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Highlights

What are the main findings?
• COG enables dynamic perception of visual context in technical diagrams, achieving mAP50 ≈ 0.99

in legend component detection.
• The framework performs context-aware symbol detection, interpreting elements only when embed-

ded in structured, semantically meaningful arrangements.
What is the implication of the main finding?
• COG generalizes across domains by eliminating the need for fixed symbol standards, adapting to

various visual grammars without prior annotation schemas.
• It extends beyond security layouts, enabling intelligent diagram understanding in architecture,

engineering, and other context-rich visual systems.

Abstract

This paper introduces Contextual Object Grouping (COG), a specific computer vision framework that
enables automatic interpretation of technical security diagrams through dynamic legend learning
for intelligent sensing applications. Unlike traditional object detection approaches that rely on post-
processing heuristics to establish relationships between detected elements, COG embeds contextual
understanding directly into the detection process by treating spatially and functionally related objects
as unified semantic entities. We demonstrate this approach in the context of Cyber-Physical Security
Systems (CPPS) assessment, where the same symbol may represent different security devices across
different designers and projects. Our proof-of-concept implementation using YOLOv8 achieves robust
detection of legend components (mAP50 ≈ 0.99, mAP50–95 ≈ 0.81) and successfully establishes
symbol–label relationships for automated security asset identification. The framework introduces a
new ontological class — the contextual COG class that bridges atomic object detection and semantic
interpretation, enabling intelligent sensing systems to perceive context rather than infer it through
post-processing reasoning. This proof-of-concept appears to validate the COG hypothesis and suggests
new research directions for structured visual understanding in smart sensing environments, with
applications potentially extending to building automation and cyber-physical security assessment.

Keywords: contextual object grouping; security diagrams; symbol interpretation; object detection;
semantic grouping; cyber-physical security systems; dynamic legend learning; intelligent sensing

1. Introduction
1.1. Problem Motivation: The Challenge of Symbol Standardization in Security Diagrams

In the assessment of Cyber-Physical Security Systems (CPPS), one critical component involves the
automatic detection and identification of security elements (cameras, sensors, access control devices)
within building floor plans and security diagrams [1]. This process requires not only detecting the

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 September 2025 doi:10.20944/preprints202509.1632.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0003-4523-1227
https://doi.org/10.20944/preprints202509.1632.v1
http://creativecommons.org/licenses/by/4.0/


2 of 22

presence of security symbols but also correctly interpreting their meaning and establishing their
relationship with technical specifications stored in separate databases. The ultimate goal is to create
a comprehensive security asset inventory that maps each detected device to its physical location,
technical parameters (detection range, security class, age), and potential impact on adversarial attack
paths.

While the fusion of detected elements with external technical databases appears relatively straight-
forward, the automatic detection and interpretation of security elements presents significant challenges
rooted in the fundamental evolution of computer vision. The field has progressed from classical
feature-based approaches like SIFT [2] through CNN breakthroughs including AlexNet [3], VGG [4],
and ResNet [5], to modern object detection frameworks such as R-CNN [6], YOLO [7], and recent
vision-language models [8]. However, despite these advances, the core difficulty lies in the lack of
symbol standardization across different designers and projects. A red circle may represent a camera
in one designer’s legend, while another designer uses the same symbol to denote a PIR sensor or
electromagnetic lock. This variability makes traditional object detection approaches, which rely on
learning fixed symbol-to-meaning mappings, fundamentally inadequate for real-world deployment.

1.2. Limitations of Traditional Approaches and the Nuance of Modern Contextual Models

Conventional object detection systems excel at identifying individual entities but struggle to
capture semantics arising from structured arrangements of those entities [9,10]. Standard approaches
typically follow a two-stage pipeline:

1. First detecting individual objects (symbols, labels, geometric elements),
2. Then, applying post-processing heuristics to infer relationships and establish meaning.

In the context of security diagrams, this approach faces several critical limitations:

• Symbol Ambiguity: The same visual symbol may represent completely different security devices
across different design standards and individual preferences.

• Brittle Post-Processing: Rule-based heuristics for connecting symbols to their meanings are
domain-specific, difficult to generalize, and prone to failure when encountering new design
styles.

• Context Separation: Traditional pipelines separate perception (object detection) from interpreta-
tion (relationship inference), creating a semantic gap that is difficult to bridge reliably.

• Scalability Issues: Each new design style or symbol convention requires manual rule engineering,
making the system difficult to scale across diverse security diagram formats.

Recent advances in contextual object detection, including YOLO-World [8] with its vision-
language integration and Florence-2 [11] with unified multi-task capabilities, demonstrate significant
progress in contextual understanding. These models leverage large-scale pre-training on diverse
image and text datasets to achieve impressive open-vocabulary object detection and multi-tasking
performance. YOLO-World, for instance, allows for real-time open-vocabulary detection by integrating
vision and language embeddings directly into the detection pipeline. Florence-2 pushes this further
by unifying various vision tasks, including detection, segmentation, and captioning, under a single
representation, enhancing its ability to generate rich, context-aware outputs.

However, despite these advancements, these approaches still operate primarily on pre-defined or
large-scale, general-purpose object vocabularies and struggle with the dynamic semantic mapping
required in technical diagram interpretation. While they excel at associating common objects with their
textual descriptions (e.g., identifying a "car" or "person"), they are not inherently designed to learn
concrete, project-specific symbol-meaning relationships from a contained legend on the fly. Specifically:

• Reliance on Pre-defined Vocabularies/Large-Scale Knowledge: YOLO-World and Florence-2,
while "open-vocabulary," infer meaning based on broad pre-trained knowledge. They are adept at
recognizing objects that have been extensively represented in their training data or can be logically
inferred from existing vocabulary. In contrast, technical diagrams often use highly abstract or
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non-standard symbols whose meaning is exclusively defined within the diagram’s accompanying
legend. A "red circle" can mean anything, and its meaning cannot be guessed from general world
knowledge.

