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Abstract: Proper management of solar energy, as an effective renewable source, is of high 

importance toward sustainable energy harvesting. This paper offers a novel sophisticated method 

for predicting solar irradiance (SIr) from environmental conditions. To this end, an efficient 

metaheuristic technique, namely electromagnetic field optimization (EFO) is employed for 

optimizing a neural network. This algorithm quickly mines a publicly available dataset for non-

linearly tuning the network parameters. To suggest an optimal configuration, five influential 

parameters of the EFO (i.e., NPop, R_rate, Ps_rate, P_field, and N_field) are optimized by an extensive 

trial and error practice. Analyzing the results showed that the proposed model can learn the SIr 

pattern and predict it for unseen conditions with high accuracy. Furthermore, it provided about 10% 

and 16% higher accuracy compared to two benchmark optimizers, namely shuffled complex 

evolution and shuffled frog leaping algorithm. Hence, the EFO-supervised neural network can be a 

promising tool for the early prediction of SIr in practice. The findings of this research may shed light 

on the use of advanced intelligent models for efficient energy development. 
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1. Introduction 

Today, solar energy (SE) is considered a promising renewable source because of its advantages 

such as inexhaustible supply, environmental friendliness, universality, and high capacity [1, 2]. 

Indeed, the term artificial intelligence, is known as intelligence demonstrated by machines, (i.e., 

unlike the natural intelligence which involves emotionality and consciousness) shown by animals 

and humans. In this sense, the artificial intelligence models have provided a high competency for 

undertaking complicated and non-linear calculations [3-5]. Most recently, a number of artificial 

intelligence-based examples are studied such as in the subjects of environmental concerns [6-14], 

sustainability [15], pan evaporation and soil precipitation prediction [16-21], optimizing energy 

systems [22-30], natural gas consumption [31-33], water and groundwater supply chains [9, 34-43], 

image classification and processing, target tracking and computer vision [44-51], building and 

structural design analysis [52-56],quantifying climatic contributions [57], measurement techniques 

[44, 58-60], structural material (e.g., steel and concrete) behaviors [61-64], or even some complex 

concerns such as signal processing as well as feature selection and extraction problems [65-71]. There 

have been many decision-making applications works related to engineering complex problems as 

well [54, 72, 73]. A neural network is known as a series of complex algorithms that helps to recognize 

underlying connections in a set of data input and outputs through a process that mimics the way the 
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human brain operates [74-78]. In another sense, the technique of artificial neural network (ANN) is a 

sophisticated nonlinear processor that has attracted massive attention for sensitive engineering 

modeling [79]. This model is represented by different notions. Most importantly, a multi-layer 

perceptron (MLP) [80, 81] is composed of a minimum of three layers, each of which contains some 

neurons for handling the computations—noting that a more complicated ANN-based solution is 

known as deep learning where it refers as part of a broader family of machine learning methods 

based on ANN with representation learning [51, 82-85]. For instance, Chen, et al. [86], Hu, et al. [87], 

Wang, et al. [88], and Xia, et al. [89] employed the use of extreme machine learning techniques on the 

field of medical sciences. 

Having a reliable forecast of solar irradiance (SIr) is of great importance, due to its effect on the 

design of photovoltaic systems and measuring solar energy production [90, 91]. Figure 1 shows solar 

radiation on a photovoltaic module installed on the earth. Up to now, scholars have suggested 

various methods (e.g., empirical [92] and remote sensing [93] approaches) for analyzing the SE 

parameter. But recent advances in soft computing have led to the utilization of diverse machine 

learning tools for this purpose. These modes have gained a lot of attention for renewable energy 

analysis like feature selection [94]. 

 

Figure 2. A schematic view of solar radiation and the SE production. 

Artificial neural network (ANN), for example, is a flexible type of machine learning that has 

been broadly used for prediction tasks. Barrera, et al. [95] proposed an ANN model developed with 

open data sources for analyzing SE and also the effect of environmental factors on this parameter. 

The used model was found to be more accurate than previous methods (with MSE of 0.040 vs. 0.055). 

