
Article Not peer-reviewed version

Exploring Dominating Functions and

Their Complexity in Subclasses of

Weighted Chordal Graphs and Bipartite

Graphs

Chuan-Min Lee *

Posted Date: 27 November 2024

doi: 10.20944/preprints202411.2117.v1

Keywords: domination; total domination; {k}-domination; k-tuple domination; strongly chordal graph; chordal

bipapartite graph; proper interval graph; convex bipartite graph; totally balanced matrix; totally unimodular

matrix

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/1380416

Article

Exploring Dominating Functions and Their
Complexity in Subclasses of Weighted Chordal Graphs
and Bipartite Graphs

Chuan-MIn Lee

Department of Applied Artificial Intelligence, Ming Chuan University, 5 De Ming Road, Guishan District, Taoyuan City 333,
Taiwan; joneslee@mail.mcu.edu.tw; Tel.: +886-3-350-7001 (ext. 3438)

Abstract: Domination problems are fundamental problems in graph theory with diverse applications in op-

timization, network design, and computational complexity. This paper investigates {k}-domination, k-tuple

domination, and their total domination variants in weighted strongly chordal graphs and chordal bipartite

graphs—two well-studied subclasses of chordal graphs and bipartite graphs. We extend existing theoretical

models to explore the less-explored domain of vertex-weighted graphs and establish efficient algorithms for these

domination problems. Specifically, the {k}-domination problem in weighted strongly chordal graphs and the total

{k}-domination problem in weighted chordal bipartite graphs are shown to be solvable in O(n + m) time. For

weighted proper interval graphs and convex bipartite graphs, we solve the k-tuple domination and total k-tuple

domination problems inO(n2.371552 log2(n) log(n/δ)), where δ is the desired accuracy. Furthermore, for weighted

unit interval graphs, the k-tuple domination problem achieves a significant complexity improvement, reduced

from O(nk+2) to O(n2.371552 log2(n) log(n/δ)). These results are achieved through a combination of linear and

integer programming techniques, complemented by totally balanced matrices, totally unimodular matrices, and

graph-specific matrix representations such as neighborhood and closed neighborhood matrices.

Keywords: domination; total domination; {k}-domination; k-tuple domination; strongly chordal graph; chordal

bipapartite graph; proper interval graph; convex bipartite graph; totally balanced matrix; totally unimodular

matrix

1. Introduction

Domination is a fundamental concept in graph theory and widely regarded as a critical graph
optimization problem. Over the years, it has attracted significant attention due to its diverse applica-
tions in network design, resource optimization, social network analysis, and computational complexity.
Its importance was first notably recognized in 1990, when a special issue of Discrete Mathematics was
dedicated entirely to this topic [1]. By 1998, more than 1,200 papers had been published on domination
and its variants, which led to the release of two seminal books on the subject [2,3]. Since then, the field
has experienced rapid growth, with over 5,000 papers exploring various types of domination in graphs.
Three additional books [4–6] have been published in recent years to capture the latest advancements in
domination theory. Among these variants, total domination has gained particular prominence and has
become a well-researched problem, as outlined in [7].

1.1. Current Research Directions

An active area of current research focuses on {k}-domination and total {k}-domination. Domination
and total domination are special cases when k = 1. Extensive studies on these problems have
revealed insights into computational complexity and solution techniques [8–11,15,20–33]. For instance,
{k}-domination is polynomial-time solvable for strongly chordal graphs, but remains NP-complete
for chordal bipartite graphs [8]. Similarly, total {k}-domination is solvable in polynomial time for
chordal bipartite graphs [9] but NP-complete for bipartite planar graphs [10]. From an approximation
perspective, both problems can be approximated within a factor of ln n in polynomial time, where n is
the number of vertices in the graph [11].

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202411.2117.v1
http://creativecommons.org/licenses/by/4.0/

2 of 36

Beyond {k}-domination, the k-tuple domination and total k-tuple domination problems have also
garnered attention. While polynomial-time solutions exist for specific graph families, such as strongly
chordal graphs, interval graphs, and web graphs [12–14], the problems remain NP-complete for others,
such as chordal and planar graphs [12,15]. The k-tuple total domination problem can be solved in
O(n3k) time for weighed proper interval graphs [16]. Furthermore, for k < 4, the running time of
O(n3k) can be improved to be O(n2k+4). For weighted unit interval graphs, the k-tuple and total
k-tuple domination problems can be solved in O(nk+2) and O(nk+3) time [17], respectively. The
dichotomy between tractable and intractable cases has also been a focus of study in [36–43].

1.2. Research Gap and Motivation

Despite significant advancements, most studies on (total) {k}-domination and (total) k-tuple
domination have concentrated on unweighted graphs. Comparatively, much less attention has been
given to these problems in weighted graphs, despite their widespread use in real-world systems to
model costs, capacities, or priorities. Exploring these domination problems in weighted graphs offers
a significant opportunity for further research and development.

To bridge this gap, we focus on the {k}-domination and total {k}-tuple domination problems for
weighted strongly chordal graphs and chordal bipartite graphs. Additionally, we investigate k-tuple
domination and total k-tuple domination for weighted proper interval graphs and weighted convex
bipartite graphs.

1.3. Scope of Study

Strongly chordal graphs and chordal bipartite graphs are well-studied classes that include several
important subclasses, such as trees, proper interval graphs, convex bipartite graphs, and bipartite
permutation graphs [18]. These classes are characterized by specific vertex ordering constraints, which
facilitate various computational operations. Employing these properties, we aim to develop efficient
algorithms for solving domination problems on weighted graphs.

Most existing research on domination in weighted graphs assigns weights to vertices, with
each vertex’s weight representing attributes like importance, cost, or influence that directly impact
domination parameters. Following this convention, this paper focuses exclusively on vertex-weighted
graphs, and the term “weighted graph” refers specifically to this context.

1.4. Contributions

This paper presents the following contributions:

1. {k}-Domination for Weighted Strongly Chordal Graphs: We demonstrate that the {k}-domination
problem in weighted strongly chordal graphs can be solved in O(n + m) time, where n and m
denote the number of vertices and edges, respectively. This result is achieved by refining Hoffman
et al.’s method [19] and leveraging properties of adjacency lists and totally balanced matrices.

2. Total {k}-Domination for Weighted Chordal Bipartite Graphs: Building on structural simi-
larities between chordal bipartite graphs and strongly chordal graphs, we extend the refined
framework to solve the total {k}-domination problem in O(n + m) time for weighted chordal
bipartite graphs.

3. k-Tuple Domination for Weighted Proper Interval Graphs: Using linear and integer linear
programming techniques, we solve the k-tuple domination problem for weighted proper interval
graphs in O

(
n2.371552 log2(n) log(n/δ)

)
time, where δ is the desired accuracy. Since a graph is a

proper interval graph if and only if it is a unit interval graph [18], we reduce the complexity from
O(nk+2) [17] to O

(
n2.371552 log2(n) log

(n
δ

))
.

4. Total k-Tuple Domination for Weighted Convex Bipartite Graphs: We achieve the same time
complexity bound, O

(
n2.371552 log2(n) log

(n
δ

))
, for solving the total k-tuple domination problem

in weighted convex bipartite graphs.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

3 of 36

This study is purely theoretical and includes formal proofs of correctness and efficiency, enriching
the understanding of domination problems in these graph classes.

1.5. Organization of the Paper

The remainder of the paper is organized as follows:

• Section 2: Preliminaries

This section provides a foundation of essential concepts and definitions that underpin our research.
We introduce and explore fundamental properties of strongly chordal graphs, chordal bipartite
graphs, proper interval graphs, and convex bipartite graphs. To set the stage for our linear
programming approach, we formally define (total) {k}-domination and (total) k-tuple domination.
Additionally, we review matrix-theoretic tools, specifically adjacency matrices, totally balanced
matrices, greedy matrices, and totally unimodular matrices, which play a critical role in our modeling
framework.

• Section 3: {k}-Domination in Weighted Strongly Chordal Graphs

This section formulates the {k}-domination problem an integer linear program in matrix form.
We demonstrate how to solve the {k}-domination problem for weighted strongly chordal graphs
in O(n + m) time by refining Hoffman et al.’s method [19] using concepts from totally balanced
matrices, greedy matrices, and adjacency lists.

• Section 4: Total {k}-Domination in Weighted Chordal Bipartite Graphs

This section describes how to adapt the matrix-based framework to solve the total {k}-domination
problem in weighted chordal bipartite graphs. By using the structural similarities between chordal
bipartite and strongly chordal graphs, we demonstrate the versatility of our approach and provide
a comprehensive analysis of its applicability to both graph types.

• Section 5: k-Tuple Domination and Total k-Tuple Domination

This section focuses on using linear and integer linear programming for totally unimodular matrices
to solve the k-tuple domination problem for weighted proper interval graphs and the total k-tuple
domination problem for weighted convex bipartite graphs in O

(
n2.371552 log2(n) log(n/δ)

)
time.

• Section 6: Conclusions

The paper concludes by summarizing our findings, discussing the theoretical implications of our
results, and proposing directions for future research that extends these domination techniques to
other classes of weighted graphs.

2. Preliminaries

This paper integrates critical insights from multiple fields, including graph classes, linear alge-
bra, graph theory, algorithms, and linear programming, each contributing indispensable tools and
perspectives that enhance both the formulation and depth of our analysis. This section presents the
fundamental concepts most pertinent to understanding the study’s objectives and methodology. For
definitions, notations, additional concepts, or more comprehensive details not covered in this section,
standard textbooks and monographs—such as Introduction to Algorithms [44], Theory of Linear and
Integer Programming [45], Graph Theory [46], Introduction to Linear Algebra [47], and Graph Class: A
Survey [18]—are recommended as supplementary resources.

2.1. Graphs and Their Representations

Each graph G = (V, E) in this paper is finite, undirected, and contains no multiple edges or
self-loops, where V is the vertex set and E is the edge set of G. If the vertex and edge sets are not
explicitly specified, they are denoted by V(G) and E(G), respectively.

Two vertices u and v in a graph G are adjacent if they are connected with an edge, i.e., (u, v) ∈ E(G),
and are also called neighbors. The degree of a vertex v in G, denoted by degG(v), is the number of
neighbors of v. For any vertex v ∈ V(G), the neighborhood of v in G, denoted by NG(v), is the set of

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

4 of 36

neighbors of v, so that |NG(v)| = degG(v). A vertex u is a closed neighbor of v if either u ∈ NG(v) or
u = v. The closed neighborhood of v, denoted by NG[v], is the set of closed neighbors of v.

Let G = (V, E) and G′ = (V′, E′) be two graphs. If V′ ⊆ V and E′ ⊆ E, then G′ is a subgraph of
G. If G′ is a subraph of G, and G′ contains all the edge (u, v) ∈ E with u, v ∈ V′, then G′ is an induced
subgraph; we say that G′ is induced by V′ and written as G[V′].

Graphs in this paper are represented using adjacency lists. The adjacency-list representation of a
graph G = (V, E) consists of an array of |V| lists. Each vertex v ∈ V is associated with a list of all
neighbors of v. Figure 1 provides an example of the adjacency-list representation for a graph G with 4
vertices and 4 edges.

2 3

1 4

(a) (b)

1

2

3

4

2 3 /

1 3 /

1 2 4 /

3 /

Figure 1. A representation of a graph G. (a) The graph G with 4 vertices and 4 edges. (b) The adjacency-
list representation of G.

This representation is efficient in terms of memory usage. The amount of memory required to
store a graph in this representation is O(n + m), where n and m represent the number of vertices and
edges, respectively. Adjacency lists support efficient operations such as

• Neighbor Access: Accessing all (closed) neighbors of a vertex v takes O(deg(v) + 1) time, as they
are directly stored in a list. With each vertex maintaining its own neighbor list, this structure
enables quick access to both neighbors and closed neighbors.

• Traversal: Traversing all vertices and edges in the graph takes O(n + m) time. This efficiency is
particularly advantageous in algorithms like Depth-First Search (DFS) and Breadth-First Search
(BFS).

2.2. {k}-Domination and Total {k}-Domination in Weighted Graphs

A dominating set D of a graph G = (V, E) is a subset of V such that |NG[v] ∩ D| ≥ 1 for every
v ∈ V, while a total dominating set D is a subset of V such that |NG(v) ∩ D| ≥ 1 for every v ∈ V. The
domination number of G, denoted by γ(G), is the minimum cardinality of a dominating set of G. The
total domination number of G, denoted by γt(G), is the minimum cardinality of a total dominating set
of G. The domination problem is to find a dominating set of G with the minimum cardinality, and the
total domination problem is to find a total dominating set of G with the minimum cardinality.