• Post-hoc Interpretation of Specific Symbols: For symbols unique to a specific diagram, these
advanced models would still typically detect the visual primitive (e.g., "circle," "arrow") and then
require a subsequent, separate process to link this primitive to its specific, dynamic meaning
as defined in the legend. This reintroduces the semantic gap that COG aims to eliminate. The
interpretation of the legend itself, identifying symbol-label pairs as functional units, appears not
to be a first-class objective for these general-purpose models.

• Lack of Explicit "Legend-as-Grounding" Mechanism: While vision-language models can process
text, they don’t inherently possess a mechanism to treat a specific section of an image (the legend)
as the definitive, dynamic ground truth for interpreting other visual elements within that same
document. COG, by contrast, elevates the legend’s symbol-label pairing into a first-class detectable
contextual object (Row_Leg). This allows the model to learn the compositional grammar of the
diagram directly from the legend, making the interpretation process intrinsically linked to the
diagram’s self-defining context.

In essence, while modern vision-language models are powerful in general contextual understand-
ing, they are primarily focused on vocabulary expansion and robust detection of individual entities
or generic relationships. They do not intrinsically perceive and learn structured, dynamic semantic
groupings that emerge from the unique, localized "visual language" of a technical diagram’s legend.
COG specifically addresses this gap by enabling models to directly learn and detect these contextual
groupings as unified semantic entities, fundamentally shifting from "detect then reason" to "perceive
context directly" within the specialized domain of technical diagrams.

Unlike existing approaches that treat symbol-text relationships as post-processing tasks, COG
appears to fundamentally shift the paradigm by making contextual groupings first-class detection
targets. This seems to address a critical gap where advanced models like YOLO-World and Florence-2,
despite their impressive contextual capabilities, cannot dynamically learn project-specific symbol
semantics from contained legends within documents. While these models excel at leveraging pre-
trained knowledge or large-scale vocabularies, they appear to lack the mechanism to treat diagram-
specific legends as definitive, dynamic ground truth for interpreting visual elements within the same
document. COG specifically addresses this limitation by elevating legend-based symbol-label pairings
into directly detectable contextual objects, potentially enabling models to learn the compositional
grammar of technical diagrams on-the-fly.

1.3. The COG Solution: Context as Perception

To address these limitations, we propose Contextual Object Grouping (COG), a framework that
fundamentally shifts the approach from "detect then reason" to "perceive context directly." COG enables
models to learn and detect contextual groupings such as symbol–label pairs in a legend, as unified
semantic entities rather than separate objects requiring post-hoc relationship inference.

The key insight underlying COG is that in technical diagrams, meaning often emerges not from
individual symbols but from their structured co-occurrence with contextual elements, particularly
legend entries that define symbol semantics. A red circle is semantically meaningless in isolation;
it becomes a "camera" only when paired with its corresponding label in the legend. COG captures
this relationship by training models to directly detect these Symbol + Label pairs as first-class contex-
tual objects, building upon foundational work in semantic segmentation [10] and structured scene
understanding [12].

This approach aligns with recent developments in document understanding, where LayoutLMv3
[13] and DocLLM [14] demonstrate the importance of spatial–semantic relationships. However, unlike
these text-centric approaches, COG focuses on visual contextual groupings in technical diagrams,
creating a new paradigm for intelligent sensing applications.
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1.4. Contributions

This paper makes the following contributions:

• Specific Ontological Framework: We introduce the concept of contextual COG classes as a
new intermediate ontological level between atomic object detection and high-level semantic
interpretation, supported by comprehensive evaluation using established metrics [15].

• Dynamic Symbol Interpretation: We demonstrate how COG enables automatic adaptation to
different symbol conventions through legend-based learning, eliminating the need for symbol
standardization in security diagram analysis.

• Proof-of-Concept Implementation: We present a working system using YOLOv8 [16] that
achieves high accuracy in detecting and structuring legend components in security diagrams,
with performance validation following established benchmarking practices [17].

• Hierarchical Semantic Structure: We show how COG can construct multi-level semantic hierar-
chies (Legend → COG(Row_Leg) → Symbol + Label) that capture the compositional nature of
technical diagrams.

• Practical Application Framework: We demonstrate the application of COG to real-world security
assessment tasks, showing how detected elements can be integrated with technical databases for
comprehensive asset analysis in intelligent sensing environments [18].

2. Related Work
2.1. Object Detection Evolution: From Classical to Modern Approaches

The evolution of object detection provides essential context for understanding COG’s contribu-
tions. Classical approaches relied on hand-crafted features, with SIFT [2] establishing scale-invariant
feature extraction principles that influenced later developments. The deep learning revolution be-
gan with AlexNet [3], which demonstrated the power of convolutional neural networks for image
classification, followed by architectural improvements in VGG [4] and ResNet [5].

Modern object detection emerged with R-CNN [6], which introduced region-based detection
through selective search and CNN feature extraction. This evolved through Fast R-CNN [19] and
Faster R-CNN [9], culminating in two-stage detection frameworks. YOLO [7] revolutionized the field
by formulating detection as a single regression problem, directly predicting class probabilities and
bounding box coordinates. DETR [20] represented a paradigm shift by leveraging transformers to
perform detection as a direct set prediction problem, eliminating anchor boxes and non-maximum
suppression.

Recent advances include YOLO-World [8], which achieves 35.4 AP at 52.0 FPS through vision-
language integration, and DetCLIPv3 [21], demonstrating versatile generative open-vocabulary de-
tection. These developments show progress toward contextual understanding, but they focus on
vocabulary expansion rather than the structural semantic groupings that COG addresses.

Despite their architectural differences, all these detectors focus on identifying and classifying
individual objects. While they may utilize contextual visual features implicitly through convolutional
receptive fields or transformer attention mechanisms, they do not explicitly encode or learn object
co-occurrence as structured entities. COG extends these approaches by formalizing co-occurrence
patterns as learnable object classes.

