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Abstract 

Server replication ensures crash tolerance by enforcing a total order of input requests across multiple 
servers. The Logical Clock and Ring (LCR) protocol, a ring-based leaderless total order protocol, 
achieves high throughput by arranging processes in a logical ring with unidirectional message flow. 
However, LCR design assumption may not produce optimal latency under high message 
concurrency due to its use of vector clocks as vector timestamps for sequencing messages and a fixed 
"last" process for ordering concurrent messages. To improve latency, we propose using Lamport's 
logical clock as a message timestamp for sequencing messages and redefining the "last" process as 
the nearest process in the opposite direction of message flow, ensuring a unique last process for each 
message sender. Fairness is preserved using a modified fairness control algorithm from the Fixed 
Sequencer and Ring (FSR) protocol. Our evaluation shows that the proposed protocol offers latency 
improvement better than LCR across all considered configurations. Additionally, fairness among 
process replicas was maintained, evidenced by an even distribution of message sending 
responsibilities, with each process contributing approximately equally to total message output. 

Keywords: LCR; total order; fairness control; latency; throughput; performance comparison; 
simulation 
 

1. Introduction 

A crash-tolerant system is designed to continue functioning despite a threshold number of 
crashes occurring and is crucial to maintaining high availability of systems [1–4]. Replication 
techniques have made it possible to create crash-tolerant distributed systems. Through replication, 
redundant service instances are created on multiple servers, and a given service request is executed 
on all servers so that even if some servers crash, the rest will ensure that the client receives the 
response. The set of replicated servers hosting service instances may also be referred to as a replicated 
group and simply as a group. Typically, a client can send its service to any one of the redundant 
servers in the group and the server that receives a client request, in turn, disseminates it within the 
group so all can execute. Thus, different servers can receive client requests in different order, but 
despite this, all servers must process client requests in the same order [5,6]. To accomplish this, a total 
order mechanism that employs logical clock is utilised to guarantee that replicated servers process 
client requests or simply messages in the same order [7]. A logical lock is a mechanism used in 
distributed systems to assign timestamps to events, enabling processes to establish a consistent order 
of events occurring. Thus, a total order protocol is a procedure used within distributed systems to 
achieve agreement on the order in which messages are delivered to all process replicas in the group. 
This protocol ensures that all replicas receive and process the messages in the same order, irrespective 
of the order in which they were initially received by individual replicas. While total order protocols 
play a critical role in maintaining consistency and system reliability, achieving crash tolerance 
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requires implementation of additional mechanisms. One such mechanism, as defined in our work, is 
the crashproofness policy. Specifically, this policy dictates that a message is deemed crashproof and 
safe for delivery once it has successfully reached at least f+1 operative processes, where f is the 
maximum tolerated failures in a group. 

Total order protocols in the literature broadly fall into two categories: Leader-based and 
leaderless. In the leader-based protocol, every client request is routed through the leader which 
coordinates the request replication and responds to the clients with the results of execution. Examples 
include Apache Zookeeper [10,11], Chubby [12,14], Paxos [15], View-stamp replication [25] and Raft 
[9,16,18]. Ring-based protocols are a class of leaderless protocols whose nodes are arranged in a 
logical ring. They ensure that all messages are delivered by all processes in the same order, regardless 
of how they were generated or sent by the sender. An example includes LCR [19], FSR [22], E-Paxos 
[20], and S-Paxos [21]. Our study focuses specifically on the ring-based leaderless protocols. Total 
order protocols are widely applicable to distributed systems, especially in applications requiring 
strong consistency and high throughput. For instance, they are utilised to coordinate transactions in 
massive in-memory database systems [17,23] where achieving minimal latencies despite heavy load 
is critical.  

However, despite the progress made in ring-based protocols like LCR, certain design choices 
may lead to increased latency. The Logical Clock and Ring (LCR) protocol utilizes vector clocks where 
each process, denoted as 𝑃௜, maintains its own clock as VC୧ = vc୩,୩ୀ଴,…୒ିଵ. A vector clock is a tool 
used to establish the order of events within a distributed system which can be likened to an array of 
integers, with each integer corresponding to a unique process in the ring. In the LCR protocol, 
processes are arranged in a logical ring, and the flow of messages is unidirectional as earlier 
described. However, LCRs’ design may lead to performance problems, particularly when multiple 
messages are sent concurrently within the cluster: firstly, it uses a vector timestamp for sequencing 
messages within replica buffers or queues [28], and secondly, it uses a fixed idea of "last" process to 
order concurrent messages. Thus, in the LCR protocol, the use of a vector timestamp takes up more 
space in a message, increasing its size.  

Consequently, the globally fixed last process will struggle to rapidly sequence multiple 
concurrent messages, potentially extending the message-to-delivery average maximum latency. The 
size of a vector timestamp is directly proportional to the number of process replicas in a distributed 
cluster. Hence, if there are N processes within a cluster, each vector timestamp will consist of N 
counters or bits. As the number of processes increases, larger vector timestamps must be transmitted 
with each message, leading to higher information overhead.    Additionally, maintaining these 
timestamps across all processes requires greater memory resources. These potential drawbacks can 
become significant in large-scale distributed systems, where both network bandwidth and storage 
efficiency are critical. Thirdly, in the LCR protocol, the assumption N = f + 1 implies that f = N − 1, 
where f represents the maximum number of failures the system can tolerate. This configuration 
results in a relatively high f, which can delay the determination of a message as crashproof. While 
the assumption N = f + 1 is practically valid, it is not necessary for f to be set at a high value. 
Reducing f can enhance performance by lowering the number of processes required to determine the 
crashproofness of a message.  

