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Article
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Abstract: Optimization of computational algorithms is one of the main problems of computational
mathematics. This optimization is well demonstrated by the example of the theory of quadrature and
cubature formulas. It is known that numerical integration of definite integrals is of great importance in
basic and applied sciences. In this paper we consider the optimization problem of weighted quadrature
formulas with derivatives in Sobolev space. Using the extremal function, the square of the norm of
the error functional of the considered quadrature formula is calculated. Then, minimizing this norm
by coefficients, we obtain a system to find the optimal coefficients of this quadrature formula. The
uniqueness of solutions of this system is proved and an algorithm for solving this system is given.
The proposed algorithm is used to obtain the optimal coefficients of the derivative weight quadrature
formulas. It should be noted that the optimal weighted quadrature formulas constructed in this work
are optimal for the approximate calculation of regular, singular, fractional and strongly oscillating
integrals. The constructed optimal quadrature formulas are applied to the approximate solution of
linear Fredholm integral equations of the second kind. Finally, the numerical results are compared
with the known results of other authors.

Keywords: optimization of computational algorithms; quadrature formula with derivatives; Sobolev
space; error functional; optimal coefficients

1. Introduction
An important practical goal of computational mathematics is to create the best, i.e., the fastest and

cheapest ways of solving mathematical problems. In short, optimization of computational algorithms.
Optimization of computational algorithms is well demonstrated by examples of the construction of
cubature and quadrature formulas on the functional formulation. In this formulation, we consider
functions φ(x) belonging to some Banach space B. It is assumed that this space is nested in the space
of continuous functions defined in the domain Ω. The integral of the function φ(x) with the weight
function p(x) over the region Ω ∫

Ω
p(x)φ(x)dx

is a linear functional in B. Its approximate expression is.

N

∑
k=1

Ck φ(xk)

will be another linear functional. Then the error functional [1] and [2] of the cubature formula will also
be linear

(ℓ, φ) =
∫

Ω
p(x)φ(x)dx −

N

∑
k=1

Ck φ(x(k)) =
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=
∫

Ω
εω(x)p(x)−

N

∑
k=1

Ckδ(x − x(k))]φ(x)dx (1)

The problem of constructing a cubature formula

∫
Ω

p(x)Ω(x)dx ∼=
N

∑
k=1

Ck φ(x(k)) (2)

in the functional formulation consists in finding such a functional (1) whose norm in the space B∗ is
minimal.

Studies of optimal and asymptotic cubature formulas are found in [1] - [11]. Optimization studies
of quadrature formulas are presented in [12] - [14].

Currently, there are various methods for constructing optimal approximate integration formulas:
the spline method, the φ function method, and the Sobolev method.

In recent years, a number of new results have been obtained on the construction and their error
estimates of optimal quadrature formulas for approximate computation of regular, singular, and
integrals from rapidly oscillating functions using the Sobolev method. These results can be found, for
example, in [15] - [27].

In this paper, the construction of composite optimal quadrature formulas with weight in Sobolev
space is studied by the variational method. Here, the square of the norm of the error functional
of composite quadrature formulas with weight function is computed using the extremal function.
Minimizing this norm by coefficients, the system of algebraic equations is obtained. The uniqueness
of the solutions of the obtained system is proved. Using this algorithm, the optimal coefficients of
quadrature formulas with a weight function are found.

In the case where the weight function is equal to one, the coefficients of the well - known Euler -
Maclorean quadrature formula are obtained from the general formula for the optimal coefficients.

The approximate solutions of specific linear Fredholm integral equations of the second kind are
found by the constructed optimal quadrature formula, and they are compared with the results of [29] -
[46].

