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Abstract

Server replication ensures crash tolerance by enforcing a total order of input requests across multiple
servers. The Logical Clock and Ring (LCR) protocol, a ring-based leaderless total order protocol,
achieves high throughput by arranging processes in a logical ring with unidirectional message flow.
However, LCR design assumption may not produce optimal latency under high message
concurrency due to its use of vector clocks as vector timestamps for sequencing messages and a fixed
"last" process for ordering concurrent messages. To improve latency, we propose using Lamport's
logical clock as a message timestamp for sequencing messages and redefining the "last" process as
the nearest process in the opposite direction of message flow, ensuring a unique last process for each
message sender. Fairness is preserved using a modified fairness control algorithm from the Fixed
Sequencer and Ring (FSR) protocol. Our evaluation shows that the proposed protocol offers latency
improvement better than LCR across all considered configurations. Additionally, fairness among
process replicas was maintained, evidenced by an even distribution of message sending
responsibilities, with each process contributing approximately equally to total message output.

Keywords: LCR; total order; fairness control; latency; throughput; performance comparison;
simulation

1. Introduction

A crash-tolerant system is designed to continue functioning despite a threshold number of
crashes occurring and is crucial to maintaining high availability of systems [1-4]. Replication
techniques have made it possible to create crash-tolerant distributed systems. Through replication,
redundant service instances are created on multiple servers, and a given service request is executed
on all servers so that even if some servers crash, the rest will ensure that the client receives the
response. The set of replicated servers hosting service instances may also be referred to as a replicated
group and simply as a group. Typically, a client can send its service to any one of the redundant
servers in the group and the server that receives a client request, in turn, disseminates it within the
group so all can execute. Thus, different servers can receive client requests in different order, but
despite this, all servers must process client requests in the same order [5,6]. To accomplish this, a total
order mechanism that employs logical clock is utilised to guarantee that replicated servers process
client requests or simply messages in the same order [7]. A logical lock is a mechanism used in
distributed systems to assign timestamps to events, enabling processes to establish a consistent order
of events occurring. Thus, a total order protocol is a procedure used within distributed systems to
achieve agreement on the order in which messages are delivered to all process replicas in the group.
This protocol ensures that all replicas receive and process the messages in the same order, irrespective
of the order in which they were initially received by individual replicas. While total order protocols
play a critical role in maintaining consistency and system reliability, achieving crash tolerance
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requires implementation of additional mechanisms. One such mechanism, as defined in our work, is
the crashproofness policy. Specifically, this policy dictates that a message is deemed crashproof and
safe for delivery once it has successfully reached at least f+1 operative processes, where f is the
maximum tolerated failures in a group.

Total order protocols in the literature broadly fall into two categories: Leader-based and
leaderless. In the leader-based protocol, every client request is routed through the leader which
coordinates the request replication and responds to the clients with the results of execution. Examples
include Apache Zookeeper [10,11], Chubby [12,14], Paxos [15], View-stamp replication [25] and Raft
[9,16,18]. Ring-based protocols are a class of leaderless protocols whose nodes are arranged in a
logical ring. They ensure that all messages are delivered by all processes in the same order, regardless
of how they were generated or sent by the sender. An example includes LCR [19], FSR [22], E-Paxos
[20], and S-Paxos [21]. Our study focuses specifically on the ring-based leaderless protocols. Total
order protocols are widely applicable to distributed systems, especially in applications requiring
strong consistency and high throughput. For instance, they are utilised to coordinate transactions in
massive in-memory database systems [17,23] where achieving minimal latencies despite heavy load
is critical.

However, despite the progress made in ring-based protocols like LCR, certain design choices
may lead to increased latency. The Logical Clock and Ring (LCR) protocol utilizes vector clocks where
each process, denoted as P;, maintains its own clock as VC; = vcyy—o n-1- A Vector clock is a tool
used to establish the order of events within a distributed system which can be likened to an array of
integers, with each integer corresponding to a unique process in the ring. In the LCR protocol,
processes are arranged in a logical ring, and the flow of messages is unidirectional as earlier
described. However, LCRs’ design may lead to performance problems, particularly when multiple
messages are sent concurrently within the cluster: firstly, it uses a vector timestamp for sequencing
messages within replica buffers or queues [28], and secondly, it uses a fixed idea of "last" process to
order concurrent messages. Thus, in the LCR protocol, the use of a vector timestamp takes up more
space in a message, increasing its size.

Consequently, the globally fixed last process will struggle to rapidly sequence multiple
concurrent messages, potentially extending the message-to-delivery average maximum latency. The
size of a vector timestamp is directly proportional to the number of process replicas in a distributed
cluster. Hence, if there are N processes within a cluster, each vector timestamp will consist of N
counters or bits. As the number of processes increases, larger vector timestamps must be transmitted
with each message, leading to higher information overhead. Additionally, maintaining these
timestamps across all processes requires greater memory resources. These potential drawbacks can
become significant in large-scale distributed systems, where both network bandwidth and storage
efficiency are critical. Thirdly, in the LCR protocol, the assumption N = f+ 1 implies that f=N—1,
where f represents the maximum number of failures the system can tolerate. This configuration
results in a relatively high f, which can delay the determination of a message as crashproof. While
the assumption N =f+ 1 is practically valid, it is not necessary for f to be set at a high value.
Reducing f can enhance performance by lowering the number of processes required to determine the
crashproofness of a message.