Yaïci, et al. [96] demonstrated the effectiveness of ANN for simulating the SE systems. They also 

investigated the effect of the problem dimension (i.e., the number of inputs) on the accuracy, and 

after testing the model using real-world (Ottawa, Canada) data, they professed that the accuracy falls 

gradually with reducing the dimension. Yadav, et al. [97] conducted a comparison among different 

ANN models, namely fitting tool (nftool), radial basis function neural network (RBFNN), and 

generalized regression neural network (GRNN) for analyzing the potential of SE resources in India. 
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They reported the superiority of the nftool as it could nicely predict the desired parameter for many 

locations.  

Meenal and Selvakumar [98] studied and demonstrated the accuracy of a popular machine 

learning called support vector machine (SVM) for solar radiation modeling. This method, when 

implemented with an optimal dataset, outperformed the ANN and empirical approaches for this 

purpose. Mohammadi, et al. [99] performed a feature analysis using another well-known processor, 

namely adaptive neuro-fuzzy inference system (ANFIS) for global solar radiation modeling. Quej, et 

al. [100] compared the potential of ANN, SVM, and ANFIS for simulating daily solar radiation. 

Concerning the respective average correlations of 0.652, 0.689, and 0.645 obtained for the best models, 

the SVM emerged as the most reliable predictor.  

Metaheuristic algorithms have paved the way for more powerful forecasting models that are 

basically using the skeleton of conventional tools like ANN and ANFIS. These algorithms have been 

popularly used for renewable energy analysis [101] like wind energy [102], and more particularly, 

the SE-related simulations [103, 104]. In such methodologies (i.e., metaheuristic-based hybrids) 

optimal parameters are provided for the basic predictive method to avoid issues like local minima 

[105]. 

Abedinia, et al. [106] designed a forecast engine based on a metaheuristic optimizer called shark 

smell optimization combined with ANN for approximating solar power. Due to the better 

performance of this model in comparison with conventional predictors like conventional ANN, 

RBFNN, GRNN, and their wavelet versions (normalized root mean square errors (RMSEs) around 11 

vs. those above 14), they introduced it as a capable engine. Galván, et al. [107] benefitted from a multi-

objective particle swarm optimization (PSO) technique for optimizing the intervals of the SE 

modeling. They built a non-linear method using ANN and their findings revealed the high 

applicability of the PSO optimizer for the mentioned objective. Likewise, Halabi, et al. [108] could 

effectively use this algorithm coupled with an ANFIS system for monthly solar radiation 

approximation. Vaisakh and Jayabarathi [109] suggested a hybrid of two methods, namely deer 

hunting optimization algorithm and grey wolf optimization for tuning the structure of various ANNs 

applied to SIr forecast. Their results showed a promising improvement attained by the proposed 

optimizer. Louzazni, et al. [110] showed the competency of firefly algorithm for analyzing the 

parameters of the photovoltaic system under different conditions. Compared to previously-used 

metaheuristic techniques, the firefly algorithm achieved reliable and valid results in tuning the 

photovoltaic parameters. The efficiency of the PSO and genetic algorithm for a similar objective was 

demonstrated by Bechouat, et al. [111]. Wind driven optimization was successfully used by Abdalla, 

et al. [112] to dealing with the optimal power tracking of photovoltaics systems. This algorithm 

performed more efficiently than several optimization techniques such as the PSO, bat algorithm, 

cuckoo search, etc. 

According to the explained literature, metaheuristic algorithms can yield promising solutions to 

complex issues like SIr prediction. But a gap of knowledge emerges when earlier studies have mostly 

used well-established strategies like PSO [113], GA [114], and imperialist competitive algorithm [115]. 

Furthermore, these techniques take a noticeable time to reach stable optimization. This study, 

therefore, focuses on a novel metaheuristic strategy, namely electromagnetic field optimization (EFO) 

for the optimal prediction of the SIr. A significant advantage of this algorithm is its fast convergence 

relative to other existing techniques. The EFO supervises a non-linear problem through an ANN 

framework. Moreover, two other quick algorithms of shuffled complex evolution (SCE) and shuffled 
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frog leaping algorithm (SFLA) are considered as benchmark methods to comparatively validate the 

efficiency of the EFO. 

