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Abstract: Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually

impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic

datasets. To address this, we introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human

navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic

scenarios without environmental control. InCrowd-VI features 58 sequences totaling a 5 km trajectory length

and 1.5 hours of recording time, including RGB, stereo images, and IMU measurements. The dataset captures

important challenges such as pedestrian occlusions, varying crowd densities, complex layouts, and lighting

changes. Ground-truth trajectories, accurate to approximately 2 cm, are provided in the dataset, originating from

the Meta Aria project machine perception SLAM service. In addition, a semi-dense 3D point cloud of scenes is

provided for each sequence. The evaluation of state-of-the-art visual odometry (VO) and SLAM algorithms on

InCrowd-VI revealed severe performance limitations in these realistic scenarios, demonstrating the need and value

of the new dataset to advance SLAM research for visually impaired navigation in complex indoor environments.

Keywords: visual SLAM; blind and visually impaired navigation; crowded indoor environments; dataset

1. Introduction

Navigation in crowded indoor public spaces presents major challenges for blind and visually
impaired (BVI) individuals. Systems that support this navigation require real-time user localization,
detailed environmental mapping, and enhanced spatial awareness. Robust solutions are necessary
to cope with unfamiliar settings and provide safe and more independent mobility for people with
visual disabilities. Simultaneous localization and mapping (SLAM) [1] offers promising capabilities
for addressing these requirements. However, several hurdles must be overcome in order to make
SLAM viable for visually impaired navigation, particularly in crowded public spaces. These settings
are characterized by unpredictable pedestrian movements, varying lighting conditions, and reflective
and transparent surfaces. Such dynamic and complex environments complicate reliable navigation
significantly.

Although existing SLAM research has made significant advancements in domains such as robotics
[2,3], autonomous driving [4], and aerial vehicles [5,6], these approaches do not adequately address
the specific challenges of pedestrian-rich indoor navigation for the visually impaired.

The lack of realistic datasets tailored for human navigation in crowded environments has been
a significant barrier in the development of robust SLAM systems tailored for visually impaired
navigation. Current datasets often focus on vehicle-based scenarios or controlled environments
and lack the diversity of scenes, dynamic complexity, and real-world conditions necessary for this
application.
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To address this gap, we introduce InCrowd-VI1, a visual-inertial dataset specifically designed
for SLAM research in human-crowded indoor environments. Unlike existing datasets, InCrowd-
VI captures sequences recorded at diverse indoor public locations, such as airports, train stations,
museums, university labs, shopping malls, and libraries, representing realistic human motion patterns
at typical walking speeds. The recorded sequences feature diverse settings, including varying crowd
densities (from pedestrian-rich to static environments) and complex architectural layouts such as
wide-open spaces, narrow corridors, (moving) ramps, staircases, and escalators. They present various
challenges characteristic of real-world indoor spaces, including frequent occlusions by pedestrians,
variations in lighting conditions, and presence of highly reflective surfaces. The dataset was collected
with Meta Aria Project glasses worn by a walking person in pedestrian-rich environments, and thus
incorporates realistic human motion, behavior, and interaction patterns.

The dataset has a total trajectory length of 4998.17 meters, with a total recording time of 1 h, 26
min, and 37 s. This dataset provides RGB images, stereo images, and IMU measurements. In addition,
it includes a semi-dense 3D point cloud of scenes for further analysis. The ground-truth trajectories
were provided by the Meta Aria project machine perception SLAM service [7], which offers a reliable
benchmark for evaluating the accuracy of the SLAM algorithms.

To demonstrate the value of InCrowd-VI, several state-of-the-art classical and deep learning-based
approaches for visual odometry (VO) and SLAM systems were evaluated. The analysis revealed the
severe performance degradation of these systems in crowded scenarios, large-scale environments, and
challenging light conditions, highlighting the key challenges and opportunities for future research to
develop more robust SLAM solutions for visually impaired navigation.

The contributions of this paper are as follows.

• Introduction of InCrowd-VI, a novel visual-inertial dataset specifically designed for human
navigation in indoor pedestrian-rich environments, filling a critical gap in existing research
resources.

• Provision of ground-truth data, including accurate trajectories (approximately 2 cm accuracy)
and semi-dense 3D point clouds for each sequence, enabling rigorous evaluation of SLAM
algorithms.

• Evaluation of state-of-the-art visual odometry and SLAM algorithms using InCrowd-VI, reveal-
ing their limitations in realistic crowded scenarios.

• Identification of crucial areas for improvement in SLAM systems designed for visually impaired
navigation in complex indoor environments.

2. Related Work

Evaluation of visual SLAM systems requires comprehensive datasets that capture the complexity
and variability of real-world environments. The existing benchmark datasets for SLAM can be cat-
egorized according to their operational domains. Depending on the domain, different sensory data
and varying degrees of ground truth accuracy have been provided [8]. Various datasets have been
proposed for different operational domains, each with distinct sensor platforms, settings, and chal-
lenges. This section reviews state-of-the-art datasets, highlighting their characteristics and limitations
in comparison with the newly proposed InCrowd-VI dataset. Datasets from robotics and autonomous
systems as well as those focused on pedestrian odometry, are examined to assess their applicability
to BVI navigation challenges. Table 1 provides an overview of these datasets, summarizing their key
features and comparing them to InCrowd-VI.

1 The InCrowd-VI dataset, along with custom tools to extract and process data from Meta .vrs recording files, will be made
available online upon publication.
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Table 1. Comparison of representative datasets.