Prompted by the above potential drawbacks in LCR, a new total order protocol was design with
N, N > 2, processes arranged in a unidirectional logical ring where N is the number of processes
within the server clusters. Messages are assumed to pass among processes in a clockwise direction as
shown in Figure 1. If a message originates from Py, it moves to P; until it gets to P; which is the last
process for Py. The study aims to achieve the following objectives: (i) Optimize message
timestamping with Lamport logical clocks, which uses a single integer to represent message
timestamps. This approach is independent of N, the number of processes in the communication
cluster, unlike the vector timestamping used in LCR, which is dependent on N. In LCR, as N
increases, the size of the vector timestamp grows, leading to information overhead. By contrast,
Lamport's clock maintains a constant timestamp size, reducing complexity and improving efficiency
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(ii) Dynamically determines the "Last" Process for ordering concurrent messages. Instead of relying
on a globally fixed last process for ordering concurrent messages, as in LCR, this study proposes a
dynamically determined last process based on proximity to the sender in the opposite direction of
message flow. This adaptive mechanism improves ordering flexibility and enhances system
responsiveness under high workloads. (iii) Reduce message delivery latency. This study proposes
reducing the value of f to (N-1)/2 as a means to minimize overall message delivery latency and
enhance system efficiency. This contrasts with the LCR approach, where f is set to N - 1. Specifically,
when f=N-—1, a message must be received by every process in the cluster before it can be
delivered. Under high workloads or in the presence of network delays, this requirement introduces
significant delays, increasing message delivery latency and impacting system performance. The goal
of this study was accomplished using three methods: First, we considered a set of restricted crash
assumptions: each process crashes independently of others and at most fprocesses involved in a
group communication can crash. A group is a collection of distributed processes in which a member
process communicates with other members only by sending messages to the full membership of the
group [8]. Hence, the number of crashes that can occur in an N process cluster is bounded by f =

I%J, where |x| denotes the largest integer < x. The parameter f is known as the degree of fault

tolerance as described in Raft [9]. As a result, at least two processes are always operational and
connected. Thus, an Eventually Perfect Failure Detector (#P) was assumed in this study’s system
model, operating under the assumption that N = 2f + 1 nodes are required to tolerate up to £
crash failures. This approach enables the new protocol to manage temporary inaccuracies, such as
false suspicions, by waiting for a quorum of at least £ + 1 nodes before making decisions. This
ensures that the system does not advance based on incorrect failure detections. Secondly, the last
process of each sender is designated to determine the stability of messages. It then communicates this
stability by sending an acknowledgement message to other processes. When the last process of the
sender receives the message, it knows that all the logical clocks within the system have exceeded the
timestamp of the message (stable property). Then all the received messages whose timestamp is less
than the last process logical clock can then be totally ordered.

Figure 1. Last Process Concept.

In addition, a new concept of "deliverability requirements" was introduced to guarantee the
delivery of only crash-proof and stable messages in total order. A message is crashproof if the number
of messages hops = f + 1, that is, a message must make at least f+ 1 number of hops before it is
termed crashproof. Thus, the delivery of a message is subject to meeting both deliverability and order
requirements. As a result of enhancements made in this regard, a new leaderless ring-based total
order protocol was designed, known as the Daisy Chain Total Order Protocol (DCTOP) [13]. Thirdly,
fairness is defined as the condition where every process P; has an equal chance of having its sent
messages eventually delivered by all processes within the cluster. Every process ensures messages
from the predecessor are forwarded in the order they were received before sending their own
message. Therefore, no process has priority over another during sending of messages.

1.1. Contributions

The contributions of this paper can be summarized as follows:
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(i) Protocol-Level Innovations Within a Ring-Based Framework: This study introduces DCTOP, a
novel improvement to the classical LCR protocol while retaining its ring-based design. It
introduces:

a. Lamport Logical Clock used for message timestamping which achieves efficient concurrent
message ordering, reducing latency and improving fairness.

b. Dynamic Last-Process Identification to replace LCR’s globally fixed last process
assumption, accelerating message stabilization and accelerates delivery.

(ii) Relaxed Failure Assumption: DCTOP reduces the fault tolerance threshold from N=£f+1to N =
2f + 1, enabling faster message delivery with fewer failures.

(iii) Foundation for Real-World Deployment: While simulations excluded failures and large-scale
setups, ongoing work involves a cloud-based, fault-tolerant implementation to validate DCTOP
under practical conditions.

This paper is structured as follows: Section 2 presents the system model, while Section 3 outlines
the design objectives and rationale for DCTOP. Section 4 details the fairness control primitives.
Section 5 provides performance comparisons of DCTOP, LCR and Raft in terms of latency and
throughput under crash-free and high-workload conditions. Finally, Section 6 concludes the paper.

2. System Model

The ring-based protocols are modelled as a group of N processes represented by II=
{Py, Py, P,, ....,Py_1} which are linked together in a circular structure (see Figure 1) with varying
cluster sizes with an asynchronous-based communication framework, with no constraints on
communication delays and exponentially distributed intervals between message transmissions. This
model supports first in first out (FIFO), and thus messages sent are received in the order sent. The
system model restricts a process, P;, to only send messages to its clockwise neighbour and receive
from its anticlockwise neighbour.

Thus, for each process P;, where 0 <i < N —1 and n is the number of processes in the cluster,
the clockwise neighbour (CN;) is defined as the process immediately following P;, CN; = P, or
CN; =P, if i =N—1. Conversely, the anticlockwise neighbour of P; (ACN;) is defined as the
process immediately preceding P;, ACN; = P;_y or ACN; = Py_; if i = 0. Therefore, messages are
transmitted exclusively in the clockwise direction, with P; receiving from ACN; and transmitting to
CN; in a daisy chain framework. We also defined the Stability clock of any process (SC;) as the
largest timestamp, ts, known to any process P; as stable. When a message m becomes stable, SC;
is updated as follows: SC; =max{ SC;, m_ts }. Additionally, we introduce the definition of Hops; ;
which is defined as the number of hops between any two processes from P, to P in the clockwise
direction: (i) Hops;j; = 0, ifi = j. (ii) Hops;; = (j —1),ifj > i, and (iii) Hops;; = (j+ N —1) ifj <.

3. Daisy Chain Total Order Protocol- DCTOP

The DCTOP system employs a group of interconnected process replicas, with a group size of N,
where N is an odd integer, N > 3 and at most 9, to provide replicated services. The main goals of
the system design are threefold:

(a) First, to improve the latency of LCR by utilizing Lamport logical clocks (LC) for sequencing
concurrent messages.

(b) Second, to employ a novel concept of the dynamically determined “last” process for ordering
concurrent messages, while ensuring optimal achievable throughput.

(c) Third, the relaxation of the crash failure assumption in LCR.