Figure 2 illustrates a dominating set D1 = {v1, v4} and a total dominating set D2 = {v2, v4} for
the same graph. Let G denote the graph in this figure. While D2 also qualifies as a dominating set of G,
D1 does not qualify as a total dominating set, since NG(vi) ∩ D1 is empty for i ∈ {1, 4}.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

5 of 36

v1 v2

v3 v4

v5

(a)

v1 v2

v3 v4

v5

(b)

Figure 2. Two sets D1 = {v1, v4} and D2 = {v2, v4}. (a) D1 is a dominating set. (b) D2 is a total
dominating set.

Domination and total domination can be expressed in terms of functions. Let f : V → {0, 1} be a
labeling function of a graph G = (V, E). The function f is a dominating (respectively, total dominating)
function of G if ∑v∈NG [v] f (v) ≥ 1 (respectively, ∑v∈NG(v) f (v) ≥ 1) for every v ∈ V. The labeling
weight of f is defined as ∑v∈V f (v).

Table 1 presents a dominating function f and a total dominating function g for the graph shown
in Figure 2. The function f is associated with the set D1 and g with the set D2. Both functions have a
labeling weight of 2, equal to |D1| and |D2|, respectively.

Table 1. Values of dominating functions f and g, and membership in sets D1 and D2 for the graph in
Figure 2.

Vertex v f (v) g(v) In D1? In D2?

v1 1 0 Yes No
v2 0 1 No Yes
v3 0 0 No No
v4 1 1 Yes Yes
v5 0 0 No No

Clearly, the domination number γ(G) is the minimum labeling weight of a dominating function,
i.e.,

γ(G) = min{∑
v∈V

f (v) | f is a dominating function of G}.

Similarly, the total domination number γt(G) is the minimum labeling weight of a total dominating
function, i.e.,

γt(G) = min

{
∑

v∈V
f (v) | f is a total dominating function of G

}
.

Definition 1. Let k be a fixed positive integer, and let f : V → {0, 1, . . . , k} be a labeling function of a
graph G = (V, E). The function f is a {k}-dominating (respectively, total {k}-dominating) function of G if
∑v∈NG [v] f (v) ≥ k (respectively, ∑v∈NG(v) f (v) ≥ k) for every v ∈ V. The labeling weight of f is defined
as ∑v∈V f (v). The {k}-domination problem is to find a {k}-dominating function of G with the minimum
labeling weight, while the total {k}-domination problem is to find a total {k}-dominating function of G with the
minimum labeling weight.

By Definition 1, domination and total domination correspond to {1}-domination and total {1}-
domination, respectively.

Let G be the graph shown in Figure 2. Table 2 provides the values of a function f for each vertex
in G and checks whether the {2}-domination condition is satisfied. This verification confirms that f is
a valid {2}-dominating function for G.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

6 of 36

Table 2. Values of a {2}-dominating function f for each vertex of the graph G in Figure 2

Vertex v f (v) NG[v] ∑u∈NG [v] f (u)

v1 0 {v1, v2, v3} f (v1) + f (v2) + f (v3) = 2
v2 1 {v1, v2, v4} f (v1) + f (v2) + f (v4) = 3
v3 1 {v1, v3, v4} f (v1) + f (v3) + f (v4) = 3
v4 2 {v2, v3, v4, v5} f (v2) + f (v3) + f (v4) + f (v5) = 4
v5 0 {v4, v5} f (v4) + f (v5) = 2

We now introduce the concepts of {k}-domination and total {k}-domination for weighted graphs.
As mentioned earlier in the introduction, this paper focuses exclusively on vertex-weighted graphs.

Definition 2. Let w : V → R be a function that assigns a weight w(v) to each vertex v of a graph G = (V, E).
We refer to w as a vertex-weight function, and (G, w) as a weighted graph.

Definition 3. Let k be a fixed positive integer. The labeling weight of a {k}-dominating function or a total
{k}-dominating function f of a weighted graph (G, w) is defined as ∑v∈V(G) f (v) · w(v). The {k}-domination
problem for a weighted graph (G, w) is to find a {k}-dominating function of G with the minimum labeling
weight, while the total {k}-domination problem is to find a total {k}-dominating function with the minimum
labeling weight.

An unweighted graph H can be treated as a specific case of a weighted graph, where every vertex
v ∈ V(H) has a weight w(v) = 1. The primary difference in defining the {k}-domination problem for
unweighted and weighted graphs lies in the calculation of the labeling weight.

• In unweighted graphs, the labeling weight of a {k}-dominating function is simply the sum of the
function values assigned to each vertex, i.e., ∑v∈V f (v), where each vertex has an implicit weight
of 1.

• In weighted graphs, each vertex is assigned a specific weight through a vertex-weight function
w(v). The labeling weight is then calculated as ∑v∈V f (v) · w(v), meaning that the contribution of
each vertex to the total weight depends on both the value of the labeling function f (v) and the
vertex’s weight w(v).

Table 3 presents the values of a {2}-dominating function f and vertex weights w for the graph
G = (V, E) shown in Figure 2. The table indicates that the labeling weight of f for the unweighted
graph G is 4, based on ∑v∈V f (v), and the labeling weight for the weighted graph (G, w) is 12,
calculated as ∑v∈V f (v) · w(v).

Table 3. Labeling weights of the {2}-dominating function f for the unweighted and weighted graphs.

Vertex v Weight w(v) f (v) f (v) · w(v)

v1 2 0 0
v2 3 1 3
v3 1 1 1
v4 4 2 8
v5 2 0 0

Labeling Weight 4 12

This distinction also applies to the definitions of total {k}-domination on unweighted and
weighted graphs. Therefore, the introduction of vertex weights in weighted graphs alters how the
overall labeling weight is determined in both the {k}-domination and total {k}-domination problems.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

7 of 36

2.3. k-Tuple Domination and Total k-Tuple Domination in Weighted Graphs

Let k be a fixed positive integer, and let f : V → {0, 1} be a labeling function for a graph
G = (V, E). The function f is a k-tuple dominating function of G if ∑v∈NG [v] f (v) ≥ k for every v ∈ V.
Similarly, f is a total k-tuple dominating function if ∑v∈NG(v) f (v) ≥ k for every v ∈ V. The labeling
weight of f is defined as ∑v∈V f (v).

The k-tuple domination problem aims to find a k-tuple dominating function of G with the
minimum labeling weight. Similarly, the total k-tuple domination problem seeks a total k-tuple
dominating function with the minimum labeling weight.

Domination and total domination correspond to 1-tuple domination and total 1-tuple domination,
respectively.

Definition 4. Let k be a fixed positive integer. The labeling weight of a k-tuple dominating function or a
total k-tuple dominating function f of a weighted graph (G, w) is defined as ∑v∈V(G) f (v) · w(v). The k-tuple
domination problem for a weighted graph (G, w) is to find a k-tuple dominating function with the minimum
labeling weight. Similarly, the total k-tuple domination problem is to find a total k-tuple dominating function
with the minimum labeling weight.

Figure 3 illustrates a graph G = (V, E) with six vertices. Table 4 provides the labeling weights for
a 2-tuple dominating function f and a total 2-tuple dominating function g for both the unweighted
graph G and the weighted graph (G, w).

v4
v3v5

v6

v1

v2

Figure 3. A graph with six vertices.

The function f assigns values as shown in the table, satisfying the 2-tuple domination condition
for each vertex. For instance, vertex v2 is dominated because f (v2) + f (v4) + f (v5) ≥ 2. The labeling
weights differ for the unweighted and weighted versions due to the vertex weights w(v).

Interestingly , g is also a 2-tuple dominating function of G. However, for the weighted graph
(G, w), the labeling weight of g is smaller than that of f , demonstrating that g is more efficient in terms
of weight minimization.

Table 4. Labeling weights for a 2-tuple dominating function f and a total {2}-tuple dominating function
g in weighted and unweighted graphs.

Vertex v Weight w(v) f (v) g(v) f (v) · w(v) g(v) · w(v)

v1 2 1 0 2 0
v2 3 0 0 0 0
v3 1 0 1 0 1
v4 4 1 1 4 4
v5 2 1 1 2 2
v6 2 0 0 0 0

Labeling Weight 3 3 8 7

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

8 of 36

2.4. Strongly Chordal Graphs and Chordal Bipartite Graphs

A chord in a cycle of a graph is an edge that connects two non-consecutive vertices in the cycle.
A chordal graph is a graph in which every cycle with four or more vertices has a chord. A perfect
elimination ordering of a graph G = (V, E) is an ordering v1, v2, . . . , vn of the vertices such that for any
indices i < j < k, if (vi, vj) ∈ E and (vi, vk) ∈ E, then (vj, vk) ∈ E. Rose [48] proved that a graph is
chordal if and only if it admits a perfect elimination ordering.

A chord (xi, xj) in a cycle C with vertices ordered as x1, x2, . . . , x2k is called an odd chord if |i− j| is
odd. A graph G is a strongly chordal graph if it is chordal, and every cycle of 2k vertices in G, where
k ≥ 3, contains an odd chord. Figure 4 demonstrates a strongly chordal graph and the Hajós graph. The
Hajós graph is chordal but not strongly chordal since the cycle C = (u1, u2, . . . , u6) contains no odd
chords.

v4
v3v5

v6

v7
v1

v2

(a)

u2

u6 u4

u1

u5 u3

(b)

Figure 4. Two chordal graphs. (a) A strongly chordal graph. (b) The Hajós graph (right).

A strong elimination ordering v1, v2, . . . , vn of a graph G = (V, E) is a perfect elimination ordering
such that for each i < j and k < ℓ, if (vi, vℓ) ∈ E, (vi, vk) ∈ E, and (vk, vj), then (vℓ, vj) ∈ E. Farber [49]
proved that a graph is strongly chordal if and only if it admits a strong elimination ordering. Figure 4
shows a strongly chordal graph with a strong elimination ordering v1, v2, . . . , v7.

A bipartite graph is a graph G = (X, Y, E) in which the vertex set V(G) can be partitioned into
two disjoint sets X and Y such that every edge in the graph connects a vertex in X to a vertex in Y,
and no edge connects two vertices within the same set. In other words, there are no edges between
vertices within X or within Y. Therefore, a bipartite graph does not have a cycle of an odd number of
vertices. Figure 5 shows two graphs: The left one is bipartite, while the right one contains a cycle of
three vertices and is therefore not bipartite.

a

b

c

d

e

f

(a)

g

h

ij

k

(b)

Figure 5. Two graphs. (a) A bipartite graph with six vertices. (b) A graph with a cycle of three vertices.

A chordal bipartite graph is a bipartite graph in which every cycle of more than four vertices
contains a chord. Figure 6 shows two bipartite graphs: The left one is chordal bipartite, while the right
one is not.

Let G = (V, E) be a graph, and let v1, v2, . . . , vn be an ordering of V. Let Gi be a subgraph of G
induced by {vi, vi+1, . . . , vn}. A weak elimination ordering of G is an ordering v1, v2, . . . , vn such that for
any indices i < j < k, if vj, vk ∈ NGi (vi), then NGi (vj) ⊆ NGi (vk).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

9 of 36

Uehara [50] showed that a graph is chordal bipartite if and only if it admits a weak elimination
ordering. The ordering v1 = b1, v2 = a2, v3 = b2, v4 = a3, v5 = b3, v6 = a1 is a weak elimination
ordering of the chordal bipartite graph in Figure 6(a).

a1

a2

a3

b1

b2

b3

(a)

c1

c2

c3

d1

d2

d3

(b)

Figure 6. Two bipartite graphs. (a) A chordal bipartite graph. (b) A bipartite graph with an induced
cycle (c1, d2, c2, d3, c3, d1).

2.5. Proper Interval Graphs and Convex Bipartite Graphs

A graph G = (V, E) is an interval graph if there exits an interval model on the real line such that
each closed interval Iv = [av, bv] in the interval model corresponds to a vertex v ∈ V, and two vertices
u, v ∈ V are adjacent in G if and only if their corresponding intervals overlap, that is:

Iu ∩ Iv ̸= ∅.

Figure 7 illustrates an interval graph G = (V, E), which is constructed from an interval model
on the real line. The top part of the figure represents the intervals [0.5, 2.5], [2, 4.5], [3.5, 5.5], and
[5, 7.5], labeled as vertices v1, v2, v3, and v4, respectively. An edge exists between two vertices if their
corresponding intervals overlap. For example, the intervals [0.5, 2.5] and [2, 4.5] overlap, resulting in
an edge between v1 and v2 in the graph. Similarly, v2 and v3 share an edge due to the overlap of their
intervals, as do v3 and v4.

The lower part of the figure depicts the corresponding graph structure. The vertices v1, v2, v3, and
v4 are connected by edges according to their interval overlaps, forming a path graph. .

0 1 2 3 4 5 6 7 8

v1

v2

v3

v4

v1

v2 v3

v4

Figure 7. An interval graph constructed from the intervals [0.5, 2.5], [2, 4.5], [3.5, 5.5], [5, 7.5]. The upper
part shows the interval representation, and the lower part shows the corresponding graph.