2. Materials and Methods 

2.1. Data provision 

For predicting the SIr, a publicly available dataset (provided by NASA and available on 

https://www.kaggle.com/dronio/SolarEnergy) is used in this work. Prior to this study, this data has 

been used for validating the performance of different developed models [116, 117]. The SIr plays the 

role of the target parameter to be predicted with the inputs of temperature (T), barometric pressure 

(BP), humidity (H), wind direction (WD), and wind speed (WS).  

The used dataset contains 32686 rows of meteorological records obtained from the HI-SEAS 

weather station. With around 5 minutes intervals, the records belong to the time between 23:55:26 29 

September 2016 to 00:00:02 1 December 2016. Figure 2 shows the variation of the SIr over one day (29 

September 2016 taken as an instance). As expected, peak values are observed the midday. Moreover, 

Figure 3 depicts the relationship between the SIr and each input factor in the form of scatter charts 

for the whole data. 

 

Figure 2. The variation of the SIr over 29 September 2016. 
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(c) 

 
(d) 

 
(e) 

 

Figure 3. Scatter plots of the SIr versus input parameters. 

Considering R2 values calculated in Figure 3 (0.5402, 0.0142, 0.0512, 0.053, and 0.0054 for the T, 

BP, H, WD, and WS, respectively), it can be said that the most meaningful relationship (among these 

five inputs) is obtained for the T. In a general view, the values of SIr tend to increase with the increase 

in this factor. A detailed statistical description of the used dataset is presented in Table 1. As is seen, 

SIr values ranges in [1.1, 1601.3] W/m2, while this extend is [34.0, 71.0] °F, [30.2, 30.6] Hg, [8.0, 103.0] 

%, [0.1, 360.0] degree , and [0.0, 40.5] m/h for the T, BP, H, WD, and WS, respectively. 

Table 1. Descriptive statistics of the SIr and input parameters. 

Factor Unit 

Descriptive indicator 

Mean 
Std. 

Error 

Std. 

Deviation 

Sample 

Variance 
Minimum Maximum 

T °F 51.1 0.0 6.2 38.5 34.0 71.0 

BP Hg 30.4 0.0 0.1 0.0 30.2 30.6 

H % 75.0 0.1 26.0 675.5 8.0 103.0 

WD Degree 143.5 0.5 83.2 6916.8 0.1 360.0 

WS m/h 6.2 0.0 3.5 12.2 0.0 40.5 

SIr W/m2 207.1 1.7 315.9 99803.2 1.1 1601.3 

In artificial intelligence implementation, it is well-established that machines use a part (the 

majority) of instances for learning the existing input-target pattern. They then apply this pattern to 

the remaining instances for evaluating the prediction ability. For this study, the dataset (i.e., 32686 

instances) is randomly divided into two groups with 26149 and 6537 instances (80% and 20%  of the 

whole) to generate the training and testing dataset, respectively. 

2.2. Methodology 
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2.2.1 The EFO 

Abedinpourshotorban, et al. [118] developed a physics-based optimization strategy and named 

it electromagnetic field optimization. Many scholars have benefited from this method for a wide 

range of problems [119, 120]. It is a population-based technique in which each individual is 

represented by an electromagnetic particle (EMP). The EMPs are distinguished by different polarities. 

The attraction-repulsion rule is used to improve the solution by changing the position of the EMPs. 

The steps of the EFO can be explained as follows: 

Step 1: A set of EMPs are randomly generated and the fitness of each one is calculated. The 

particles are then sorted based on these fitnesses. Each particle is made of N_var electromagnets 

(tantamount to the number of the problem variables).  

Step 2: This is dedicating to dividing the EMP population into three filed groups with negative, 

positive, and neutral polarities. The positive field group comprises the best-fitted individuals tunable 

by a so-called parameter “P_field”, the negative field group comprises the worst-fitted individuals 

tunable by a so-called parameter “N_field”, and the rest lie in the third group. 

