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Abstract
Pure-compression shells have been the central topic in the form-finding of shells. This paper studies tension-
compression mixed type shells by utilizing a NURBS-based isogeometric form-finding approach that analyzes Airy
stress functions to expand the possible plan geometry. A complete set of smooth version graphic statics tools is
provided to support the analyses. The method is validated using examples with known solutions, and a further example
demonstrates the possible forms of shells that the proposed method permits. Additionally, a guideline to configure a
proper set of boundary conditions is presented through the lens of asymptotic lines of the stress functions.
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1 Introduction

Shell structures, such as concrete, masonry, and metal shells,
steel or timber gridshells, cable nets, and fabric structures,
are elegant and light-weight (Fig. 1). Their dominating
load-carrying action is membrane action, which is the
combination of tensile, compressive, and shear stresses or
forces acting in a plane tangential to the surface of the
structure. Shell structures containing only tensile or only
compressive stresses can not have unsupported boundaries
with overhang but must have such that lean ‘inward’ (Fig. 2).

To allow for overhangs, a mix of tension and compression
stresses are needed (Fig. 3). Whenever there are compressive
stresses, some bending stiffness is required to avoid
buckling. Bending stiffness can also be added to allow for
the shape of the shell to deviate from the pure membrane
action shape (Fig. 4).

During design of shell structures, membrane action is
commonly secured using structural form-finding whereby
a geometry is determined in such a way that no bending
action is needed for the load transfer of the dominating
load. Most numerical methods for form-finding of shells
simulate a physical model that might involve hanging chains
or fabric that inverted form a compression structure. The
models are usually discretized using line elements connected
to mutual nodes where external loading also is applied, and
the geometry is iteratively updated based on the previously
computed stress state. As a result, such methods are restricted
to tensile only or compressive only shell structures.

In this paper, we revisit, clarify, and develop the numerical
form-finding method presented by Miki et al.1 and the
smoooth version Graphic Statics tools discussed discussed
in Miki et al.2. The method takes as input a pre-determined
membrane stress state specified using the scalar-valued Airy
stress function3 φ defined on a plane. With φ given, the shape
of the shell z is solved such that the vertical equilibrium

Figure 1. Compression shells and lightweight tensile
structures: (a) Highway service area Deitingen South by Heinz
Isler, c©Хрюша, 2009; (b) British Museum Great Court Roof by
Fosters and Partners in collaboration with Chris Williams,
c©Andrew Dunn, 2005; (c) Multihall in Mannheim by Frei Otto,
c©Immanuel Giel, 2006; and (d) Olympic Stadium in Munich by

Frei Otto, c©Meister Eiskalt, 2014
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Figure 2. Plans (left) and bird’s-eye view (right) of pure
compression gridshells that have open edges on the boundary.

Figure 3. Félix Candela’s hyperbolic-paraboloidal reinforced
concrete shell for the Los Manantiales restaurant at Xochimilco.

Figure 4. Sydney Opera House by Jorn Utzon (left) and JKF
Terminal by Eero Saarinen (right).
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is satisfied4,5 given an appropriate set of boundary
conditions. ρ is the upward vertical loading per unit plan
area, which may be constant or dependent on the shape.
Eq. (1) is equivalent to Eq. (f) on page 462 in Theory of
Plates and Shells6, whose authors attribute the first use of
the Airy stress function in this manner to Pucher7. Csonka
discusses in chapter 11 and the subsequent chapters of
Theory and Practice of Membrane Shells stress functions
for shells on polygonal plans in pure compression and star-
shaped plans with a mix of compression and tension5.

Some shell structures consist of several smooth surfaces
joined via sharp kinks where concentrated forces arise, for
example, several of Félix Candela’s concrete shells (Fig. 3)
and Jorn Utzon’s Sydney Opera house (Fig. 4, left). Such
force concentrations can be represented in the Airy stress
function by narrow regions with a high degree of curvature.
If these narrow regions are taken to the limit, ‘folds’ forms
on the stress function8. Then the piecewise smooth stress
function can be seen as a hybrid between a smooth stress
function and a stress polyhedral9.

In graphic statics for bar frameworks such as planar
trusses, stress polyhedrons can be used to establish a

discrete force diagram10–14 which has a reciprocal relation
to a discrete form diagram. Graphic statics originate
in the 18th and 19th century15–20 and has recently
regained attention21–30 with generalization into higher
dimensions31–38 and applications for the form-finding of
shells14,39–44. Attempts have been made to establish a similar
relation between a piecewise smooth stress function and the
shape of the shell which require the computation of the
Christoffel symbols of the second kind1. To avoid the often
tedious computation of the Christoffel symbol, a reciprocal
relation between the piecewise smooth continuous stress
function, a pre-computed continuous force diagram, and
continuous form diagram (i.e. plan geometry), has been
established2.

If φ has positive Gaussian curvature, it represents a
state of pure compression or pure tension, whereas if the
Gaussian curvature is negative, it represents a state of
compression and tension. Thereby the method, in principle,
allows for the form-finding of shells with any membrane
stress state. However, the stress functions considered in this
paper all have negative Gaussian curvature resulting in mixed
tension-compression shell structures. For such cases, Eq. (1)
becomes a hyperbolic partial differential equation4 often
challenging to solve analytically.

In line with the methodology by Miki et al.1, Eq. (1)
is solved numerically using isogeometric analysis with
NURBS surfaces as finite elements45–48. With isogeometric
analysis, the computational model and the geometry model
is the same, eliminating the need to discretize smooth
shell surface into flat panels or a network of straight-line
elements. Without the need to mesh the surface, designers
can concentrate on the the form in early design stages,
leaving descritization of the surface into structural elements
such as panels and bars for later stages.