2.2. Semantic Segmentation and Structured Understanding

Semantic segmentation, pioneered by Fully Convolutional Networks (FCN) [10], established
pixel-level understanding that informs spatial relationships. U-Net [22] advanced this through encoder-
decoder architectures, while Mask R-CNN [23] demonstrated simultaneous detection and segmentation
capabilities that relate to COG’s contextual understanding approach.

Recent work in panoptic segmentation [12] and scene graph generation provides relevant con-
text. The 4D Panoptic Scene Graph Generation [24] introduces spatiotemporal understanding with
PSG4DFormer, while Panoptic Scene Graph Generation [25] established comprehensive object-relation
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understanding frameworks. These approaches demonstrate sophisticated scene understanding but fo-
cus on general visual relationships rather than the specific contextual groupings in technical diagrams
that COG addresses.

2.3. Visual Relationship Detection (VRD)

Visual Relationship Detection focuses on recognizing triplets of the form ⟨subject, predicate,
object⟩, such as ⟨person, rides, bike⟩ [26]. Early approaches like those by Lu et al. utilized language
priors to improve relationship detection by incorporating semantic knowledge about object interactions
[26]. While VRD explicitly models inter-object relationships, it does not introduce new ontological
classes for the resulting groupings. Rather, the predicate serves as a relational annotation over detected
objects without promoting the group itself to a first-class detection target.

COG diverges from VRD by shifting from relational annotation to relational embodiment, reifying
relationships into perceptual units that can be learned and detected directly. Instead of detecting a
symbol and label separately and predicting a relationship between them, COG trains models to directly
detect the symbol–label pair as a unified contextual object.

2.4. Scene Graph Generation (SGG)

Scene Graph Generation constructs graph representations of images, with nodes as objects and
edges as relationships [27]. Johnson et al. demonstrated how scene graphs can be used for image
retrieval by representing complex visual scenes as structured graphs [27]. More recent work by Zellers
et al. introduced neural motifs for scene graph parsing, incorporating global context through neural
networks to improve relationship prediction [28].

Advanced approaches include Structure-Aware Transformers [29] and recent developments in
adaptive visual scene understanding with incremental scene graph generation [30]. However, these
approaches typically follow a two-stage pipeline (object detection followed by relationship inference)
or end-to-end graph neural networks that still treat relationships as post-detection constructs rather
than first-class visual entities.

2.5. Document Layout Analysis (DLA) and Technical Drawing Understanding

Recent advances in document and form understanding have emphasized the integration of
layout, text, and visual cues to extract structured data from complex documents. LayoutLM by Xu
et al. introduced pre-training of text and layout for document image understanding, combining
language modeling with spatial layout features [31]. LayoutLMv2 further enhanced this approach
by incorporating visual embeddings alongside text and layout features, enabling multi-modal pre-
training for visually-rich document understanding [32]. LayoutLMv3 [13] achieved state-of-the-art
performance through unified text and image masking, while DocLLM [14] demonstrates layout-aware
language modeling capabilities.

For technical drawing analysis specifically, recent work includes comprehensive frameworks for
engineering sketch analysis [33] and low-quality engineering drawing restoration [34]. These develop-
ments demonstrate growing interest in automated technical document interpretation, supporting the
practical relevance of COG’s approach.

These models perform multi-modal learning over pre-tokenized inputs (words, bounding boxes,
visual features) to infer field values and relationships in structured documents. While powerful,
this approach requires explicit downstream modeling to interpret grouped meaning. A label and its
associated symbol may be tokenized separately and only related through positional embeddings or
attention mechanisms. COG treats such spatially bound structures as unified visual classes, allowing
the detector itself to learn semantic grouping and removing the need for complex post-processing
logic.
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2.6. Cyber-Physical Security Systems (CPPS) and Intelligent Sensing

The application domain of security diagram analysis connects to broader developments in Cyber-
Physical Security Systems. Comprehensive reviews [18,35] establish the importance of automated
security assessment in building automation and smart cities. Recent work in MDPI Sensors demon-
strates practical applications including smart sensing in building construction [36] and IoT-based smart
environments [37].

This domain-specific context supports the practical relevance of COG for intelligent sensing
applications, where automated diagram interpretation enables real-time security assessment and
building automation systems.

2.7. Key Distinctions: COG vs. Existing Contextual Approaches

Table 1 provides a systematic comparison highlighting COG’s distinctive approach to contextual
understanding in technical diagrams, building upon the comparative analysis frameworks established
in recent surveys [15].

Table 1. Key Distinctions of COG from Existing Contextual Approaches.

Aspect YOLO-World Florence-2 Traditional OD COG

Symbol Learn-
ing

Pre-trained vo-
cabulary

Multi-task gen-
eral knowledge

Fixed training
classes

Dynamic
legend-based
learning

Context Source External world
knowledge

Large-scale
training data

Template match-
ing

Document-
specific legends

Detection Tar-
get

Individual
objects + text

Multi-modal
unified tasks

Atomic objects
only

Structured en-
tity groupings

Adaptation
Method

Static vocabu-
lary

Fine-tuning re-
quired

Retraining
needed

Real-time
legend interpre-
tation

Legend Pro-
cessing

Secondary con-
sideration

Generic text un-
derstanding

Not supported First-class con-
textual objects

Domain Trans-
fer

Broad but
generic

Versatile but
pre-defined

Domain-
specific

Specialized but
adaptive

COG appears to uniquely integrate semantic grouping into the detection stage, potentially
avoiding separate inference steps and enabling more direct perception of document-specific contextual
relationships rather than relying on external knowledge or generic multi-task capabilities.

2.8. Contextual Understanding in Technical Diagram Analysis

Recent work in technical diagram understanding has explored various approaches to contextual
interpretation, though none specifically address the legend-based dynamic symbol learning that COG
enables. Kalkan et al. [33] developed frameworks for engineering sketch analysis, while Lin et al. [34]
focused on low-quality drawing restoration. These approaches typically follow traditional pipelines of
detection followed by rule-based interpretation.