Dataset Environment Carrier Crowd Den-
sity

Ground Truth # Sequence

Robotics and autonomous systems

KITTI [9] Outdoor Car Low GPS/IMU 22
EuRoC MAV [10] Indoor Drone Static Motion cap-

ture
11

PennCOSYVIO [11] In/Outdoor Hand-held Low Fiducial mark-
ers

4

Zurich Urban [12] Outdoor Quadrotor Not men-
tioned

Photogrammetric
3D reconstruc-
tion

2 km

InteriorNet [13] Indoor Simulated
cameras

None Synthetic 15K

TUM VI [14] In/Outdoor Handheld Low Partial motion
capture

28

UZH-FPV [15] In/Outdoor Quadrotor None Leica Nova
MS60 TotalSta-
tion

27+

Newer College [16] Outdoor Hand-held None 6DOF ICP lo-
calization

4

VIODE [17] In/Outdoor Simulated
quadrotor
UAV

High Synthetic 12

NAVER LABS [18] Indoor A dedicated
mapping
platform

Medium LiDAR SLAM
& SFM

5 datasets

ConsInv [19] In/Outdoor Not men-
tioned

Low ORB-SLAM2 159

Hilti-Oxford [8] In/Outdoor Hand-held Low survey-grade
scanner

16

CID-SIMS [20] Indoor Robot/HandheldLow GeoSLAM 22

Pedestrian odometry dataset

Zena [21] Outdoor Head-
mounted

High Step estima-
tion process
using IMU

a 35-min
dataset

ADVIO [22] In/Outdoor Hand-held High IMU-based +
manual posi-
tion fixes

23

BPOD [23] In/Outdoor Head-
mounted

Not men-
tioned

Marker-based 48

InCrowd-VI (ours) Indoor Head-worn High Meta Aria
Project SLAM
service

58

2.1. Robotics and Autonomous Systems

Datasets play a crucial role in advancing SLAM research in various domains. The KITTI dataset
[9], which is pivotal for autonomous vehicle research, has limited applicability to indoor pedestrian
navigation, because it focuses on outdoor environments. Similarly, datasets like EuRoC MAV [10],
TUM VI [14], and Zurich Urban [12], although offering high-quality visual-inertial data, do not fully
capture the challenges of indoor pedestrian navigation in crowded environments. The CID-SIMS
dataset [20], recorded from a ground-wheeled robot, provides IMU and wheel odometer data with
semantic annotations and an accurate ground truth. However, it lacks the complexity of pedestrian-rich
environments. VIODE [17] offers a synthetic dataset from simulated UAV navigation in dynamic
environments; however, synthetic data cannot fully replace real-world data, particularly for safety-
critical applications [24,25]. The ConsInv dataset [19] evaluates the SLAM systems with controlled
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dynamic elements. However, its controlled nature fails to capture the complexity of human-crowded
public spaces. Moreover, its ground-truth method using ORB-SLAM2 with masked dynamic objects
does not accurately represent the challenges faced by SLAM systems in crowded real-world settings.

2.2. Pedestrian Odometry Dataset

The Zena dataset [21] provides laser scan data and IMU measurements from helmet and waist-
mounted sensors to support research on human localization and mapping in outdoor scenarios.
However, the lack of visual data limits its utility in the assessment of visual SLAM systems. The
Brown Pedestrian Odometry Dataset (BPOD) [23] provides real-world data from head-mounted stereo
cameras in diverse indoor and outdoor environments. Although it captures challenges, such as rapid
head movement and image blur, BPOD does not specifically focus on crowded indoor environments.
ADVIO [22] is a dataset for benchmarking visual-inertial odometry using smartphone sensors in
various indoor and outdoor paths. Although valuable for general visual-inertial odometry, the use
of handheld devices limits its ability to capture natural head movements and gait patterns, which
are crucial for realistic navigation scenarios. Additionally, ADVIO’s ground truth, which is based on
inertial navigation with manual position fixes, may have accuracy limitations.

Although these datasets provide valuable resources for evaluating SLAM systems, they do not
fully address the specific challenges for human navigation in indoor pedestrian-rich environments.
The InCrowd-VI dataset fills this gap by capturing realistic human motion patterns and complex
environmental conditions, which are essential for developing robust SLAM solutions for visually
impaired navigations.

3. InCrowd-VI Dataset

This section presents the InCrowd-VI dataset, specifically developed for evaluating SLAM in
indoor pedestrian-rich environments for human navigation. The sensor framework used for data
collection is first described, followed by an outline of the methodology employed to create the dataset.
The process of obtaining and validating the ground-truth data is then explained. Finally, the captured
sequences and the various challenges they represent are detailed.

3.1. Sensor Framework

The choice of platform for data collection was determined on the basis of the intended application
of the SLAM system to be evaluated using the dataset. In the context of visually impaired navigation,
wearable platforms are particularly appropriate because they can effectively capture human motion
patterns during movements. Consequently, we employed a head-worn platform to collect the data.
Head-mounted devices offer the advantage of capturing a forward-facing view, which is crucial for
navigation, and more accurately representing how a visually impaired individual might scan their
environment, including natural head movements and areas of focus. In this study, we utilized Meta
Aria glasses as our sensor platform.

The Meta Aria glasses feature five cameras, including two mono scene cameras with less over-
lapping and large field of view, one RGB camera, and two eye-tracking (ET) cameras2. Additionally,
the glasses are equipped with several non-visual sensors, including two Inertial Measurement Units
(IMUs), a magnetometer, a barometer, a GPS receiver, and both Wi-Fi and Bluetooth beacons. The
glasses also include a seven-channel spatial microphone array with a 48 kHz sampling rate, which can
be configured to operate in stereo mode with two channels. It should be noted that the InCrowd-VI
dataset includes data from only the RGB and mono cameras as well as IMU measurements. Other
sensor data are not included in the dataset. One of the key features of Meta Aria glasses is their
support for multiple recording profiles, allowing users to select which sensors to record with and

2 https://facebookresearch.github.io/projectaria_tools/docs/tech_spec/hardware_spec
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Table 2. Specifications of the cameras on Meta Aria glasses [26], with the horizontal field of view
(HFOV) in degrees, vertical field of view (VFOV) in degrees, instantaneous field of view (IFOV) in
degrees per pixel, and maximum resolution in pixels. FPS represents the maximum frame rate. Note
that InCrowd-VI only includes data from the RGB and Mono cameras.