1.1 Contributions
In this paper, we breakdown the original method presented
by Miki et al.1 to make it more accessible and reproducible.
While the earlier paper1 restricted its attention to shells of
pure compression, we concentrate on shells containing both
compression and tension stresses. The increments in this
paper are as follows:

1. Provides a complete set of smooth version graphic
statics tools through stress function, form diagram, and
force diagram (Section 2).

2. Revisits the numerical form-finding method discussed
in Miki et al.1 (Section 2). Minor revisions include:

(a) The stress function and the shell can have
different parametric representations.

(b) Linear springs are provided to constrain any
point to a desired height.

3. Known solutions of tension-compression mixed type
shells are used to validate the method (Section 3).

4. A guideline to choose proper boundary conditions for
tension-compression mixed type problem is addressed
(Section 4) through the lens of asymptotic lines.

5. Introduces an Airy stress function (Section 5) that can
take an arbitrary plan geometry. An example problem
is provided to demonstrate the possible forms enabled
by the proposed stress functions.
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2 Theoretical background and numerical
method

In this section, starting from the traditional discrete
graphic statics tools, their smooth versions are derived.
Then, a NURBS-based isogeometric form-finding method is
introduced. The method solves a linear system of equations
when the surface area is evaluated on the projected plane.
Its nonlinear version that accounts for the surface area
accurately is also presented.

2.1 Discrete force diagrams and Airy stress
polyhedron

Figure 5 shows an example of a force and form diagram
pair. If each internal node in the form diagram is balanced
by the axial forces acting along the incoming lines, a
reciprocal force diagram can be constructed consisting of
closed polygons. If the form diagram is not in equilibrium,
one or several of the polygons in the force diagram can not be
closed. In the force diagram, the edges of the polygons have
lengths representing the magnitude of the corresponding
force and are rotated by 90 compared to the corresponding
line in the form diagram49. The reciprocal relation is such
that a point, a polygon, and a line in a form diagram maps to
a polygon, a point, and a line in a force diagram, respectively.

E E

A A

1
1

2
2

3
3

4 4

C C

B BD D

(a) form diagram (b) force diagram (c) overlay of (a) and (b)

Figure 5. An example of form and force diagrams.

The existence of a force diagram is equivalent to
the existence of planar faced polyhedron (i.e. stress
polyhedron9, or Airy stress polyhedron) whose planar
projection is the form diagram10–14. If the plane of a face
in such a polyhedron is expressed as

ax+ by + c = φ, (2)

its corresponding point in the force diagram is located at
(a, b). At the same time, the ‘normalized’ normal vector of
the same face is given by

N = (a, b,−1) . (3)

Thus, a force diagram can be obtained by flattening all the
normal vectors of the polyhedron and connecting the points
if their corresponding faces are adjacent (Fig. 6).

2.2 Continuous force diagram
For a stress function φ = φ (x, y), the normalized normal
vector is given by

N =

(
∂φ

∂x
,
∂φ

∂y
,−1

)
, (4)

1

(a) form diagram

(d) form diagram

(b) form diagram

(c) stress polyhedron and normal vectors

2

P p
q

r

Q

R

1.0

Figure 6. Stress polyhedron and face normal vectors.

and the second Piola-Kirchhoff (PK) stress tensor50 for the
projected geometry of the shell can be computed as

S =

[
Sxx Sxy
Syx Syy

]
=


∂2φ

∂y2
− ∂2φ

∂y∂x

− ∂2φ

∂x∂y

∂2φ

∂x2

 . (5)

Since the order of differentiation of φ does not matter,

∂

∂y∂x
=

∂

∂x∂y
, (6)

any choice of φ automatically satisfies the horizontal
equilibrium equations

∂Sxx
∂x

+
∂Sxy
∂y

=
∂

∂x

∂2φ

∂y2
− ∂

∂y

∂2φ

∂x∂y
= 0

∂Sxy
∂x

+
∂Syy
∂y

=
∂

∂y

∂2φ

∂x2
− ∂

∂x

∂2φ

∂x∂y
= 0

 . (7)

So dose any pair of functions X and Y that satisfy

∂Y

∂x
=
∂X

∂y
⇔ ∂Y

∂x
− ∂X

∂y
= 0. (8)

For such a pair, the stress tensor is given by

S =

[
Sxx Sxy
Syx Syy

]
=


∂Y

∂y

−∂X
∂y

−∂Y
∂x

∂X

∂x

 . (9)

Thus, from Eqs. (5) and (9),

X =
∂φ

∂x
, Y =

∂φ

∂y
, (10)

which are the components of the normal vector in Eq. (4).
Hence, in analogy with the relationship between the normal
vector of a stress polyhedron and the discrete force diagram,
(X,Y ) is the continuous force diagram corresponding to a
continuous stress function2.

Note that the existence of a stress function φ is not
necessary to construct a force diagram (X,Y ). In fact,
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it is sufficient to require the conditions given in Eq. (8).
This condition is known as ‘curl-free,’ and is essentially
an integrability condition of gradient vectors. It is also
explained in a structured manner in exterior calculus51.

Curl-free means that the deformation gradient

F =

[
Fxx Fxy
Fyx Fyy

]
=


∂X

∂x

∂X

∂y

∂Y

∂x

∂Y

∂y

 , (11)

is symmetric and consequently has no components of
rotation. Force diagram can be considered as a deformed
shape of the form diagram, and the local deformation at
each point can be described by a deformation gradient.
The deformation gradient maps a unit circle in the form
diagram (Fig. 7, a) to an ellipsoid in the force diagram
(Fig. 7, b). Without any rotational deformations, there are
two orthogonal directions where the local deformation has
stretches only (the red lines in the figure) and these coincide
with the principal directions of the stress tensor but the first
and the second directions are swapped (Fig.7, b).

(a) form diagram (b) force diagram

F

Figure 7. Rotation-free local
deformation.