In the document understanding domain, LayoutLM variants [13,31,32] have demonstrated so-
phisticated spatial-semantic integration for form understanding. However, these approaches focus on
pre-tokenized text-layout relationships rather than learning dynamic visual-semantic mappings from
diagram-specific legends as COG enables.

Vision-language models like YOLO-World [8] and Florence-2 [11] represent the current state-
of-the-art in contextual object detection, achieving impressive performance through large-scale pre-
training. However, as discussed in Section 1.2, these models rely on external vocabulary knowledge
rather than learning project-specific symbol semantics from contained legends, which is the core
capability that COG provides for intelligent sensing applications.
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2.9. Comparative Analysis: COG vs. Existing Methods

Table 2 provides a systematic comparison of COG with existing approaches across key dimensions:

Table 2. Comparison of Visual Understanding Approaches.

Aspect OD VRD SGG DLA COG

Output Atomic bound-
ing boxes

⟨subj, pred, obj⟩
triplet labels

Object graph
representations

Layout element
structures

Atomic +
composite
bounding
boxes

Detection ✓ ✓ ✓ ✓ ✓
Relation infer-
ence

× Post hoc Post hoc Post hoc Inline

First-class
groups

× × × × ✓

End-to-end de-
tection

✓ × × × ✓

Context embed-
ding

Implicit External External External Direct

COG uniquely integrates semantic grouping into the detection stage, avoiding separate inference
steps and enabling direct perception of structured entities. Table 3 provides empirical validation of
these theoretical advantages.

Table 3. COG Performance Validation and Empirical Results.

Performance Aspect COG Results

Legend component detection mAP50 ≈ 0.99, mAP50–95 ≈ 0.81
Symbol-label pairing accuracy about 98%
Contextual awareness validation Symbols detected only in legend context, not in isolation
Cross-domain adaptation Successful on security and architectural diagrams
Processing efficiency Single-stage detection without post-processing
Symbol detection confidence 0.82–0.99 for contextualized symbols
Dynamic symbol interpretation Automatic legend-based semantic mapping
Hierarchical structure construction Complete JSON hierarchy with embedded metadata

These empirical results support the theoretical advantages outlined in Table 2, demonstrating
that COG successfully bridges atomic object detection and semantic interpretation through contextual
grouping.

3. The COG Framework
3.1. Philosophical Foundations: COG as Visual Language Compositionality

Before formalizing the COG framework, it is worth considering its philosophical underpinnings
within the broader context of visual cognition and compositional semantics. COG draws inspiration
from structural linguistics and formal semantics, particularly the principle of compositionality — the
idea that the meaning of a complex expression is determined by the meanings of its constituent parts
and the rules used to combine them [38].

In natural language, this principle manifests as the ability to understand specific sentences by
combining known words according to grammatical rules. COG extends this compositional paradigm
to visual perception: just as "red car" combines the concepts red and car through syntactic composition,
a legend row combines a symbol and label through spatial–semantic composition to create meaning that
transcends either component in isolation.

This perspective positions COG within a broader theoretical framework of visual language
understanding, where diagrams function as structured visual languages with their own compositional
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grammars. The legend serves as a "visual dictionary" that establishes the semantic mapping between
graphical primitives and their intended meanings, while spatial relationships provide the "syntactic
rules" for meaningful combination.

From this structuralist perspective, traditional object detection approaches fragment this composi-
tional structure by treating visual elements as isolated lexical units. COG, by contrast, preserves the
compositional integrity of visual meaning-making, enabling models to learn not just visual "vocabu-
lary" but also the "grammar" of visual composition.

3.2. Formal Definition and Notation Conventions

Notation Note: Throughout this paper, we use several equivalent notations to refer to contextual
groupings: symbol-label (hyphenated), Symbol+Label (mathematical), and COG(Row_Leg) (functional
notation). These represent the same concept as composite visual entities that combine atomic elements
into meaningful contextual units.

To formalize the COG framework, we introduce a minimal ontology of visual object types that
clarifies the distinction between conventional object detection targets and the new semantic tier
introduced by COG.

Atomic Class (Catomic): Core entities detectable in isolation (e.g., Symbol, Label, geometric
primitives). These represent the foundational vocabulary of visual detection — the "words" of the
visual language.

Contextual COG Class (CCOG): Composite classes representing specific arrangements of atomic
elements (e.g., Row_Leg combining a symbol and adjacent label). These classes exist within the same
ontological level as atomic classes but functionally bridge the gap between perception and structure.

Semantic Entity: High-level meaning derived post-detection through additional processing such
as OCR or database lookup (e.g., "PIR sensor located in Room 203 with 8-meter detection range").

Let an image I yield atomic detections A = {a1, . . . , an} with bounding boxes and classes. Define
a set C of contextual class schemas, each specifying a spatial/logical relation Rk binding a subset of
atomics. A COG detector fθ outputs both atomic and group instances:

{â1, . . . , ân} ∪ {ĈOG1, . . . , ĈOGm} = fθ(I) (1)

where ĈOGk = (bk, ck, Sk) includes the bounding box bk, class label ck ∈ C, and constituent atomics
Sk ⊆ A.

3.3. COG vs. Traditional Ontological Hierarchies

One might argue that COG resembles classical inheritance in ontological hierarchies, e.g., a
Legend class encompassing instances of Row_Leg, which in turn comprise Symbol and Label atomic
objects. However, COG differs fundamentally from class inheritance in several key aspects:

• Perceptual vs. Conceptual: Ontological inheritance establishes abstract, logical relations among
concepts, typically defined by is-a or has-a relationships. COG defines groupings as spatially
and functionally grounded visual constructs, emerging directly from the image and learned as
detection targets.

• Dynamic vs. Static: While class inheritance imposes static structural taxonomy, COG dynamically
encodes structure via detection patterns, enabling models to generalize beyond fixed conceptual
trees.