Step 3: Each repetition of the algorithm generates a new EMP. Once this EMP is better-fitted than 

the weakest one, it is considered as a part of the population and confiscates the position of weakest 

EMP. Figure 4 shows the generation process and determining the polarity of the new member. 

 

Figure 4. The creation of a new EMP. 

In this process, for j = 1 → N_var, an electromagnet belonging to the neutral field group is chosen. 

Next, a random value is considered and compared to a parameter called Ps_rate which indicates the 

probability of choosing electromagnets of the created EMP from the positive field. Equation 1 is used 

for the situation random value < Ps_rate, otherwise, Equation 2 expresses the generation process. 

𝐸𝑀𝑃𝑗
𝑛𝑒𝑤 =  𝐸𝑀𝑃

𝑗

𝑃𝐹𝑗 , (1) 

𝐸𝑀𝑃𝑗
𝑛𝑒𝑤 =  𝐸𝑀𝑃𝑗  + (𝐺𝑅 ∗ 𝑟𝑎𝑛𝑑) × ( 𝐸𝑀𝑃

𝑗

𝑃𝐹𝑗
−  𝐸𝑀𝑃𝑗) + (𝑟𝑎𝑛𝑑) × (𝐸𝑀𝑃

𝑗

𝑁𝐹𝑗
−  𝐸𝑀𝑃𝑗), (2) 

where PF and NF symbolize positive and negative fields, GR gives the golden ratio, 𝑟𝑎𝑛𝑑 is the 

random value inside [0, 1],  

Step 4: A randomization operator is responsible for diversifying the new EMPs. Another random 

value is generated and compared to a parameter called R_rate which indicates the probability of 
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replacing one electromagnet of the created EMP with a random electromagnet. If random value < 

R_rate, a new electromagnet replaces one electromagnet of the created EMP [120]. 

2.2.2 The benchmarks 

The SCE and SFLA are efficient metaheuristic techniques that are used as comparative methods 

in this work. While both algorithms are based on shuffle action, the SCE is an older optimizer. Duan, 

et al. [121] and Eusuff and Lansey [122] presented the SCE and SFLA in 1993 and 2003, respectively. 

Although this study is one of the first usages of the EOF for supervising an ANN, scholars like Zheng, 

et al. [123] and Ma, et al. [124] have reported successful performance of the SCE and EFO for this 

purpose. 

The SCE implements a combination of the Nelder-Mead simplex technique, genetic algorithm, 

complex shuffling, and controlled random search for doing the optimization. After creating the 

population, the individuals are grouped in some containers called complexes. The algorithm uses 

competitive complex evolution for evolving these complexes. It then synthesizes evolved units to 

create a larger community. This step results in more interactive agents for better sharing the obtained 

knowledge [125]. The pivotal idea of the SFLA is the relationship between frogs settled in some 

containers called memeplexes. It is known as a quick and efficient search scheme that synthesizes the 

PSO with the memetic algorithm. The fitness of the frogs is a measure for classifying them the 

memeplexes. The SFLA pursues updating the position of the frogs in these units, and also, importing 

new ones instead of the worst individuals [126]. The benchmark algorithms are mathematically 

detailed in earlier studies like [127, 128] (for the SCE) and [129, 130] (for the SFLA).  

Similar to the EFO, two separate ANNs are supervised by the benchmark algorithms to explore 

and predict the SIr. The performance of these three methods is compared in the following sections to 

return an optimal metaheuristic-based methodology for this purpose. 

3. Results and discussion 

3.1. Accuracy assessment measures 

The accuracy of SIr prediction is reported by well-known indices as follows: Given 𝐸𝑟𝑟𝑜𝑟𝑖 =

 𝑆𝐼𝑟 𝑖𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 
− 𝑆𝐼𝑟 𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

, the error of prediction for a total of N instances is calculated by the RMSE 

and mean absolute error (MAE) indices. According to Equations 3 and 4, RMSE gives a rooted value 

of the averaged squared Errors, while the MAE releases an average of the absolute Error values. 