2. Compound quadrature formulas of Hermite type
Let us consider quadrature formulas of the form

∫ 1

0
p(x)φ(x)dx ∼=

N

∑
β=0

t

∑
ν=0

C(ν)
β φ(ν)(xβ) (3)

in the space L(m)
2 (0, 1). Here L(m)

2 (0, 1) - the space of functions whose m - th generalized derivative
sums to square on the interval [0,1], p(x)-the weight function whose

∫ 1

0
p(x)dx < ∞,

C(ν)
β - coefficients, xβ - nodes of quadrature formulas, β = 0, N, ν = 0, t, t = 0, m − 1. Here, the integral

is considered to be regular, singular, fractional and strongly oscillating.
The error of the quadrature formula is the difference of

(ℓ
(t)
N , φ) =

∫ 1

0
p(x)φ(x)dx −

N

∑
β=0

t

∑
ν=0

C(ν)
β φ(ν)(xβ) =

∫ 1

0
ℓ
(t)
N (x)φ(x)dx,

where

ℓ
(t)
N (x) = E[0,1](x)p(x)−

N

∑
β=0

t

∑
ν=0

(−1)νC(ν)
β δ(ν)(x − xβ), (4)
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E[0,1] - index of the segment [0,1], δ(x) - Dirac delta function, ℓ(t)N - is the error functional of the
quadrature formula (3).

The functional ℓ(t)N (x) of the form (4) is defined in the space L(m)
2 (0, 1), i.e., this functional belongs

to the conjugate space L(m)∗
2 (0, 1), then we have

(ℓ
(t)
N , xα) = 0, α = 0, 1, ..., m − 1. (5)

The problem of constructing an optimal quadrature formula of the form (3) with the error
functional (4) in the space L(m)

2 (0, 1) consists in finding the value of

∥
◦
ℓ
(t)

N |L(m)∗
2 (0, 1)∥2 = inf

C(ν)
β

|(ℓ(t)N , ψℓ)| (6)

at fixed nodes xβ.

In formula (6), ψℓ(x) - is the extremal function of the quadrature formula (3) in the space L(m)
2 (0, 1).

Theorem 1. The extremal function of the error functional ℓ(t)N (x) in the space L(m)
2 (0, 1) is of the form

ψℓ(x) = (−1)mℓ
(t)
N (x) ∗ Gm(x) + Pm−1(x), (7)

where Gm(x) - the Green’s function of the operator d2m

dx2m , i.e.

Gm(x) =
x2m−1sign(x)

2(2m − 1)!
,

Pm−1(x) - some polynomial of degree m − 1.

At t = 0, i.e. for the functional

ℓ(x) = E[0,1](x)−
N

∑
β=0

Cβδ(x − hβ)

the extremal function was found in [1] and [2]. For any 0 ≤ t ≤ m − 1 theorem 1 is proved in [8].
Since L(m)

2 (0, 1) - Hilbert space, the norm of the error functional ℓ(t)N and the function ψℓ(x) are
related by the relation

∥ℓ(t)N /L(m)∗
2 (0, 1)∥2 =

∫ 1

0
(ψ

(m)
ℓ (x))2dx. (8)

In addition, there is an equality
∥ℓ(t)N /L(m)∗

2 (0, 1)∥2 = (ℓ, ψℓ). (9)

Substituting the extremal function defined by formula (7) into equality (9) and considering (5), after
some calculations for the square of the norm of the error functional (4) of the quadrature formula (3)
we obtain

∥ℓ(t)N /L(m)∗
2 (0, 1)∥2 = (−1)m

[
N

∑
β=0

N

∑
β
′=0

t

∑
ν=0

t

∑
ν
′=0

C(ν)
β C(ν

′
)

β
′ G(ν+ν

′
)

m (xβ − x
β
′ )−

−2
N

∑
β=0

t

∑
ν=0

C(ν)
β

∫ 1

0
p(x)G(ν)

m (x − xβ)dx+

+
∫ 1

0

∫ 1

0
p(x)p(y)Gm(x − y)dxdy

]
≡ F(C), (10)
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where

G(k)
m (x) =

x2m−1−ksign(x)
2(2m − 1 − k)!

. (11)

Recall that the coefficients C(ν)
β in equality (10) must satisfy the system of linear equations

N

∑
β=0

t

∑
ν=0

C(ν)
β x(k−ν)

β =
∫ 1

0
p(x)xkdx, k = 0, m − 1 (12)

equivalent to the accuracy conditions (5) of the quadrature formula on polynomials of degree lower
than m. In system (12)

x(k−ν)
β =

x(k−ν)
β , if k − ν ≥ 0,

0, if k − ν < 0.