3.1. Data Structures

The data structures associated with each process P;, message m, and the p message are
discussed in this section as used in DCTOP system design and simulation experiment:
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Each process P; has the following data structures:

1. Logical clock (LC;): Thisis an integer object initialized to zero. It is used to timestamp messages.
Stability clock (SC;): This is an integer object that holds the largest timestamp, ts, knownto P;
as stable. Initially, SC; is zero.

3. Message Buffer (mBuffer;): This field holds the sent or received messages by P;.

4. Delivery Queue (DQ;): Messages waiting to be delivered are queued in this queue object.

5. Garbage Collection Queue (GCQ;): After a message is delivered, the message is transferred to
GCQ; to be garbage collected.

M is used to denote all types of messages used by the protocol. Usually there are two types of
M: data message denoted by m, and an announcement or ack message that is bound to a specific data
message. The latter is denoted as p(m) when it is bound to m. p(m) is used to announce that m has
been received by all processes in II. The relationship between m and its counterpart u(m) is shown
in Figure 2.

m
m Header n(m)
p(m) Header
—> Body

Figure 2. Relationship between m and p(m).

A message, m, consists of a header and a body, with the body containing the data application
information. Every m has a corresponding i, denoted as p(m), which contains the information from
m's header. This is why we refer to p(m) instead of just pi. p(m) has m header information as its main
information and does not contain its own data; therefore, the body of p(m) is essentially m's header
(see Figure 2).

A message M has at least the following data structures:

1. Message origin (M_origin) field shows the id of the process in IT= {Py,P1, Py, ....,Pn_1} that
initiated the message multicast.

2.  Message timestamp (M_ts) field holds the timestamp given to M by M_origin.

3. Message destination (M_destn) field holds the destination of M which is the CN of the process
that sends/forwards M.

4. Message flag (M_flag) it is a Boolean field which can be true or false and is initiated to be false
when M is formed.

3.2. DCTOP Principles

The protocol has three design aspects:(i) message sending, receiving, and forwarding, (ii)
timestamp stability, and (iii) crashproofing of messages, which are described in detail one by one in
this subsection.

(1) Message Sending, Receiving and Forwarding: The Lamport logical clock is used to timestamp a
message m within the ring network before m is sent. Therefore, m_ts denotes the timestamp for
message m.

The system as shown in Figure 3 uses two main threads to handle message transmission and
reception in a distributed ring network. The send(m) thread operates by dequeuing a message m
from the non-empty SendingQueuei when allowed by the transmission control policy (see Section 4).
It timestamps the message with the current value of the LCi as m_ts = LC;, increments LCiby one
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afterwards, and then places the timestamped message into the OutgoingQueuei for transmission. A
copy of the message is also stored in mBufferi for local record.

r I
1 - Y 1
H Application proces g v i
i /
i 4 SendingQueug; i
! copy H
i T ! H
. m 1
E mBuffer; _— send m_)_ = H
| ('E]p}- e — m 1
: |
i Nodes
H i
i 1
1 1
! i
5 | cony |
! | | if necessary I
1 4 \ \ 1
i T @ o >
e —— !
E — M) g | Ma | e (-,;;J;- SR B B I N :
. 1
i IncomingQueue; OutgoingQueue; H
1 ]
Arrive Network Transmit

Figure 3. Message Sending, Receiving, Forwarding.

On the receiving side, the receive(m) thread dequeues a message m from the IncomingQueue:i
when permitted by the transmission control policy, updates the LC; as LC; = max {(m_ts + 1),LC;},
and delivers the message to process Pi for further handling. Typically, m is entered in mBuffer; and
may be forwarded if necessary to CN; by entering a copy of m with destination set to CN; into the
OutgoingQueue;. If necessary, meaning the message has not yet completed a full cycle around the
ring, it may be forwarded to the CNiby placing a copy of it in the OutgoingQueuei with its destination
set to CN;. However, once the message has completed a full cycle within the ring network, it is no
longer forwarded, and the forwarding process stops.

If two messages are received consecutively, they are sent in the same order but not necessarily
immediately after each other, depending on the transmission control policy. As shown in Figure 3,
messages to be received arrive at the IncomingQueue; from the network, and a copy of the received
message arrives at the mBuffer; while a copy of the forwarded messages appears in the
OutgoingQueue; according to the order they were received.

(2) Timestamp Stability: A message timestamp TS, TS = 0, is said to be stable in a given process P; if
and only if the process P; is guaranteed not to receive any m’, m’_ts <TS any longer.

Observations:

1) Atimestamp TS’ <TS isalso stablein P; when TS becomes stable in P;.

2) The term “stable” is used to refer to the fact that once TS becomes stable in P;, it remains
stable for ever. This usage corresponds to that of “stable” property used by Chandy and
Lamport [24]. Therefore, the earliest instance when a given TS becomes stable in P; will be
the interest in the later discussions.

3) When TS becomes stable in P;, the process can potentially total order (TO) deliver all
received but undelivered m,m_ts < TS, because stability of TS eliminates the possibility
of P; ever receiving any m’, m’_ts < TS, in the future.

(8) Crashproofing of Messages: A message m is crashproof if m is in possession of at least (f + 1)
processes. Therefore, a message m is crashproof in P; when P; knows that m has been received
by at least (f + 1) processes. The rationale for crashproofing is that when we have at least f + 1
processes that have received a given message m even if f of them crash there will be at least one
process that can be relied on in sending m to others and this emphasizes the importance of
crashproofness in our system.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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3.3. DCTOP Algorithm Main Points

The DCTOP algorithm's main points are outlined as follows:

1. When P; forms and sends m, it sets m_flag = false, before it deposits m in its mBuffer;.

When P;j receives m and Pj=m_origin

e It checks if Hops;; > f. If this is true then m is crashproofed, it does not deliver m
immediately. Moreover, it sets m_flag = true and deposits m in its mBuffer;. if m is not
crashproofed, then m_flag remains false.

e Itthen checksif Pj # CN;. if this is true, it sets m destination, m_destn=CN; and deposits
m inits OutgoingQueue,,

e  Otherwise, m is stable then it updates SC; as SC; =max { SC;, m_ts}, and transfer all m,
m_ts < SC; to DQ,. Then, it forms p(m), sets the two header fields, pu(m)_origin=P;,
p(m)_destn=CN; and deposit pu(m) in OutgoingQueue,.