An interval graph is called a proper interval graph if there exists an interval model for this interval
graph such that for every pair of intervals [au, bu] and [av, bv] in the model, neither interval is strictly
contained within the other, i.e., it is not true that au ≤ av and bv ≤ bu. A unit interval graph is a
special type of interval graph where all the intervals associated with the vertices have the same length.
Actually, a unit interval graph G if and only if G is a proper interval graph [18]. They form the same
class of graphs.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

10 of 36

Let B = (X, Y, E) be a bipartite graph. An ordering P of X in B has the adjacency property if for
each vertex y ∈ Y, NB(y) consists of vertices that are consecutive in the ordering P of X. A bipartite
graph B = (X, Y, E) is a convex bipartite graph if there is an ordering of X or Y satisfying the adjacency
property.

The convex bipartite graph illustrated in Figure 8 consists of two disjoint sets of vertices, U =

{u1, u2, u3, u4} and V = {v1, v2, v3, v4}. The graph satisfies the adjacency property: for every vertex in
U, the vertices of its neighbors in V are consecutive in the ordering. For instance, the neighbors of u1

are v1 and v2 are consective in the ordering. Similarly, u2 is adjacent to consecutive vertices v2, v3, and
v4. This property is consistent for all vertices in U.

u1

u2

u3

u4

v1

v2

v3

v4

Figure 8. A convex bipartite graph.

2.6. Matrices and Vectors

A matrix is a rectangular array of numbers arranged in rows and columns. The horizontal arrange-
ment of entries forms the rows, and the vertical arrangement forms the columns. An m× n matrix is a
matrix with m rows and n columns. The individual numbers within the matrix are called entries. The
entry in the i-th row and j-th column is called the (i, j)-entry.

Matrices are typically written within square brackets or parentheses; in this paper, they are written
within parentheses. For example, a 3× 4 matrix is written as1 1 0 0

0 1 0 1
1 0 1 0

.

Let aij represent the entry in the i-th row and j-th column of an m× n matrix A. The m× n matrix
A can be denoted by A = (aij) ∈ Rm×n and represented as follows:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

,

where Rm×n represents the set of all matrices with m rows and n columns whose entries are real
numbers. Formally, this is defined as

Rm×n = {M | M is an m× n matrix and each entry of M is in R}.

For any matrices A = (aij) and B = (bij) in Rm×n, we define the entrywise inequality A ≤ B to
mean that aij ≤ bij for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. For any scalar k ∈ R, we write A ≥ k to indicate
that every entry of A is at least k. These definitions extend naturally to other similar cases involving
entrywise comparisons. If each entry of A is k, then A is called a k-matrix.

Let A = (aij) ∈ Rm×n. The transpose of A, denoted by AT , is an n × m matrix defined by
AT = (aji) ∈ Rn×m. For a matrix

A =

(
1 2 3
4 5 6

)
,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

11 of 36

which is a 2× 3 matrix, its transpose AT is

AT =

1 4
2 5
3 6

,

which is a 3× 2 matrix.
A submatrix of a matrix M is obtained by removing any number of rows or columns from M,

including the possibility of removing none. Consequently, M is a submatrix of itself when no rows or
columns are removed.

A block of matrix A ∈ Rm×n is a submatrix formed by rows i, i + 1, . . . , j and columns k, k+ 1, . . . , ℓ.
It is represented as:

A(i : j, k : ℓ),

where 1 ≤ i ≤ j ≤ m and 1 ≤ k ≤ ℓ ≤ n. The following matrix A consists of four blocks A1 = A(1 :
2, 1 : 2), A2 = A(1 : 2, 3 : 4), A3 = A(3 : 4, 1 : 2), and A4 = A(3 : 4, 3 : 4):

A =


1 0 1 0
0 1 1 0
1 1 0 1
0 1 0 1

 =

(
A1 A2

A3 A4

)
.

A square matrix is a matrix with the same number of rows and columns. The identity matrix is
a square matrix I ∈ Rn×n such that an entry of I is 1 if its row index and column index are equal;
otherwise, xij = 0. For example, the 3× 3 identity matrix looks like this:

I =

1 0 0
0 1 0
0 0 1

.

A row vector and a column vector are two types of vectors that differ in their orientation within a
matrix or vector space. A row vector is a 1× n matrix represented as

v =
(

v1 v2 . . . vn

)
,

where v1, v2, . . . , vn are the vector elements. A column vector is an n× 1 matrix represented as

v =


v1

v2
...

vn

,

where v1, v2, . . . , vn are the vector elements. Clearly, the transpose operation converts a row vector into
a column vector and vice versa.

To ensure clarity and avoid ambiguity in notation, we adopt the following conventions: Vectors
are represented by boldface upright lowercase letters, such as v, x, or y. For example, v = (vi) ∈ Rn

denotes a column vector with n entries. Matrices are represented by boldface upright uppercase letters,
such as A, B, or M, and entries of a matrix A are denoted by aij for the entry in the i-th row and j-th
column. Scalars, by contrast, are represented by italicized lowercase letters, such as a, b, or c.

In general, when we refer to v as a vector, we mean that it is a column vector by default. If a row
vector is intended, this will be explicitly indicated. If each entry of a vector is a constant k, the vector is
called a k-vector.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

12 of 36

2.7. Totally Balanced, Totally Unimodular, and Greedy Matrices

A matrix M is called a (0, 1)-matrix if every entry in M is either 1 or 0. In a matrix of numbers, the
sum of all entries in a row is called the row sum, while the sum of all entries in a column is called the
column sum. A (0, 1)-matrix is said to be totally balanced if it does not contain any square submatrix
satisfying all the following “forbidden conditions”:

1. All row sums are equal to 2.
2. All column sums are equal to 2.
3. All columns are distinct.

Here is an example of a matrix that is not totally balanced:

A =


1 0 1 0 0
0 1 1 0 1
1 1 0 1 0
0 1 0 1 1
1 0 1 1 0

.

To see why A is not totally balanced, consider the the submatrix F ∈ R3×3 obtained by removing
the 4th and 5th rows and columns:

F =

1 0 1
0 1 1
1 1 0

.

In F, (1) all row sums are equal to 2, (2) all column sums are equal to 2, and (3) all columns are
distinct. This submatrix satisfies the forbidden conditions, so A is not totally balanced. In contrast, the
following matrix B is an example of a totally balanced matrix:

B =

1 0 1 0
0 1 0 1
1 0 0 1

.

A (0, 1)-matrix is greedy if it does not contain any of the following forbidden submatrices:1 1
0 1
1 0

 and

1 1
1 0
0 1

.

A greedy matrix is in standard greedy form [19] if it does not contain the following Γ-matrix as a
submatrix: (

1 1
1 0

)
.

The matrix L below is a greedy matrix in standard greedy form. However, the matrix Q is a
greedy matrix that is not in standard greedy form. This is because the submatrix of Q formed by
deleting rows 3 and 4 and columns 3 and 4 is identical to the Γ-matrix.

L =


1 1 0 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

 and Q =


1 1 0 1
1 0 1 1
1 1 0 0
0 1 1 0

.

Let det(M) denote the determinant of a matrix M. The matrix M is totally unimodular if det(M′) ∈
{−1, 0, 1} for every square submatrix M′ of M.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

13 of 36

Consider the matrices A and B:

A =

(
1 0 1
0 1 −1

)
, B =

1 1 0
0 1 1
1 0 1

.

The matrices A and B illustrate examples of a totally unimodular matrix and a matrix that is not
totally unimodular, respectively. Matrix A is totally unimodular because the determinant of every
square submatrix of A is in {−1, 0, 1}. In contrast, matrix B is not totally unimodular. For example,
det(B) is 2. Thus, B fails to satisfy the defining condition of total unimodularity. This comparison
underscores the stringent conditions a matrix must satisfy to be classified as totally unimodular.

Furthermore, a matrix has the consecutive ones property if its rows can be permuted in such a
way that, in every column, all the 1s appear consecutively. This property is particularly relevant in
applications involving binary matrices and is a useful tool for analyzing matrix structures.

The following theorem reveals a connection between the consecutive ones property and total
unimodularity.

Theorem 1 ([45]). If a (0, 1)-matrix has the consecutive ones property for columns, then it is totally
unimodular.

2.8. Linear and Integer Linear Programming

Linear programs are optimization problems that maximize or minimize a linear objective function,
subject to linear constraints. A minimization linear program seeks to minimize the objective function,
while a maximization linear program aims to maximize it.

Linear programming is the field of study and methodology focused on formulating, analyzing,
and solving linear programs. It encompasses the theories, algorithms, and techniques developed for
solving linear programs. In essence, linear programming refers to the process and theory, while a
linear program is an individual problem instance.

Formulating a minimize linear program requires the following inputs: n real numbers c1, c2, . . . , cn

(coefficients of the objective function), m real numbers b1, b2, . . . , bm (resource limits), and m × n
coefficients aij for i = 1, 2, . . . , m and j = 1, 2, . . . , n (constraint coefficients). The goal is to find values
for the decision variables x1, x2, . . . , xn that minimize the objective function, subject to all constraints.
This formulation is given by:

minimize
n

∑
j=1

cjxj (P1)

subject to
n

∑
j=1

aijxj ≥ bi for i = 1, 2, . . . , m (P2)

xj ≥ 0 for j = 1, 2, . . . , n. (P3)

In this formulation, the expression in (P1) is the objective function; the variables x1, x2, . . . , xn are
called decision variables; and the inequalities in (P2) and (P3) together form the constraints. Specifically,
the n inequalities in (P3) are nonnegativity constraints, requiring each xj to be nonnegative.

In mathematical optimization, duality provides two perspectives on an optimization problem: the
primal problem and its corresponding dual. When the primal is a minimization problem, its dual is a
maximization problem, and conversely, when the primal is a maximization problem, the dual will be a
minimization problem. Thus, for a pair of primal and dual problems, one is a maximization problem,
and the other is a minimization problem.

Weak duality states that, for any feasible solutions to a pair of primal and dual problems, the value
of the maximization problem is always less than or equal to the value of the minimization problem.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

14 of 36

Strong duality further asserts that, at optimality, the optimal value of the primal problem is equal to the
optimal value of its dual.

For any linear program considered as the primal, there exists a corresponding dual linear program.
Each constraint in the primal corresponds to a variable in the dual, and each decision variable in
the primal corresponds to a constraint in the dual. The dual of the minimization linear program in
equations P1–P3 is formulated as follows:

maximize
m

∑
i=1

biyi

subject to
m

∑
i=1

aijyi ≤ cj for j = 1, 2, . . . , n

yi ≥ 0 for i = 1, 2, . . . , m.

In this dual problem, y1, y2, . . . , ym are the dual variables associated with each primal constraint;
b1, b2, . . . , bm are the coefficients of the dual objective function; and constraints in the dual correspond
to the primal variables, and c1, c2, . . . , cn values become the bounds in the dual constraints.

For a minimization linear problem, the primal can be written in matrix form as

minimize cTx

subject to Ax ≥ b

x ≥ 0,

where c = (cj) ∈ Rn, x = (xj) ∈ Rn, A = (aij) ∈ Rm×n, and b = (bi) ∈ Rm. Its dual can be expressed
as

maximize bTy

subject to ATy ≤ c

y ≥ 0,

where, y = (yi) ∈ Rm; A, b, and c are as defined in the primal formulation.
In many cases, capturing the essence of a linear program is best achieved without excessive

notation or detail. To highlight the fundamental structure clearly and concisely, we adopt forms such
as

min{cTx | x ≥ 0, Ax ≥ b} and max{cTx | x ≥ 0, Ax ≤ b},

to facilitate analysis, communication, and efficient solution of linear programs.
A solution to an optimization problem is a column vector x = (x1, x2, . . . , xn)T , often called a point

because each solution corresponds to a specific set of values for the variables, which can be represented
as a single point in geometric space. In other words, each feasible solution is associated with a unique
location in this space. A solution that satisfies all constraints is known as a feasible solution, whereas a
solution that fails to satisfy at least one constraint is an infeasible solution. The set of points that satisfy
all the constraints is referred to as the feasible region. In linear programming, the feasible region is called
a polyhedron, as it is the intersection of linear constraints. A polyhedron is often denoted by P, such as
P = {x | x ≥ 0, Ax ≥ b}, representing the set of all points x that meet the specified constraints.

In an optimization problem, a constraint is called active at a given solution point if the solution
causes the constraint to hold as an equality, effectively “binding” the solution at the boundary defined
by the constraint. An extreme point of a polyhedron occurs where several of the constraints in the
problem are active, often as many as the dimension of the space.