Camera HFOV VFOV IFOV Max resolution FPS Shutter

Mono (x2) 150 120 0.26 640x480 30 global
RGB (x1) 110 110 0.038 2880x2880 30 rolling
ET (x2) 64 48 0.2 640x480 90 global

configure their settings accordingly. This flexibility makes these glasses particularly suited for diverse
experimental conditions and requirements. Table 2 summarizes the specifications of the five cameras
on Aria glasses.

3.2. Methodology

The data collection process was carefully designed to capture the diverse challenges of real-
world indoor navigation. The strength of the dataset lies in its comprehensive representation of
these challenges, which include frequent pedestrian occlusions, varying crowd densities, complex
architectural layouts, wide open spaces, narrow corridors, (moving) ramps, staircases, escalators,
texture-poor scenes, lighting variations, and highly reflective surfaces. These environments range from
densely populated areas with more than 20 pedestrians per frame to empty cluttered spaces, offering a
wide variety of scenarios for evaluating SLAM systems. During data collection, tactile paving (textured
ground surfaces that BVI individuals can feel with their feet and cane) was followed where available,
to mimic the walking patterns of visually impaired individuals and to enable later visual inspection
of the accuracy of 3D point clouds, particularly in high-traffic areas. Data collection was conducted
with the necessary permission from the relevant authorities, ensuring that ethical considerations were
addressed.

3.3. Ground-Truth

The ground-truth trajectory and 3D reconstruction of the scene were produced using the Meta
Aria machine perception SLAM service [7]. This service provides device trajectories generated by
state-of-the-art VIO and SLAM systems, followed by offline postprocessing and refinement. It uses
multiple sensors to improve accuracy and robustness, taking advantage of the precise knowledge of
the sensor models, timing, and rigidity of Meta Aria devices. This allows for robust localization even
under challenging real-world conditions such as fast motion, low or highly dynamic lighting, partial
or temporary occlusion of cameras, and a wide range of static and dynamic environments.

Although the Meta Aria machine perception SLAM service achieves high accuracy, it does so
under conditions that are not feasible for real-time visually impaired navigation: it operates offline
with server-side processing, utilizes the full sensor suite, and performs extensive post-processing. By
contrast, practical navigation systems for the visually impaired must operate in real time on resource-
constrained wearable devices, provide immediate reliable feedback, and maintain robustness without
the benefit of post-processing or cloud computation.

The trajectories produced by the Meta SLAM service have a typical global RMSE translation
error of no more than 1.5 cm in room-scale scenarios. Additionally, Meta SLAM service provides a
semi-dense point cloud of the scene, accurately reconstructing the static portion of the environment,
even in highly dynamic and challenging situations [7].

The accuracy of this ground truth was further validated through manual measurements in several
challenging scenarios, with results indicating a mean absolute error of approximately 2 cm, aligning
with the reported accuracy of the Meta SLAM service. To validate the ground truth, a method was used
that leverages the core principle of SLAM systems: the joint optimization of the 3D map and camera
trajectory [27]. This approach involved identifying easily recognizable landmarks across the trajectory
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in both the real-world environment and semi-dense map. The 3D coordinates of these landmarks were
recorded from the point cloud and the distances between them were calculated using the Euclidean
distance formula. These calculated distances were then compared with actual measurements taken
in the real world, allowing for a direct assessment of the accuracy of the map and reliability of the
estimated trajectory. Figure 1 illustrates an example of the manual measurement process.

Figure 1. Sample of manual measurement process for ground-truth validation. Left: Real-world scene
with a landmark floor tile highlighted by pink rectangle. Middle: Full 3D point cloud map of the scene
with four adjacent floor tiles marked in blue. Right: Zoomed view of the marked corner of the tiles in
the point cloud used for measurement.

Initially, manual measurements were conducted on selected crowded sequences. Following
the evaluation of the state-of-the-art VO and SLAM systems presented in Section 4.2, we conducted
additional manual measurements, specifically focusing on sequences where all systems exhibited
failure or suboptimal performance, according to the metrics defined in Section 4.1. We used a variety of
objects in each sequence, such as floor tiles, doors, advertising boards, and manhole covers, distributed
across different spatial orientations throughout the trajectories to ensure robust validation. Figure 2
presents the relationship between real-world and measured distances from the second round of
manual measurements. The strong linear correlation (indicated by the red trend line) and tight
clustering of points around this line demonstrates that the Meta SLAM service maintains its accuracy
even in challenging scenarios where contemporary SLAM systems struggle. The plot, incorporating
measurements ranging from 30 cm to over 250 cm, shows that the reconstruction accuracy remained
stable regardless of the measured distance, with deviations typically within 2 cm of the expected
values.
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Figure 2. Correlation between real-world measurements and point-cloud-derived distances in chal-
lenging sequences, where state-of-the-art SLAM systems exhibited failure or suboptimal performance.
The scatter plot demonstrates a strong linear relationship between real-world and measured distances
(in centimeters), with an average error of 2.14 cm, standard deviation of 1.46 cm, and median error of
2.0 cm.