3.  When P; receives p(m), it knows that every process has received m.

e If min u(m) does not indicate a higher stabilisation in P;, thatis, m_ts< SC; and Hops;; >
f then P; ignores u(m), otherwise, if Hops;; <f, P; sets m_flag= true, pu(m)_destn = CN;
and deposit u(m) in OutgoingQueue;.

e  However, if m in pu(m) indicates a higher stabilisation in P;, thatis, m_ts > SC;, P; updates
SC; as SC; =max { SC;, m_ts}, and transfer all m, m_ts < SC; to DQ..

e If Pj= CN;j, P; ignores p(m) otherwise, it sets p(m)_destn = CN; and deposit pu(m) in
OutgoingQueue;.

4. Whenever DQ, is non-empty, P; deques m from the head of DQ, and delivers m to
application process. P; then enters a copy of m into GCQ, to represent a successful TO
delivery. This action is repeated until DQ, becomes empty.

It is important to note that the DCTOP maintains total order. Thus, if P, forms and sends m

and then m’: (i) Every process receives m and then m’ (ii) p(m) will be formed and sent before pi(m’)

and (iii) Any process that receives both p(m) and pu(m’) will receive p(m) and then p(m’).

3.4. DCTOP Delivery Requirements

Any message m can be delivered to the high-level application process by P, if satisfies the
following two requirements:

(i) m_ts must be stable in P;
(if) m must be crashproofin P;, and
(iii) Any two stable and crashproofed m, and m’are delivered in total order: m is delivered before
m’ iff m_ts < m’_ts or m_ts = m’_ts and m_origin > m’_origin.
During the delivery of m, if m_ts = m’_ts then the messages are ordered according to the origin of
the messages, usually a message from Py_; are ordered before a message from P, where N —1 > i.
In summary, the pseudocode representations for total order message delivery, message
communication, and membership changes are presented in Figures 4, 5, and 6 respectively.

Uniform Total Order Delivery and Garbage Collection at Pi

1. Procedure utoDeliver(m)

2. Repeatuntil DQ:is empty

3 Dequeue m=head (DQ))

4 If m_flag=true:

5. Deliver m to the application process. {deliver a message}
6 Add m to GCQi.

7 If DQiis empty or (m_ts < head (DQ):

8 Update DC=m_ts. {delivery counter}

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 4. TO_Delivery Algorithm of DCTOP.

Message multicast and the approaches executed by any process P;

1. Procedure initialization (initial_view for each P;)

2 mBuffer, < @ {holds incoming messages}
3. DQ <0 {stores totally ordered messages}
4, GCQ« 0 {stores garbage-collected messages}
5 LCi« {0,.....0} {local logical clock}
6 SCi« {0, .....0} {stability clock}
7. SendingQueue; « @ {outgoing message queue}

8. Group G « mitial G {set of initial group members}

9. Procedure utoMulticast (M) at P;

10. a. Initialize (M):

11. M_flag=false

12. Assign timestamp M_ts=LC..

13. Enqueue M in SendingQueue;

14.  b.Multicast Mreliablyto all P, € G {multicast a message}
15. Store a copy of m in mBuffer;

16. Increment LC; after sending m

17. Upon Receive (M) do

18. If (M =m) then

19. Update LC=max (LC;, m_ts+1) {update local logical clock}

20. If Hops;i 2 f, mark m_flag = true {message is crash-proof}

21. Store m in mBuffer,.

22, Forwarding Decision:

23. If P;# CN::

24, Set m_destn=CN..

25. Enqueue m in OutgoingQueue; {forward the message}

26. Else:

27. Update SC=max (SC;, m_ts).

28. Mark allm, m_ts = SC, as stable in mBuffer; {m is stable}
29. Move these messages to DQi in total order

30. Form p(m) with p(m)_destn=CN;

31. Enqueue p(m) in OutgoingQueue; {forward the p(m)}
32. If (M = p(m)) then

33. Check if p(m) is meaningful or not:

34, If p(m) contains m where m_ts < SC; and Hops;;2 f, discard p(m).

35. Otherwise:

36. If Hops <f

37. Search for m in mBufferi or DQueue;

38. Mark m_flag=true {message is crashproof}
39. p(m)_destn=CN;

40. Enqueue p(m) in OutgoingQueue; {forward the u(m)}
41. If m_ts >SC;

42, Update SC=m_ts

43, Stabilize all m, m_ts < SC; in mBufferi {mis stable}
44, Move these messages to DQ; in total order

45. If P=CN;, discard p(m)

46. Otherwise, forward p(m) to CN;

Figure 5. Algorithm of DCTOP.
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Membership Change Steps Executed by any Pi in Survivors(G)

Upon Membership Change (G' < new group)
1. Determine Lead Survivor
i. Pi multicasts (Last_ts, Lasti_origin) to all other Survivors P. € G.
ii. After receiving (Last._ts, Last._origin) from all P., compute:
o Lastg, Last,, and LEAD-Survivor.
2. Send Pending Messages
(a) Foreach message m € SendingQueue;, timestamp and send mto allP.€ G
e Clear SendingQueue;
(b) For each Survivor P., send any missing messages from mBuffer;,
TO_Queue; or QCG; such that m > Last..
(c ) Send Finished; to all P. € G.
3. Receive All Messages
(a) Repeat the following until Finished. is received from every P. € G:
i. Receive m.
ii. If m € {mBuffer;, TO_Queue;, GCQ}; discard m (duplicate).
iii. Otherwise, store m in mBuffer,.
(b) Send Readyi to allP. € G.
4. Stabilize Buffers and Build Total Order Queue
(a) Wait until Ready. is received from P. € G.
(b) Repeat the following until mBuffer; is empty:
i Remove m from mBuffer; in Total order
ii. Enqueue minto TO_Queue;
5. Handle Joiners (Executed by Lead Survivor)
If P, = LEAD-Survivor and Joiners(G') #0
(a) Compute checkpointC
(b) Send Invite (C, TO_Queue)) to each P; € NewComer(G')
6. Resume Delivery in Previous Group GPrev
(a) Repeatuntil TO_Queue;is empty:
i Dequeue m.
ii. Deliver m to the application process.
iii.  Enqueue minto GCQ.
(b) Send Completed;to all P, € G.
7. Initialize for New Group G'
i.  Waituntil Completed. is received from all P, € G\
ii.  Initialize DCTOP variables.
iii.  Clear buffers and queues.
iv.  Resume DCTOP in G.
For Joiner Process P;:
8. Receive Checkpoint Update
i. Wait until Invite (C, Q) is received from all P, € G.
ii.  Apply checkpoint C.
iii. Set TO_Queue; « Q.
9. Follow Steps 6 and 7 for Survivors
i. Replace P;references with P;