Prompted by the above potential drawbacks in LCR, a new total order protocol was design with N, N >  2, processes arranged in a unidirectional logical ring where N is the number of processes 
within the server clusters. Messages are assumed to pass among processes in a clockwise direction as 
shown in Figure 1. If a message originates from 𝑃଴, it moves to Pଵ until it gets to Pଷ which is the last 
process for P଴ .  The study aims to achieve the following objectives: (i) Optimize message 
timestamping with Lamport logical clocks, which uses a single integer to represent message 
timestamps. This approach is independent of N, the number of processes in the communication 
cluster, unlike the vector timestamping used in LCR, which is dependent on N. In LCR, as N 
increases, the size of the vector timestamp grows, leading to information overhead. By contrast, 
Lamport's clock maintains a constant timestamp size, reducing complexity and improving efficiency 
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(ii) Dynamically determines the "Last" Process for ordering concurrent messages. Instead of relying 
on a globally fixed last process for ordering concurrent messages, as in LCR, this study proposes a 
dynamically determined last process based on proximity to the sender in the opposite direction of 
message flow. This adaptive mechanism improves ordering flexibility and enhances system 
responsiveness under high workloads. (iii) Reduce message delivery latency. This study proposes 
reducing the value of f to (N – 1)/2 as a means to minimize overall message delivery latency and 
enhance system efficiency. This contrasts with the LCR approach, where f is set to N – 1. Specifically, 
when  f = N − 1, a message must be received by every process in the cluster before it can be 
delivered. Under high workloads or in the presence of network delays, this requirement introduces 
significant delays, increasing message delivery latency and impacting system performance. The goal 
of this study was accomplished using three methods: First, we considered a set of restricted crash 
assumptions: each process crashes independently of others and at most  f processes involved in a 
group communication can crash. A group is a collection of distributed processes in which a member 
process communicates with other members only by sending messages to the full membership of the 
group [8]. Hence, the number of crashes that can occur in an N process cluster is bounded by 𝑓 =ቔ୒ିଵଶ ቕ, where ⌊𝑥⌋ denotes the largest integer ≤ 𝑥. The parameter f is known as the degree of fault 
tolerance as described in Raft [9]. As a result, at least two processes are always operational and 
connected. Thus, an Eventually Perfect Failure Detector (♦P) was assumed in this study’s system 
model, operating under the assumption that N = 2f + 1 nodes are required to tolerate up to f 
crash failures. This approach enables the new protocol to manage temporary inaccuracies, such as 
false suspicions, by waiting for a quorum of at least f + 1 nodes before making decisions. This 
ensures that the system does not advance based on incorrect failure detections.  Secondly, the last 
process of each sender is designated to determine the stability of messages. It then communicates this 
stability by sending an acknowledgement message to other processes. When the last process of the 
sender receives the message, it knows that all the logical clocks within the system have exceeded the 
timestamp of the message (stable property). Then all the received messages whose timestamp is less 
than the last process logical clock can then be totally ordered. 
 
 
 
 
 
 

 

Figure 1. Last Process Concept. 

In addition, a new concept of "deliverability requirements" was introduced to guarantee the 
delivery of only crash-proof and stable messages in total order. A message is crashproof if the number 
of messages hops ≥ f + 1, that is, a message must make at least f + 1 number of hops before it is 
termed crashproof. Thus, the delivery of a message is subject to meeting both deliverability and order 
requirements. As a result of enhancements made in this regard, a new leaderless ring-based total 
order protocol was designed, known as the Daisy Chain Total Order Protocol (DCTOP) [13]. Thirdly, 
fairness is defined as the condition where every process 𝑃௜ has an equal chance of having its sent 
messages eventually delivered by all processes within the cluster. Every process ensures messages 
from the predecessor are forwarded in the order they were received before sending their own 
message. Therefore, no process has priority over another during sending of messages. 

1.1. Contributions 

The contributions of this paper can be summarized as follows: 

P0 

P1 

P2 

P3 
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(i) Protocol-Level Innovations Within a Ring-Based Framework: This study introduces DCTOP, a 
novel improvement to the classical LCR protocol while retaining its ring-based design. It 
introduces: 

a. Lamport Logical Clock used for message timestamping which achieves efficient concurrent 
message ordering, reducing latency and improving fairness. 

b. Dynamic Last-Process Identification to replace LCR’s globally fixed last process 
assumption, accelerating message stabilization and accelerates delivery. 

(ii) Relaxed Failure Assumption: DCTOP reduces the fault tolerance threshold from N = f + 1 to N = 
2f + 1, enabling faster message delivery with fewer failures. 

(iii) Foundation for Real-World Deployment: While simulations excluded failures and large-scale 
setups, ongoing work involves a cloud-based, fault-tolerant implementation to validate DCTOP 
under practical conditions. 

This paper is structured as follows: Section 2 presents the system model, while Section 3 outlines 
the design objectives and rationale for DCTOP. Section 4 details the fairness control primitives. 
Section 5 provides performance comparisons of DCTOP, LCR and Raft in terms of latency and 
throughput under crash-free and high-workload conditions. Finally, Section 6 concludes the paper. 

2. System Model 

The ring-based protocols are modelled as a group of N processes represented by Π =ሼ𝑃଴,𝑃ଵ,𝑃ଶ, … . ,𝑃ேିଵሽ which are linked together in a circular structure (see Figure 1) with varying 
cluster sizes with an asynchronous-based communication framework, with no constraints on 
communication delays and exponentially distributed intervals between message transmissions. This 
model supports first in first out (FIFO), and thus messages sent are received in the order sent. The 
system model restricts a process, 𝑃௜ , to only send messages to its clockwise neighbour and receive 
from its anticlockwise neighbour.  