(a) form diagram (b) force diagram

F
gu

u u

v
v

gv

Gu

Gv

Figure 8. Perpendicular base
vectors.

2.3 Introduction of curvilinear coordinate
system

So far, an orthonormal coordinate system (x, y) has been
used. However, for shells with arbitrary boundary shape, a
curvilinear coordinate system (u, v) is often preferable. The
mapping between the two systems is a matter of differential
geometry52 and books such as Ciarlet53–55 discuss this from
a theory of elasticity point of view.

Let (u, v)→ (x, y) and (u, v)→ (X,Y ) be two symmet-
rical maps. Then the maps (u, v)→ (x, y) and (u, v)→
(X,Y ) define a pair of parametric surfaces representing the
form and force diagrams that can be expressed as

x (u, v) = (x (u, v) , y (u, v)) , (12)

respectively

X (u, v) = (X (u, v) , Y (u, v)) . (13)

Because the inverse of (u, v)→ (x, y) exists, (x, y)→
(X,Y ) also exits. If it is given by Eq. (10), it can be
computed by

X =
∂φ

∂x
=
∂φ

∂u

∂u

∂x
+
∂φ

∂v

∂v

∂x
,

Y =
∂φ

∂y
=
∂φ

∂u

∂u

∂y
+
∂φ

∂v

∂v

∂y
,

(14)

where 
∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

 =

∂x∂u ∂x

∂v
∂y

∂u

∂y

∂v


−1

. (15)

The deformation tensor F on a (u, v) system is known56

as
F = Gu ⊗ gu + Gv ⊗ gv, (16)

where gu and gv are the base vectors of x(u, v) and Gu

and Gv are the base vectors of X(u, v). For details on the
computation of the base vectors and the extraction of the
deformation components Fxx, Fxy = Fyx, and Fyy, see the
Appendix A.

The deformation gradient tensor F given by Eq. (16)
is equivalent to the one given by Eq. (11) and both are
symmetric. Therefore,

Gu · gv = Gv · gv, (17)

which is an equivalent condition of curl-free. A special case
of curl-free is when Gu · gv = Gv · gu = 0 (Fig. 8), which
is an interpretation of the perpendicular condition of the
discrete force diagrams to the continuous ones.

In general, a computation of the second derivatives of the
stress function on a curvilinear coordinate system requires
the computation of the Christoffel symbols of the second
kind, Γkij , describing the curvature of the isocurves of a
parametric surface (see e.g. Green and Zerna4, Eisenhart52,
Ciarlet53–55). However, through the above formulation,
the first differentiation is computed on (u, v), yielding a
vector on (u, v) system that is transformed to the (x, y)
system using Eq. (14). Then, a differentiation of (X,Y )
with respect to (u, v) is computed using Eq. (16), but
(X,Y ) is already a vector on (x, y) system. Therefore,
there is no need to compute the Christoffel symbols.
Moreover, the precomputed force diagram, (X,Y ), assists
the evaluation of the crease curves in a piecewise smooth
stress function (Section 2.7). This is where the proposed
method takes advantage of the original method by Miki et
al.1, substantially simplifying the computations.

2.4 Linear method
The horizontal equilibrium of the shell is ensured by Eq. (7).
To complete the equilibrium, the shape of the shell z is
to be determined so that the vertical equilibrium given by
Eq. (1) is fulfilled. Using the principle of virtual work, a
finite number of simultaneous equations can be obtained as
an approximation of the vertical equilibrium equation. This
approach is equivalent to the Galerkin method57 and the
details are laid out in the Appendix B.

Assume the vertical loading ρ constant so that the solution
z of Eq. (1) becomes a linear problem. Later on, in
Section 2.5, ρ will be taken as the self-weight of the shell.
Then ρ is no longer constant but dependent on the actual area
of the shell, turning Eq. (1) into a non-linear problem.

Introduce a curvilinear coordinate system (ξ, η) on the
shell that is different from that of the force and force
diagrams (u, v). Let hξ and hη be the base vectors and hij
be the first fundamental form of the (ξ, η) system, and denote
the reference states of the properties of the shell that are not
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affected by differential operators by a bar ¯. Then from the
principle of virtual work follows

δw =
∑

surfaces

∫ (
1

2
S̄ijδhij − ρ̄δz

)
dā = 0, (18)

where
dā =

√
det h̄ij dξdη, (19)

is a small area element, S̄ij the components of the 2nd PK
stress tensor re-evaluated on (ξ, η), and ρ̄ a constant loading
per unit area, all measured in the plan of the form diagram.
Einstein summation convention applies and the indices i
and j are either 1 or 2, where 1 corresponds to the ξ-
direction and 2 the η-direction. Details on the extraction of
the stress components on the (ξ, η) system are given in the
Appendix A.

If the shell is represented by multiple finite elements
or parametric surfaces (e.g. triangles, quadrilaterials, or
NURBS-surfaces) defined by n independent control points,
all functions defined on the shell, such as hij and z, become
functions of the control point coordinates. By packing the
coordinates of these control points in a 3n-dimensional
column vector r and replacing the variation of functions δf
by ∇fδr, where δr is a 3n-dimensional arbitrary column
vector and the gradient operator is

∇ =

[
∂

∂r1
, · · · , ∂

∂r3n

]
, (20)

Eq. (18) becomes∑
surfaces

∫ (
1

2
S̄ij∇hij − ρ̄∇z

)
dā = 0. (21)

Since the horizontal equilibrium is automatically ensured,
solving Eq. (21) in terms of z is enough to obtain a complete
equilibrium. In case Eq. (21) is solved in terms of x and y,
the plan of the solution should match the form diagram.