The fundamental theorem of linear programming ([51]) states that if a linear program has an optimal
solution, at least one optimal solution will be located at an extreme point of the polyhedron. This result

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

15 of 36

is foundational because it allows optimization algorithms like the simplex method to focus on the
extreme points of the feasible region, significantly reducing the computational effort required to find
an optimal solution. If every extreme point of a polyhedron consists of integer values for all variables,
then the polyhedron is said to be integral.

Theorem 2 establishes that linear programs satisfy strong duality.

Theorem 2 ([44]).

min{cTx | x ≥ 0, Ax ≥ b} = max{bTy | y ≥ 0, ATy ≤ c}.

An integer linear program is an optimization model similar to a linear program but includes an
additional constraint that requires all decision variables to be integers. This distinction substantially
impacts both the complexity and solution methods for these problems. While linear programs can
be solved in polynomial time [52], integer linear programs are NP-complete [53], making them more
computationally challenging.

Integer linear programs satisfy weak duality but do not always satisfy strong duality, meaning the
optimal values of an integer linear program and its dual may differ.

To solve integer linear programs, advanced methods such as branch-and-bound, branch-and-cut,
and cutting planes are often employed. These methods frequently use linear relaxations, which remove
the integer constraints to produce a continuous solution, providing useful bounds on the solution to
an integer linear program. In certain cases, the optimal objective value of an integer linear program
matches that of its linear relaxation, as illustrated by Theorem 3.

Theorem 3 ([54]). If A, b, and c all have integer entries, with at least one of b or c as a constant vector, and
A is totally balanced, then the optimal objective values of the integer program

max{cTx | Ax ≤ b, x ∈ Z and x ≥ 0}

and its linear relaxation are the same.

3. {k}-Domination in Weighted Strongly Chordal Graphs

In this section, we demonstrate that the {k}-domination problem in weighted strongly chordal
graphs with n vertices and m edges can be solved in O(n + m) time. The solution follows a four-step
framework, as outlined below:

(1) Modeling (Section 3.1): The {k}-domination problem is formulated as an integer linear pro-
gramming task using matrix representations, particularly adjacency matrices. This formulation
establishes the theoretical foundation for the algorithmic approaches described in subsequent
sections. We aim to solve the integer linear program by its relaxation.

(2) Primal and Dual Algorithms by Hoffman et al. (Section 3.2): We introduce the primal and dual
algorithms proposed by Hoffman et al. [19], which solve the linear program:

min{cTx + dTz | Ax + z ≥ b, x ≥ 0, z ≥ 0}.

These algorithms provide a robust framework for solving linear programming problems, forming
the basis for adapting solutions to the {k}-domination problem.

(3) Refined Algorithms for Weighted Strongly Chordal Graphs (Section 3.3): Building on Hoffman
et al.’s algorithms, this section introduces refinements tailored to the structural properties of
weighted strongly chordal graphs. These refinements reduce the computational complexity to
O(n2), representing an intermediate step toward the final optimized solution.

(4) Optimized Algorithms with Enhanced Data Structures (Section 3.4): By integrating advanced
data structures, this section further reduces the overall time complexity from O(n2) to O(n + m).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

16 of 36

This optimization capitalizes on the sparsity and adjacency structure of strongly chordal graphs,
achieving linear-time performance relative to the graph’s size.

3.1. Modeling

We start by presenting Lemma 1 to concentrate exclusively on non-negative vertex weights (R≥0).
This simplification allows us to assume that all weighted graphs have non-negative vertex weights.

Lemma 1. Let w be a vertex-weight function of a graph G = (V, E), and let γk(G, w) represent the the
minimum labeling weight of a {k}-dominating function for (G, w). Define S = {v | v ∈ V, w(v) < 0}
and let w′ be a vertex-weight function such that w′(v) = max{w(v), 0} for each v ∈ V. Then, γk(G, w) =

γk(G, w′) + k ∑v∈S w(v).

Proof. Let f be a {k}-dominating function for (G, w) with minimum weight, so γk(G, w) = ∑v∈V w(v) f (v).
Define a function f ′ such that f ′(v) = k for v ∈ S and f ′(v) = f (v) for v ∈ V \ S. Since f ′ is also a
{k}-dominating function of G and w′(v) = 0 for v ∈ S, we obtain

γk(G, w′) ≤ ∑
v∈V

w′(v) f ′(v) = ∑
v∈V\S

w(v) f (v)

= ∑
v∈V

w(v) f (v)− ∑
v∈S

w(v) f (v)

≤ γk(G, w)− k ∑
v∈S

w(v).

Conversely, let h be a {k}-dominating function for (G, w′) with the minimum labeling weight, so

γk(G, w′) = ∑
v∈V

w′(v)h(v) = ∑
v∈V\S

w′(v)h(v).

Define f such that f (v) = k for v ∈ S and f (v) = h(v) for v ∈ V \ S. Clearly, f is a {k}-dominating
function of G, and w′(v) = 0 for v ∈ S. We have

γk(G, w) ≤ ∑
v∈V

w(v) f (v) = ∑
v∈V\S

w(v) f (v) + k ∑
v∈S

w(v)

= ∑
v∈V\S

w′(v)h(v) + k ∑
v∈S

w(v)

= γk(G, w′) + k ∑
v∈S

w(v).

This completes the proof.

Let (G, w) be a weighted graph with V(G) = {v1, v2. . . . , vn}. We associate a variable xj with
each vj ∈ V(G) and require that xj ∈ {0, 1, . . . , k} for j = 1, 2, . . . , n. Let wj = w(vj) for 1 ≤ i ≤ n.
The {k}-domination problem for the weighted graph G is formulated as the following integer linear
program IPk(G, w):

minimize
n

∑
j=1

wjxj

subject to ∑
vj∈NG [vi]

xj ≥ k for i = 1, 2, . . . , n

xj ∈ {0, 1, . . . , k} for j = 1, 2, . . . , n.

Lemma 2. Let x∗ = (x∗1 , x∗2 , . . . , x∗n) be an optimal solution to IPk(G, w). Then, x∗j ≤ k for all j = 1, 2, . . . , n.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

17 of 36

Proof. Clearly, ∑n
j=1 wjx∗j is the minimized and xj ≥ 0 for j = 1, 2, . . . , n. Assume that there exists

an x∗i in x∗ such that x∗i > k. For any constraint involving x∗i , the constraint remains satisfied if x∗i
is replaced with k. Consequently, the resulting objective value is less than ∑n

j=1 wjx∗j , leading to a
contradiction. Therefore, the lemma holds.

By Lemma 2, we can reformulate IPk(G, w) as follows:

IPk(G, w) :

minimize
n

∑
j=1

wjxj

subject to ∑
vj∈NG [vi]

xj ≥ k for i = 1, 2, . . . , n

xj ≥ 0 and xj ∈ Z for i = 1, 2, . . . , n.

In graph theory, the neighborhood matrix and the closed neighborhood matrix are two distinct repre-
sentations of the adjacency relationships in a graph H with vertices V(H) = {v1, v2, . . . , vn}.

• The neighborhood matrix of G is a matrix N = (nij) ∈ Rn×n such that nij = 1 if vj ∈ NH(vi);
otherwise, nij = 0.

• The closed neighborhood matrix of G is a matrix M = (mij) ∈ Rn×n such that mij = 1 if
vj ∈ NH [vi]; otherwise, mij = 0.

Let M = (mij) ∈ Rn×n be the closed neighborhood matrix of the weighted graph G with
w = (wj) ∈ Rn

≥0, x = (xj) ∈ Rn, and p = (pi) ∈ Rn, where pi = k for 1 ≤ i ≤ n.
We present the linear program LPk(G, w) and its dual LPd

k (G, w) using the closed neighborhood
matrix M.

Primal (LPk(G, w)): Dual (LPd
k(G, w)):

minimize wTx maximize pTy

subject to Mx ≥ p subject to MTy ≤ w

x ≥ 0. y ≥ 0.

Let IPopt and LPopt denote the optimal objective values of an integer linear program IP and its
linear relaxation LP, respectively. The polyhedron for IP is a subset of the polyhedron for LP, since IP
includes the additional constraint that variables must be integers. Therefore, the optimal value of LP,
minimized over a larger polyhedron, cannot be greater the optimal value of IP. Hence, LPopt ≤ IPopt.

In subsequent sections, we aim to demonstrate that for weighted strongly chordal graphs, the
optimal value of IPk(G, w) is equal to the optimal value of its linear relaxation LPk(G, w). This allows us
to solve this integer linear program by obtaining an integral solution directly from its linear relaxation.

3.2. Primal and Dual Algorithms by Hoffman et al.

Let A = (aij) ∈ Rm×n be a greedy matrix in standard form, with vectors x = (xj) ∈ Rn,
y = (yi) ∈ Rm, and z = (zi) ∈ Rm as variables. Let c = (cj) ∈ Rn, b = (bi) ∈ Rm, and d = (di) ∈ Rm

be constant vectors with c ≥ 0, d ≥ 0, and b1 ≥ b2 ≥ · · · ≥ bm ≥ 0. The primal linear program P is
defined as:

minimize cTx + dTz

subject to Ax + z ≥ b

x ≥ 0, z ≥ 0.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

18 of 36

The dual program D is formulated as:

maximize bTy

subject to ATy ≤ c

y ≥ 0, y ≤ d.

Hoffman et al. [19] introduced two greedy algorithms to solve P and its dual D in polynomial time,
and constructed an integer optimal solution for P. These algorithms are presented in Algorithms 1
and 2.

Algorithm 1 provides an integer optimal solution for D. The dual program D contains n con-
straints and m decision variables y1, y2, . . . , ym. A constraint j is defined as tight if

m

∑
i=1

aijyi = cj.

Let J = {j | j is tight} and α(j) = max{i | aij = 1, yi > 0, ∑m
i=1 aijyi = cj}. Algorithm 1 determines

each variable yi in increasing order of i and takes the largest feasible value. It also computes J and α(j)
for use in Algorithm 2.

Algorithm 1: Dual Solution for Program D with Greedy Matrices

1: J ← ∅; ĉ← c;
2: for i← 1 to m do
3: yi ← min

{
di, min

{
ĉj | aij = 1

}}
;

4: if yi > 0 then
5: if yi = ĉj for some j then
6: Choose the largest j satisfying the condition;
7: J ← J ∪ {j};
8: α(j)← i;

9: Update ĉj ← ĉj − yi for all j such that aij = 1;

Algorithm 2 computes the primal solution corresponding to the dual solution by iteratively
adjusting xj values.

Algorithm 2: Primal Solution for Program P Corresponding to Dual Solution

1: b̂← b; xj ← 0 for all j ̸∈ J;
2: while J ̸= ∅ do
3: Let k be the last column of J;
4: Set xk ← b̂α(k);
5: Update b̂i ← b̂i − xk for all i such that aik = 1;
6: Remove k from J;

7: for i← 1 to m do
8: zi ← max(0, b̂i);

Theorem 4 ([19]). The dual program D is solved by Algorithm 1 for all c ≥ 0, d ≥ 0, and b1 ≥ b2 ≥ · · · ≥
bm ≥ 0 if and only if A is greedy in standard greedy form. Further, Algorithm 2 constructs an integer optimal
solution to the primal problem P. Both algorithms run in O(mn) time.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

19 of 36

3.3. Refined Algorithms for Weighted Strongly Chordal Graphs

We present Lemma 3 as a fundamental observation linking greedy matrices in standard greedy
form to the closed neighborhood matrices of strongly chordal graphs with strong elimination orderings.

Lemma 3. If the vertices of a strongly chordal graph G are ordered by its strong elimination ordering, then the
closed neighborhood matrix of G is a greedy matrix in standard greedy form.

Proof. We start by proving the following claim.

Claim 1. A greedy matrix in standard greedy form is precisely a totally balanced matrix that contains no
submatrix identical to the Γ-matrix.

Let S1 represent the set of all greedy matrices in standard greedy form, and let S2 represent the
set of all totally balanced matrices that exclude any submatrix identical to the Γ-matrix. To prove the
claim, we will show that S1 = S2.

According to Hoffman et al. [19], every greedy matrix is totally balanced. This establishes that
S1 ⊆ S2.

By definition, a greedy matrix is a (0, 1)-matrix that does not contain either of the following
forbidden submatrices:

F1 =

1 1
0 1
1 0

 and F2 =

1 1
1 0
0 1

.

It is clear that a totally balanced matrix that excludes any submatrix identical to the Γ-matrix
must also exclude F1 and F2 as submatrices. Therefore, any matrix in S2 must also be in S1, giving us
S2 ⊆ S1.

Since we have both S1 ⊆ S2 and S2 ⊆ S1, it follows that S1 = S2. This completes the proof of the
claim.

Farber [49] showed that if the vertices of a strongly chordal graph G are ordered by its strong
elimination ordering, then the closed neighborhood matrix of G is totally balanced and excludes any
submatrix identical to the Γ-matrix.

Thus, the lemma hols.

For clarity and ease of reference, we present the formulations of P, D, LPk(G, w), and LPd
k(G, w)

together below.