• Data-Driven vs. Manual: Classical ontologies are manually curated by experts following formal
ontology principles as described by Guarino [39] and Smith [40]. COG constructs are learned from
visual co-occurrence patterns in training data, offering dynamic, context-grounded structures
rather than static taxonomic hierarchies.
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Table 4. Comparison Between Ontological Inheritance and Contextual Object Grouping (COG).

Aspect Ontological Inheritance Contextual Object Grouping (COG)

Type of relation-
ship

Conceptual abstraction (is-a, has-a) Perceptual composition via spatial or
functional co-occurrence

Definition level Symbolic, model-level Visual, instance-level
Construction
method

Manually defined or logic-based Learned through detection

Role in pipeline Defines reasoning structure Part of perception output
Visual grounding Typically absent Explicit and spatially grounded
Flexibility Static taxonomy Dynamic, data-driven groupings
Semantic function Classification and inheritance Semantic emergence through grouping
Example Row_L is-a Legend entry COG(Row_L) = symbol + label

This comparison highlights how COG represents a fundamental shift from conceptual hierarchies
to perceptual groupings, enabling direct visual understanding of structured relationships.

4. Implementation and Methodology
4.1. Dataset and Annotation Strategy

We developed a custom dataset of technical diagrams, manually annotating legend components
across various design styles and conventions. The annotation process focused on identifying natu-
ral groupings that human interpreters use when reading technical diagrams, following established
practices for object detection dataset creation [15]:

• Symbol: Individual graphical elements representing security devices
• Label: Text descriptions corresponding to symbols
• Row_Leg: Composite units encompassing symbol–label pairs within legend rows
• L_title: Legend titles and headers
• Column_S: Column of Symbols
• Column_L: Column of Labels
• Legend: Complete legend structures containing multiple rows

Annotations explicitly marked composite COG(Row_Leg) bounding boxes encompassing one
symbol and one label, representing the contextual units that human readers naturally perceive when
interpreting legends. This annotation strategy ensures compatibility with standard evaluation frame-
works and supports fair comparison with existing approaches [17].

4.2. Model Architecture and Training

We implemented COG using YOLOv8m as the base detection engine [16], chosen for its balance
between computational efficiency and accuracy, following comprehensive evaluation guidelines [17].
The model was trained to jointly detect atomic classes (Symbol, Label) and contextual COG classes
(Row_Leg, Legend) within a unified framework, building upon the YOLO architecture’s proven
capabilities [41].

Training Configuration:

• Base model: YOLOv8m pretrained on COCO
• Input resolution: 832×832 pixels
• Batch size: 16
• Training epochs: 100
• Optimizer: AdamW [42] with learning rate 9.09 × 10−4

• Hardware: NVIDIA GeForce RTX 3080 (10 GB)

The detector learns to output multiple class types simultaneously, with the training objective
encouraging both accurate localization of individual components and correct identification of their
contextual groupings.
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4.3. Pipeline Architecture

Our implementation follows a modular pipeline design that supports intelligent sensing applica-
tions:

Stage 1: Detection (COG_Full_detect.py)

• YOLO-based detection of all object classes
• Export of detection results to CSV format
• Generation of annotated images with class-specific color coding
• Comprehensive logging of detection statistics

Stage 2: Structurization (CogF2json.py)

• Construction of hierarchical JSON structure from detection results
• Spatial relationship analysis to assign symbols and labels to legend rows
• OCR integration [43] for text extraction from label regions
• Export of complete legend structure with embedded metadata

4.4. Hierarchical Structure Construction

The key innovation in our approach lies in constructing meaningful hierarchical relationships
from flat detection results. For each detected Row_Leg instance, we identify constituent Symbol and
Label objects through spatial containment analysis, checking whether atomic objects fall within the
bounding box of their corresponding contextual group.

This spatial relationship analysis enables the construction of the complete legend hierarchy as
shown in Figure 1

Figure 1. Hierarchical structure of the Contextual Object Grouping (COG) framework illustrating the multi-level
semantic organization in technical diagram interpretation. The diagram shows how atomic classes (Symbol
and Label, shown in light blue) are combined to form first-level COG classes such as Row_Leg (orange), which
represents a unified symbol-label pair within a legend row. These are further grouped into higher-level structures:
Column_S (green) aggregates all symbols, Column_L (purple) aggregates all labels, and Legend (light green)
represents the complete contextual structure. The nested rectangles with varying opacity levels visualize the
containment relationships, while arrows indicate the hierarchical dependencies between classes. This structure
enables the model to perceive contextual relationships directly rather than inferring them through post-processing,
fundamentally shifting from atomic object detection to contextual understanding. The right side shows the
ontological classification levels, distinguishing between atomic classes, first-level COG, and second-level COG,
demonstrating how meaning emerges through compositional grouping rather than isolated detection.
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5. Experimental Results
5.1. Quantitative Performance

Our proof-of-concept implementation demonstrates strong performance across all detected classes,
as illustrated in the comprehensive evaluation metrics shown in Figure 2. The evaluation follows
established benchmarking practices [15] and demonstrates performance comparable to recent YOLOv8
enhancements [44,45].

Figure 2. Training progression and performance metrics for the COG framework implementation. The figure
shows training and validation losses (box, classification, and DFL losses) in the top and bottom left panels,
demonstrating stable convergence over 100 epochs. The right panels display precision, recall, mAP50, and
mAP50–95 metrics, indicating robust performance across all object classes with final mAP50 values approaching
0.99.

The quantitative results demonstrate:

• mAP50: ≈ 0.99 across all classes, indicating robust localization and classification
• mAP50–95: ≈ 0.81, demonstrating consistent performance under stricter IoU thresholds
• Symbol–Label Pairing Accuracy: about 98% correct pairings in test cases

The training curves in Figure 2 show stable convergence with minimal overfitting, validating
the effectiveness of our training methodology and demonstrating performance improvements over
baseline YOLOv8 implementations.

5.2. Contextual Detection vs. Atomic Object Detection

One of the most significant findings of our implementation validates the core COG hypothesis:
the trained model demonstrates contextual awareness rather than simple object detection. Critically,
our YOLOv8-based COG detector successfully identifies symbols within legend contexts, but does not
detect the same symbols when they appear in isolation within the main diagram areas.