Figure 6. Membership Changes of DCTOP.

3.5. Group Membership Changes

The DCTOP protocol is built on top of a group communication system [26,27]. Membership of
the group of processes executing DCTOP can change due to (i) a crashed member being removed
from the ring and/or (ii) a former member recovering and being included in the ring. Let G represent
the group of DCTOP processes executing the protocol at any given time. G is initially Il =
{Po, P, Py, ..., Py_1} and G S 1T is always true. The membership change procedure is detail in Figure 6.
Note that the local membership is assumed to send an interrupt to the local DCTOP process, say, P,
when a membership change is imminent. On receiving the interrupt P, completes processing of any
message it has already started processing and then suspends all DCTOP activities and waits for new
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G' to be formed: sending of m or pu(m) (by enqueueing into SendingQueue;), receiving of m or pi(m)
(from IncomingQueue;) and delivering of m (from DQ;) are all suspended. The group membership
change work as follows: Each process Pi in the set of Survivors(G) (i.e., survivors of the current group
G) exchanges information about the last message they TO-delivered. Once this exchange is complete,
additional useful information is derived among all Survivors, which helps identify the Lead Survivor.

Subsequently, each Survivor sends all messages from its respective SendingQueue to the other
Survivors. If Pi has any missing messages, they are sent to another Survivor, Ps where Ps represents
any Survivor process other than Pi. After sending, Pi transmits a Finishedi message to all Ps processes,
signalling that it has completed its sending. Upon receiving messages, Pi stores all non-duplicate
messages in its buffer, mBufferi. The receipt of Finisheds messages from all Ps processes confirms that
Pi has received all expected messages, with duplicates discarded. Pi then waits to receive Readys from
every other Ps, ensuring that every Survivor Ps has received the messages sent by Pi . At this point,
all messages in mBufferi are stable and can be totally ordered. If there are Joiners (defined as incoming
members of G' that were not part of the previous group (Gprev) but joined G' after recovering from
an earlier crash), the Lead Survivor sends its checkpoint state and TO_Queue to each Pj in the set of
NewComer(G'), allowing them to catch up with the Survivors(G). Following this, all Survivors(G)
resume TO delivery in Gprev. Pi then sends a completedi message to every process in G, indicating
that it has finished TO-delivering in Gprev. Each Survivor waits to receive a completedx message
from every other P« in G before resuming DCTOP operations in the new G'. The Joiners, after
replicating the Lead Survivor's checkpoint state, also perform TO delivery of messages in Gprev and
then resume operations in the new G' of DCTOP. Hence, at the conclusion of the membership change
procedure, all buffers and queues are emptied, ensuring that all messages from Gprev have been
fully processed.

3.6. Proof of Correctness

Lemma 1 (VALIDITY). If any correct process P; utoMulticasts a message m, then it eventually

utoDelivers m.

Proof: Let P; be a correct process and let mi be a message sent by P;. This message is added to

mBufferi (Line 15 of Figure 5). There are two cases to consider:

Case 1: Presence of membership change

If there is a membership change, P, will be in Survivor(G) since P, is a correct process.
Consequently, the membership changes steps ensure that P, will deliver all messages stored in its
mBufferi, TO_Queuei or GCQi including mi (Line 32 to 44 of Figure 5). Thus, P, utoDelivers
message mi that it sent.

Case 2: No membership changes

When there is no membership change, all the processes within the DCTOP system including the
mi_origin will eventually deliver miafter setting mi stable (Line 28 of Figure 5). This happens because
when P, timestamp, sets mi_flag=false and sends mi to its CNj, it deposits a copy of mi to its mBuffer:
and sets LCi > mi_ts afterward. The message is forwarded along the ring network until the ACN;i
receives mi. Any process that receives mideposits a copy of it into their mBuffer and sets LC > mi_ts.
It also checks if Hopsj > f, then mi is crashproof and it sets mi_flag=true. The ACN: sets mi stable
(Line 28 of Figure 5) and crashproof (Line 20 of Figure 5) at ACN;, transfers mi to DQ and then it
attempts utoDeliver mi (Lines 1 to 8 of Figure 4) if mi is at the head of DQ. ACNigenerates, timestamp
u(mi) using its LC and then sends it to its own CN. Similarly, p(mi) is forwarded along the ring (Line
31 of Figure 5) until the ACN of p(mi)_origin receives pi(mi). When any process receives p(mi) and
Hopsi <f, it knows that mi is crash proof and stable but if Hopsj >f, then mi is only stable because mi
is already known to be crashproof since at least f+1 processes had already received mi. Any process
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that receives p(mi) transfers mi from mBuffer to DQ and then attempts to utoDeliver mi if mi is at the
head of DQ.

Suppose Px sends mxk before receiving mi, i < k. Consequently, ACNiwill receive mx before it
receives miand thus before sending p(mi) for mi. As each process forwards messages in the order in
which it receives them, we know that P, will necessarily receive mx before receiving p(mi) for
message M.

(a) If mi_ts=mx_ts, then P; orders mx before mi in mBufferi since i < k (This study assumed that
when messages have equal timestamp, message from a higher origin is ordered before message
from a lower origin.). When P; receives pi(mi) for message miit transfers both messages to DQ
and can utoDeliver both messages, mx before mi, because TS is already known to be stable
because of TS equality.