It is important to note that the manual measurement process itself introduces some level of error
owing to the challenges in precisely identifying corresponding points. Despite this, the observed errors,
which are slightly higher than the reported typical error, remain within a reasonable range, suggesting
that the Meta SLAM service performs adequately in this specific scenario. In addition to quantitative
metrics, a qualitative visual inspection of the estimated trajectories and maps was performed. This
involved assessing the alignment of landmarks, plausibility of trajectories, and removal of moving
pedestrians in the scene. Figure 3 illustrates the capability of the Meta Aria machine perception SLAM
service to handle dynamic objects by showcasing a scenario where a pedestrian initially appears static
relative to the camera while on an escalator but subsequently becomes dynamic. The image presents the
refined 3D reconstruction produced by the SLAM service, which successfully identifies and removes
dynamic pedestrians from the final point cloud, leaving only static elements of the environment.
The dynamic object removal process improves the accuracy of 3D map reconstruction and trajectory
estimation by ensuring that moving and temporary stationary objects are not incorporated into the
static environment representation or ground truth.
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Figure 3. Refined 3D reconstruction demonstrating the removal of dynamic pedestrians that initially
appeared static relative to the camera on the escalator.

3.4. Sequences and Captured Challenges

Each dataset sequence in InCrowd-VI includes timestamped RGB images at resolutions of 1408 ×
1408 and 30 FPS, stereo pair images at resolutions of 640 × 480 and 30 FPS, two streams of IMU data at
data rates of 1000 and 800 Hz, semi-dense point clouds, and an accurate trajectory ground truth. While
the Meta Aria glasses provide data from multiple sensors, not all of them are included in the dataset,
as they were not essential for the focus of this dataset. An example of the image data and their relative
3D map of the scene is shown in Figure 4.

Figure 4. Example of image data and corresponding 3D map from a dataset sequence: The top-left
image shows the RGB frame, and the top-middle and top-right images represent the left and right
images of a stereo pair. The bottom image shows the 3D map of the scene.
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To facilitate a comprehensive evaluation of the SLAM algorithms, the dataset sequences are
organized to represent different levels of pedestrian density and environmental complexity. This
categorization allows for the evaluation of SLAM systems at varying levels of human density and
environmental complexity. Table 3 provides an overview of the sequences, illustrating their categoriza-
tion based on pedestrian density, diversity of venues, sequence lengths, durations, and the specific
challenges encountered in each scenario. This structure ensures that the dataset offers a wide variety of
scenarios, enabling a thorough evaluation of the adaptability and robustness of the SLAM algorithms
in realistic scenarios. Additionally, trajectory length plays a crucial role in assessing the performance
and robustness of visual SLAM systems. For indoor environments for visually impaired navigation,
we considered sequences with lengths less than 40 m as short trajectories, those ranging from 40 m to
100 m as medium trajectories, and those of 100 m and beyond as long trajectories. Figure 5 shows a
histogram of the trajectory lengths for the InCrowd-VI dataset.
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Figure 5. Histogram of trajectory length
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Table 3. InCrowd-VI Sequences.

Density Sequence
name

Venue Length (m) Span (mm:ss) Main Chal-
lenges

H
ig

h

Oerlikon_G7 Train station 133.36 02:04 Challenging
light, ramp

UZH_stairs Museum 13.16 00:41 Stairs
G6_exit Train station 60.21 01:27 Stairs, flicker-

ing light
G6_loop Train station 103.74 02:07 Challenging

light
Getoff_pharmacyTrain station 159.50 03:06 Motion transi-

tion
Service_center Airport 131.89 02:18 Reflection,

open area
Ochsner_sport Airport 70.57 01:14 Reflection
Toward_gates Airport 165.46 02:57 Reflection,

open area
Arrival2 Airport 74.96 01:23 Crowd
Checkin2_loop Airport 348.84 05:22 Long trajec-

tory
Shopping_open Shopping mall 182.51 03:10 Challenging

light, open
area

Turn180 Airport 41.95 00:46 Reflection
Cafe_exit Main train sta-

tion
121.40 01:51 Reflection,

open area
G8_cafe Main train sta-

tion
294.05 04:14 Long trajec-

tory
Ground_53 Main train sta-

tion
32.40 01:01 Escalator

(motion transi-
tion)

Kiko_loop Shopping mall 314.68 05:50 Long trajec-
tory

Reservation_officeMain train sta-
tion

95.15 01:28 Reflection,
open area

Orell_fussli Shopping mall 57.98 01:16 Crowd
Reservation_G17 Main train sta-

tion
97.30 01:50 Challenging

light, open
area

Short_Loop_BH Main train sta-
tion

104.94 02:29 Reflection,
open area
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Table 3. Cont.

Density Sequence
name

Venue Length (m) Span (mm:ss) Main Chal-
lenges

M
ed

iu
m

Migros Shopping mall 84.18 01:40 Reflection,
open area

TS_exam_loop Exam location 28.81 01:34 Glass wall, sit-
ting people

Museum_loop Museum 66.99 02:02 Challenging
light

Ramp_checkin2 Airport 191.77 03:40 Moving ramp
(motion tran-
sition), open
area

Airport_shop Shopping mall 99.49 01:46 Reflection,
open area

Towards_checkin1Airport 55.89 01:02 Reflection,
open area,
glass wall

Entrance_checkin1Airport 35.70 00:39 Reflection
Shopping_loop Shopping mall 151.91 02:36 Challenging

light
Towards_circle Airport 127.46 02:06 Challenging

light, repeti-
tive structure

Lo
w

AND_floor51 Library 40.23 00:53 Narrow aisle
AND_floor52 Library 39.13 01:10 Narrow aisle,