Primal (P): Dual (D):

minimize cTx + dTz maximize bTy

subject to Ax + z ≥ b subject to ATy ≤ c

x ≥ 0, z ≥ 0. y ≥ 0, y ≤ d.

Primal (LPk(G, w)): Dual (LPd
k(G, w)):

minimize wTx maximize pTy

subject to Mx ≥ p subject to MTy ≤ w

x ≥ 0. y ≥ 0.

Theorem 5. For weighted strongly chordal graphs (G, w) with n vertices arranged by strong elimination
ordering, the {k}-domination problem can be solved in O(n2) time.

Proof. Lemma 3 allows us to observe that for a weighted strongly chordal graph (G, w) with n vertices
arranged in strong elimination ordering, the closed neighborhood matrix M of G is a greedy matrix in
standard greedy form. Additionally, in the linear program LPk(G, w), we have w ≥ 0, and the vector

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

20 of 36

p is constant with entries equal to k. Consequently, the programs LPk(G, w) and its dual LPd
k(G, w)

for the weighted strongly chordal graph (G, w) are specific instances of the programs P and D, where
z = 0 and the vector d is absent.

This connection enables us to modify and simplify Hoffman et al.’s original algorithms, Algo-
rithms 1 and 2, to yield Algorithms 3 and 4. We present Algorithms 3 and 4 below with the necessary
line-by-line transformations.

To modify and simplify Algorithm 1 into Algorithm 3, the following line-by-line adjustments
(highlighted in blue) were made:

1. Line 1: Replace ĉ with ŵ and c with w.
2. Line 2: Adjust the loop range from m to n.
3. Line 3: Simplify the min calculation from min{di, min{ĉj | aij = 1}} to min{ŵj | mij = 1}.
4. Lines 5 and 6: Replace the original lines with the simplified expression j = max{j | yi =

ŵj, mij = 1}. Note that in the simplified algorithm, di is unnecessary in Line 3. Therefore, if yi > 0,
then yi from min{ŵj | mij = 1}must equal ŵj for some j. Thus, choosing the largest j such that
yi = ŵj can be expressed equivalently as j = max{j | yi = ŵj, mij = 1}.

5. Line 9: Substitute each ĉj with ŵj and aij with mij in the update statement.

Algorithm 3: Simplified Algorithm for LPd
k(G, w)

1: J ← ∅; ŵ← w;
2: for i← 1 to n do
3: yi ←min

{
ŵj | mij = 1

}
;

4: if yi > 0 then
5: j = max{j|yi = ŵj, mij = 1};
6: J ← J ∪ {j};
7: α(j)← i;

8: Update ŵj ← ŵj −yi for all j such that mij= 1;

To modify and simplify Algorithm 2 into Algorithm 4, we made the following adjustments
(highlighted in red):

1. Line 1: Change b̂ to p̂. Replace b with p.
2. Line 4: Adjust b̂α(k) to p̂α(k).
3. Line 5: Replace b̂i with p̂i. Replace aik with mik.
4. Remove Lines 7 and 8, since they are unnecessary in the simplified algorithm for LPk(G, w).

Algorithm 4: Simplified Algorithm for LPk(G, w) with Totally Balanced Matrices

1: p̂←p; xj ← 0 for all j ̸∈ J;
2: while J ̸= ∅ do
3: Let k be the last column of J;
4: Set xk ← p̂α(k);
5: Update p̂i ← p̂i −xk for all i such that mik= 1;
6: Remove k from J;

By Theorem 4, the linear program LPk(G, w) and its dual LPd
k(, w) are solvable in O(n2) time for

weighted strongly chordal graphs G with vertices in strong elimination ordering, and Algorithms 3
and 4 can provide integer optimal solutions for LPk(G, w) and LPd

k(G, w). Thus, the {k}-domination
problem for weighted strongly chordal graphs can be solved in O(n2) time.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

21 of 36

3.4. Optimized Algorithms with Enhanced Data Structures

In the previous section, we established that the linear program LPk(G, w) and its dual are special
cases of the problems tackled by Hoffman et al.’s algorithms. This enables us to apply their method
directly to solve these programs in O(n2) time. Hoffman et al.’s algorithms are robustly constructed
around the relationships between totally balanced matrices, greedy matrices, and linear programs,
using the strengths of matrix structures and concepts from linear and integer programming. In contrast,
the closed neighborhood matrices M in LPk(G, w) are closely tied to graph adjacency structures.

The adjacency-list representation, as discussed in Section 2.1, plays a crucial role in enhancing the
efficiency of Algorithms 3 and 4. By incorporating optimized data structures for critical steps in these
algorithms, we improve the overall time complexity from O(n2) to O(n + m), where n represents the
number of vertices, and m represents the number of edges in a graph. Since the maximum number
of edges in a graph is (n

2) = O(n2), this improvement makes the algorithms particularly effective for
sparse strongly chordal graphs when m≪ n2. Theorem 6 demonstrates how to obtain the desired time
complexity.

Theorem 6. For weighted strongly chordal graphs (G, w) with n vertices arranged by strong elimination
ordering, the {k}-domination problem can be solved in O(n + m) time, where m is the number of edges in G.

Proof. We begin with demonstrating how each line of Algorithm 3 relates to the adjacency list and other
optimized data structures and the running time of each line based on the adjacency list representation
and the number of vertices (n) and edges (m):

Algorithm 3: Simplified Algorithm for LPd
k(G, w)

1: J ← ∅; ŵ← w;
2: for i← 1 to n do
3: yi ←min

{
ŵj | mij = 1

}
;

4: if yi > 0 then
5: j = max{j|yi = ŵj, mij = 1};
6: J ← J ∪ {j};
7: α(j)← i;

8: Update ŵj ← ŵj −yi for all j such that mij= 1;

1. Line 1:

This line initializes the set J to keep track of selected indices j and makes a copy of the vector w as
ŵ. This step does not directly involve the adjacency list, as it’s a basic initialization of variables.
We implement J as an array with n entries and initialize the array with each entry set to zero. This
array structure allows us to store specific information about each element efficiently, and each
entry can be accessed, updated, or retrieved in O(1) time. The initialization step takes O(n) time.

2. Line 2:

This loop iterates over each index i, where n corresponds to the number of constraints equal to
the number of vertices. It executes n times in total. For each iteration, it processes Lines 3–8.

(a) Line 3: For each i, the algorithm assigns yi the minimum value among the entries ŵj for
all j such that mij = 1. Clearly, mij = 1 means vj ∈ NG[vi]. Using the adjacency list, the
algorithm can directly access all neighbors of vi, including vi itself, in O(degG(vi) + 1)
time.

(b) Line 4:

This line checks whether the calculated yi value is greater than 0. It can be done in O(1)
time

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

22 of 36

(c) Lines 5-7: This block finds the largest j for i such that yi = ŵj and mij = 1.

The adjacency list helps here by providing access to each index j of vj ∈ NG[vi], allowing
the algorithm to identify all possible values of j where yi = ŵj. Once the appropriate j is
found, J and α(j) are updated. Since J is an array, the operation J ∪ {j} is translated to
setting J[j] = 1. Conversely, J does not contain some k if J[k] = 0. We also implement the
operation α(j)← i by an array. The operation α(j)← i is translated to setting α[j] = i.
Hence, the steps take O(degG(vi) + 1) time.

(d) Line 8:

This line updates ŵj for each index j of vertices vj ∈ NG[vi], subtracting yi from ŵj. Using
the adjacency list, the algorithm can efficiently locate each j where mij = 1 and apply the
update only to those specific j values for vertices vj ∈ NG[vi].

The overall time complexity depends on the sum of all neighbor operations across vertices,
yielding

O
(

n +
n

∑
i=1

(degG(vi) + 1)

)
= O(n + m),

where n is the number of vertices and m is the number of edges.
We next demonstrate how each line of Algorithm 4 relates to the adjacency list and other optimized

data structures and the running time of each line based on the adjacency list representation and the
number of vertices (n) and edges (m):

Algorithm 4: Simplified Algorithm for LPk(G, w) with Totally Balanced Matrices

1: p̂←p; xj ← 0 for all j ̸∈ J;
2: while J ̸= ∅ do
3: Let k be the last column of J;
4: Set xk ← p̂α(k);
5: Update p̂i ← p̂i −xk for all i such that mik= 1;
6: Remove k from J;

1. Line 1: This line initializes p̂ as a copy of p and sets xj = 0 for all j ̸∈ J.

To set xj = 0 for all j ̸∈ J, we implement a stack Ĵ and set it to be empty. Then, we visit each entry
J[j] for 1 ≤ j ≤ n, set xj = 0 if J[j] = 0, and push j into the stack Ĵ if J[j] ̸= 0. After visiting all
entries of J, we delete J and rename Ĵ with J. All operations can be done in O(n) time. Since p
also has n entries, copying p and takes O(n) time.

2. Line 2 (While Loop): The loop runs until J is empty, so the number of iterations depends on the
number of elements in J. Clearly, it executes at most n times. Each iteration involves Lines 3–6, so
we analyze each of these lines within the context of a single iteration.

(a) Line 3: Select the last column k from J. In other words, we have to select the largest index k
of J with J[k] = 1. Since we have implemented a stack, pushing each index j with J[j] = 1
into the stack from smallest one to the largest one, deleting J, and renaming the stack with J
and deleting . Therefore, selecting the last column of J is equivalent to popping an element
from J. Hence, it takes O(1) time.

(b) Line 4: Set xk based on p̂α(k). Retrieving the value from α(k) and assigning xk takes O(1)
time.

(c) Line 5: Update p̂i for all i such that mik = 1. Since mik = 1, this operation iterates over each
index i of vertices vi ∈ NG[vk]. Using the adjacency list, this step takes O(deg(vk) + 1) for
each iteration.

(d) Line 6: Remove k from J. J is implemented as a stack. Removing the last element takes
O(1) time.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

23 of 36

The overall time complexity of the algorithm is:

O
(

n + ∑
k∈J

(degG(vk) + 4)

)
= O(n + m),

where n is the number of vertices and m is the number of edges in the graph. This linear time
complexity makes the algorithm efficient for sparse graphs.

Following the discussion above, Algorithms 3 and 4 both run in O(n + m) time. Consequently,
the theorem holds.

4. Total {k}-Domination in Weighted Chordal Bipartite Graphs

The total {k}-domination problem in weighted chordal bipartite graphs can be efficiently solved
by structural properties of these graphs. Specifically, we demonstrate how the neighborhood matrix of
a chordal bipartite graph ordered by its weak elimination ordering forms a greedy matrix in standard
greedy form. The following lemma establishes the foundational connection between weak elimination
orderings and greedy matrices.

Lemma 4. If the vertices of a chordal bipartite graph are ordered by its weak elimination ordering, then the
neighborhood matrix of the graph is a greedy matrix in standard greedy form.

Proof. Let G be a chordal bipartite graph with the vertices ordered by its weak elimination ordering
v1, v2, . . . , vn, and let N = (nij) ∈ Rn×n be the neighborhood matrix of G. Since the neighborhood
matrix of a chordal bipartite graph is totally balanced [49], N is totally balanced. We now check if N
contains the Γ-matrix as a submatrix:

Γ =

(
1 1
1 0

)
.

Assume that N contains the Γ-matrix as a submatrix, shown below with entries chosen by rows
i, j and columns k, ℓ, where i < j and k < ℓ:

k ℓ

i 1 1
j 1 0 .

Since N is a neighborhood matrix, each aii is 0 for 1 ≤ i ≤ j. It imples that i ̸= k, i ̸= ℓ, and j ̸= k.
Furthermore, as bipartite graphs contain only cycles with even number of vertices, if j = ℓ, then vi, vj,
and vk would form a cycle of odd number of vertices, which is impossible. Thus, j ̸= ℓ.

Consider three cases:

• Case 1: i < k. Then, vi, vj, vk, and vℓ are all vertices of Gi. Since vi is adjacent to both vk and vℓ,
the neighborhood relationship NGi (vk) ⊆ NGi (vℓ) must hold. As vj ∈ NGi (vk), it follows that
vj ∈ NGi (vℓ). However, this implies that vj is adjacent to vℓ, which contradicts the assumption
that vj and vℓ are not adjacent.

• Case 2: k < i < ℓ. In this case, vi, vj, vk, and vℓ are all vertices of Gk. Since vi is adjacent to both vk
and vℓ, the neighborhood relationship NGk (vi) ⊆ NGk (vℓ) must hold. Consequently, vj ∈ NGk (vi)

implies vj ∈ NGk (vℓ). However, this contradicts the assumption that vj and vℓ are not adjacent.
• Case 3: ℓ < i. Here, vi, vj, vk, and vℓ are again vertices of Gk. By reasoning similar to Case 2, the

adjacency of vi to both vk and vℓ implies NGk (vi) ⊆ NGk (vℓ). Since vj ∈ NGk (vi), we deduce that
vj ∈ NGk (vℓ), which means vj and vℓ are adjacent. This contradicts the assumption that vj and vℓ
are not adjacent.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

24 of 36

These cases confirm that N is totally balanced and excludes the Γ-matrix as a submatrix. By
Claim 1, we conclude that the neighborhood matrix of a chordal bipartite graph ordered by its weak
elimination ordering is a greedy matrix in standard greedy form.