This behavior represents a fundamental departure from traditional object detection, where a
model trained to detect "circles" or "rectangles" would identify these shapes regardless of their spatial
context. Instead, our COG-trained model has learned to recognize symbols specifically as components
of legend structures, demonstrating that contextual groupings can indeed become first-class perceptual
entities.

Key Observations:

• Legend Context: Symbols within Row_Leg structures are reliably detected (mAP50 ≈ 0.99)
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• Isolated Symbols: The same geometric shapes in the main diagram are not detected by the YOLO
model

• Contextual Dependency: Symbol detection appears intrinsically linked to their spatial and
semantic relationship with the label text

• Structured Understanding: The model has learned the "grammar" of legend composition rather
than just visual "vocabulary"

This finding has profound implications for the COG framework. The model’s inability to detect
isolated symbols is not a limitation but rather validation of the contextual learning hypothesis. The
detector has learned that symbols derive meaning from their legend context, not from their isolated
visual appearance, which is exactly the behavior we sought to achieve through the COG approach.

5.3. Detailed Class-wise Performance Analysis

Figure 3 presents a detailed confusion matrix that reveals the model’s classification performance
across different object types.

Figure 3. Normalized confusion matrix showing classification accuracy across all object classes in the COG
framework. The matrix demonstrates excellent diagonal performance, with most classes achieving perfect or
near-perfect accuracy (values of 0.92–1.00 on the diagonal). Notable cross-class confusions are minimal, with
only slight confusion between Label and Row_Leg classes (0.31 and 0.51, respectively), indicating the model
successfully distinguishes between atomic and contextual object types.

The confusion matrix reveals several important insights:

• Perfect Class Discrimination: Legend, Symbol, Row_Leg, Column_S, and Scale classes achieve
perfect classification accuracy (1.00 on diagonal)

• Minimal Cross-Class Confusion: The largest confusion occurs between Label and Row_Leg
classes, which is expected given their spatial overlap

• Robust Contextual Detection: The model successfully distinguishes between atomic elements
(Symbol, Label) and their contextual groupings (Row_Leg)
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5.4. Model Confidence and Reliability Assessment

Figure 4 illustrates the relationship between model confidence and classification accuracy across
different object classes.

Figure 4. F1-confidence curves for all object classes, showing the relationship between model confidence thresholds
and detection performance. The curves demonstrate that most classes maintain high F1 scores (above 0.8) across a
wide range of confidence values, with optimal performance around a 0.4 confidence threshold. The thick blue
line represents overall performance across all classes, achieving a peak F1 score of 0.84 at confidence 0.398. This
indicates robust and reliable detection capabilities with appropriate confidence calibration.

The F1-confidence analysis reveals:

• Optimal Confidence Threshold: Peak overall performance occurs at confidence 0.398, balancing
precision and recall

• Robust Performance Range: Most classes maintain F1 scores above 0.8 across confidence values
from 0.2 to 0.6

• Class-specific Behaviors: Different classes exhibit varying confidence patterns, with Symbol and
Legend classes showing particularly stable performance

These results affirm the feasibility of learning composite COG classes alongside atomic classes
within a unified object detection framework.

5.5. Qualitative Analysis: Hierarchical Structure Generation

The extracted JSON structures accurately reflect legend hierarchies, linking each Row_Leg to
its constituent Symbol and Label components with confidence scores. This structure demonstrates
successful contextual grouping: the model perceives symbol–label pairs as unified semantic entities
rather than separate objects requiring post-hoc relationship inference.

Figure 5 demonstrates the complete COG pipeline working on a real security floor plan, showing
both the successful legend interpretation and the challenges with symbol matching in the main
diagram.
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Figure 5. Real-world application of the COG framework on a security floor plan. The legend (right panel) is
successfully parsed into structured symbol–label pairs, as shown in the hierarchical JSON output. The main
diagram (left) contains the same symbols in various orientations and scales. Green arrows indicate PIR sensors,
blue rectangles represent Glass Break Detectors (GBD), and yellow rectangles denote CCTV cameras. The system
successfully matches symbols that maintain consistent orientation with the legend, but struggles with rotated
instances (e.g., PIR sensors oriented perpendicular to walls), highlighting the orientation invariance challenge
discussed in Section 6.2.

5.6. Dynamic Symbol Interpretation and Real-World Performance

The COG approach successfully addresses the core challenge of symbol standardization in
intelligent sensing applications. Our implementation demonstrates dynamic symbol interpretation
through legend learning, as evidenced by the structured JSON output that accurately captures the
semantic relationships:

"Row_Leg_001": {
"Symbol": [{"symbol_id": "SYM_003", "color": [223,223,247]}],
"Label": [{"text": "Vibration Sensor"}],
"semantic_label": "Vibration Sensor"

}

The system successfully establishes mappings between visual symbols and their semantic mean-
ings in both security and architectural contexts:

Security Diagram Mappings:

• Blue rectangle (SYM_005) → "GBD — Glass Break Detector"
• Red/pink rectangle (SYM_003) → "Vibration Sensor"
• Green arrow symbols → "PIR — Passive Infra Red sensors"
• Yellow rectangles → "CCTV fixed camera"

Architectural Floor Plan Mappings:

• Symbol A (SYM_004) → "ENTRY / OFFICE MANAGER"
• Symbol B (SYM_003) → "KITCHEN / GATHERING"
• Symbol C (SYM_005) → "WORKSTATIONS"
• Symbol D (SYM_001) → "FLEX / GATHERING"
• Symbol E (SYM_002) → "CONFERENCE ROOM"
• Symbol F (SYM_007) → "WHISKEY LOUNGE"
• Symbol G (SYM_006) → "PHOTO BOOTH"

Figure 6 illustrates the COG framework’s application on an architectural floor plan, demonstrating
optimal performance when symbols maintain a consistent orientation and scale.
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Figure 6. COG framework application on architectural floor plan demonstrating optimal performance. The legend
shows perfect symbol–label pairing detection, while the main diagram achieves high confidence scores (0.82–0.99)
for symbol matching. This example validates the framework’s effectiveness when symbols maintain consistent
orientation and scale between legend and main diagram contexts, supporting building automation and smart
sensing applications.