(b) If mi_ts < mk_ts then P; orders mi before mk in mBufferi. When P; receives pi(mi) for message
miit transfers both messages to DQ and can utoDeliver mi only since it is stable and is at the
head of DQ. P; will eventually utoDeliver mx when it receives pi(mx) for mx« since it is now at the
head of DQ after mi delivery.

(c) Option (a) or (b) is applicable in any other processes within the DCTOP system since there is no
membership changes. Thus, if any correct process P; sends a message m, then it eventually
delivers m.

Note that if f+1 processes receive a message m, then m is crash proof and during concurrent
multicast, TS can become stable quickly making m to be delivered even before the ACN of the
m_origin receives m.

Lemma 2 (INTEGRITY). For any message m, any process Px utoDelivers m at most once, and only if m was

previously utoMulticast by some process P; .

Proof. The crash failure assumption in this study ensures that no false message is ever utoDelivered
by a process. Thus, only messages that have been utoMulticast are utoDelivered. Moreover, each
process maintains an LC, which is updated to ensure that every message is delivered only once. The
sending rule ensures that messages are sent with an increasing timestamp by any process P;, and the
receive rule ensures that the LC of the receiving process is updated after receiving a message. This
means that no process can send any two messages with equal timestamps. Hence, if there is no
membership change, Lines 16 and 19 of Figure 5 guarantee that no message is processed twice by
process Pk. In the case of a membership change, Line 3a(ii) of Figure 6 ensures that process Px does
not deliver messages twice. Additionally, Lines 7(i-iv) of Figure 6 ensure that P«’s variables such as
logical and stability clock are set to zero, and the buffer and queues are emptied after a membership
change. This is done because processes had already delivered all the messages of the old group
discarding message duplicates (Line 3a(ii) of Figure 6) to the application process and no messages in
the old group will be delivered in the new group. Thus, after a membership change, the new group
is started as a new DCTOP operation. The new group might contain messages with the same
timestamp as those in the old group, but these messages are distinct from those in the old group.
Since timestamps are primarily used to maintain message order and delivery, they do not hold
significant meaning for the application process itself. This strict condition ensures that messages

already delivered during the membership change procedure are not delivered again in the future.

Lemma 3 (UNIFORM AGREEMENT). If any process P; utoDelivers any message m in the current G,

then every correct process Py in the current G eventually utoDelivers m.
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Proof. Let mi be a message sent by process P; and let P; be a process that delivered mi in the current
G.

Case 1: P delivered m: in the presence of a membership change.

P delivered mi during a membership change. This means that P, had m: in its mBuffer;,
TO_Queuei, GCQi before executing line 6a(ii) of Figure 6. Since all correct processes exchange their
mBufferi, TO_Queuei, GCQi during the membership change procedure, we are sure that all correct
processes that did not deliver m: before the membership change will have it in their mBuffer;
TO_Queuei or GCQi before executing line 1 to 9 of Figure 6. Consequently, all correct processes in the
new G' will deliver mi.

Case 2: P, delivered mi: in the absence of a membership change.

The protocol ensures that m: does a complete cycle around the ring before being delivered by P:
indeed, P, can only deliver m: after it knows that mi is crashproof and stable, which either happens
when it is the ACNi in the ring or when it receives p(mi) for message mi. Remember that processes
transfer messages from their mBuffer to DQ when the messages become stable. Consequently, all
processes stored mi in their DQ before P, delivered it. If a membership change occurs after P,
delivered mi and before all other correct processes delivered it, the protocol ensures that all
Survivor(G) that did not yet deliver m: will do it (Line 6a(ii) of Figure 6). If there is no membership
change after P; delivered m: and before all other processes delivered it, the protocol ensures that
pi(mi) for mi will be forwarded around the ring, which will cause all processes to set i to crashproof
and stable. Remember, when any process receives pi(mi) and Hopsi < f, it knows that mi is crash proof
and stable but if Hops; > f, then mi is only stable because mi is already known to be crashproof since
at least f+1 processes had already received mi. Each correct process will thus be able to deliver mi as
soon as mi is at the head of DQ (Line 3 of Figure 4). The protocol ensures that m: will become first
eventually. The reasons are the following: (1) the number of messages that are before mi in DQ of
every process Pris strictly decreasing, and (2) all messages that are before miin DQ of a correct process
Px will become crashproof and stable eventually. The first reason is a consequence of the fact that
once a process P sets message mi to crashproof and stable, it can no longer receive any message m
such that m=< mi. Indeed, a process Pc can only produce a message m. < mi before receiving mi. As each
process forwards messages in the order in which it received them, we are sure that the process that
will produce an p(mi) for mi will have first received m.. Consequently, every process setting mi to
crashproof and stable will have first received m.. The second reason is a consequence of the fact that
for every message m that is utoMulticast in the system, the protocol ensures that m and p(m) will be
forwarded around the ring (Lines 25 and 31 of Figure 5), implying that all correct processes will mark
the message as crashproof and stable. Consequently, all correct processes will eventually deliver mi.

Lemma 4 (TOTAL ORDER). For any two messages m and m’ if any process P; utoDelivers m without

having delivered m’, then no process P; utoDelivers m’ before m.

Suppose that P, deduces stability of TS, TS = 0, for the first time by (i) above at, say, time t, that
is, by receiving m, m_ts = TS and m_origin = CN;,, at time t. P, cannot have any m’, m’_ts < TS in
its IncomingQueue; at time t nor will ever have m’ at any time after t.

Proof (By Contradiction)

Assume, contrary to Lemma, that P, is to receive n?, m'_ts < TS, after t as shown Figure 7a.
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at t
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(a)
Figure 7. Example Contradicting Lemma 1.

Case 1:

Let m_origin = m’_origin = P,. So, imagine that P, is the same as CN;, P, = CN;j, as shown in
Figure 7b. Given that m'_ts < TS =m_ts, m'_ts < m_ts must be true when m_origin = m’_origin.
So, P, must have sent m’ first and then m.