Note that Eq. (21) is linear in r. By distributing
integration points and performing a numerical integration
(see Section 2.8), a system of linear equations is obtained.
With a sufficient number of fixed points given, this system
of equations can be solved easily by computing an inverse
matrix. Although presented quite differently, Pauletti and
Pimenta58 have already pointed out that having a constant
second PK stress tensor results in a linear system of
equations.

2.5 Nonlinear iterative method
If ρ̄ is the self-weight of the shell, Eq. (18) only gives an
approximate solution. The exact solution is given by

δw =
∑

surfaces

∫ (
1

2
S̄ijδhij dā− ρ̄δz da

)
= 0, (22)

where
da =

√
det hij dξdη (23)

is the actual element area measured on the shell. Since da is
dependent on hij that is a property of the sought solution
z, Eq. (22) is a non-linear problem requiring an iterative
solution process.

In each iterative step, the residual forces of the system are
computed by

R =
∑

surfaces

∫
rT
(

1

2
S̄ij∇2hij dā− ρ̄∇z da

)
, (24)

where∇2 = ∇T∇ and∇2hij is a constant matrix. Thus, the
matrix S̄ij∇2hij does not change during the iterations.

Then, with hij the inverse of hij and using the relation

D
√

dethij =
1

2
hijDhij

√
dethij , (25)

where D is a generic differential operator that can be either a
δ, d, or ∇ operator, the system of equations to solve in each
step becomes

1

2

[ ∑
surfaces

∫ (
S̄ij∇2hij dā− ρ̄hij∇zT∇hij da

)]
∆r

= −R. (26)

Note that in the first step, solving Eq. (26) is the same
as solving Eq. (21). The convergence of the solution is
often improved when the second term in the parentheses of
Eq. (26) is omitted, i.e. it is equivalent to repeating the linear
method but with the updated loading, and δr is scaled down
by 0.5.

2.6 Point and area supports
Fixing a control point to a specific height is easily done by
eliminating the parameter completely from the system of
equations. However, if NURBS surfaces are used as finite
elements, the control points do not pass through the surface
except at the corner points. So, to constrain an arbitrary point
of such a surface to a specific height, a linear spring can be
used.

The elastic energy of such a spring is

1

2
k(z(r)− z̄)2, (27)

where z̄ is the prescribed height of the point, z(r) is a linear
function that converts the control points to the height of the
point, and k is a penalty factor.

When such springs are incorporated into the system, the
equilibrium of the entire system is∑

springs

k(rT∇zT∇z − 2z̄∇z) + membrane term = 0, (28)

where the spring term is linear in r and the membrane term
is discussed in Section 2.4 or 2.5 depending on loading
condition.

Similarly, area supports defined by closed curves can be
imposed on the shell by the use of a set of linear springs
distributed along the curve. This approach is used later on in
Section 5 when discussing some examples.

2.7 Piecewise smooth stress functions
Whenever the shell is made up of several smooth surfaces
joined by sharp kinks along their intersection curves, the
stress function must be a piecewise smooth function. For
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such shells, the equilibrium is sustained by concentrated
forces acting along the kinks on the shell. The axial force
along a kink in the shell surface can be calculated by
measuring the ‘jump’ of the normal vectors on either side of
the corresponding kink in the stress function. The same entity
can be found by measuring the ‘jump’ in the force diagram.
Denoting the ‘jump’ by L̄, the 2nd PK stress tensor along a
kink in the surface1 is

n̄11 = (h̄11)−1L̄, (29)

and the principle of virtual work adds up to Eq. (18) or
Eq. (22) is

δw =
∑

curves

(∫
1

2
n̄11δh11 d¯̀

)
, (30)

where
d¯̀=

√
det h̄11 (31)

is a small length element on the intersection curve as seen in
the plane of the form diagram.

2.8 Numerical integration
In this work, a standard Gauss quadrature was used to
numerically compute the integrals over the surfaces and
curves45. Because the stress components are calculated from
a stress function that is not a polynomial in general, a
sufficient number of integration points is hard to estimate.
Hence, the number of integration points was controlled by
an integration multiplier, denoted NI.

Denote the number of control points in the u and v
directions by NU respectively NV and the degree of the
NURBS surface by Dim. Then a NURBS surface is typically
divided into (NU− Dim)× (NV− Dim) smaller patches, and
each of them is dependent on (Dim + 1)× (Dim + 1) control
points59.

In this study, (Dim× Dim× (NI)2) Gauss integration
points were distributed on each patch (i.e. n = Dim× NI

in the commonly used Gaussian quadrature rule tabulation
is used). NURBS surfaces with Dim = 3 and NI = 1 or 2
works for most cases, resulting in n = 3 or 6 for the Gauss
quadrature rule.

2.9 Convergence study
A variational operator δ has infinite degrees of freedom
(DoF) by definition. The Galerkin method restricts the
variational operator to a finite number of DoF equal to the
DoF of the finite element model. If a solution exists in
the original PDE, by increasing the DoF in the system, the
numerical solution should converge to the exact solution.

In this study, the convergence towards the exact solution
is evaluated by studying the total energy of the system given
by

E =
∑

surfaces

1

2

∫
S̄ijhijdā+

∑
curves

1

2

∫
n̄11h11d¯̀. (32)

The elastic energy of the springs are omitted because they
will have high energy if used as hard constraints.

It is known that there are incompatible boundary
conditions (BCs) that make hyperbolic PDEs ill-posed

(i.e. solutions do not exist). In those cases, numerical
solutions hardly ever converge. Since a mix of tension and
compression stresses results in a hyperbolic PDE, attention
must be paid to such situations since the proposed numerical
method returns a solution regardless of or not. A guideline to
choose proper BCs is provided in Section 4.

3 Benchmark problems

3.1 Hypar
Consider a simple stress function

φ = −1

2
x2 +

1

2
y2, (33)

that is defined on a square that spans between (−1,−1),
(1,−1), (1, 1), and (−1, 1). In Figure 9, the purple surface
corresponds to φ and the gray flat panels are the stress-free
region outside the structure apart from the reaction forces
seen as the kinks at the top.