sitting people
AND_liftAC University

building
71.15 01:33 Open area,

glass wall
ETH_HG University

building
99.00 01:56 Repetitive

structure
ETH_lab Laboratory 56.70 01:24 Reflection
Kriegsstr_pedestrianPublic build-

ing
31.97 00:59 Texture-poor

Kriegsstr_same_dirPublic build-
ing

31.17 00:56 Texture-poor

TH_entrance University
building

41.85 00:53 Challenging
light, sitting
people

TS_entrance University
building

32.06 00:42 Reflection

TS_exam University
building

44.93 01:01 Narrow
corridor,
texture-poor

UZH_HG University
building

142.12 03:09 Long trajec-
tory, repetitive
structure

Museum_1 Museum 69.30 01:51 Challenging
light

Museum_dinosaurMuseum 44.62 01:16 Challenging
light

Museum_up Museum 12.20 00:34 Stairs
Short_loop Airport 36.92 00:46 Open area
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Table 3. Cont.

Density Sequence
name

Venue Length (m) Span (mm:ss) Main Chal-
lenges

N
on

e

AND_Lib Office build-
ing

52.19 01:18 Reflection

Hrsaal1B01 Academic
building

74.55 01:50 Challenging
light

ETH_FT2 Museum 40.97 00:56 Challenging
light, reflec-
tion

ETH_FTE Museum 59.00 01:35 Challenging
light, open
area

ETH_lab2 Laboratory 58.08 01:26 Texture-poor,
reflection

Habsburgstr_darkPublic build-
ing

36.08 01:05 Multi-floor,
dimly lit

Habsburgstr_lightPublic build-
ing

87.99 02:46 Multi-floor

IMS_lab Laboratory 15.23 00:43 Cluttered
scene

IMS_TE21 Laboratory 42.43 01:23 Cluttered
scene, chal-
lenging light

IMS_LEA Laboratory 19.35 00:43 Cluttered
scene

Kriegsstr Public build-
ing

31.18 00:54 Texture-poor

TH_loop Office build-
ing

154.74 03:55 Reflection

TS116 University
building

59.11 01:24 Challenging
light, reflec-
tion, glass
wall

TS_stairs University
building

27.67 00:52 Stairs, chal-
lenging light,
glass wall

It is important to note that the walking speeds in our dataset reflect the typical navigation patterns
of visually impaired individuals. Studies have shown that individuals with visual impairments tend to
walk slower and have reduced stride lengths during both independent and guided walking compared
to sighted people [28]. While the typical walking speed for sighted populations is generally between
1.11 and 1.4 m/s [28], the average walking speed in the InCrowd-VI dataset is 0.75 m/s. This lower
average speed aligns with the expectations of the visually impaired navigation.

The dataset captures a wide range of challenges inherent to real-world indoor navigation scenarios,
including the following.

• Dynamic obstacles: InCrowd-VI features sequences with moving pedestrians, capturing sce-
narios of crossing paths with groups and maneuvering around individuals moving in different
directions. These sequences test the ability of the SLAM systems to handle unpredictable dynamic
elements in real-world environments.

• Crowd density variation: Sequences capture a range of crowd densities from static to densely
populated areas, testing the adaptability of SLAM systems to different levels of human activity.

• Frequent occlusions: The dataset includes sequences with frequent occlusions caused by moving
pedestrians, luggage, and infrastructure, thereby creating significant challenges for maintaining
accurate mapping and tracking.
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• Reflective and transparent surfaces: The dataset includes scenes with glass and other reflective
surfaces that can distort sensor readings and complicate the visual SLAM algorithms.

• Texture-poor areas: Scenes with minimal visual features, such as plain walls, challenge feature-
based SLAM systems.

• Large-scale and complex environments: The dataset covers diverse architectural layouts, includ-
ing open spaces, corridors, ramps, staircases, and escalators, to test the adaptability of SLAM to
various spatial configurations.

• Lighting variations: Sequences incorporate sequences with varying lighting conditions, from
well-lit atriums to dimly lit corridors or areas with flickering lights, to test the SLAM robustness
under varying illumination conditions.

• Sudden viewpoint changes: Sequences capture user perspective shifts during corner turns and
level transitions, thereby challenging SLAM tracking consistency.

• Motion transitions: Sequences include transitions between moving environments (escalators,
moving ramps, and trains) and stationary areas, to test SLAM’s ability to distinguish ego-motion
from environmental motion.

These challenges collectively contribute to the realism and complexity of the InCrowd-VI dataset,
making it a valuable resource for evaluating and advancing SLAM systems designed for visually
impaired navigation in real-world indoor environments. Figure 6 shows the selection of images from
the InCrowd-VI dataset.

(a) (b) (c)

(d) (e) (f)
Figure 6. Example scenes from the InCrowd-VI dataset demonstrating various challenges: (a) high
pedestrian density, (b) varying lighting conditions, (c) texture-poor surfaces, (d) reflective surfaces, (e)
narrow aisles, (f) stairs.

4. Experimental Evaluation

To assess the accuracy and robustness of current state-of-the-art visual SLAM systems on the
InCrowd-VI dataset, four representative algorithms were selected: two classical approaches and two
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Table 4. Characteristics of selected SLAM systems

SLAM system Matching approach Approach

DROID-SLAM Dense optical flow-based End-to-end
DPV-SLAM Sparse patch-based End-to-end
ORB-SLAM3 Feature-based Classical SLAM
SVO Semi-direct Classical VO

deep learning-based methods. These systems were chosen because of their prominence in the field and
diverse approaches to visual SLAM. As shown in Table 4, DROID-SLAM [29] and DPV-SLAM [30] use
dense optical flow-based and sparse patch-based matching approaches, respectively, both of which
leverage end-to-end learning. Conversely, ORB-SLAM3 [31] and SVO [32] employ the classical feature
matching and semi-direct matching approaches, respectively. This evaluation serves to demonstrate
that InCrowd-VI effectively captures challenging real-world scenarios that current state-of-the-art
systems struggle to handle and underscores the dataset’s value as a benchmark for advancing SLAM
research in visually impaired navigation.