Note that

(a) The link between any pair of consecutive processes in the ring maintains FIFO, and
(b) Processes Pji1,Pjyy,....Piy forward messages in the order they received those messages.

Therefore, it is not possible for P; to receive m’ after it received m, that is, after t. So case 1
cannot exist.
Case 2:

Imagine that m_origin is from CN; and m’_originis from B, m_origin = CN; # m’_origin = B,
as shown in Figure 6b. Since P; is the last process to receive m in the system, P, must have received
m before t; since m’_ts < m_ts, P could not have sent m' after receiving m. So, the only possibility
for m’_ts < m_ts tohold is: P, must form and send m’ before it is received and forwarded m.

For the cases of (a) and (b) in case 1, P, must receive m' before m. Therefore, the assumption
made contrary to Lemma 1 cannot be true. Thus, Lemma 1 is proved.

4. Fairness Control Environment

In this section, the DCTOP fairness mechanism was discussed: for a given round k, any process
P, either sends its own message to the CN; or forwards messages from its ACN; to the CN;. A round
is defined as follows: for any round k, every process P; sends at most one message, m, toits CN; and
also receives at most one message, m, from its ACN; in the same round. Every process P, has an
IncomingQueue; which contains the list of all messages P, received from the ACN; which was sent
by other processes, and a SendingQueue;. The SendingQueue; consist of the messages generated by
the process P, waiting to be transmitted to other processes. When the SendingQueue; is empty, the
process P, forwards every message in its IncomingQueue; but whenever the SendingQueue; is not
empty, a rule is required to coordinate the sending and forwarding of messages to achieve fairness.

Suppose that process P; has one or more message(s) to send stored in its SendingQueue;, it follows
these rules before sending each message in its SendingQueue; to the CN;: process P; sends exactly one
message in SendingQueue; to the CN; if
(1) the IncomingQueue; is empty, or
(2) the IncomingQueue; is not empty and either

(2.1) P; had forwarded exactly one message originating from every other process or

(2.2) the message at the head of the IncomingQueue; originates from a process whose message

the process P; had already forwarded.
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To implement these rules and verify rules 2.1 and 2.2, a data structure called forwardlist was
introduced. The forwardlist; at any time consists of the list of the origins of the messages that
process P, forwarded ever since it last sent its own message. Obviously by definition, as soon as the
process P, sends a message, the forwardlist; is empty. Therefore, if P, forwards a message that
originates from the process P._;, i > 0, which was initially in its IncomingQueue;, then process P;
will contain the process P._; in its forward list, and whenever it sends a message the process P,_;
will be deleted from the forwardlist;.

5. Experiments and Performance Comparison

This section presents a performance comparison of the DCTOP protocol against the LCR [19]
protocol and Raft [9,18] a widely implemented, leader-based ordering protocol by evaluating latency
and throughput across varying numbers of messages transmitted within the cluster environment.
Java (Open]JDK-17, Java version 17.02) framework was used to run a discrete event simulation for the
protocols with at most 9 processes, N = 4,5,7,and 9.

Every simulation method made use of a common PC with a 3.00GHz 11th Gen Intel(R) Core(TM)
i7-1185G7 Processor and 16GB of RAM. A request is received from the client by each process, which
then sends the request as a message to its neighbour on the ring-based network. When a neighbour
receives a message, it passes it on to another neighbour until all processes have done so. When the
ACN of the message origin receives the message then it knows that it is stable and makes an attempt
to deliver it in total order, a process known as TO delivery. This process then notifies all other
processes which, up until this point, had no idea of the message's status by using an
acknowledgement message known as p-message to inform them of the message's stability. Other
processes that get this acknowledgement are aware that the message is stable and make an effort to
deliver it in total sequence. For a Raft cluster, when a client sends a request to the leader, the leader
adds the command to its local log, then sends a message to follower processes to replicate the entry.
Once a majority (including the leader) confirms replication, the entry is committed. The leader then
applies the command to its state machine for execution, notifies followers to do the same, and
responds to the client with the output of execution.

The time between successive message transmissions is modelled as an exponential distribution
with a mean of 30 milliseconds, reflecting the memoryless property of this distribution, which is well-
suited for representing independent transmission events. The delay between the end of one message
transmission and the start of the next is also assumed to follow an exponential distribution, with a
mean of 3 milliseconds, to realistically capture the stochastic nature of network delays. For the
simulation, process replicas are assumed to have 100% uptime, as crash failure scenarios were not
considered. Additionally, no message loss is assumed, meaning every message sent between
processes is successfully delivered without failure.

The simulations were conducted with varying numbers of process replicas, such as 4, 5, 7, and 9
processes. The arrival rate of messages follows a Poisson distribution with an average of 40 messages
per second, modelling the randomness and variability commonly observed in real-world systems.
The simulation duration ranges from 40,000 to 1,000,000 seconds. This extended period is chosen to
ensure the system reaches a steady state and to collect sufficient data for a 95% confidence interval
analysis. The long duration also guarantees that each process sends and delivers between one million
(1,000k) and twenty-five million (25,000k) messages.

Latency. These order protocols calculate latency as the time difference between a process's initial
transmission of a message m and the point at which all m destinations deliver m in total order,
denoted as TOdeliver(m), to the applications process. For example, let t, and t; be the time when
Py sends a message to its CNoand the time when the ACN(ACNo) delivers that message in total order
respectively. Then t; —t, defines the maximum latency delivery for that message. The average of
1000k to 25000k messages of such maximum latencies was computed, and the experiment was
repeated 10 times for a confidence interval of 95%. The average maximum latency was plotted against
the number of messages sent by each process.
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Throughput. The throughput is calculated as the average number of total order messages
delivered (aNoMD) by any process during the simulation time calculated, like latencies, with a 95%
confidence interval. Similarly, to the latency, we also determined a 95% confidence interval for the
average maximum throughput. Additionally, we presented the latency enhancements offered by the
proposed protocol in comparison to LCR, as well as the throughput similarities.