The following lemma is similar to Lemma 1. It allows us to concentrate exclusively on non-
negative vertex weights (R≥0).

Lemma 5. Let w be a vertex-weight function of a graph G = (V, E), and let γtk(G, w) represent the the
minimum labeling weight of a total {k}-dominating function for (G, w). Define S = {v | v ∈ V, w(v) < 0}
and let w′ be a vertex-weight function such that w′(v) = max{w(v), 0} for each v ∈ V. Then, γtk(G, w) =

γtk(G, w′) + k ∑v∈S w(v).

Proof. This lemma can be proved by the arguments similar to those for proving Lemma 1.

Let G be a chordal bipartite graph with the vertices arranged in weak elimination ordering with
N = (nij) ∈ Rn×n as its neighborhood matrix. Let w = (wj) ∈ Rn

≥0, x = (xj) ∈ Rn, and p = (pi) ∈ Rn,
where pi = k for 1 ≤ i ≤ n.

The total {k}-domination problem for weighted chordal bipartite graphs can be formulated as the
following integer linear program IPtk(G, w):

IPtk(G, w) :

minimize wTx

subject to Nx ≥ p

x ≥ 0, x ∈ Z.

Let LPtk(G, w) be the linear relaxation of IPtk(G, w), and let LPd
tk(G, w) be the dual program of

LPtk(G, w). We present the formulations of P, D, LPtk(G, w), and LPd
tk(G, w) together below:

Primal (P): Dual (D):

minimize cTx + dTz maximize bTy

subject to Ax + z ≥ b subject to ATy ≤ c

x ≥ 0, z ≥ 0. y ≥ 0, y ≤ d.

(1)

Primal (LPtk(G, w)): Dual (LPd
tk(G, w)):

minimize wTx maximize pTy

subject to Nx ≥ p subject to NTy ≤ w

x ≥ 0. y ≥ 0.

Theorem 7. For weighted chordal bipartite graphs (G, w) with n vertices arranged by its weak elimination
ordering, the total {k}-domination problem can be solved in O(n + m) time, where m is the number of edges in
G.

Proof. The proof proceeds in three steps:

1. Neighborhood Matrix Properties: By Lemma 4, we have established that for a weighted chordal
bipartite graph (G, w) with n vertices arranged by its weak elimination ordering, the neighbor-
hood matrix N of G is a greedy matrix in standard greedy form. This property ensures that the
constraints of the total {k}-domination problem are well-structured for efficient computation.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

25 of 36

2. Connection to Linear Programs: The primal and dual linear programs, LPtk(G, w) and LPd
tk(G, w),

for the weighted chordal bipartite graphs are specific instances of the linear programs P and D,
where z = 0 and the vector d is absent. These simplifications reduce the computational overhead
associated with solving the general cases.

3. Efficient Computation: Using arguments similar to those in the proofs of Theorems 5 and 6, we
use the greedy matrix property of N and advanced primal-dual algorithms to solve the relaxed
problem efficiently. Optimized data structures ensure that each step in the algorithm operates in
linear time relative to the size of the graph.

Combining these observations, the total {k}-domination problem for weighted chordal bipartite graphs
(G, w) can be solved in O(n + m) time.

5. Total k-Tuple Domination and k-Tuple Domination

The k-tuple domination and total k-tuple domination problems are fundamental in graph theory,
with applications in optimization and network analysis. In this section, we investigate these problems
for weighted proper interval graphs and weighted convex bipartite graphs. Utilizing structural
properties of these graph classes, we formulate integer linear programs with totally unimodular
constraint matrices, enabling efficient solutions via linear relaxations.

5.1. Integer Linear Programs with Totally Unimodular Matrices

Totally unimodular matrices allow integer solutions to be obtained directly from linear relaxations,
making them crucial in solving the k-tuple and total k-tuple domination problems efficiently. This
section presents our results about totally unimodular matrices and their applications.

5.1.1. Problem Formulations

Let (G, w) be a weighed graph with n vertices and m edges. The k-tuple domination problem for
(G, w) is formulated as an integer linear program IP×k(G, w):

minimize wTx, subject to Mx ≥ p, x ∈ {0, 1}n,

where M is the closed neighborhood matrix of G, w is the weight vector, and p is a k-vector. Its linear
relaxations LP×k(G, w)) is

minimize wTx, subject to Mx ≥ p, 0 ≤ x ≤ 1.

To incorporate the constraint x ≤ 1 into the standard inequality framework, we express it equivalently
as:

x ≤ 1 ⇐⇒ −x ≥ −1.

This transformation allows us to maintain a unified form for all constraints. Using this approach, the
linear program LP×k(G, w) can be rewritten as:

minimize wTx, subject to M′x ≥ p′, x ≥ 0,

where M′ =

(
M
−I

)
, p′ =

(
p
−q

)
, I is the identity matrix, and q is a 1-vector.

Similarly, the total k-tuple domination problem is formulated as an integer linear program
IP×tk(G, w):

minimize wTx, subject to Nx ≥ p, x ∈ {0, 1}n,

where N is the neighborhood matrix. Its linear relaxation LP×tk(G, w)) can be formulated as:

minimize wTx, subject to N′x ≥ p′, x ≥ 0,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

26 of 36

where N′ =

(
N
−I

)
, p′ =

(
p
−q

)
, I is the identity matrix, and q is a 1-vector.

5.1.2. Fundamental Lemmas on Totally Unimodular Matrices

In this section, we present our fundamental lemmas on totally unimodular matrices.

Lemma 6. Let A ∈ Rm×n be a totally unimodular matrix, and let I ∈ Rn×n be the identity matrix. Then, the
matrix

B =

(
A
−I

)
is also totally unimodular.

Proof. It is clear that the matrix −I is totally unimodular, as each determinant of any square submatrix
of −I evaluates to −1, 0, or 1, satisfying the definition of total unimodularity. Let B′ = (b′ij) ∈ Rp×p be
any square submatrix of B.

First, if the rows of B′ are formed exclusively from either A or −I, then B′ is totally unimodular
because A and −I satisfy the definition of total unimodularity by ensuring that every determinant of
their square submatrices is in {−1, 0, 1}.

Next, consider the case where the rows of B′ are formed from both A and−I. We compute det(B′)
using the Laplace expansion along a row i formed from −I. By the definition of Laplace expansion:

det(B′) =
p

∑
j=1

b′ij(−1)i+j det(B′ij),

where B′ij is the (p− 1)× (p− 1) square submatrix obtained by removing the i-th row and j-th column
from B′.

Since row i comes from −I, it has at most one nonzero entry, which is −1. This means that:

det(B′) = 0 or det(B′) = (−1)s det(B′ij),

where s is a non-negative integer determined by the row and column indices of the nonzero entry.
If B′ij still contains rows from −I, we recursively apply the Laplace expansion and remove rows

and columns associated with −I. Each step multiplies the determinant by (−1)s, with s ∈ {0, 1}.
Eventually, the process reduces B′ to a square submatrix of A.

Since A satisfies the definition of total unimodularity, every determinant of its square submatrices
is in {−1, 0, 1}. Therefore, det(B′) ∈ {−1, 0, 1} as well.

Thus, B is totally unimodular.

Lemma 7. Let A ∈ Rm×n be a totally unimodular matrix, and let I ∈ Rm×m be the identity matrix. Then, the
matrix (

A −I
)

is also totally unimodular.

Proof. By Lemma 6, we know that the matrix

B =

(
A
−I

)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

27 of 36

is totally unimodular. Take the transpose of B to obtain
(

A −I
)

. The determinant of each square

submatrix remains unchanged by transposing, so det(M) = det
(
MT) for each square submatrix M of(

A −I
)

. Consequently,
(

A −I
)

is a totally unimodular matrix.

Theorem 8 ([45]). Let A be an integral matrix. Then, A is totally unimodular if and only if for each integral
vector b, the polyhedron

{x | x ≥ 0, Ax ≤ b}

is integral.

Lemma 8. Let A be an integral matrix. Then, A is totally unimodular if and only if for each integral vector b,
the polyhedron

{x | x ≥ 0, Ax ≥ b}

is integral.

Proof. Assume that A contains r rows. By the properties of determinants under scalar multiplication
([47]), for each square submatrix A′ of A, we have

det(−A′) = (−1)r · det(A′).

If A is totally unimodular, then det(−A′) ∈ {−1, 0, 1}, which implies that −A is totally unimodu-
lar. Let s be an integer vector. Clearly,

s ∈ {x | x ≥ 0, Ax ≥ b} if and only if s ∈ {x | x ≥ 0,−Ax ≤ −b}.

By Theorem 8, the polyhedron {x | x ≥ 0,−Ax ≤ −b} is integral. Therefore, {x | x ≥ 0, Ax ≥ b} is
also integral.

Conversely, if {x | x ≥ 0, Ax ≥ b} is integral, then so is {x | x ≥ 0,−Ax ≤ −b}. By Theorem 8,
−A is totally unimodular. Following the same reasoning as above, −(−A) = A is therefore also totally
unimodular.

Thus, the lemma holds in both directions.

Lemma 9. Let A be a totally unimodular matrix. For each integral vector b, the polyhedron

{x | x ≥ 0, Ax = b}

is integral.

Proof. It is clear that the polyhedron {x | x ≥ 0, Ax = b} is equivalent to the following:

{x | x ≥ 0, Ax ≥ b, Ax ≤ b} = {x | x ≥ 0, Ax ≥ b} ∩ {x | x ≥ 0, Ax ≤ b}.

Following Theorem 8 and Lemma 8, the polyhedra {x | x ≥ 0, Ax ≥ b} and {x | x ≥ 0, Ax ≤ b}
are integral. Therefore, {x | x ≥ 0, Ax = b} is integral.

5.2. k-Tuple Domination in Weighted Proper Interval Graphs

We have formulated the k-tuple domination problem for weighted graphs (G, w) as the integer
linear program IP×k(G, w). For weighted proper interval graphs, solving IP×k(G, w) is equivalent to
directly solving the k-tuple domination problem.

The following lemma establishes a critical connection between the closed neighborhood matri-
ces of weighted proper interval graphs and totally unimodular matrices. This connection enables
IP×k(G, w) to be solved efficiently by addressing its linear relaxation LP×k(G, w).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

28 of 36

Lemma 10. The closed neighborhood matrix of a weighted proper interval graph is totally unimodular.

Proof. The lemma follows from two established results:

• A graph is a proper interval graph if and only if its closed neighborhood matrix has the consecutive
ones property for columns [18].

• If a (0, 1)-matrix has the consecutive ones property for columns, then it is totally unimodular [45].

Theorem 9. The k-tuple domination problem for weighted proper interval graphs (G, w) can be solved in the
running time of

O
(

n2.371552 log2(n) log(n/δ)
)

,

where n is the number of vertices, and δ is the desired accuracy within the range (0, 1].

Proof. Following Lemmas 6, 8, and 10, we know that the closed neighborhood matrix M of G and
the constraint matrix M′ in LP×k(G, w) are totally unimodular, and the polyhedron of LP×k(G, w) is
integer. Therefore, the optimal objective values of LP×k(G, w) and IP×k(G, w) are equal. Thus, solving
IP×tk(G, w) is equivalent to finding an integral solution to LP×tk(G, w). This implies that the total
k-tuple domination problem for weighted convex bipartite graphs can be solved by computing an
integral solution to LP×tk(G, w).

Recently, van den Brand [55] derandomized the algorithm Cohen et al. [56] to achieve that linear
programs of the form min{cTx | x ≥ 0, Ax = b} with no redundant constraints can be solved in the
running time

O
(
(nω + n2.5−α/2+≀(1) + n2+1/6+≀(1)) log2(n) log(n/δ)

)
,

where n is the number of decision variables, ω is the exponent of matrix multiplication, α is the dual ex-
ponent of matrix multiplication, and δ is the desired accuracy within the range (0, 1]. Williams
et al. [57] established ω ≤ 2.371552 and α ≥ 0.321334. This yields a simplified complexity of
O
(

n2.371552 log2(n) log(n/δ)
)

.

The linear program LP×k(G, w) is min{wTx | x ≥ 0, M′x ≥ p′}. To solve LP×k(G, w) by van
den Brand’s algorithm, we transform LP×k(G, w) into the form min{cTx | x ≥ 0, Ax = b} using slack
variables. The transformation steps are as follows:

1. Introduce Slack Variables.
Convert the inequality M′x ≥ p′ into an equality by introducing slack variables. Rewrite it as:

M′x = p′ + s,

where s ≥ 0 is a vector of slack variables. This ensures each constraint in the original inequality
has a corresponding non-negative slack variable.