Thus, for each process 𝑃௜, where 0 ≤ 𝑖 ≤ 𝑁 − 1 and 𝑛 is the number of processes in the cluster, 
the clockwise neighbour ሺ𝐶𝑁௜ሻ is defined as the process immediately following 𝑃௜ , 𝐶𝑁௜ = 𝑃௜ାଵ or 𝐶𝑁௜ = 𝑃଴  if 𝑖 = N − 1 . Conversely, the anticlockwise neighbour of 𝑃௜  ሺ𝐴𝐶𝑁௜ሻ  is defined as the 
process immediately preceding 𝑃௜ , 𝐴𝐶𝑁௜ = 𝑃௜ିଵ or 𝐴𝐶𝑁௜ =  𝑃ேିଵ  if 𝑖 = 0. Therefore, messages are 
transmitted exclusively in the clockwise direction, with 𝑃௜ receiving from 𝐴𝐶𝑁௜ and transmitting to 𝐶𝑁௜  in a daisy chain framework. We also defined the Stability clock of any process (𝑆𝐶௜) as the 
largest timestamp, 𝑡𝑠, known to any process 𝑃௜ as stable. When a message 𝑚 becomes stable, 𝑆𝐶௜ 
is updated as follows: 𝑆𝐶௜ = max{ 𝑆𝐶௜, 𝑚_𝑡𝑠 }. Additionally, we introduce the definition of 𝐻𝑜𝑝𝑠௜,௝ 
which is defined as the number of hops between any two processes from P୧ to P୨ in the clockwise 
direction: (i) Hops୧,୨ =  0, if i =  j. (ii) Hops୧,୨ = (j − i), if j > i, and (iii) Hops୧,୨ = (j + N − i) if j < i. 
3. Daisy Chain Total Order Protocol- DCTOP 

The DCTOP system employs a group of interconnected process replicas, with a group size of 𝑵, 
where 𝑵 is an odd integer, 𝑵 ≥ 𝟑 and at most 9, to provide replicated services. The main goals of 
the system design are threefold: 

(a) First, to improve the latency of LCR by utilizing Lamport logical clocks (𝐿𝐶) for sequencing 
concurrent messages.  

(b) Second, to employ a novel concept of the dynamically determined “last” process for ordering 
concurrent messages, while ensuring optimal achievable throughput. 

(c) Third, the relaxation of the crash failure assumption in LCR. 

3.1. Data Structures 

The data structures associated with each process 𝑃௜ , message m, and the µ message are 
discussed in this section as used in DCTOP system design and simulation experiment: 
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Each process 𝑃௜ has the following data structures: 

1. Logical clock (𝐿𝐶௜): This is an integer object initialized to zero. It is used to timestamp messages. 
2. Stability clock (𝑆𝐶௜): This is an integer object that holds the largest timestamp, 𝑡𝑠, known to Pi 

as stable. Initially, 𝑆𝐶௜ is zero. 
3. Message Buffer (𝑚𝐵𝑢𝑓𝑓𝑒𝑟௜): This field holds the sent or received messages by Pi. 
4. Delivery Queue (𝐷𝑄௜): Messages waiting to be delivered are queued in this queue object. 
5. Garbage Collection Queue (𝐺𝐶𝑄௜): After a message is delivered, the message is transferred to 𝐺𝐶𝑄௜ to be garbage collected. 

M is used to denote all types of messages used by the protocol. Usually there are two types of 
M: data message denoted by m, and an announcement or ack message that is bound to a specific data 
message. The latter is denoted as µ(m) when it is bound to m. µ(m) is used to announce that m has 
been received by all processes in Π. The relationship between m and its counterpart µ(m) is shown 
in Figure 2.  

 

Figure 2. Relationship between m and µ(𝑚). 
A message, m, consists of a header and a body, with the body containing the data application 

information. Every m has a corresponding µ, denoted as µ(m), which contains the information from 
m's header. This is why we refer to µ(m) instead of just µ. µ(m) has m header information as its main 
information and does not contain its own data; therefore, the body of µ(𝑚) is essentially m's header 
(see Figure 2). 

A message M has at least the following data structures: 

1. Message origin (𝑀_𝑜𝑟𝑖𝑔𝑖𝑛) field shows the id of the process in Π = ሼP0, P1, P2, … . , PNି1ሽ that 
initiated the message multicast. 

2. Message timestamp (𝑀_𝑡𝑠) field holds the timestamp given to M by M_origin.  
3. Message destination (𝑀_𝑑𝑒𝑠𝑡𝑛) field holds the destination of M which is the CN of the process 

that sends/forwards M. 
4. Message flag (M_flag)  it is a Boolean field which can be true or false and is initiated to be false 

when M is formed. 

3.2. DCTOP Principles 

The protocol has three design aspects:(i) message sending, receiving, and forwarding, (ii) 
timestamp stability, and (iii) crashproofing of messages, which are described in detail one by one in 
this subsection. 

(1) Message Sending, Receiving and Forwarding: The Lamport logical clock is used to timestamp a 
message m within the ring network before m is sent. Therefore, 𝑚_𝑡𝑠 denotes the timestamp for 
message 𝑚.  

The system as shown in Figure 3 uses two main threads to handle message transmission and 
reception in a distributed ring network. The send(m) thread operates by dequeuing a message m 
from the non-empty SendingQueuei when allowed by the transmission control policy (see Section 4). 
It timestamps the message with the current value of the LCi as m_ts = LC୧, increments LCi by one 
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afterwards, and then places the timestamped message into the OutgoingQueuei for transmission. A 
copy of the message is also stored in mBufferi for local record. 

 
Figure 3. Message Sending, Receiving, Forwarding. 

On the receiving side, the receive(m) thread dequeues a message m from the IncomingQueuei 
when permitted by the transmission control policy, updates the LC୧  as LC୧ = max {(m_ts + 1), LC୧},  
and delivers the message to process Pi for further handling. Typically, m is entered in mBuffer୧ and 
may be forwarded if necessary to CN୧ by entering a copy of m with destination set to CN୧ into the  OutgoingQueue୧. If necessary, meaning the message has not yet completed a full cycle around the 
ring, it may be forwarded to the CNi by placing a copy of it in the OutgoingQueuei with its destination 
set to CN୧. However, once the message has completed a full cycle within the ring network, it is no 
longer forwarded, and the forwarding process stops. 