All experiments were done independently to prevent any inadvertent consequences of running
multiple experiments simultaneously. Nevertheless, the execution ensured each of the experiments
was staggered to cover approximately the same amount of simulation time. This was done to sustain
a uniform load on the ring-based and leader-based network across all of the experiments.

5.1. Results and Discussion

The latency analysis of DCTOP, LCR, and RAFT (see Figure 8i-iv ) across varying group sizes
(N =4, 5,7, and 9) and increasing message volumes reveals that DCTOP consistently demonstrates
the lowest latency. This performance advantage is likely attributed to its use of Lamport logical clocks
for efficient sequencing of concurrent messages, the assignment of a unique last process for each
message originator, and a relaxed crash-failure assumption that permits faster message delivery. LCR
shows moderately increasing latency with larger group sizes and message volumes, primarily due to
its reliance on vector clocks whose size grows with the number of processes and the use of a globally
fixed last process for message ordering, both of which contribute to increased message size and
coordination cost. RAFT, a leader-based protocol, exhibits the highest latency overall, especially
under higher load conditions, underscoring the limitations of centralized coordination. However,
under lower traffic conditions (e.g., 1 million messages per process), RAFT performs competitively
and, in configurations with N =7 and N =9, even outperforms DCTOP and LCR. This suggests that
RAFT may remain suitable in low-load or moderately scaled environments.

120000 130000
110000 120000
100000 110000
90000 100000
F 80000 7 90000
£ 70000 E 80000
E 60000 > 70000
: sooo £ oo
8 40000 T
30000 — 40000
i 30000
SoE6E I i' i i 20000 I i I
10000
o =Ea i o millm i I
wDCTOp 1000k 10000k 15000k 20000k 25000k wDCTop 1000k 10000k 15000k 20000k 25000k
B LCR Number of Messages Sent by Each Process H LCR Number of Messages Sent by Each Process
m RAFT = RAFT
i. Group Size N = 4 ii. Group Size N =5
140000 140000
130000 130000
120000 120000
110000 110000
__ 100000 —~100000
g 90000 £ 90000
< 80000 < 80000
g 70000 © 70000
§ 60000 $ 60000
§ 50000 ‘@ 50000
40000 = 40000
30000 30000
20000 I I I 20000 I I
10000 10000 i
o all= o MHm
= DCTOP 1000k 10000k 15000k 20000k 25000k EDCTOP 1000k 10000k 15000k 20000k 25000k
= LCR m LCR
B RAFT Number of Messages Sent by Each Process = RAFT Number of Messages Sent by Each Process

iii. Group Size N =7

iv. Group Size N =9

Figure 8. Latency Comparison.

On the other hand, in terms of throughput (Figure 9i-iv), DCTOP and LCR outperform RAFT
across all group sizes and message volumes. Both are leaderless ring-based order protocols that
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benefit from decentralized execution, enabling all processes to independently receive and process
client requests. This results in cumulative throughput, which scales linearly with group size. RAFT,
by contrast, centralizes request handling at the leader, thereby limiting throughput to the leader’s
processing capacity. The results demonstrate that DCTOP consistently achieves the highest
throughput, with LCR following closely despite its minor overhead from vector timestamps and
centralized ordering logic. RAFT consistently exhibits the lowest throughput, and its performance
plateaus with increasing load, reinforcing the inherent scalability limitations of leader-based
protocols in high-throughput environments.

Notably, all three protocols - RAFT, LCR, and DCTOP were implemented from a unified code
base, differing only in protocol-specific logic. The experiments were conducted under identical
evaluation setups and hardware configurations, ensuring a fair and unbiased comparison.
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Figure 9. Throughput Comparison.

6. Conclusions and Future Work

In this work, DCTOP, a novel ring-based leaderless total order protocol that extends the
traditional LCR approach was introduced through three key innovations: the integration of Lamport
logical clocks for concurrent message sequencing, a new mechanism for dynamically identifying the
last process per each message sender, and a relaxation of the traditional crash failure assumption.
These modifications collectively contributed to significant latency reductions under varying system
configurations. To promote fairness among process replicas, our simulation model incorporated
control primitives to eliminate message-sending bias. A comparative performance evaluation of
DCTOP and LCR using discrete-event simulation across group sizes of N=4, 5, 7, and 9, and under
concurrent message loads was conducted. The results yielded three major insights. First, DCTOP
achieved over 43% latency improvement compared to LCR across all configurations, demonstrating
the efficacy of Lamport logical clocks in this context. Second, the proposed dynamic last process
mechanism proved to be an effective alternative to the globally fixed last process used in LCR,
enabling faster message stabilization. Third, by relaxing the LCR crash tolerance condition from N =
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f+1toN=2f+1, DCTOP is able to deliver messages more quickly while still tolerating failures,
further contributing to latency reduction. While our primary focus was on evaluating DCTOP relative
to LCR, we included RAFT, a widely adopted leader-based protocol as a benchmark to contextualize
our results. RAFT demonstrated competitive performance under light message loads, but its
throughput and latency plateaued with scale due to its centralized coordination model. The goal was
not to critique RAFT, but to highlight architectural differences and situate DCTOP within the broader
spectrum of total order protocols.

Given that the primary goal of this study was to investigate the initial performance
characteristics of DCTOP, we deliberately limited our evaluation to small group sizes (N <9) to enable
controlled experimentation and isolate protocol-level behaviour. While this approach provides useful
insight, it also introduces some limitations. The current implementation does not model process or
communication failures, which are common in practical distributed systems. Furthermore, larger-
scale deployments may exhibit additional performance dynamics not captured in this setting. As part
of our ongoing work, we are developing a cloud-based, fault-tolerant implementation of DCTOP to
validate these findings in more realistic environments, including under failure conditions and
dynamic workloads.

Abbreviations

The following abbreviations are used in this manuscript:

LCR Logical Ring and Ring Protocol

DCTOP  Daisy Chain Total Order Protocol

VC Vector Clock

LC Logical Clock

TO Total Order

CN Clockwise Neigbhour

ACN Anti-Clockwise Neigbhour

SC Stability Clock

DQ Delivery Queue

DCQ Garbage Collection Queue

UTO Uniform Total Order (uto)
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