A selection of sequences from InCrowd-VI representing a range of difficulty levels from easy to
hard was used for evaluation. These sequences were selected to represent the diverse challenges present
in the dataset, including changing elevations, long trajectories, motion transitions, challenging lighting
conditions, and crowds with different densities. This approach allows for a comprehensive assessment
of the accuracy and robustness of SLAM systems across various scenarios, while maintaining a
manageable evaluation process. ORB-SLAM3 was evaluated using the left camera images and left
IMU measurements. The DROID-SLAM, DPV-SLAM, and SVO were evaluated using only the left
camera images. Additionally, the intrinsic camera parameters were extracted, and the left IMU-to-left
camera transformation was calculated using the calibration data provided by the Meta Aria project.
For camera calibration, Project Aria used a sophisticated camera model (FisheyeRadTanThinPrism) 3,
which includes six radial, two tangential, and four thin-prism distortion parameters. A custom tool
was developed to convert the data from the VRS files recorded by the Meta Aria glasses to the required
format for each VO and SLAM system, and system configuration parameter files were provided for
each system to ensure compatibility with the dataset. The experimental setup ran Ubuntu 20.04 and
22.04 on a Lenovo laptop equipped with a 12th Gen Intel® Core™ i9-12950HX vPro® Processor, 64
GB DDR5 RAM, and an NVIDIA RTX™ A2000 8 GB GDDR6 graphics card. ORB-SLAM3, SVO, and
DPV-SLAM incorporate random processes into their operations, such as RANSAC for outlier rejection
and random feature selection. DPV-SLAM, which is based on DPVO [33], adds further variability
through random keypoint selection and its probabilistic depth estimation approach. By contrast,
DROID-SLAM uses a deterministic model that produces identical results across multiple runs, as
observed in our experiments. To account for these algorithmic differences and ensure fair evaluation,
we executed ORB-SLAM3, SVO, and DPV-SLAM five times each, reporting mean values, whereas
DROID-SLAM required only a single execution per sequence. The results are summarized in Table 5.

3 https://facebookresearch.github.io/projectaria_tools/docs/tech_insights/camera_intrinsic_models
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Table 5. Quantitative results of evaluated SLAM systems across various challenging scenarios, including different crowd densities, lighting conditions, long trajectories,
elevation changes, and motion transitions. The results include the absolute trajectory error (ATE) in meters, drift percentage (DP) showing system drift as a percentage
of total trajectory length, pose estimation coverage (PEC) as a percentage, system frames per second (FPS) indicating the number of frames processed by the system
per second, and real-time factor (RTF). RTF provides a ratio that indicates how much faster the system processes data compared to the user’s walking speed. The table
includes the trajectory length (Trj. Len.) in meters and the average walking speed (AWS) in meters per second for each sequence. Sequences with high crowd density
are marked in red, medium in orange, low in blue, and none in black. The failed sequences are denoted as ×.

Sequence
Trj

Len
(m)

AWS
(m/s)

Classical Systems Deep Learning-Based Systems
ORB-SLAM3 SVO DROID-SLAM DPV-SLAM

ATE
(m)

DP
(%)

PEC
(%) FPS RTF ATE

(m)
DP
(%)

PEC
(%) FPS RTF ATE

(m)
DP
(%)

PEC
(%) FPS RTF ATE

(m)
DP
(%)

PEC
(%) FPS RTF

Crowd Density

Orell_fussli 57.98 0.76 2.95 5.08 90 23 0.80 x x x 174 5.82 1.07 1.84 100 16 0.53 0.21 0.36 98 10 0.36
Entrance_checkin1 35.70 0.92 0.77 2.15 92 25 0.82 6.78 18.99 80 128 4.27 0.08 0.22 100 16 0.53 0.08 0.22 97 11 0.39
Short_loop 36.92 0.80 0.22 0.59 96 24 0.83 3.71 10.04 70 134 4.51 0.04 0.10 100 15 0.51 0.32 0.86 97 11 0.38
IMS_lab 15.23 0.35 0.06 0.39 94 24 0.82 2.49 16.34 71 149 5.05 0.02 0.13 100 16 0.54 0.04 0.26 97 14 0.48

Lighting Variations
Reservation_G17 97.30 0.88 7.45 7.65 95 26 0.87 15.23 15.65 74 156 5.25 1.14 1.17 100 19 0.65 1.95 2.00 99 12 0.40
Toward_circle 127.46 1.01 x x 97 25 0.86 x x x 175 5.86 0.88 0.69 100 15 0.50 0.59 0.46 99 10 0.29
Museum_1 69.30 0.62 0.34 0.49 98 25 0.87 3.82 5.51 36 171 5.75 6.21 8.96 100 18 0.61 8.06 11.63 99 10 0.34
TS116 59.11 0.70 x x 57 21 0.71 3.99 6.75 31 159 5.32 3.77 6.37 100 15 0.52 1.08 1.82 98 10 0.34