If two messages are received consecutively, they are sent in the same order but not necessarily 
immediately after each other, depending on the transmission control policy. As shown in Figure 3, 
messages to be received arrive at the  𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒௜ from the network, and a copy of the received 
message arrives at the  𝑚𝐵𝑢𝑓𝑓𝑒𝑟௜  while a copy of the forwarded messages appears in the  𝑂𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒௜  according to the order they were received. 

(2) Timestamp Stability: A message timestamp TS, 𝑇𝑆 ≥ 0, is said to be stable in a given process Pi if 
and only if the process Pi is guaranteed not to receive any 𝑚′, 𝑚′_𝑡𝑠 ≤ TS  any longer.  

Observations: 

1) A timestamp  TS′ < TS is also stable in Pi when TS becomes stable in Pi. 
2) The term “stable” is used to refer to the fact that once TS becomes stable in Pi, it remains 

stable for ever. This usage corresponds to that of “stable” property used by Chandy and 
Lamport [24]. Therefore, the earliest instance when a given TS becomes stable in Pi will be 
the interest in the later discussions. 

3) When TS becomes stable in Pi , the process can potentially total order (TO) deliver all 
received but undelivered 𝑚,𝑚_𝑡𝑠 ≤  TS, because stability of TS eliminates the possibility 
of Pi ever receiving any 𝑚′,  𝑚′_𝑡𝑠 ≤ TS, in the future. 

(3) Crashproofing of Messages: A message m is crashproof if m is in possession of at least (𝑓 + 1) 
processes. Therefore, a message m is crashproof in Pi when Pi knows that m has been received 
by at least (𝑓 + 1) processes. The rationale for crashproofing is that when we have at least 𝑓 + 1 
processes that have received a given message m even if 𝑓 of them crash there will be at least one 
process that can be relied on in sending m to others and this emphasizes the importance of 
crashproofness in our system.  
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3.3. DCTOP Algorithm Main Points  

The DCTOP algorithm's main points are outlined as follows: 

1. When Pi forms and sends m, it sets m_flag = false, before it deposits m in its mBufferi. 
2. When Pi receives m and Pj = m_origin 

• It checks if 𝐻𝑜𝑝𝑠௝,௜  ≥ f. If this is true then m is crashproofed, it does not deliver m 
immediately. Moreover, it sets m_flag = true and deposits m in its mBufferi . if m is not 
crashproofed, then m_flag remains false. 

• It then checks if Pj ≠ CNi. if this is true, it sets m destination, m_destn = CNi  and deposits 
m in its OutgoingQueuei,  

• Otherwise, m is stable then it updates SCi as  𝑆Ci = max { 𝑆Ci, m_ts}, and transfer all m, 
m_ts ≤ SCi  to DQi . Then, it forms µ(m), sets the two header fields, µ(m)_origin=Pi , 
µ(m)_destn=CNi and deposit µ(m) in OutgoingQueuei. 

3. When Pi receives µ(m), it knows that every process has received m. 
• If m in µ(m) does not indicate a higher stabilisation in Pi, that is, m_ts ≤ SCi and 𝐻𝑜𝑝𝑠௝,௜ ≥ 

f  then Pi ignores µ(m), otherwise, if 𝐻𝑜𝑝𝑠௝,௜ < f, Pi sets m_flag= true, µ(m)_destn = CNi 
and deposit µ(m) in 𝑂𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒௜ . 

• However, if m in µ(m) indicates a higher stabilisation in Pi, that is, m_ts > SCi, Pi updates 
SCi as  𝑆Ci = max { 𝑆Ci, m_ts}, and transfer all m, m_ts ≤ SCi to DQi. 

• If Pj  = CNi , Pi  ignores µ(m) otherwise, it sets µ(m)_destn = CNi  and deposit µ(m) in 𝑂𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒௜ . 
4. Whenever DQi  is non-empty, Pi  deques m from the head of DQi  and delivers 𝑚  to 

application process. Pi  then enters a copy of 𝑚  into GCQi  to represent a successful TO 
delivery. This action is repeated until DQi becomes empty. 
It is important to note that the DCTOP maintains total order. Thus, if P୧ forms and sends 𝑚 

and then 𝑚’: (i) Every process receives 𝑚 and then 𝑚’ (ii) µ(𝑚) will be formed and sent before µ(𝑚’) 
and (iii) Any process that receives both µ(𝑚) and µ(𝑚’) will receive µ(𝑚) and then µ(𝑚’). 
3.4. DCTOP Delivery Requirements  

Any message m can be delivered to the high-level application process by P୧  if satisfies the 
following two requirements: 

(i) m_ts must be stable in Pi 
(ii) m must be crashproof in Pi, and 
(iii) Any two stable and crashproofed 𝑚, and 𝑚’ are delivered in total order: 𝑚 is delivered before 𝑚’ iff m_ts <  m’_ts or m_ts =  m’_ts and m_origin >  m’_origin. 

During the delivery of m, if m_ts =  m’_ts then the messages are ordered according to the origin of 
the messages, usually a message from P୒ିଵ are ordered before a message from P୧ where N − 1 > 𝑖. 

In summary, the pseudocode representations for total order message delivery, message 
communication, and membership changes are presented in Figures 4, 5, and 6 respectively. 
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Figure 4. TO_Delivery Algorithm of DCTOP. 

 

Figure 5. Algorithm of DCTOP. 
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Figure 6. Membership Changes of DCTOP. 