2. Rewrite as Equalities.
Rearrange the equality above as:

M′x− s = p′.

Define a new vector x̃ =

(
x
s

)
, so we can express the constraints in matrix form as:

(
M′ −I

)
x̃ = p′.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

29 of 36

3. Extend the Objective Function.
Since the original objective function is wTx, extend it to include the slack variables by setting:

c =

(
w
j

)
,

where j is a zero vector. This ensures that the slack variables s do not affect the objective function.

Thus, the transformed linear program becomes:

min{cT x̃ | x̃ ≥ 0, Ax̃ = b},

where A =
(

M′ −I
)

, b = p′, x̃ =

(
x
s

)
, and c =

(
w
j

)
.

We verify the correctness and analyze the time complexity of this transformation by confirming
that the feasible sets of x and objective functions of the original and transformed problems are
equivalent. The steps are as follows:

1. Converting Inequalities to Equalities via Slack Variables
In LPtimesk(G, w), the inequality M′x ≥ p′ restricts x so that each entry of M′x is at least the
corresponding entry of p′. To convert this inequality into an equality, we introduce a vector of
slack variables s ≥ 0, rewriting it as:

M′x = p′ + s.

This ensures that M′x ≥ p′ holds if and only if there exists a non-negative vector s such that
M′x = p′ + s. Since M′ has 2n rows and n columns, the vector s consists of 2n entries. Setting up
the slack variables takes O(n) time.

2. Reformulating Constraints with Augmented Matrices

We define x̃ =

(
x
s

)
and rewrite the equality as:

Ax̃ = b,

where A =
(

M′ −I
)

and b = p′. This matrix formulation ensures that each slack variable
si directly accounts for the surplus required to satisfy each inequality. Constructing A requires
combining M′ with −I, and constructing x̃ requires combining x with s.

The matrix A has 2n rows and 3n columns. The vector x̃ has 3n rows and one column, resulting
in an augmented matrix, which takes O(n2) time. Hence, the step can be done in O(n2) time.

3. Ensuring Equivalence of Feasible Sets of x
In the original linear program, the feasible region is defined by all x ≥ 0 such that M′x ≥ p′.
In the transformed linear program, the feasible region is defined by all non-negative vectors

x̃ =

(
x
s

)
≥ 0 that satisfy Ax̃ = b. Clearly,

x ∈ {x | x ≥ 0, M′x ≥ p′} if and only if x ∈ {x | x ≥ 0, s ≥ 0, M′x = p′ + s}.

This establishes that the transformation preserves the feasible region.
4. Ensuring Equivalence of Objective Functions

The original objective function wTx depends only on x, so in the transformed program, we extend

it by defining c =

(
w
j

)
, where j is a zero vector. This construction prevents the slack variables

s from influencing the objective function, so that the objective cT x̃ = wTx in the transformed
program is identical to the original objective. Extending the objective vector takes O(n) time.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

30 of 36

Having verified that the transformation preserves both the feasible region and the objective
function, we conclude that the transformation is correct with the time complexity of O(n2).

Since M′ is totally unimodular, Lemmas 7 and 9 imply that A =
(

M′ −I
)

is totally unimodular,
and the polyhedron of the transformed linear program is integer.

Despite the transformed linear program containing 3n variables, it can still be solved in
O
(

n2.371552 log2(n) log(n/δ)
)

time. Consequently, the linear relaxation LP×k(G, w) runs in time of:

O
(

n2 + n2.371552 log2(n) log(n/δ)
)
= O

(
n2.371552 log2(n) log(n/δ)

)
.

5.3. Total k-Tuple Domination in Weighted Convex Bipartite Graphs

In this subsection, we explore the total k-tuple domination problem in weighted convex bipartite
graphs. In Section 5.1.1, we formulated the total k-tuple domination problem for weighted graphs
(G, w) as the integer linear program IP×tk(G, w). For weighted convex bipartite graphs (G, w), solving
IP×tk(G, w) is equivalent to directly solving the total k-tuple domination problem.

To establish a connection between the neighborhood matrices of weighted convex bipartite graphs
and totally unimodular matrices (as discussed in Sections 5.1 and 5.2), we begin by examining the
neighborhood matrix of a convex bipartite graph.

Figure 9 illustrates a convex bipartite graph G = (X, Y, E), where X = {x1, x2, x3, x4} and
Y = {y1, y2, y3, y4}.

y1

y2

y3

y4

x1

x2

x3

x4

Figure 9. A convex bipartite graph G = (X, Y, E), where X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4}.
The graph satisfies the adjacency property for the ordering of X.

The neighborhood matrix N of G is shown below:

x1 x2 x3 x4 y1 y2 y3 y4

x1 0 0 0 0 1 0 0 0
x2 0 0 0 0 1 1 0 0
x3 0 0 0 0 0 1 1 1
x4 0 0 0 0 0 1 0 1
y1 1 1 0 0 0 0 0 0
y2 0 1 1 1 0 0 0 0
y3 0 0 1 0 0 0 0 0
y4 0 0 1 1 0 0 0 0

=

(
A1 A2

A3 A4

)

The matrix N is partitioned into four blocks: A1, A2, A3, and A4. Since G is bipartite, no two
vertices in X or Y are adjacent. Therefore, A1 and A4 are zero-matrices. Moreover, the adjacency
property ensures that every column of A2 has consecutive ones. Then, A2 has the consecutive ones
property for columns. The block A3 is the transpose of A2 because of the symmetry of a neighborhood
matrix of a graph.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

31 of 36

Lemma 11. Let M be a square matrix partitioned as

M =

(
Q P
S R

)
,

where Q is a zero-matrix, and P and S are square matrices with det(P), det(S) ∈ {−1, 0, 1}. Then,

det(M) ∈ {−1, 0, 1}.

Proof. By a factorization involving the Schur complement [58], we have

det

(
P Q
R S

)
= det(P)det(S),

where P and S contribute independently to the determinant. Since det(P), det(S) ∈ {−1, 0, 1}, it
follows that

det

(
P Q
R S

)
∈ {−1, 0, 1}.

Next, let

M′ =

(
P Q
R S

)
.

To transform M′ into M, we perform column exchanges. Each column exchange introduces a sign
change in the determinant. Therefore, we have

det(M) = (−1)s det(M′),

where s is the number of column exchanges.
Since det(M′) ∈ {−1, 0, 1}, and sign changes do not affect the magnitude of the determinant, we

conclude
det(M) ∈ {−1, 0, 1}.

Theorem 10. Let G = (X, Y, E) be a convex bipartite graph, where the ordering of X satisfies the adjacency
property. Then, the neighborhood matrix N of G is totally unimodular.

Proof. Let X = {1, 2, . . . , r} and Y = {r + 1, r + 2, . . . , n}. The neighborhood matrix N of G, an n× n
matrix, can be partitioned as

N =

(
N1 N2

N3 N4

)
,

where N1 = N(1 : r, 1 : r), N2 = N(1 : r, r + 1 : n), N3 = N(r + 1 : n, 1 : r), N4 = N(r + 1 :
n, r + 1 : n). Since G is bipartite, N1 and N4 are zero-matrices.

The adjacency property of G ensures that N2 satisfies the consecutive ones property for columns.
By Theorem 1, N2 is totally unimodular. Since N3 = NT

2 and the transpose of a totally unimodular
matrix is also totally unimodular, N3 is totally unimodular.

To verify that N is totally unimodular, we show that every square submatrix N′ of N satisfies
det(N′) ∈ {−1, 0, 1}. Assume that N′ is composed of p rows and p columns, where 1 ≤ p ≤ n. We
consider three cases based on the structure of N′.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

32 of 36

Case 1: N′ Is a Submatrix of a Single Block.

If N′ is a submatrix of N1 or N4, it is a zero-matrix, so det(N′) = 0. If N′ is a submatrix of N2 or
N3, the total unimodularity of N2 and N3 ensures det(N′) ∈ {−1, 0, 1}.

Case 2: N′ Includes Rows and Columns from Exactly Two Blocks.

The rows and columns of N′ are from two blocks, N1 and N2, N2 and N4, N3 and N4, or N1 and
N3. Since N1 and N4 are zero-matrices, at least one row or column of N′ is entirely zero, implying
det(N′) = 0.

Case 3: N′ Includes Rows and Columns from All Four Blocks.

We partition N′ as

N′ =

(
N′1 N′2
N′3 N′4

)
,

where N′1 = N′(1 : s, 1 : t), N′2 = N′(1 : s, t + 1 : p), N′3 = N′(s + 1 : p, 1 : t), N′4 = N′(s + 1 :
p, t + 1 : p).

In this case, N′i is a submatrix of Ni for 1 ≤ i ≤ 4. Since N′1 and N′4 are submatrices of zero-
matrices, they are zero-matrices themselves. This reduces N′ to a dependency on N′2 and N′3. We
analyze based on the dimensions of the submatrices.

Case 3.1: p− t < s.

In this case, p− s < t. We partition N′ as

N′ =

(
N′′1 N′′2
N′′3 N′′4

)
,

where N′′1 = N′(1 : s, 1 : p− s), N′′2 = N′(1 : s, p− s + 1 : p), N′′3 = N′(s + 1 : p, 1 : p− s), N′′4 =

N′(s + 1 : p, p− s + 1 : p).
Here, N′′1 is a zero-matrix, and both N′′2 and N′′3 are square matrices. Notably, N′′2 contains a

column of zeros because p− s < t. We have det(N′′2) = 0. Since N′′3 is a submatrix of N3, it preserves
totally unimodularity, and thus det(N′′3) ∈ {−1, 0, 1}. By Lemma 11, det(N′) ∈ {−1, 0, 1}.

Case 3.2: p− t > s.

In this case, p− s > t. We partition N′ as

N′ =

(
N′′1 N′′2
N′′3 N′′4

)
,

where N′′1 = N′(1 : p− t, 1 : t), N′′2 = N′(1 : p− t, t + 1 : p), N′′3 = N′(p− t + 1 : p, 1 : t), N′′4 =

N′(p− t + 1 : p, t + 1 : p).
Here, N′′1 is a zero-matrix, and both N′′2 and N′′3 are square matrices. Notably, N′′2 contains a row

of zeros because p− t > s. We have det(N′′2) = 0. Since N′′3 is a submatrix of N3, it preserves totally
unimodularity, and thus det(N′′3) ∈ {−1, 0, 1}. By Lemma 11, det(N′) ∈ {−1, 0, 1}.

Case 3.3: p− t = s.

In this case, p− s = t. We partition N′ as

N′ =

(
N′′1 N′′2
N′′3 N′′4

)
,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

33 of 36

where N′′1 = N′(1 : s, 1 : t), N′′2 = N′(1 : s, t + 1 : p), N′′3 = N′(s + 1 : p, 1 : t), N′′4 = N′(s + 1 :
p, t + 1 : p).

Here, N′′1 is a zero-matrix, and both N′′2 and N′′3 are square matrices. Since N′′2 and N′′3 are
submatrices of totally unimodular matrices, their determinants satisfy det(N′′2) ∈ {−1, 0, 1} and
det(N′′3) ∈ {−1, 0, 1}. By Lemma 11, det(N′) ∈ {−1, 0, 1}.

In all subcases, det(N′) ∈ {−1, 0, 1}. Therefore, the neighborhood matrix N of the convex bipartite
graph G is totally unimodular.

Theorem 11. The total k-tuple domination problem for weighted convex bipartite graphs (G, w) can be solved
in the running time of

O
(

n2.371552 log2(n) log
(n

δ

))
,

where n is the number of vertices in G, and δ is the desired accuracy within the range (0, 1].

Proof. By Lemma 6, Lemma 8, and Theorem 10, the neighborhood matrix N of G and the constraint
matrix N′ in LP×tk(G, w) are totally unimodular. Consequently, the polyhedron associated with
LP×tk(G, w) is integer, meaning that the optimal objective values of LP×tk(G, w) and IP×tk(G, w) are
equal.

Thus, solving IP×tk(G, w) is equivalent to finding an integral solution to LP×tk(G, w). This
implies that the total k-tuple domination problem for weighted convex bipartite graphs can be solved
by computing an integral solution to LP×tk(G, w).

Following arguments analogous to those used in the proof of Theorem 9, we conclude that the
total k-tuple domination problem can be solved in the running time of

O
(

n2.371552 log2(n) log
(n

δ

))
.

6. Conclusions and Future Directions

This paper investigates the complexity and algorithmic solutions for {k}-domination, k-tuple
domination, and their total domination variants in weighted subclasses of chordal graphs and bipartite
graphs. The primary contributions of this work are as follows:

1. Developing efficient O(n + m) time algorithms for {k}-domination in weighted strongly chordal
graphs and total {k}-domination in weighted chordal bipartite graphs.