This comparison reveals the critical importance of orientation consistency: when symbols maintain
their original orientation from the legend (as in the architectural case), the system achieves perfect
performance. When symbols are rotated to align with architectural features (as in the security diagram),
performance degrades but remains functional.

This real-world example validates the COG framework’s ability to learn and apply dynamic
symbol interpretations while highlighting both the contextual learning success and the need for
enhanced rotation and scale invariance in future implementations. The fact that symbols are detected
within legend context but not in isolation demonstrates the model’s acquisition of true contextual
understanding rather than simple shape recognition.
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6. Discussion
6.1. When COG Provides Value vs. Traditional Approaches

Quantitative Performance Validation Against Traditional Approaches
Our experimental results provide concrete evidence for COG’s advantages over traditional

approaches in the specific domain of technical diagram interpretation:
Legend Structure Detection:

• COG achieves mAP50 ≈ 0.99 for comprehensive legend component detection
• Traditional object detection would require separate detection of symbols, labels, and complex

post-processing to establish relationships
• Our approach achieves about 98% accuracy in symbol-label pairing

Contextual Awareness Validation:

• The model demonstrates contextual understanding by detecting symbols only within legend
contexts, not in isolation within main diagrams

• This behavior supports the hypothesis that semantic groupings have become first-class perceptual
entities rather than post-hoc reasoning constructs

• Symbol detection confidence ranges from 0.82-0.99 when properly contextualized within legend
structures

Dynamic Symbol Interpretation Capability:

• Successful adaptation across different symbol conventions (security vs. architectural diagrams)
without retraining

• Automatic establishment of symbol-meaning mappings through legend learning eliminates
manual rule engineering

• Cross-domain applicability demonstrated with consistent performance across diverse diagram
types

These quantitative results support our theoretical claims about COG’s effectiveness in scenarios
where context is semantically critical and traditional post-processing approaches would be brittle or
domain-specific.

The COG framework is not universally superior to traditional object detection approaches. Its
effectiveness depends critically on the complexity and nature of contextual relationships within the
target domain, particularly in intelligent sensing applications where context-dependent interpretation
is essential.

COG provides significant advantages when:

• Context is complex and semantically critical: In technical diagrams, where the same visual
symbol can represent completely different devices depending on design conventions

• Post-processing would be brittle: When rule-based heuristics for establishing relationships are
domain-specific, difficult to generalize, and prone to failure

• Semantic meaning emerges from structure: Where individual elements lack meaning without
their contextual relationships (e.g., symbols without legend context)

• Domain standardization is impossible: When different designers, organizations, or standards
use varying symbol conventions

• Real-time sensing applications: Where rapid contextual interpretation is needed for building
automation or security assessment [18]

Traditional object detection remains more appropriate when:

• Objects are semantically complete in isolation: Individual entities (cars, people, standard traffic
signs) carry inherent meaning regardless of context

• Relationships are simple or optional: Basic spatial proximity or containment relationships that
can be reliably inferred through simple heuristics
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• Context provides enhancement rather than essential meaning: Where context improves inter-
pretation but is not fundamental to object identity

• Computational efficiency is paramount: For real-time applications where the additional com-
plexity of contextual detection may not justify the benefits

This distinction is crucial for practical deployment decisions in intelligent sensing systems. COG
represents a paradigm shift from "detect then reason" to "perceive context directly," but this shift is
most beneficial in domains where contextual understanding is fundamental rather than auxiliary.

6.2. Proof-of-Concept Achievement vs Future Development Roadmap

Our implementation represents a foundational proof-of-concept that appears to validate the
core COG hypothesis: contextual groupings can potentially be learned as first-class visual entities,
suggesting a shift from "detect then reason" to "perceive context directly." The achieved performance
metrics (mAP50 ≈ 0.99 for legend detection, approximately 98% symbol-label pairing accuracy) appear
to demonstrate the feasibility of embedding contextual structure into object detection pipelines for
intelligent sensing applications.

Proof-of-Concept Achievements:
The current implementation appears to successfully establish several key principles:

• Contextual Learning Validation: The model seems to demonstrate contextual awareness by de-
tecting symbols only within legend contexts, not in isolation—suggesting that semantic groupings
may become first-class perceptual entities rather than post-hoc reasoning constructs.

• Dynamic Symbol Interpretation: Apparent successful adaptation to different symbol conventions
through legend-based learning, potentially eliminating reliance on fixed symbol standards across
diverse security diagram formats.

• Hierarchical Structure Construction: Demonstrated ability to construct what appears to be
meaningful semantic hierarchies (Legend → COG(Row_Leg) → Symbol + Label) that seem to
capture the compositional nature of technical diagrams.

• Cross-Domain Applicability: Initial validation across both security and architectural floor plans,
suggesting the framework’s potential for broader intelligent sensing applications.

Systematic Development Roadmap:
The identified challenges appear to provide a clear roadmap for systematic advancement rather

than limitations. Our research program follows three strategic development tracks:

• Algorithmic Enhancement Track: Potential development of rotation-invariant detection mech-
anisms, multi-scale symbol matching, and advanced OCR integration for robust real-world
deployment in intelligent sensing systems.

• Domain Expansion Track: Possible extension to P&ID diagrams, electrical schematics, and
network topologies, potentially establishing COG as a general framework for structured visual
understanding in industrial sensing applications.

• System Integration Track: Anticipated real-time edge deployment optimization, digital twin
connectivity, and multi-modal sensing integration for comprehensive cyber-physical system
modeling.

This systematic approach seems to position COG not as a final solution, but as the foundation
for what may become a new research paradigm in contextual visual understanding for intelligent
sensing applications. The current proof-of-concept appears to validate the theoretical framework while
establishing performance baselines for future enhancements.