3.5. Group Membership Changes 

The DCTOP protocol is built on top of a group communication system [26,27]. Membership of 
the group of processes executing DCTOP can change due to (i) a crashed member being removed 
from the ring and/or (ii) a former member recovering and being included in the ring. Let G represent 
the group of DCTOP processes executing the protocol at any given time. G is initially Π ={P଴, Pଵ, Pଶ, … . , P୒ିଵ} and G ⊆ Π is always true. The membership change procedure is detail in Figure 6. 
Note that the local membership is assumed to send an interrupt to the local DCTOP process, say, P୧ 
when a membership change is imminent. On receiving the interrupt P୧ completes processing of any 
message it has already started processing and then suspends all DCTOP activities and waits for new 
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G' to be formed: sending of m or µ(m) (by enqueueing into SendingQueue୧), receiving of m or µ(m) 
(from IncomingQueue୧) and delivering of m (from DQ୧) are all suspended. The group membership 
change work as follows: Each process Pi in the set of Survivors(G) (i.e., survivors of the current group 
G) exchanges information about the last message they TO-delivered. Once this exchange is complete, 
additional useful information is derived among all Survivors, which helps identify the Lead Survivor.  

Subsequently, each Survivor sends all messages from its respective SendingQueue to the other 
Survivors. If Pi has any missing messages, they are sent to another Survivor, Ps where Ps represents 
any Survivor process other than Pi. After sending, Pi transmits a Finishedi message to all Ps processes, 
signalling that it has completed its sending. Upon receiving messages, Pi  stores all non-duplicate 
messages in its buffer, mBufferi. The receipt of Finisheds messages from all Ps processes confirms that 
Pi has received all expected messages, with duplicates discarded. Pi then waits to receive Readys from 
every other Ps, ensuring that every Survivor Ps  has received the messages sent by Pi . At this point, 
all messages in mBufferi are stable and can be totally ordered. If there are Joiners (defined as incoming 
members of G' that were not part of the previous group (Gprev) but joined G' after recovering from 
an earlier crash), the Lead Survivor sends its checkpoint state and TO_Queue to each Pj in the set of 
NewComer(G'), allowing them to catch up with the Survivors(G). Following this, all Survivors(G) 
resume TO delivery in Gprev. Pi then sends a completedi message to every process in G, indicating 
that it has finished TO-delivering in Gprev. Each Survivor waits to receive a completedk message 
from every other Pk  in G before resuming DCTOP operations in the new G'. The Joiners, after 
replicating the Lead Survivor's checkpoint state, also perform TO delivery of messages in Gprev and 
then resume operations in the new G' of DCTOP. Hence, at the conclusion of the membership change 
procedure, all buffers and queues are emptied, ensuring that all messages from Gprev have been 
fully processed. 

3.6. Proof of Correctness 

Lemma 1 (VALIDITY). If any correct process 𝑃௜  utoMulticasts a message m, then it eventually 
utoDelivers m. 

Proof: Let Pi  be a correct process and let mi be a message sent by Pi. This message is added to 
mBufferi (Line 15 of Figure 5) . There are two cases to consider: 

Case 1: Presence of membership change  

If there is a membership change, P୧  will be in Survivor(G) since P୧  is a correct process. 
Consequently, the membership changes steps ensure that P୧ will deliver all messages stored in its 
mBufferi , TO_Queuei  or GCQi  including mi (Line 32 to 44 of Figure 5). Thus, P୧  utoDelivers 
message mi that it sent. 

Case 2: No membership changes 

When there is no membership change, all the processes within the DCTOP system including the 
mi_origin will eventually deliver mi after setting mi stable (Line 28 of Figure 5).  This happens because 
when P୧ timestamp, sets mi_flag=false and sends mi to its CNi, it deposits a copy of mi to its mBufferi 
and sets LCi > mi_ts afterward. The message is forwarded along the ring network until the ACNi 
receives mi. Any process that receives mi deposits a copy of it into their mBuffer and sets LC > mi_ts. 
It also checks if Hopsij ≥ f, then mi is crashproof and it sets mi_flag=true. The  ACNi sets mi  stable 
(Line 28 of Figure 5) and crashproof (Line 20 of Figure 5) at ACNi, transfers mi to DQ and then it 
attempts utoDeliver mi (Lines 1 to 8 of Figure 4) if mi is at the head of DQ. ACNi generates, timestamp 
µ(mi) using its LC and then sends it to its own CN. Similarly, µ(mi) is forwarded along the ring (Line 
31 of Figure 5) until the ACN of µ(mi)_origin receives µ(mi). When any process receives µ(mi) and 
Hopsij <f, it knows that mi is crash proof and stable but if Hopsij ≥f, then mi is only stable because mi 
is already known to be crashproof since at least f+1 processes had already received mi. Any process 
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that receives µ(mi) transfers mi from mBuffer to DQ and then attempts to utoDeliver mi if mi is at the 
head of DQ. 

Suppose Pk sends mk before receiving mi, 𝑖 < 𝑘. Consequently, ACNi will receive mk before it 
receives mi and thus before sending µ(mi) for mi. As each process forwards messages in the order in 
which it receives them, we know that P୧  will necessarily receive mk before receiving µ(mi) for 
message mi.  

(a) If mi_ts = mk_ts, then Pi orders mk before mi in mBufferi since 𝑖 < 𝑘 (This study assumed that 
when messages have equal timestamp, message from a higher origin is ordered before message 
from a lower origin.). When Pi receives µ(mi) for message mi it transfers both messages to DQ 
and can utoDeliver both messages, mk before mi, because TS is already known to be stable 
because of TS equality. 

(b) If mi_ts < mk_ts then Pi orders mi before mk in mBufferi. When Pi receives µ(mi) for message 
mi it transfers both messages to DQ and can utoDeliver mi only since it is stable and is at the 
head of DQ. Pi will eventually utoDeliver mk when it receives µ(mk) for mk since it is now at the 
head of DQ after mi delivery. 

(c) Option (a) or (b) is applicable in any other processes within the DCTOP system since there is no 
membership changes. Thus, if any correct process Pi  sends a message m, then it eventually 
delivers m. 

Note that if f+1 processes receive a message m, then m is crash proof and during concurrent 
multicast, TS can become stable quickly making m to be delivered even before the ACN of the 
m_origin receives m. 

Lemma 2 (INTEGRITY). For any message m, any process Pk utoDelivers m at most once, and only if m was 
previously utoMulticast by some process Pi . 