2. Establishing the running time of O(n2.371552 log2(n) log(n/δ)) for k-tuple and total k-tuple domi-
nation in weighted proper interval graphs and convex bipartite graphs. This result improves the
running time for the k-tuple domination problem in unit proper interval graphs.

3. Extending theoretical models to vertex-weighted graph settings, bridging gaps in the existing
research on weighted graph domination.

4. Leveraging linear and integer programming techniques, supported by totally balanced and totally
unimodular matrices, to provide formal proofs of correctness and efficiency for the proposed
algorithms.

These results advance both the theoretical understanding and computational efficiency of domi-
nation problems in weighted graph classes.

Future work can extend these domination techniques to other weighted graph classes, includ-
ing real-world network applications and dynamic graph settings. Additionally, integrating these
approaches with advanced optimization techniques, such as parallel computation and distributed
systems, may yield even more efficient and scalable algorithms.

Funding: This research received no external funding.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

34 of 36

Data Availability Statement: Data is contained within the article or supplementary material.

Acknowledgments: The author sincerely thanks the reviewers for their insightful comments and suggestions,
which have greatly improved this paper’s clarity, analysis, and overall quality. Their constructive feedback and
dedication to advancing research in this field are deeply appreciated.

Conflicts of Interest: The author declares no conflicts of interest.

References

1. Hedetniemi, S.T.; Laskar, R.C. (Eds.), Special Volume: Topics on Domination, Discrete Mathematics, Vol. 86,
No.1-3, December 1990.

2. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. (Eds.), Fundamentals of Domination in Graphs, Marcel Dekker, New
York, 1998.

3. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New
York, 1998.

4. Haynes, T.W.; Hedetniemi, S.T.; Henning, M.A. (Eds.), Topics in Domination in Graphs,Developments in
Mathematics, Vol. 64, Springer, Cham, 2020.

5. Haynes, T.W.; Hedetniemi, S.T.; Henning, M.A. (Eds.), Structures of Domination in Graphs, Developments in
Mathematics, Vol. 66, Springer, Cham, 2021.

6. Haynes, T.W.; Hedetniemi, S.T.; Henning, M.A. (Eds.), Domination in Graphs: Core Concepts, Springer
Monographs in Mathematics, Springer, Cham, 2023

7. Henning, M.A.; Yeo, A. Total Domination in graphs, Springer Monographs in Mathematics, Springer, 2013.
8. Argiroffo, G.; Leoni, V.; Torres, P. On the complexity of {k}-domination and k-tuple domination in graphs.

Inform. Process. Lett. 2015, 115, 556-561.
9. Pradhan, D. Complexity of certain functional variants of total domination in chordal bipartite graphs.

Discrete Math. Algorithms Appl. 2012, 4, Article 1240045.
10. Argiroffo, G.; Leoni, V.; Torres, P. Complexity of k-tuple total and total {k}-dominations for some subclasses

of bipartite graphs. Inform. Process. Lett. 2018, 138, 75-80.
11. He, J.; Liang, H. Complexity of total {k}-domination and related problem. In Proceedings of the FAW-AAIM

2011, LNCS 6681, pp. 147-155.
12. Liao, C.; Chang, G.J. k-tuple domination in graphs. Inform. Process. Lett. 2003, 87, 45-50.
13. Li, P.; Wang, A.; Shang, J. A simple optimal algorithm for k-tuple dominating problem in interval graphs. J.

Comb. Optim. 2023, 45, Article Number 14.
14. Dobson, M.P.; Leoni, V.; Lopez Pujato, M.I. Efficient algorithms for tuple domination on co-biconvex graphs

and web graphs. arXiv preprint arXiv:2008.05345, 2022.
15. Lee, C-M.; Chang, M.S. Variations of Y-dominating functions on graphs. Discrete Math. 2008, 308, 4185-4204.
16. Chiarelli, N.; Hartinger, T.R.; Leoni, V.A.; Lopez Pujato, M.I.; Milaniĉ, M. New algorithms for weighted

k-domination and total k-domination problem in proper interval graphs. Theor. Comput. Sci. 2019, 795,
128-141.

17. Li, P.; Li, X.; Liu, J.-B.; Shang, J. Optimized algorithms for problems related to weighted k-domination, k-tuple
domination, and total k-domination for unit interval graphs, 2024. Available at SSRN: https://ssrn.com/
abstract=4725957 or http://dx.doi.org/10.2139/ssrn.4725957.

18. Brandstädt, A.; Le, V. B.; Spinrad, J. P. Graph Classes: A Survey. Society for Industrial and Applied Mathemat-
ics, 1999.

19. Hoffman, A.J.; Kolen, A.W.J.; Sakarovitch, M. Totally-balanced and greedy matrices. Siam J. Alg. Disc. Meth.
1985, 6, 721-730.

20. Argiroffo, G.; Leoni, V.; Torres, P. On the complexity of the labeled domination problem in graphs. Int. Trans.
Oper. Res. 2017, 24, 355-367.

21. Bonomo-Braberman, F.; Gonzalez, C.L. A new approach on locally checkable problems. Discrete Appl. Math.
2022, 314, 53-80.

22. Tan, H.; Liu, L.; Liang. H.; Total {k}-domination in special graphs. Math. Found. Comput. 2018, 1, 255-263.
23. Lee, C.-M. R-total domination on convex bipartite graphs. J. Comb. Math. Comb. Comput. 2012, 81, 209-224.
24. Lee, C.-M. The complexity of total k-domatic partition and total R-domination on graphs with weak

elimination orderings. Int. J. Comput. Math.: Comput. Syst. Theory, 2020, 5 134-147.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://ssrn.com/abstract=4725957
https://ssrn.com/abstract=4725957
https://doi.org/10.20944/preprints202411.2117.v1

35 of 36

25. Bonomo, F.; Brešar, B.; Grippo, L.N.; Milanič, M.; Safe, M.D. Domination parameters with number 2:
interrelations and algorithmic consequences. Discrete Appl. Math. 2018, 235, 23-50.

26. Brešar, B.; Dorbec, P.; Goddard, W.; Hartnell, B.; Henning, M.A.; Klavžar, S.; Rall, D.F. Vizing’s conjecture: A
survey and recent results. J. Graph Theory, 2012, 69, 46–76.

27. Cabrera-Martínez, A.; Conchado Peiró, A. On the {2}-domination number of graphs. AIMS Math. 2022, 7,
10731-10743.

28. Cabrera-Martínez, A.; Montejano, L.P.; Rodríguez-Velázquez, J.A. From w-domination in graphs to domina-
tion parameters in lexicographic product graphs. Bull. Malays. Math. Sci. Soc. 2023, 46, 109.

29. Cheng, Y.J.; Fu, H.L.; Liu, C.A. The integer {k}-domination number of circulant graphs. Discrete Math.
Algorithms Appl. 2020, 12, Article 2050055.

30. Choudhary, K.; Margulies, S.; Hicks, I.V. Integer domination of Cartesian product graphs. Discrete Math.
2015, 338, 1239-1242.

31. Krop, E.; Davila, R.R. On a Vizing-type Integer Domination Conjecture. Theory Appl. Graphs, 2020, 7, Article
4.

32. Villamar, I.R.; Cabrera-Martínez, A.; Sánchez, J.L.; Sigarreta, J.M. Relating the total {2}-domination number
with the total domination number of graphs. Discrete Appl. Math. 2023, 333, 90-95.

33. Zverovich, V. On general frameworks and threshold functions for multiple domination. Discrete Math. 2015,
338, 2095-2104.

34. Liao, C.; Chang, G.J. Algorthmic aspects of k-tuple domination in graphs. Taiwan. J. Math. 2002, 6, 415-420.
35. Dobson, M.P.; Leoni, V.; Nasini, G. The multiple domination and limited packing problems in graphs. Inform.

Process. Lett. 2011, 111, 1108-1113.
36. Dobson, M.P.; Leoni, V.; Lopez Pujato, M.I. k-tuple and k-tuple dominations on web graphs. Mat. Contemp.

2020, 48, 31-41
37. Bellmonte R.; Vatshelle, M. Graph classes with structured neighborhoods and algorithmic applications. Theor.

Comput. Sci. 2013, 511, 54–65.
38. Bui-Xuan, B.; Telle, J.A.; Vatshelle, M. Fast dynamic programming for locally checkable vertex subset and

vertex partitioning problems. Theor. Comput. Sci., 2013, 511, 66–76.
39. Barman, S.C.; Mondal, S.; Pal. M. Minimum 2-tuple domianting set of permutation graphs. J. Appl. Math.

Comput. 2013, 43, 133-150.
40. Sinha, A.K.; Rana, A.; Pal, A. The 2-tuple domination problem on trapezoid graphs. Ann. Pure Appl. Math.

2014, 7, 71-76.
41. Sinha, A.K.; Rana, A.; Pal, A., The 2-tuple domination problem on circular-arc graphs. J. Math. Inform. 2017,

8, 45-55.
42. Lan, J.K.; Chang, G.J. On the algorithmic complexity of k-tuple total domination. Discrete Appl. Math. 2014,

174, 81-91.
43. Lee, C.-M. Signed and minus total domination on subclasses of bipartite graphs. Ars Combinatoria 2011, 100,

129-149.
44. Cormen, T.H.; Leiserson, C.E.; Rivest, R. L.; Stein, C. Introduction to Algorithms (4th ed.). MIT Press, 2022.
45. Schrijver, A. Theory of linear and integer programming. John Wiley & Sons, 1998.
46. Diestel, R. Graph Theory (6th ed.). Springer Berlin, Heidelbergs, 2024.
47. Strang, G. Introduction to linear algebra. Wellesley-Cambridge Press, 2022.
48. Rose, D.J. Triangulated graphs and the elimination process. J. Math. Anal. Appl. 1970, 32, 597-600.
49. Farber, M. Characterizations of strongly chordal graphs. Discrete Math. 1983, 43, 173-189.
50. Uehara, R. Linear time algorithms on chordal bipartite and strongly chordal graphs. In Automata, Languages

and Programming: 29th International Colloquium, ICALP 2002 Málaga, Spain, July 8–13, 2002, pp. 993-1004.
51. Tardella, F. The fundamental theorem of linear programming: extensions and applications. Optimization

2011, 60, 283-301.
52. Khachiyan, L.G. A polynomial algorithm for linear programming. Doklady Akademii Nauk SSSR, 1979, 244,

1093-1096.
53. Karp, R.M. Reductibility among combinatorial problems. Complexity of computer computations, 1972, 1, 85-103.
54. Scheinerman, E.R.; Ullman, D.H. Fractional Graph Theory: A Rational Approach to the Theory of Graphs. Dover

Publications, INC. Mineola, New York, 2011.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

36 of 36

55. Van den Brand, J. A deterministic linear program solver in current matrix multiplication time. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and
Applied Mathematics, 2020, 259-278.

56. Cohen, M.B.; Lee, Y.T.; Song, Z. Solving linear programs in the current matrix multiplication time. J. ACM,
2021 68, 1-39.

57. Williams, V.V.; Xu, Y.; Xu, Z.; Zhou, R. New bounds for matrix multiplication: from alpha to omega. In
Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Society for
Industrial and Applied Mathematics, 2024, pp. 3792-3835.

58. Zhang, F. (Ed.) The Schur complement and its applications (Vol. 4). Springer Science & Business Media, 2006.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2024 doi:10.20944/preprints202411.2117.v1

https://doi.org/10.20944/preprints202411.2117.v1

	Introduction
	Current Research Directions
	Research Gap and Motivation
	Scope of Study
	Contributions
	Organization of the Paper

	Preliminaries
	Graphs and Their Representations
	{k}-Domination and Total {k}-Domination in Weighted Graphs
	k-Tuple Domination and Total k-Tuple Domination in Weighted Graphs
	Strongly Chordal Graphs and Chordal Bipartite Graphs
	Proper Interval Graphs and Convex Bipartite Graphs
	Matrices and Vectors
	Totally Balanced, Totally Unimodular, and Greedy Matrices
	Linear and Integer Linear Programming

	{k}-Domination in Weighted Strongly Chordal Graphs
	Modeling
	Primal and Dual Algorithms by Hoffman et al.
	Refined Algorithms for Weighted Strongly Chordal Graphs
	Optimized Algorithms with Enhanced Data Structures

	Total {k}-Domination in Weighted Chordal Bipartite Graphs
	Total k-Tuple Domination and k-Tuple Domination
	Integer Linear Programs with Totally Unimodular Matrices
	Problem Formulations
	Fundamental Lemmas on Totally Unimodular Matrices

	k-Tuple Domination in Weighted Proper Interval Graphs
	Total k -Tuple Domination in Weighted Convex Bipartite Graphs

	Conclusions and Future Directions
	References

