connector glides over the
socket. The black region marks the goal.

The advantages of the combined search approach are illustrated in Fig. 15, which compares
the performance of the combined algorithm with the standard spiral search for two different initial
positions. In both cases, the combined algorithm exhibited faster convergence to the goal region.
However, the efficiency of the combined approach depends on the amount of information gained about
different regions during the search. If the robot does not encounter new regions while searching, the
combined algorithm performs similarly to the standard spiral search. Consequently, when the initial
position is close to the goal region, there are no performance difference between the two methods. On
the other hand, the spiral search requires precise tuning of free parameters to successfully complete
search. In contrast, the proposed combined search algorithm is successful even with poorly set spiral
search parameters.

4.4. Summary of Experimental Results

To provide a concise overview of the method’s performance across different use cases, we sum-
marize the key experimental results in Table 1. The table reports the number of trials, success rate,
average number of attempts, standard deviation, average search time and qualitative notes on search
characteristics. This summary highlights the efficiency and robustness of the proposed method across
a variety of practical scenarios, including both discrete and continuous search strategies, and under
both ideal and noisy conditions.

We observe that across all tested scenarios, the proposed algorithm performs consistently and
robustly, with probabilistic extensions offering added resilience under uncertainty. The combined
continuous and probabilistic method further improves convergence efficiency in smooth surface
conditions.

All experimental use cases are additionally described in the attached videos, where the exploration
of the algorithm and the process of evaluating the starting point can be observed. The Matlab
source code of the registration algorithms in the simulated environment and videos are available via
repo.ijs.si/nemec/3d-object-pose-detection-using-active-touch-sensing.
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Table 1. Summary of experimental results across different use cases.

Experiment Trials | Success| Avg. Std. Avg. | Notes
Rate | Attem. Dev. | Time
Audio Pin Random 100 | 100% | 37.37 | 36.55| 71.0s | No prior knowledge
Search (Baseline) used
Audio Pin Insertion 100 | 100% 5.83 2.04 | 11.1s | Basic algorithm with
(Deterministic) known object height
Audio Pin + Height 100 | 100% 6.37 2.53 | 12.8s | Includes z-height
Estimation search step
Audio Pin (Noisy, 100 85% 6.78 3.0| 12.1s | Sensitive to
Deterministic) uncertainty, occasional
failure
Audio Pin (Noisy, 100 | 100% 6.76 2.32 | 12.8s | Robust under position
Probabilistic) and map uncertainty
Task Board Probe 100 | 100% 4.07 1.18 8.7 s | Rich geometry
improves convergence
Task Board Connector 20| 100% — — 7.8 s | Spiral + map
(Combined) registration, robust to
par. settings

5. Conclusion

In this study, we introduced a novel algorithm for locating openings in peg-in-hole assembly tasks
using sparse tactile feedback. Building upon principles from NBT techniques, particle filters, iterative
tactile probing, and active hypothesis testing, the method leverages prior geometric knowledge of the
target object to enable efficient search in environments with limited sensory data. Our experimental
results demonstrate two key insights: (1) the algorithm achieves rapid convergence, particularly in
complex environments, and (2) environmental complexity paradoxically enhances search efficiency by
providing richer tactile cues that accelerate hypothesis elimination. This phenomenon arises because
intricate geometries introduce distinct contact signatures, enabling the algorithm to discard incorrect
hypotheses faster than in simpler, less informative settings.

The core algorithm, designed for 2D localization, was extended to 3D through innovative hy-
pothesis confirmation and rejection protocols. By decoupling positional and orientational search
dimensions, our 3D implementation avoids the curse of dimensionality, achieving comparable com-
putational complexity to the 2D case while improving robustness. Furthermore, we developed a
probabilistic framework to address real-world challenges such as sensor noise and imperfect prior
maps to maintain reliability under practical conditions. The probabilistic algorithm has demonstrated
much greater resilience to noisy data and the environment compared to the deterministic approach.
Apart from its higher computational demands, it exhibits no deflections relative to the deterministic
algorithm. The method’s compatibility with established time-continuous search techniques was also
demonstrated, enabling hybrid strategies that combine the precision of tactile search with the efficiency
of motion-planning approaches.

The proposed algorithm is specifically designed for objects that contain multiple parallel surfaces
at a distinct height. This design choice reflects common constraints in many real-world tasks, particu-
larly in industrial and domestic assembly settings where such geometries are prevalent (e.g., sockets,
ports, jigs, or fixture-based systems). Thus, this case is practically the most relevant.