Proof. The crash failure assumption in this study ensures that no false message is ever utoDelivered 
by a process. Thus, only messages that have been utoMulticast are utoDelivered. Moreover, each 
process maintains an LC, which is updated to ensure that every message is delivered only once. The 
sending rule ensures that messages are sent with an increasing timestamp by any process Pi, and the 
receive rule ensures that the LC of the receiving process is updated after receiving a message. This 
means that no process can send any two messages with equal timestamps. Hence, if there is no 
membership change, Lines 16 and 19 of Figure 5 guarantee that no message is processed twice by 
process Pk. In the case of a membership change, Line 3a(ii) of Figure 6 ensures that process Pk does 
not deliver messages twice. Additionally, Lines 7(i-iv) of Figure 6 ensure that Pk’s variables such as 
logical and stability clock are set to zero, and the buffer and queues are emptied after a membership 
change. This is done because processes had already delivered all the messages of the old group 
discarding message duplicates (Line 3a(ii) of Figure 6) to the application process and no messages in 
the old group will be delivered in the new group. Thus, after a membership change, the new group 
is started as a new DCTOP operation. The new group might contain messages with the same 
timestamp as those in the old group, but these messages are distinct from those in the old group. 
Since timestamps are primarily used to maintain message order and delivery, they do not hold 
significant meaning for the application process itself. This strict condition ensures that messages 
already delivered during the membership change procedure are not delivered again in the future. 

Lemma 3 (UNIFORM AGREEMENT). If any process Pj utoDelivers any message m in the current G, 

then every correct process Pk in the current G eventually utoDelivers m. 
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Proof. Let mi be a message sent by process Pi and let Pj be a process that delivered mi in the current 
G. 

Case 1: P୨ delivered mi in the presence of a membership change. P୨  delivered mi during a membership change. This means that P୨  had mi in its mBufferi, 
TO_Queuei, GCQi before executing line 6a(ii) of Figure 6. Since all correct processes exchange their 
mBufferi, TO_Queuei, GCQi during the membership change procedure, we are sure that all correct 
processes that did not deliver mi before the membership change will have it in their mBufferi, 
TO_Queuei or GCQi before executing line 1 to 9 of Figure 6. Consequently, all correct processes in the 
new G' will deliver mi. 
Case 2: P୨ delivered mi in the absence of a membership change. 

The protocol ensures that mi does a complete cycle around the ring before being delivered by P୨: 
indeed, P୨  can only deliver mi after it knows that mi is crashproof and stable, which either happens 
when it is the ACNi in the ring or when it receives µ(mi) for message mi. Remember that processes 
transfer messages from their mBuffer to DQ when the messages become stable. Consequently, all 
processes stored mi in their DQ before P୨  delivered it. If a membership change occurs after P୨ 
delivered mi and before all other correct processes delivered it, the protocol ensures that all 
Survivor(G) that did not yet deliver mi will do it (Line 6a(ii) of Figure 6). If there is no membership 
change after P୨ delivered mi and before all other processes delivered it, the protocol ensures that 
µ(mi) for mi will be forwarded around the ring, which will cause all processes to set mi to crashproof 
and stable. Remember, when any process receives µ(mi) and Hopsij < f, it knows that mi is crash proof 
and stable but if Hopsij ≥ f, then mi is only stable because mi is already known to be crashproof since 
at least f+1 processes had already received mi. Each correct process will thus be able to deliver mi as 
soon as mi is at the head of DQ (Line 3 of Figure 4). The protocol ensures that mi will become first 
eventually. The reasons are the following: (1) the number of messages that are before mi in DQ of 
every process Pk is strictly decreasing, and (2) all messages that are before mi in DQ of a correct process 
Pk will become crashproof and stable eventually. The first reason is a consequence of the fact that 
once a process Pk sets message mi to crashproof and stable, it can no longer receive any message m 
such that m≺ mi. Indeed, a process Pc can only produce a message mc ≺ mi before receiving mi. As each 
process forwards messages in the order in which it received them, we are sure that the process that 
will produce an µ(mi) for mi will have first received mc. Consequently, every process setting mi to 
crashproof and stable will have first received mc. The second reason is a consequence of the fact that 
for every message m that is utoMulticast in the system, the protocol ensures that m and µ(m) will be 
forwarded around the ring (Lines 25 and 31 of Figure 5), implying that all correct processes will mark 
the message as crashproof and stable. Consequently, all correct processes will eventually deliver mi. 

Lemma 4 (TOTAL ORDER). For any two messages m and 𝑚′ if any process 𝑃௜ utoDelivers m without 
having delivered 𝑚′, then no process 𝑃௝ utoDelivers 𝑚′ before m.   

Suppose that P୧ deduces stability of TS, TS ≥ 0, for the first time by (i) above at, say, time t, that 
is, by receiving m, m_ts = TS and m_origin = CN୧, at time t. P୧ cannot have any 𝑚’, m′_ts ≤ TS in 
its IncomingQueue୧ at time t nor will ever have 𝑚’ at any time after t. 

Proof (By Contradiction) 
Assume, contrary to Lemma, that P୧ is to receive 𝑚’,  m′_ts ≤ TS, after t as shown Figure 7a. 
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Figure 7. Example Contradicting Lemma 1. 

Case 1: 
Let m_origin =  m’_origin =  P୨. So, imagine that P୨ is the same as CN୧,  P୨ ≡ CN୧, as shown in 

Figure 7b.  Given that m′_ts ≤ TS = m_ts, m′_ts < m_ts must be true when m_origin =  m’_origin. 
So, P୨ must have sent 𝑚’ first and then 𝑚.  

Note that  

(a) The link between any pair of consecutive processes in the ring maintains FIFO, and 
(b) Processes Pjା1, Pjା2,. . . . Piି1 forward messages in the order they received those messages.  