2

1

1
[ ]

N

i

i

RMSE Error
N =

=  , (3) 

1

1
| |

N

i

i

MAE Error
N =

=  , (4) 

Besides, a correlation index called Pearson correlation coefficient (R) is also defined to show the 

consistency between the recorded SIrs and the products of each network. Equation 5 formulates the 

R: 
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, 
(5) 

where 𝑆𝐼𝑟̅̅ ̅̅  symbolizes the average of the SIr values. 

3.2. Optimization and training 

A 5 × 45 × 1 MLP neural network (indicating 5 nodes in the input layer, 45 nodes in the middle 

layer, and 1 node in the output layer) is used to connect the SIr to its input factors. Due to a large 

number of data, this network is a complex system that is supposed to be supervised by the EFO 

algorithm. The main role of the EFO is to adjust the MLP internal parameters so that the SIr pattern 

is optimally established. 

After creating the EFO-MLP hybrid, it is trained by mining the training group. Since 

metaheuristic algorithms are population-based iterative techniques, optimum values should be 

considered for these two parameters i.e., population size (NPop) and the number of iterations (NIt). 

Despite many optimization algorithms that reach a stable situation by around 1000 iterations, the 

EFO needs more effort. Based on experience and also evaluating the behavior of the model, the EFO-

MLP is implemented by a total of 50000 iterations. The appropriate values for NPop, as well as four 

other parameters, are determined one by one by testing different values. The convergence curves of 

the tested EFO-MLPs are shown in Figure 5. First the model with different NPops (25, 26, 27, 28, 30, 35, 

and 40) are tested (when R_rate = 0.01, Ps_rate = 0.01, P_field = 0.02, and N_field = 0.4). Figure 5 – (a) 

shows that the NPop = 26 gives the lowest error. Thus, the subsequent models are tested with this NPop. 

Five R_rates of 0.01, 0.015, 0.02, 0.03, and 0.04 are similarly assessed. According to Figure 5 – (b), 

R_rate = 0.01 is the most suitable one. Next, investigating the effect of Ps_rate in Figure 5 – (c) revealed 

that the lowest error is obtained for Ps_rate = 0.03. As is exhibited in Figure 5 – (d), P_field experienced 

the values of 0.02, 0.03, 0.04, 0.05, and 0.06 and P_field = 0.02 remained as the best value. Lastly, the 

values considered for N_field, 0.1, 0.2, 0.3, 0.4, and 0.5, are depicted in Figure 5 – (e) which 

demonstrates the lowest error for N_field = 0.4. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

 

Figure 5. Optimizing the effect of EFO parameters including (a) NPop, (b) R_rate, (c) Ps_rate, (d) 

P_field, and (e) N_field. 

A similar strategy was executed for the benchmark models (i.e., SCE-MLP and SFLA-MLP). 

Table 2 denotes the values assigned to the used algorithms. As is seen, the SCE and SFLA are 

implemented with 1000 iterations. 

Table 2. Implementation parameters of the used algorithms. 

EFO SCE SFLA 

NPop = 26 

R_rate = 0.01 

Ps_rate = 0.01 

P_field = 0.02 

N_field = 0.4 

NIt = 50000 

NPop = 10 

No. of offsprings = 3 

No. of complexes= 3 

NIt = 1000 

NPop = 25 

Step size = 1 

No. of offsprings = 3 

No. of memeplexes = 5 

NIt = 1000 

Assessing the RMSEs obtained for the EFO-MLP, SCE-MLP, and SFLA-MLP, that are 180.1228, 

197.4813, and 208.1472, respectively, shows that the used hybrids could learn the SIr pattern with 

good accuracy. The corresponding MAEs are 117.8681, 138.5814, and 156.2768 which, regarding the 

range of the observed SIrs (Table 1), indicate an acceptable level of error. Moreover, the correlation 

values of 0.82275, 0.78208, and 0.75431 demonstrate a high agreement between the training products 

and expected SIrs. 
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3.3. Testing results 

As explained in section 2, the second part of the dataset plays the role of unseen environmental 

conditions. The models use this data to evaluate their testing ability. In this regard, the SIr is 

forecasted for the testing instances and these values are compared with the expected values. Since 

the model does not perform any analysis on these instances, it has to use the previously captured 

knowledge. Accordingly, the goodness of the results reflects the prediction capability of the intended 

model. 