Long Trajectory
Kiko_loop 314.68 0.90 22.81 7.24 98 26 0.87 20.12 6.39 59 153 5.11 2.51 0.79 100 17 0.56 26.79 8.51 99 8 0.28
Shopping_loop 151.91 0.97 3.02 1.98 97 25 0.85 21.41 14.09 89 138 4.63 2.52 1.65 100 16 0.55 12.21 8.03 99 9 0.31
UZH_HG 142.12 0.75 30.60 21.53 94 26 0.88 16.11 11.33 47 170 5.70 2.86 2.01 100 17 0.58 11.45 8.05 99 9 0.32
TH_loop 154.74 0.66 x x 88 22 0.72 0.01 0.006 0.9 131 4.37 4.53 2.92 100 18 0.62 6.71 4.33 99 9 0.33

Changing Elevation (stairs) - Short Trajectories
UZH_stairs 13.16 0.32 0.06 0.45 77 23 0.78 1.52 11.55 37 138 4.62 0.04 0.30 100 22 0.78 0.05 0.37 97 15 0.5
G6_exit 60.21 0.69 6.67 11.07 97 26 0.86 x x x 153 5.11 0.41 0.68 100 17 0.57 1.91 3.17 97 12 0.40
Museum_up 12.20 0.36 0.42 3.44 82 22 0.75 0.03 0.24 6.2 164 5.44 0.03 0.24 100 18 0.61 0.02 0.16 98 12 0.41
TS_stairs 27.67 0.53 0.26 0.93 94 25 0.84 2.43 8.78 41 158 5.30 0.21 0.75 100 16 0.56 0.41 1.48 96 12 0.39

Motion Transition
Getoff_pharmacy 159.50 0.86 81.01 50.78 85 25 0.83 34.91 21.88 48 153 5.10 27.95 17.52 100 17 0.59 27.55 17.27 98 10 0.33
Ground_53 32.40 0.53 x x 96 25 0.84 4.54 14.01 79 136 4.54 3.30 10.18 100 19 0.64 3.84 11.85 98 13 0.45
Ramp_checkin2 191.77 0.87 7.31 3.81 98 26 0.87 46.95 24.48 97 142 4.74 1.82 0.94 100 20 0.67 0.77 0.40 99 10 0.34
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4.1. Evaluation Metrics

To evaluate VO and SLAM systems, we used the root mean square error (RMSE) of absolute
trajectory error (ATE) [34]. This metric quantifies the accuracy of the estimated trajectory compared
with the ground truth by measuring the root mean square of the differences between the estimated
and true poses. For ORB-SLAM3 and SVO, the absolute trajectory error was calculated using the
TUM RGB-D benchmark tool [35] and RPG trajectory evaluation tool [36], respectively. ORB-SLAM3
outputs trajectories in TUM format, which is directly compatible with the TUM RGB-D benchmark
tool, whereas SVO includes the RPG evaluation tool in its package, making it the most suitable choice
for evaluating SVO’s output. For DROID-SLAM and DPV-SLAM, custom scripts were developed to
compute the same metrics using the EVO package [37], a flexible tool capable of handling their output
formats.

Trajectory accuracy alone does not fully capture the performance of a SLAM system, particularly
in challenging real-world scenarios. SLAM systems are susceptible to initialization failures and
tracking loss, particularly under conditions such as motion blur, lack of visual features, or occlusions.
Such disruptions lead to gaps in the estimated trajectory, thus affecting the overall reliability of the
system. To address this, we introduced the pose estimation coverage (PEC) metric, calculated as
(number of estimated poses/total number of frames) × 100. The PEC quantifies the system’s ability
to maintain consistent pose estimation throughout a sequence, offering insights into its robustness
against initialization failures and tracking losses. A notably low PEC often indicates critical failure,
which can make the ATE unreliable. To further evaluate each system, we introduced a drift percentage
(DP) metric, defined as (ATE/trajectory length) × 100. This metric quantifies the drift of the system
as a percentage of the total distance traveled. A lower value indicates better performance, with the
system maintaining more accurate localization over extended trajectories. To ensure a comprehensive
evaluation that considers both accuracy and robustness, we adopted a dual-criteria approach that
incorporates both ATE and PEC. A sequence is considered successful if the drift percentage (DP) value
is less than 1% of the distance traveled and its PEC exceeds 90%.

Beyond accuracy and robustness, real-time performance is crucial for visually impaired naviga-
tion applications because it directly influences user experience and safety. To directly relate system
performance to the end-user experience, we developed a metric that compares the processing speed
of SLAM systems with the user’s walking speed. The fundamental idea is that, if the system can
process more distance than the user walks in a given time interval (e.g., one second), it is considered
to be performing in real time. First, we calculated the frames per second (FPS) processed by the
system, indicating the number of frames handled per second. Next, we calculated the distance per
frame (DPF), which represents the distance between consecutive camera frames. DPF was calculated
using the formula DPF = AWS /camera_fps, where AWS is the average user walking speed and
camera_fps is the camera’s frame rate. Finally, we introduced the processed distance rate (PDR), which
is obtained by multiplying the FPS and DPF. If the PDR meets or exceeds the average walking speed,
the system is considered capable of keeping pace with the user’s movement, indicating adequate
real-time performance for BVI navigation. We quantified this capability through the real-time factor
(RTF), defined as the ratio of PDR to AWS, where the values ≥ 1 demonstrate the real-time processing
capacity.

4.2. Evaluation Results

The evaluation results presented in Table 5 demonstrate that InCrowd-VI successfully captures
challenging scenarios that push the limits of the current state-of-the-art VO and SLAM systems.
Our analysis of these results is two-fold. First, we assessed the system performance against the
key requirements of visually impaired navigation applications. Second, we analyzed the impact
of specific environmental factors, such as crowd density, trajectory length, lighting conditions, and
motion transition, on system performance. This analysis validates the effectiveness of InCrowd-VI as a
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benchmark, while also identifying critical areas that require further research to make SLAM viable for
visually impaired navigation.