Therefore, it is not possible for P୧ to receive 𝑚’ after it received m, that is, after t. So case 1 
cannot exist. 

Case 2: 
Imagine that m_origin is from CN୧  and m’_origin is from P୨,  m_origin =  CN୧ ≠ m’_origin =  P୨, 

as shown in Figure 6b. Since P୧ is the last process to receive m in the system,  P୨ must have received 
m before t; since m′_ts ≤ m_ts, P୨ could not have sent 𝑚′ after receiving m. So, the only possibility 
for m′_ts ≤ m_ts to hold is: P୨ must form and send 𝑚′ before it is received and forwarded m. 

For the cases of (a) and (b) in case 1, P୧ must receive 𝑚′ before m. Therefore, the assumption 
made contrary to Lemma 1 cannot be true. Thus, Lemma 1 is proved. 

4. Fairness Control Environment 

In this section, the DCTOP fairness mechanism was discussed: for a given round k, any process P୧ either sends its own message to the CN௜ or forwards messages from its 𝐴CN௜ to the CN௜. A round 
is defined as follows: for any round k, every process P୧ sends at most one message, m, to its CN௜ and 
also receives at most one message, m, from its ACN௜ in the same round. Every process P୧ has an IncomingQueue୧ which contains the list of all messages P୧ received from the ACN୧ which was sent 
by other processes, and a SendingQueue୧. The SendingQueue୧ consist of the messages generated by 
the process P୧ waiting to be transmitted to other processes. When the SendingQueue୧ is empty, the 
process P୧ forwards every message in its IncomingQueue୧ but whenever the SendingQueue୧ is not 
empty, a rule is required to coordinate the sending and forwarding of messages to achieve fairness. 

Suppose that process P௜ has one or more message(s) to send stored in its 𝑆𝑒𝑛𝑑𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒௜ , it follows 
these rules before sending each message in its 𝑆𝑒𝑛𝑑𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒௜ to the CN୧: process P௜ sends exactly one 
message in 𝑆𝑒𝑛𝑑𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒௜ to the CN୧ if 
(1) the 𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒௜ is empty, or  
(2) the 𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒௜ is not empty and either  

(2.1) P௜ had forwarded exactly one message originating from every other process or  
(2.2) the message at the head of the 𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒௜ originates from a process whose message 

the process P௜ had already forwarded.  
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To implement these rules and verify rules 2.1 and 2.2, a data structure called forwardlist was 
introduced. The 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑙𝑖𝑠𝑡௜  at any time consists of the list of the origins of the messages that 
process P୧ forwarded ever since it last sent its own message. Obviously by definition, as soon as the 
process P୧ sends a message, the 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑙𝑖𝑠𝑡௜ is empty. Therefore, if P୧ forwards a message that 
originates from the process P୧ିଵ, 𝑖 > 0, which was initially in its 𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒௜, then process P୧ 
will contain the process P୧ିଵ in its forward list, and whenever it sends a message the process P୧ିଵ 
will be deleted from the 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑙𝑖𝑠𝑡௜. 
5. Experiments and Performance Comparison 

This section presents a performance comparison of the DCTOP protocol against the LCR [19] 
protocol and Raft [9,18] a widely implemented, leader-based ordering protocol by evaluating latency 
and throughput across varying numbers of messages transmitted within the cluster environment. 
Java (OpenJDK-17, Java version 17.02) framework was used to run a discrete event simulation for the 
protocols with at most 9 processes, 𝑁 = 4,5,7,𝑎𝑛𝑑 9.  

Every simulation method made use of a common PC with a 3.00GHz 11th Gen Intel(R) Core(TM) 
i7-1185G7 Processor and 16GB of RAM. A request is received from the client by each process, which 
then sends the request as a message to its neighbour on the ring-based network. When a neighbour 
receives a message, it passes it on to another neighbour until all processes have done so. When the 
ACN of the message origin receives the message then it knows that it is stable and makes an attempt 
to deliver it in total order, a process known as TO delivery. This process then notifies all other 
processes which, up until this point, had no idea of the message's status by using an 
acknowledgement message known as µ-message to inform them of the message's stability. Other 
processes that get this acknowledgement are aware that the message is stable and make an effort to 
deliver it in total sequence. For a Raft cluster, when a client sends a request to the leader, the leader 
adds the command to its local log, then sends a message to follower processes to replicate the entry. 
Once a majority (including the leader) confirms replication, the entry is committed. The leader then 
applies the command to its state machine for execution, notifies followers to do the same, and 
responds to the client with the output of execution.  

The time between successive message transmissions is modelled as an exponential distribution 
with a mean of 30 milliseconds, reflecting the memoryless property of this distribution, which is well-
suited for representing independent transmission events. The delay between the end of one message 
transmission and the start of the next is also assumed to follow an exponential distribution, with a 
mean of 3 milliseconds, to realistically capture the stochastic nature of network delays. For the 
simulation, process replicas are assumed to have 100% uptime, as crash failure scenarios were not 
considered. Additionally, no message loss is assumed, meaning every message sent between 
processes is successfully delivered without failure.  

The simulations were conducted with varying numbers of process replicas, such as 4, 5, 7, and 9 
processes. The arrival rate of messages follows a Poisson distribution with an average of 40 messages 
per second, modelling the randomness and variability commonly observed in real-world systems. 
The simulation duration ranges from 40,000 to 1,000,000 seconds. This extended period is chosen to 
ensure the system reaches a steady state and to collect sufficient data for a 95% confidence interval 
analysis. The long duration also guarantees that each process sends and delivers between one million 
(1,000k) and twenty-five million (25,000k) messages. 