The force diagram of φ is given by (X,Y ) = (−x, y),
which is curl-free. Figure 10 depicts the force diagram and
the ‘jumps’ of the normal vectors between the smooth pink
surface of φ and the surrounding flat gray planes. By adding
edge beams, the shell can be supported by only two points,
and the magnitudes of the ‘jumps’ represent the axial forces
in the beams.

Figure 9. Stress function (purple) and corresponding shell
(green) of the hypar problem.

Reaction forces at supports

Axial force in beams

(0,1)

(0,-1)

(-1,0) (1,0)

Figure 10. Force diagram and the ‘jumps’ of the hypar problem.

Substituting Eq. (33) into Eq. (1) gives

− ∂2z

∂y2
+
∂2z

∂x2
= −ρ, (34)
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for which there exists a known solution,

z =
ρ

4
(x2 − y2). (35)

The solution satisfies the boundary equilibrium between the
edge beams and the shell.

Note that Eq. (35) is only a particular solution. With
more complex BCs, the solution is a sum of the particular
solution and a general solution (a solution of Eq. (34)
where the right-hand side is set to zero) that satisfies the
BCs. While a general solution always exists in an elliptical
problem, in a hyperbolic problem, there exist incompatible
BCs where general solutions do not exist. In general, a
hyperbolic PDE only accepts compatible BCs, otherwise the
problem becomes ill-posed. This issue is further addressed in
Section 4.

This problem can be used as a useful benchmark problem,
and the proposed method was tested. The green surface in
Figure 9 represents the solution obtained using the proposed
method with ρ = 4.0 as load. The height of the obtained
green shell is 1/4 of ρ, which matches Eq. (35).

The blue surface in Figure 11 is a plot of the left-hand
side of Eq. (1) multiplied by 1/ρ obtained numerically with
a NURBS surface with 32× 32 control points, Dim = 3, and
integration point multiplier NI = 1. It clearly shows a drop
by −1 from the red surface representing zero loading. This
indicates the method provides the sought solution.

Figure 11. Left-hand side of vertical equilibrium obtained using
32× 32 control points (blue surface) and zero-loading reference
(red surface) for the hypar problem.

Figure 12 shows a convergence analysis of this example.
As shown in the figure, the total energy remains flat even
if the number of control points were raised high. This is
because the hypar can be accurately represented with a
NURBS surface of 2× 2 control points and with Dim = 3.
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Figure 12. Convergence analysis of the hypar problem.

3.2 Bowl
Consider a stress function φ and a shell z that both have a
radial symmetry defined in a polar coordinate system. Then
the vertical equilibrium becomes

1

r
(
∂φ

∂r

∂2z

∂r2
+
∂2φ

∂r2
∂z

∂r
) = −ρ, (36)

where r ≥ C ≥ 0 is the parameter in the radial direction in
the polar coordinate system.

By assuming the same shape for the shell and stress
function, so that φ(r) = Az(r) where A is a constant, the
solution to Eq. (36) is given by

z(r) =
1

2
√

2A

(
r
√
B2 − r2 + arcsin r

)
, (37)

with r ≤ B ≤ 1. Thus, at the circumference where r = B,
concentrated stresses parallel to the circumference direction.
If vertical support is provided at r = C, then the edge at r =
B can ‘float’ without any support and the circumferential
concentrated stress is tensile.

Let A = 1/2, B = 1, C = 0.2, and ρ = 1. Then the total
height of the shell is given from the analytical solution
as z(B)− z(C) = z(1.0)− z(0.2) = 0.5867 and the cross
section of the shell is plotted in Figure 13. Solving z
numerically with the proposed method gives the shape shown
in Figure 14 which profile and total height 0.58 match the
analytical solution.

0.5867

0.40.2

0.1

0.0

0.2

0.3

0.4

0.5

0.6

0.0 0.6 1.00.8

Figure 13. Cross section of analytical solution of the bowl
problem.

Figure 14. Elevation of numerical solution of the bowl problem.

The blue surface in Figure 15 is a plot of the left-hand
side of Eq. (36) multiplied by 1/ρ obtained numerically with
a NURBS surface with 32× 32 control points, Dim = 3,
and integration point multiplier NI = 1. Similarly as in the
hypar example, the blue surface sits at a level −1 below the
red surface representing zero loading, again indicating the
method provides the sought solution.

A convergence analysis was also conducted. Figure 16
shows plots of the energy as a function of the number of
control points, proving the solution converges to a single
solution.
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Figure 15. Left-hand side of vertical equilibrium obtained using
120× 60 control points (blue surface) and zero-loading
reference (red surface) for the bowl problem.
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Figure 16. The convergence of the total energy of the bowl
problem.

Unlike pure-compression or pure-tension zones, there
is a restriction to the boundary conditions in tension-
compression mixed zones. In this example, because we
assumed a radial symmetry when deriving the stress
function, fixing the rim of the oculus along a flat circle
should work, i.e. it is compatible to the problem. Although
there might be other compatible boundary conditions not
yet identified, but any incompatible boundary condition will
make the problem ill-posed.

As such, in general, a hyperbolic partial differential
equation is well-posed only when a proper set of
compatible boundary conditions are given. This makes
solving the hyperbolic problems substantially different from
solving elliptic problems, i.e. pure-compression or pure-
tension ones. Next section further elaborates the topic
about compatible and incompatible boundary conditions of
hyperbolic PDEs.

4 Asymptotic lines and boundary
conditions

Within areas of pure compression or tension, support
boundary conditions (BCs) cause singularities that dissipate
rapidly and only affect the solution locally, allowing free
placement of the supports in such areas. However, in areas
with a mix of compression and tension, BCs give rise to
singularities that transfer through characteristic lines with no
dissipation, often making the hyperbolic PDE ill-posed5,60.
Such incompatible BCs should be avoided.