Considering 𝐸𝑟𝑟𝑜𝑟𝑖  formula (section 4.1), Figure 6 details the magnitude and statistics of Error 

values calculated for the testing instances. In this phase, the RMSEs of 177.9764, 195.0984, and 

205.6091 indicated a reliable prediction by all three models. Moreover, the goodness of the testing 

results can be supported by the MAEs of 115.2678, 136.2261, and 154.1603, as well as the R values of 

0.82132, 0.78046, and 0.75212. 

Moreover, from a graphical point of view, the histogram charts in Figure 6 show that the small 

Errors outnumber large values. It can be derived from the sharp shape of the diagram around zero 

and the vicinity. Regarding the overall trend of these charts, the magnitude of the Error increases as 

the frequency falls. 

 
(a) (b) 

 
(c) (d) 
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(e) (f) 

Figure 6. The Error analysis in terms of (a, c, and e) magnitude and (b, d, and f) frequency for 

the EFO-MLP, SCE-MLP, and SFLA-MLP, respectively. 

3.4. EFO vs. SCE and SFLA 

It was stated that this research pursues a novel time-efficient methodology for analyzing the SIr. 

The EFO was presented as the pivotal method, while the SCE and SFLA acted as benchmark 

algorithms. Earlier sections showed the competency of all three supervised models. Hence, this 

section validates the performance of the EFO versus the SCE and SFLA. 

For both training and testing groups, the error indicators showed a lower error of prediction, 

and at the same time, the R index manifested a higher correlation for the EFO-trained model. Table 3 

gives the accuracy improvements when the SCE and SFLA are replaced with the EFO. As is seen, in 

the case of EFO vs. SCE, the RMSE and MAE fall by nearly 10 and 18% in both phases, respectively. 

Also, a 4% enhancement resulted for the R index. As for EFO vs. SFLA, the changes are more tangible. 

The RMSE and MAE of both phases degrade by around 16 and 33%, respectively. The R index 

indicated a 7% better correlation, too. 

Table 2. Improvements achieved by the EFO algorithm vs. the benchmarks. 

Comparative 

hybrid 

Improvements 

Training phase  Testing phase 

RMSE (%) MAE (%) R  RMSE (%) MAE (%) R 

Vs. SCE 9.64 17.57 0.04  9.62 18.18 0.04 

Vs. SFLA 15.56 32.59 0.07  15.53 33.74 0.07 

 

5. Conclusions 

This research was dedicated to finding a fast yet reliable solution for predicting solar irradiance. 

Since this parameter is affected by different factors, the problem is a non-linear complex one. 

Therefore, a potent metaheuristic strategy called electromagnetic field optimization was considered 

for dealing with it. A neural network organized the general equations, while the EFO tuned their 

parameters optimally. Moreover, this algorithm was compared with two shuffle-based metaheuristic 

techniques, namely shuffled frog leaping algorithm and shuffled complex evolution. While a good 
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level of accuracy was observed for all three hybrids, the EFO-MLP was significantly superior. For 

example, its error was around 10% and 16% below that of the SCE-MLP and SFLA-MLP, respectively. 

Referring to the R value of 0.82132 for testing data, the proposed model can reliably predict the SIr 

for given environmental conditions. Apart from the high implementation speed, another advantage 

of the used EFO-MLP model lies in implementation with optimized parameters (i.e., NPop, R_rate, 

Ps_rate, P_field, and N_field). Therefore, the findings of this study can be used for sustainable energy 

management. However, there may be still ideas for future works (e.g., using feature selection and 

filtrated data) for a more efficient methodology. 
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