Latency. These order protocols calculate latency as the time difference between a process's initial 
transmission of a message m and the point at which all m destinations deliver m in total order, 
denoted as 𝑇𝑂𝑑𝑒𝑙𝑖𝑣𝑒𝑟(𝑚), to the applications process. For example, let 𝑡଴ and 𝑡ଵ be the time when 𝑃଴ sends a message to its CN0 and the time when the ACN(ACN0) delivers that message in total order 
respectively. Then t୪ − t଴  defines the maximum latency delivery for that message. The average of 
1000k to 25000k messages of such maximum latencies was computed, and the experiment was 
repeated 10 times for a confidence interval of 95%. The average maximum latency was plotted against 
the number of messages sent by each process. 
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Throughput. The throughput is calculated as the average number of total order messages 
delivered (aNoMD) by any process during the simulation time calculated, like latencies, with a 95% 
confidence interval. Similarly, to the latency, we also determined a 95% confidence interval for the 
average maximum throughput. Additionally, we presented the latency enhancements offered by the 
proposed protocol in comparison to LCR, as well as the throughput similarities. 

All experiments were done independently to prevent any inadvertent consequences of running 
multiple experiments simultaneously. Nevertheless, the execution ensured each of the experiments 
was staggered to cover approximately the same amount of simulation time. This was done to sustain 
a uniform load on the ring-based and leader-based network across all of the experiments. 

5.1. Results and Discussion 

The latency analysis of DCTOP, LCR, and RAFT (see Figure 8i-iv ) across varying group sizes 
(N = 4, 5, 7, and 9) and increasing message volumes reveals that DCTOP consistently demonstrates 
the lowest latency. This performance advantage is likely attributed to its use of Lamport logical clocks 
for efficient sequencing of concurrent messages, the assignment of a unique last process for each 
message originator, and a relaxed crash-failure assumption that permits faster message delivery. LCR 
shows moderately increasing latency with larger group sizes and message volumes, primarily due to 
its reliance on vector clocks whose size grows with the number of processes and the use of a globally 
fixed last process for message ordering, both of which contribute to increased message size and 
coordination cost. RAFT, a leader-based protocol, exhibits the highest latency overall, especially 
under higher load conditions, underscoring the limitations of centralized coordination. However, 
under lower traffic conditions (e.g., 1 million messages per process), RAFT performs competitively 
and, in configurations with N = 7 and N = 9, even outperforms DCTOP and LCR. This suggests that 
RAFT may remain suitable in low-load or moderately scaled environments. 

 

Figure 8. Latency Comparison. 

On the other hand, in terms of throughput (Figure 9i-iv), DCTOP and LCR outperform RAFT 
across all group sizes and message volumes. Both are leaderless ring-based order protocols that 
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benefit from decentralized execution, enabling all processes to independently receive and process 
client requests. This results in cumulative throughput, which scales linearly with group size. RAFT, 
by contrast, centralizes request handling at the leader, thereby limiting throughput to the leader’s 
processing capacity. The results demonstrate that DCTOP consistently achieves the highest 
throughput, with LCR following closely despite its minor overhead from vector timestamps and 
centralized ordering logic. RAFT consistently exhibits the lowest throughput, and its performance 
plateaus with increasing load, reinforcing the inherent scalability limitations of leader-based 
protocols in high-throughput environments. 

Notably, all three protocols - RAFT, LCR, and DCTOP were implemented from a unified code 
base, differing only in protocol-specific logic. The experiments were conducted under identical 
evaluation setups and hardware configurations, ensuring a fair and unbiased comparison. 

 
Figure 9. Throughput Comparison. 

6. Conclusions and Future Work 

In this work, DCTOP, a novel ring-based leaderless total order protocol that extends the 
traditional LCR approach was introduced through three key innovations: the integration of Lamport 
logical clocks for concurrent message sequencing, a new mechanism for dynamically identifying the 
last process per each message sender, and a relaxation of the traditional crash failure assumption. 
These modifications collectively contributed to significant latency reductions under varying system 
configurations. To promote fairness among process replicas, our simulation model incorporated 
control primitives to eliminate message-sending bias. A comparative performance evaluation of 
DCTOP and LCR using discrete-event simulation across group sizes of N = 4, 5, 7, and 9, and under 
concurrent message loads was conducted. The results yielded three major insights. First, DCTOP 
achieved over 43% latency improvement compared to LCR across all configurations, demonstrating 
the efficacy of Lamport logical clocks in this context. Second, the proposed dynamic last process 
mechanism proved to be an effective alternative to the globally fixed last process used in LCR, 
enabling faster message stabilization. Third, by relaxing the LCR crash tolerance condition from N = 
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f + 1 to N = 2f + 1, DCTOP is able to deliver messages more quickly while still tolerating failures, 
further contributing to latency reduction. While our primary focus was on evaluating DCTOP relative 
to LCR, we included RAFT, a widely adopted leader-based protocol as a benchmark to contextualize 
our results. RAFT demonstrated competitive performance under light message loads, but its 
throughput and latency plateaued with scale due to its centralized coordination model. The goal was 
not to critique RAFT, but to highlight architectural differences and situate DCTOP within the broader 
spectrum of total order protocols. 

Given that the primary goal of this study was to investigate the initial performance 
characteristics of DCTOP, we deliberately limited our evaluation to small group sizes (N ≤ 9) to enable 
controlled experimentation and isolate protocol-level behaviour. While this approach provides useful 
insight, it also introduces some limitations. The current implementation does not model process or 
communication failures, which are common in practical distributed systems. Furthermore, larger-
scale deployments may exhibit additional performance dynamics not captured in this setting. As part 
of our ongoing work, we are developing a cloud-based, fault-tolerant implementation of DCTOP to 
validate these findings in more realistic environments, including under failure conditions and 
dynamic workloads. 

Abbreviations 
The following abbreviations are used in this manuscript: 

LCR Logical Ring and Ring Protocol 
DCTOP Daisy Chain Total Order Protocol 
VC Vector Clock 
LC Logical Clock 
TO Total Order 
CN Clockwise Neigbhour 
ACN Anti-Clockwise Neigbhour 
SC Stability Clock 
DQ Delivery Queue 
DCQ Garbage Collection Queue 
UTO Uniform Total Order (uto) 
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