The four green surfaces in Figure 17a are the numerical
solutions obtained by imposing two compatible sets of BCs
and two incompatible ones on the hypar example introduced
in Section 3.1. As in Figures 11 and 15, the blue surfaces of
Figure 17a are supposed to drop by 1.0 below the reference
surface if the PDE is well-posed. However, the incompatible

BCs cause disturbances seen as bumpy ridges that run across
the solution, and the blue surfaces do not drop by 1.0 but
form spikes.

A second-order hyperbolic PDE is often called a wave
equation, and waves propagate along so-called characteristic
lines. Thus, a perturbance transfers from one end of a
characteristic line to the other end with no dissipation, and
if no compatible BC exists at the other end, the problem
becomes ill-posed (i.e. no solution exists). Even if solutions
do not exist, the proposed method returns a numerical
solution. Hence, extra attention must be paid to this issue.

In the problems discussed in this paper, the characteristic
lines are the projections of the asymptotic lines of the
stress function to the ground plane (see Chapter 4 in
Csonka5, Chapters 1 and 2 in Sanchez-Palencia et al.61, and
Appendix C). An asymptotic line is a line on a surface whose
normal curvature is zero, and it only exists in areas where
the Gaussian curvature is negative. Typically, the asymptotic
lines are a group of diagonal lines that run across the negative
Gaussian curvature area, intersecting the principle curvature
lines at roughly 45 degrees.

The general solution of the hypar problem is z(x, y) =
F (x+ y) +G(x− y) with F and G arbitrary functions
that are determined such that boundary conditions are
satisfied, and the asymptotic lines are such that they result
in characteristic lines given by x− y = const. and x+ y =
const., which run parallel with the edges of the shell. As
seen in Figure 17a, the BCs that contradict the general
solution are incompatible or, in other words, BCs that do
not have compatible BCs at the end of the characteristic
lines are incompatible. Figures 17b and 17c show more
examples of compatible and incompatible BCs imposed
on the bowl example of Section 3.2 respectively on a
problem reproducing Félix Candela’s Xotimilco restaurant
(see Appendix D). The BCs for these problems were guessed
based on the knowledge of the radial symmetry. However, in
general, identifying compatible BCs for hyperbolic PDEs is
a challenge.

To avoid this challenge, ‘safe’ areas with positive
Gaussian curvature may be added to the stress function in
which the supports are placed. This strategy is illustrated in
the examples in Figure 18 where the purple surfaces are the
used Airy stress functions with their asymptotic lines drawn
in white. Though not shown, the ‘blue surfaces’ dropped
properly for all cases. The safe-area-strategy is used on the
examples discussed in Section 5.

5 More complex example

5.1 A stress function that can take a general
plan geometry

Given a closed flat guide curve defined by (cx(u), cy(u)), a
simple pair of stress function φ and form diagram x may be
obtained as

φ (u, v) = Q(v)

x (u, v) = (vcx(u), vcy(u))

}
, (38)

where v is bounded by vmin > 0 and vmax, and Q(v) defines
the profile of the stress function. Then, from Eq. (10), the
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Compatible

Compatible

Incompatible

Incompatible

(a) Hypar example of Section 3.1.

Compatible Incompatible

(b) Bowl example of Section 3.2.

Compatible

Compatible Incompatible

(c) Félix Candela example briefly mentioned in Appendix D.

Figure 17. Compatible and incompatible BCs: BCs (red),
numerical solution (green), and left-hand-side of equilibrium
multiplied by 1/ρ (blue), which for proper solutions should drop
by 1.0 below the references surface (gray).

force diagram follows as

X = Q′(v)
1

cxc′y − cyc′x
(c′y,−c′x), (39)

where a prime is used to denote differentiation.
If Q′(v) = 0 at an edge of the shell, the stress function

tangentially touches the horizontal plane intersecting the
edge of the stress function. Such points on the form diagram
x are mapped to the center of the force diagram X .
Therefore, the distances between any points of the edge as
measured in the force diagram is always zero. Hence, there
is no horizontal thrust acting on the edge. On the other hand,
ifQ′(v) 6= 0 at an edge, the stress function forms a kink with
the horizontal plane intersecting the edge.

As pointed out before, for example, when discussing the
kinks between the hypar stress function and the surrounding
planes in Figure 10, a kink represent concentrated stresses
acting along the edge, which are balanced by stresses acting
in the perpendicular direction. The magnitude of the axial
force can be obtained by measuring the ‘jump’ from the
corresponding points of the edge in the force diagram to its
center, which represent the horizontal-thrust acting on the
edge.

Figure 18. Putting supports away from the asymptotic line
zones is recommended to avoid the compatibility issue of BCs.
(green): shells, (purple): stress functions.

The proposed stress function, form diagram, and force
diagram of Eqs. (38) and (39) are valid not only for smooth
guide curves, but also for piecewise smooth guide curves.
In those cases, the stress function also becomes a piecewise
smooth function, with creases along lines intersecting
the discontinuities in the guide curve. As discussed in
Section 2.7, such stress functions results in ‘jumps’ in the
force diagram representing concentrated axial forces running
along the corresponding creases in the shell, and their
magnitudes are given by Eq. (29).

Figure 19 shows a form diagram generated using a
piecewise smooth guide curve and vmin = 0.2, vmax = 1.0.
Vertical supports are provided along three short stretches
of the exterior perimeter of the form diagram. Along these
stretches, the form diagram is modified with small semi-
circles that ensure a local area of pure compression close to
the support avoiding problems of incompatible BCs.