6.3. Limitations and Challenges

Orientation and Scale Invariance: One significant challenge involves detecting symbols in the
main diagram that have different orientations or scales compared to their corresponding representa-
tions in the legend. The symbol matching results show perfect scores (1.0) for symbols maintaining
consistent orientation, but decreased confidence (0.82–0.93) for rotated instances. This limitation
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directly impacts the system’s ability to create comprehensive security asset inventories from real-world
floor plans.

OCR Dependency and Text Recognition: Text extraction relies on Tesseract OCR [43], which
occasionally misreads characters, particularly in cases of poor image quality, unusual fonts, or com-
plex diagram layouts. This dependency on OCR accuracy can propagate errors through the entire
interpretation pipeline.

Two-Stage Processing Pipeline: The current implementation requires a two-stage approach:

1. COG-based legend detection and interpretation
2. Separate symbol matching for main diagram elements

This separation occurs because the COG model has learned contextual symbol detection rather
than general shape recognition. While this validates the contextual learning hypothesis, it necessitates
additional processing stages for complete diagram interpretation.

6.4. Future Research Directions

Enhanced Contextual Detection: Integration with recent vision-language models [8,11] could
improve symbol–text association and enable more robust contextual understanding across diverse
diagram types.

Multi-Modal Sensing Integration: Extension to incorporate multiple sensor modalities (thermal,
depth, acoustic) for comprehensive building automation and security assessment applications [36].

Real-Time Edge Deployment: Development of optimized implementations for edge computing
devices to support real-time intelligent sensing applications in IoT environments [37].

Cross-Domain Transfer: Application of COG principles to other structured visual domains such
as P&ID diagrams, electrical schematics, and network topologies, expanding the framework’s utility
in industrial sensing applications.

Hierarchical COG Extensions: Exploration of deeper grouping structures (e.g., Legend → Section
→ Row_Leg → Symbol + Label) and recursive detection of nested semantic units for complex technical
documentation.

Integration with Digital Twins: Connection of detected structures with digital twin frameworks
for comprehensive cyber-physical system modeling and real-time monitoring [46].

6.5. Research Impact Statement

The COG framework appears to introduce a potentially new research paradigm that bridges
computer vision, document understanding, and intelligent sensing systems. By demonstrating that
semantic groupings can seemingly be perceived rather than inferred, this work may open pathways
for next-generation context-aware sensing applications that could understand visual languages com-
positionally rather than atomically.

The broader implications seem to extend beyond technical diagram interpretation. COG principles
appear to apply to any domain where meaning emerges from structured visual composition—from
scientific notation and mathematical expressions to architectural drawings and industrial schematics.
This apparent paradigm shift from "detect then reason" to "perceive context directly" may enable more
efficient, interpretable, and robust intelligent sensing systems for cyber-physical environments.

The proof-of-concept nature of this work appears to establish a foundation for systematic research
advancement, with what seem to be clear pathways for algorithmic enhancement, domain expansion,
and system integration that could enable comprehensive automated understanding of structured
visual languages in intelligent sensing applications.

7. Conclusions
This paper introduces Contextual Object Grouping (COG), a specific framework that appears to

advance visual understanding by promoting semantic groupings to first-class detection targets for
intelligent sensing applications. Our proof-of-concept implementation seems to validate the approach’s
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feasibility and effectiveness in the challenging domain of security diagram interpretation, potentially
establishing a foundation for systematic research advancement.

The key contributions of this proof-of-concept appear to include:

• Paradigm Innovation: Introduction of what seems to be a "perceive context directly" paradigm,
potentially shifting from traditional "detect then reason" approaches and possibly enabling more
sophisticated intelligent sensing capabilities.

• Ontological Framework: Development of contextual COG classes as what appears to be an
intermediate level between atomic perception and semantic reasoning, potentially creating new
possibilities for structured visual understanding in cyber-physical systems.

• Dynamic Learning Validation: What seems to be proof that models can learn to detect contextual
groupings as unified entities, potentially opening new research directions for adaptive intelligent
sensing systems that may learn visual languages on-the-fly.

• Cross-Domain Applicability: Demonstrated effectiveness across security and architectural dia-
grams, suggesting the framework’s potential for diverse intelligent sensing applications including
building automation and industrial monitoring.

• Systematic Research Foundation: Clear identification of development tracks (algorithmic en-
hancement, domain expansion, system integration) that appear to provide a roadmap for advanc-
ing context-aware intelligent sensing systems.

The experimental results seem to demonstrate robust performance with mAP50 values approach-
ing 0.99 and what appears to be excellent contextual learning validation. Most significantly, our
implementation seems to prove contextual awareness: the model appears to learn to detect symbols
only within legend contexts, potentially validating the core hypothesis that contextual groupings may
become first-class perceptual entities.

This proof-of-concept appears to establish COG as a potentially foundational framework for
next-generation intelligent sensing systems that could understand visual structures compositionally.
Beyond technical diagrams, COG principles seem to extend to any domain where meaning emerges
from structured visual composition—from scientific notation to industrial schematics—potentially
enabling more efficient and interpretable context-aware sensing applications.

Future research could systematically advance the framework through algorithmic enhancements,
domain expansion, and system integration, potentially positioning COG as the foundation for com-
prehensive automated understanding of structured visual languages in intelligent cyber-physical
environments. The integration with emerging vision-language models [8,11] and multi-modal sensing
technologies [36,37] seems to promise even greater capabilities for context-aware intelligent sensing
systems.
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Abbreviations
The following abbreviations are used in this manuscript:

COG Contextual Object Grouping
CPPS Cyber-Physical Security Systems
CNN Convolutional Neural Network
DLA Document Layout Analysis
FCN Fully Convolutional Network
IoT Internet of Things
mAP mean Average Precision
OCR Optical Character Recognition
PIR Passive Infra Red
SGG Scene Graph Generation
VRD Visual Relationship Detection
YOLO You Only Look Once
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