While the current implementation focuses on positional localization, the architecture naturally
extends to full 6-DOF pose estimation through systematic expansion of the hypothesis space. Fu-
ture work will address orientational search by developing adaptive sampling strategies that exploit
mechanical constraints in peg-hole interactions, potentially using hierarchical search spaces to man-
age computational complexity. Additional directions include integration with force-torque sensing
for contact-rich environments and validation in industrial assembly tasks with variable friction and
material properties.
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The algorithm’s ability to transform environmental complexity into a computational advantage
suggests broad applicability beyond peg-in-hole scenarios. Potential applications range from micro-
surgical robotics, where tactile feedback is critical, to space-constrained maintenance tasks in aerospace
systems. By providing a framework that effectively bridges geometric priors, probabilistic reasoning,
and tactile exploration, this work advances the frontier of contact-based robotic perception, offering a
principled approach to manipulation in information-constrained environments.

Funding: The research leading to these results has received funding from the European Union’s Horizon Europe
Framework Programme under grant agreement No 101070596 (euROBIN).

Appendix

If the estimated map point p;' converges towards the initial touch point pg', both given in the map
coordinate system, then the final touch point p, (k) is guaranteed to lie within the target region Sg. The
convergence of p)’ towards p{ can be proven by showing that the search area S;(k) is monotonically
decreasing in each iteration step k and that the estimated point p)’ € S;(k). In the following we
consider three regions: the selection region S;(k) at iteration step k, the region touched by the robot
St(k), and the target region Sg. The proof relies on the following theorem:

Theorem 1 (Monotonic Convergence). Let M be a map consisting of disjoint regions S;, each corresponding
to a unique horizontal face in 3D space. Suppose:

*  The initial touch point pg' € Ss(0), which defines the initial region Ss(0) = S;(0).

*  Ateachiteration step k > 0, the algorithm computes the displacement d™ = pg' — p}', p;* € Ss(k), and
the robot touches the new region Si(k +1).

®  The candidate region is updated as:

Ss(k+1) = {p; € S;(k) | p; +d" € Si(k+1)}.

Then, for all k > 0:

1. Ss(k+1) C Ss(k) (strict subset property),
2. pg € Ss(k) (the initial touch point given in the map coordinate system is contained in the selection
region).

Proof.

We prove the lemma by induction on k, demonstrating that the selection region S;(k) is strictly
decreasing while always containing the initial touch point pf'.

Base Case (k = 0)

By definition, an algorithm determines
Py € Ss(0), S:(0) = St (0).
Thus, the lemma holds for k = 0.

Inductive Step
We now show these properties hold for k + 1.

Step 1: Shrinking of Selection Region

The algorithm computes the displacement vector:

d" =pg —pe,
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Sk +1)

Figure 16. Registration process in k-th step. The region with dashed lines denotes the part that will be removed
form S; (k) in the next iteration.

where p!' € S;(k) is the estimated point at iteration k. The newly detected region is denoted by
Si(k+ 1) and the candidate selection region is updated as:

Ss(k+1) = {pj € Ss(k) | pj +d" € Si(k+1)}.

Since by definition p}* € Ss(k) and p}’' +d™ € S, and since Sg N S;(k + 1) = @, at least the point p}’
is excluded from Ss(k+ 1), pI* € Ss(k+1). Thus at least one element is guaranteed to be excluded
from the set S;(k), which ensures

Ss(k+1) € Ss(k).

Thus, the strict subset property holds.

Step 2: Containment of the Initial Touch Point

By induction assumption, the initial touch point satisfies pj' € Ss(k). If the newly touched region
St(k+1) is equal to Sg, the algorithm finishes as the correct point has been identified. If this is not the
case, Sg # S¢(k +1) and since Sg N S (k + 1) = @, the initial touch point pfj remains in Ss(k +1).
This concludes the proof of the theorem.

Conclusion
By induction, we conclude that for all k > 0:

1.  Ss(k+1) € Ss(k), ensuring monotonic shrinkage.
2. pyt € Ss(k), ensuring the true initial point is never eliminated.

The algorithm continues until the robot touches the goal region S,. Therefore, the algorithm converges
to a sufficiently small search region S; containing p(', completing the proof. [J
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