Let the stress function φ = Q(v) be such that

Q′(v) = (v − 1) + 12λ(v − 1)2, (40)

where λ is a parameter embedded to the equation to control
the speed of the scaling of the guide curve. Then a stress
function that comprises three smooth areas and three crease
curves is obtained shown to the left in Figure 20, resulting
in a force diagram shown to the right. As illustrated in
Figure 20, if one travels from point a to b to c on the stress
function, a corresponding travel from A to B to C takes place
on the force diagram where point B exist on both sides of
the ‘jump’ representing the crease running through point b
on the stress function.

Figure 21 shows two numerical form-finding results
obtained using the discussed functions φ, x, and X , one
using the linear method (Sec. 2.4) and the other the nonlinear
method (Sec. 2.5). Each leaf is represented by 2 NUBRS
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surfaces with 32× 16 control points, Dim = 3, NI = 2, and
λ of Eq. (40) was set to 0.

The resulting shells are rather similar, with the nonlinear
shell a little taller than the linear shell. The difference is due
to the accurate account of the surface area in the nonlinear
method. The shells were obtained with loading ρ = −0.05
and the nonlinear method converged as proved by the history
of the residual norm shown in Figure 22. However, when
the load was increased to ρ = −0.15, the nonlinear method
did not converge. As such, the nonlinear method does not
converge when the loading is big. However, fortunately, in
the cases we tested, although it depends on the problems,
the height of the shell at the maximum loading ρ that gave
a convergence gives forms that are usable as architectural
spaces.

13.58

13
.8

6

Guide curve
(cx(u),cy(u))

v=1.0v=0.6v=0.2

u

NURBS 1

NURBS 2

NURBS 3

NURBS 5

NURBS 4

NURBS 6

R0.30
Area Support

Figure 19. Dimensions of the used form diagram (unit=[m]).

Figure 20. A piecewise-smooth stress function (left) and the
corresponding a force diagram (right).

Figure 21. Solutions using the linear method (left) and the
nonlinear method (right), both with ρ = −0.05.

5.2 Verification
A convergence study was conducted by increasing the
number of control points from 20× 10 to an extreme of
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Figure 22. History of the residual norm of the vertical
equilibrium equation solved with nonlinear method and
ρ = −0.05.

400× 200. Dim = 3 NURBS surfaces were used and the
integration point multiplier was set to NI = 2. As shown in
Figure 23, the solutions were very stable even if the number
of control points were raised. Figure 24 is a plot of the energy
versus the number of control points, and the solutions rapidly
converged.

So far, in the form-finding process, only an ideal
membrane stress state is considered, and thus, structural
properties such as thickness, stiffness and deformation are
not studied.

Using the shell obtained from the nonlinear method, a
series of deformation analyses were performed by varying
the thickness of the shell from a realistic one to an extremely
small one. The three crease curves where modeled as solid
beams with cross-section width×height = 0.1m×0.2m, and
standard steel was used for both the shell and beams.
The analysis was performed using NURBS-based shell and
beam elements provided by Kiwi3D62, which consider both
membrane and bending stiffness. The NURBS surfaces and
curves obtained in the form-finding stage was used as finite
elements without meshing.

Table 1 shows the maximum deflection with the varied
thickness. Even for the small thicknesses, the deformations
are kept rather low. This indicates that the shell is working
primarily in membrane action, just as intended.

Another way to check if the shell works in pure membrane
action is to study the ratio between the membrane energy
and the bending energy of the shell. As can be seen in
Figure 25, the membrane energy becomes more dominant as
the thickness of the shell is decreased.

Figure 26 displays the left hand side of the vertical
equilibrium multiplied with 1ρ obtained for a third of the
shell with 240× 120 control points, Dim = 3, NI = 2. As
expected, the blue surface drops by 1.0 apart from at two
areas which corresponds to the location of the supports.

From these observations, it can be concluded that the
obtained solution is an approximation of the original
equilibrium equation and that the shell works by membrane
action.

Remarkably, a few of the asymptotic lines of the stress
function (Fig. 27, left) emerge as waves running on the form-
finding result (Fig. 27, right). Compared to the bumpy ridges
in the numerical solutions obtained with incompatible BCs
discussed in section 4, these waves look clean, and there are
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Table 1. Maximum deflection with varied thickness. Percentage
based on cantilever depth L = 13860 mm.

Thickness Max deflection Deflection/cantilever depth
t (mm) δ (mm) δ/L (%)

0.1 76 0.55
0.5 80 0.57
1 77 0.55
5 54 0.39
10 40 0.28
50 21 0.15

no spiky noises in the blue surface except the areas near the
supports. Thus, those waves can be distinguished from the
numerical errors caused by the incompatible BCs, rather, it
can be considered proving that a solution of a wave equation
is obtained.

Figure 23. From left to right: solutions obtained with 40× 20,
160× 80, 360× 180 control points.
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Figure 24. Convergence study, (blue) total energy, (orange)
increments of the energy from the last step..

Figure 25. Ratio between membrane energy and bending
energy for thicknesses 10, 5, 1, and 0.1 mm. Blue = 100%
membrane energy and red = 100% bending energy.

5.3 Implementation scenario
Figure 28 shows an architectural rendering that illustrates an
implementation scenario of the example.

Figure 26. A blue surface obtained with 240× 120 control
points, Dim = 3, and NI = 2.

Figure 27. An overlay of asymptotic lines (left) to the obtained
solution (right).

Figure 28. An architectural implementation scenario of the
example discussed in this section.

6 Conclusion
The numerical form-finding of membrane action shells con-
taining a mix of tensile and compressive stresses involves
solving a hyperbolic second-order partial differential equa-
tion. In this paper, an existing NURBS-based isogeometric
approach originally designed for the form-finding of pure
compression or pure tension membrane shells was developed
further. It is demonstrated that the developed method can
be used to solve tension-compression mixed type hyperbolic
equilibrium equations with satisfactory accuracy.