To effectively address the needs of BVI individuals during navigation, several key requirements
must be satisfied, including real-time performance, high localization accuracy, and robustness. In
addition, the system should maintain long-distance consistency with minimal drifts. For this study, we
established a localization accuracy criterion of 0.5 meters for indoor environments, which we consider
suitable for BVI navigation applications. Across the sequences, ORB-SLAM3 and DROID-SLAM
generally met or approached this criterion in low-density crowds. However, under more challeng-
ing conditions, both classical and learning-based systems exhibit a higher ATE, which significantly
surpasses the required accuracy. Although not directly comparable to the requirement for robustness
to occlusions, dynamic objects, and other challenging conditions, pose estimation coverage (PEC)
provides insights into system reliability. Robust pose estimation is essential for maintaining consistent
localization. BVI navigation requires minimal interruption during the operation. Deep learning-based
approaches consistently achieved high PEC values (> 90%) across all sequences, whereas classical
approaches failed to maintain consistent tracking, particularly in scenes with lighting variations. This
indicates a limitation in handling the dynamics in the environment, which is critical for real-world BVI
applications.

Real-time performance requires the system to match or exceed the walking speed of the user. Our
processed distance rate (PDR) metric, when compared to the average walking speed (AWS), indicates
that classical approaches generally achieve real-time or near real-time performance across almost
all sequences. However, deep learning-based methods fall short of real-time processing, indicating
delays that could hinder real-time feedback for users. Regarding long-distance consistency, the drift
percentage (DP) metric revealed that both classical and deep learning-based approaches frequently
exceeded the desired 1% drift threshold, particularly for longer trajectories. Classical approaches
typically show higher drift percentages (often exceeding 5-10% of the trajectory length), whereas deep
learning-based methods generally maintain lower drift rates but still struggle to consistently achieve
the desired threshold. It is important to note that, although some systems may approach or meet
certain requirements under controlled conditions, they all face significant challenges in maintaining
consistent performance across diverse real-world scenarios represented in the InCrowd-VI dataset.
This highlights the gap between the current VO and SLAM capabilities and requirements for visually
impaired navigation in crowded indoor environments.

Beyond these requirements, our analysis reveals how specific environmental factors affect the
system performance. The evaluation results highlight the significant impact of crowd density on
the performance of VO and SLAM systems. In scenarios with high crowd density, systems often
exhibit a higher ATE than sequences with low or no crowd density. The trajectory length also plays
a crucial role. For instance, in the Entrance_checkin1 scene, despite the medium crowd density, the
system reported a lower error owing to the short trajectory length. In addition to crowd density, other
challenging conditions also affect system performance. The TS116 scene, which is a typical university
building environment with artificial lighting and sunlight in some areas, exemplifies the impact of
lighting variations. Despite the absence of pedestrians, ORB-SLAM3 encountered difficulties during
initialization and experienced frequent tracking losses owing to lighting challenges. Similarly, in the
TH_loop scene, the user’s proximity to a wall causing occlusions, combined with challenging lighting
conditions from large windows, caused tracking issues, even without the presence of pedestrians.

The results also demonstrated the influence of specific scenario characteristics. In scenes involving
stairs, the short trajectory lengths allow the systems to handle elevation changes effectively, despite
the inherent challenges. However, in scenes with motion transitions, particularly Getoff_pharmacy,
where the user transitions from a moving train to a stationary platform, the systems struggle to
differentiate between ego-motion and environmental motion, resulting in a poor performance. Figure 7
provides a visual representation of the impact of these challenging conditions on ATE across different
systems. The charts reveal that deep learning-based methods generally maintain a lower ATE across
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most challenging conditions, whereas classical approaches tend to show more dramatic accuracy
degradation with increasing environmental complexity.
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Figure 7. ATE comparison of evaluated SLAM systems under challenging conditions, with the x-axis
depicting sequences categorized by crowd density: high, medium, low, and none.

In summary, our evaluation revealed three key findings: (1) deep-learning-based methods demon-
strate superior robustness but struggle with real-time processing, whereas classical approaches offer
better processing speed but lack consistency in challenging conditions; (2) environmental factors,
such as crowd density and lighting variations, significantly impact all systems, with performance
degradation increasing in proportion to crowd density; and (3) none of the evaluated systems fully
satisfied the combined requirements for reliable BVI navigation in terms of accuracy, robustness, and
real-time performance in complex indoor environments. These findings underscore the need for new
approaches that can better balance these competing demands while maintaining reliability across
diverse real-world conditions.

5. Conclusion

This paper introduces InCrowd-VI, a novel visual-inertial dataset designed to address the chal-
lenges of SLAM in indoor pedestrian-rich environments, particularly for visually impaired navigation.
Our evaluation of the state-of-the-art VO and SLAM algorithms on InCrowd-VI demonstrated sig-
nificant performance limitations across both classical and deep learning approaches,validating that
the dataset effectively captures challenging real-world scenarios. These systems struggle with the
complexities of crowded scenes, lighting variations, and motion transitions, highlighting the gap
between the current capabilities and real-world indoor navigation demands. InCrowd-VI serves as a
crucial benchmark for advancing SLAM research in complex, crowded indoor settings. It provides
realistic, user-centric data that closely mirrors the challenges faced by visually impaired individuals
navigating such environments. Future studies should focus on addressing the key challenges identified
by the InCrowd-VI dataset. Although InCrowd-VI is a valuable resource for indoor SLAM research, it
is important to acknowledge its limitations. The absence of depth information restricts its applicability
for testing depth-based SLAM systems, and its focus on indoor environments limits its utility in
outdoor and mixed-environment scenarios.
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