The method takes as input a form diagram and a stress
function from which a force diagram is computed, and their
reciprocal relations are discussed.

In areas where the stress function describes a state of both
tension and compression, it has negative Gaussian curvature
and thus asymptotic lines, and it was recommended to put
supports away from such areas. Otherwise, the boundary
conditions must be compatible with the equilibrium equation
to make the problem well-posed.

The proposed method was tested using simple problems
whose analytical solutions are known, and the numerical and
analytical results were shown to have a good agreement. A
solution to a more complex problem was also demonstrated
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and verified, and the formulation of the problem can easily
be modified to suit a wide range of architectural applications.
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A Vector and tensor calculus
Base vectors and the first fundamental form of a form
diagram on a (u, v) system:

gu =

(
∂x

∂u
,
∂y

∂u
, 0

)T
, gv =

(
∂x

∂v
,
∂y

∂v
, 0

)T
,

Gu =

(
∂X

∂u
,
∂Y

∂u
, 0

)T
, Gv =

(
∂X

∂v
,
∂Y

∂v
, 0

)T
,

(41)

gij = gi · gj = gTi gj , (42)

and calculation of dual base vectors:

gu = guugu + guvgv, gv = gvugu + gvvgv, (43)

where gij is the inverse of gij . The same relations can be
used for a force diagram.

The deformation gradient F is given by Eq. (16) and its
components on a (x, y) coordinate system:

Fxx = (ex ·Gu)(ex · gu) + (ex ·Gv)(ex · gv),
Fxy = (ex ·Gu)(ey · gu) + (ex ·Gv)(ey · gv),
Fyy = (ey ·Gu)(ey · gu) + (ey ·Gv)(ey · gv),

(44)

where ex and ey the orthonormal base vectors of the (x, y)
system.

Base vectors and the first fundamental form on a shell:

hξ =

(
∂x

∂ξ
,
∂y

∂ξ
,
∂z

∂ξ

)T
, hη =

(
∂x

∂η
,
∂y

∂η
,
∂z

∂η

)T
, (45)
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hij = hi · hj = hTi hj . (46)

Those on the projected geometry of a shell:

h̄ξ =

(
∂x

∂ξ
,
∂y

∂ξ
, 0

)T
, h̄η =

(
∂x

∂η
,
∂y

∂η
, 0

)T
, (47)

h̄ij = h̄i · h̄j = h̄
T
i h̄j . (48)

Components of the 2nd-PK stress tensor measured on
(ξ, η) system:

S̄ij =


∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

[ Fyy −Fxy
−Fxy Fxx

]
∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η

 .
(49)

B Principle of virtual work
The equilibrium equation of a membrane shell:

Sxx
∂2z

∂x2
+ Sxy

∂2z

∂x∂y
+ Syy

∂2z

∂y2
= −ρ. (50)

Defining k1 = (1, 0,
∂z

∂x
), k2 = (0, 1,

∂z

∂y
), e1 = (1, 0, 0),

e2 = (0, 1, 0), and e3 = (0, 0, 1), and rewriting the equation
by using a systematic rule, x, y, z → x1, x2, x3, the LHS of
the equilibrium equation can be rewritten as

Sαβ
∂2z

∂xβ∂xα
=
∂Sαβkα ⊗ kβ

∂xk
: (e3 ⊗ ek), (51)

where : represents an inner product between two tensors
defined by a⊗ b : c⊗ d = (a · d)(b · c).

Then, when the variation (small change) of the shell
is restricted to vertical direction only and represented by
δz(x, y), the virtual work done by Sαβ is

δw =boundary term

−
∫
∂k(Sαβkα ⊗ kβ) : (e3 ⊗ ek)δz dxdy

=

∫
Sαβkα ⊗ kβ : ∂k(e3 ⊗ ekδz) dxdy

=

∫
Sαβ

∂z

∂xβ

∂δz

∂xα
dxdy

=
1

2

∫
Sαβδkαβ dxdy,

(52)

where δkαβ = kα · δkβ + δkα · kβ .
The same result can be obtained when the horizontal

equilibrium is taken into account, and the variation of the
shell is now allowed to move in x and y directions. Since
the virtual work is a scalar, its expression translated to a
curvilinear coordinate system can easily be obtained as

δw =
1

2

∫
S̄αβδhαβdā, (53)

where dā is an area element projected on to the xy plane,
hαβ is the first fundamental form of the shell, S̄αβ is the
second PK stress tensor having the projected geometry as its
reference configuration.

C Characteristic lines = asymptotic lines
A characteristic line of a second-order PDE of the form

A
∂2z

∂x2
+B

∂2z

∂x∂y
+ C

∂2z

∂y2
= −ρ, (54)

can be obtained as follows. A characteristic line is a curve
whose tangent (dx,dy) is orthogonal to the direction (α, β)
that is a root ofAα2 +Bαβ + Cβ2 = 0. Hence, substituting
(α, β) = (dy,−dx), one gets A dy2 −B dxdy + C dx2 =
0.

In this paper

∂2φ

∂x2
dx2 +

∂2φ

∂x∂y
dxdy +

∂2φ

∂y2
dy2 = 0, (55)

which is the same as the definition of the asymptotic lines.

D Candela’s Xotimilco restaurant
A stress function φ(u, v) = Bu2 − (v − 1

2 )2 + Cv and a
form diagram (x, y) = (−u,Bu2 + v +A) yields a force
diagram (X,Y ) = (4Buv, 2v + C − 1). With parameters
A = − tan(2π/16)−B, B = (1.06)2, and C = 15.2, u
moves from -1 to 1, v = 0 when on the edge, and v =
−A when at the center, a shell reproducing the Candela’s
Xotimilco restaurant can be obtained (Fig. 29).

Figure 29. (left to right) stress function, Candlea shell and
force diagram.
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