Now let us formulate the conditions under which the quadratic function F(C) on the set of vectors

C = (C(0)
0 , C(0)

1 , · · · , C(0)
N , C(1)

0 , C(1)
1 , · · · , C(1)

N , · · · , C(t)
0 , C(t)

1 , · · · , C(t)
N )

subject to relations (5). For this purpose, we apply the method of Lagrange indefinite multipliers.
Let us compose the Lagrange function

F(C, λ) = F(C) + 2
m−1)

∑
k=0

λk(ℓ
(t)
N , xk).

Equating to zero the partial derivatives of F(C, λ) by C(ν)
β and λk, we obtain

N

∑
β=0

t

∑
ν=0

C(ν)
β G(ν+ν

′
)

m (x
β
′ − xβ) +

m−1

∑
k=0

λkx(k−ν
′
)

β
′ · k!

(k − ν
′)!

= f (ν
′
)

β
′ , (13)

ν
′
= 0, t, β

′
= 0, N,

N

∑
β=0

N

∑
ν=0

k!
(k − ν)!

Ck−ν
β = gk, k = 0, m − 1, (14)

where

f (ν
′
)

β
′ =

∫ 1

0
p(x)G(ν

′
)

m (x − x
β
′ )dx, ν

′
= 0, t, β

′
= 0, N,

gk =
∫ 1

0
p(x)xkdx, k = 0, m − 1.

In system (13) - (14), the unknowns are C(ν)
β and λk. The solution of this system is the stationary

point of the function F(C, λ), which we denote as
◦
C
(ν)

β and
◦
λk. From the theory of conditional extremal,

we know a sufficient condition under which this solution gives a conditional minimum of F(C) on the
manifold (5). It consists in positive definiteness of the quadratic form

ϕ(C) =
N

∑
β=0

N

∑
β′=0

t

∑
ν=0

t

∑
ν′=0

∂2 F(C, λ)

∂C(ν)
β ∂C(ν′)

β′

C(ν)
β C(ν′)

β′ , (15)
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On the set of vectors C(ν)
β obtaining the requirement

N

∑
β=0

t

∑
ν=0

C(ν)
β x(k−ν)

β

k!
(k − ν)!

= 0, k = 0, m − 1. (16)

In matrix form the system (16) has the form

SC = 0. (17)

We proceed to prove that in the considered case the quadratic form (15) is positive definite.
Lemma 1. For any nonzero vector C lying in subspace SC = 0, the function Φ(C) is strictly

positive.

Proof of lemma 1. From the definition of the Lagrange function F(C, λ) and from equality (15) it
follows that

Φ(C) =
N

∑
β=0

N

∑
β
′=0

t

∑
ν=0

t

∑
ν
′=0

C(ν)
β C(ν

′
)

β
′ G(ν+ν

′
)

m (xβ − x
β
′ ). (18)

Consider the following functional

µ(C) =
N

∑
β=0

t

∑
ν=0

(−1)νC(ν)
β δ(ν)(x − xβ). (19)

It is known that, by condition (6), this functional belongs to L(m)∗
2 , i.e., µ(C) ∈ L(m)∗

2 (0, 1).

For this functional, there corresponds an extremal function ψµ(x) ∈ L(m)
2 (0, 1), which is a solution

of Eq.
d2m

dx2m ψµ(x) = (−1)mℓµ(x). (20)

The solution of equation (20) has the form

ψµ(x) = (−1)mℓµ(x) ∗ Gm(x) = (−1)m
N

∑
β=0

t

∑
ν=0

(−1)νG(ν)
m (x − xβ). (21)

The square of the norm of the function ψµ(x) in L(m)
2 (0, 1) coincides with the form ϕ(C)

∥ψµ/L(m)
2 ∥2 = (ℓµ(x), ψµ(x)) =

=
N

∑
β=0

N

∑
β
′=0

t

∑
ν=0

t

∑
ν
′=0

(−1)ν+ν
′
C(ν)

β Cν
′

β
′ Gν+ν

′

m (xβ − x
β
′ ).

It follows that for nonzero C(C(ν)
β , C(ν

′
)

β
′ ) the function ϕ(C) is strictly positive, i.e., the positivity of ϕ(C)

for such C follows from the positivity of the norm ψµ(x) in L(m)
2 (0, 1).

Lemma 1 is proved completely.

Lemma 2. If the matrix S of the system (16) has a right inverse, then the matrix Q of the system
(13) - (14) is non degenerate.

Proof of Lemma 2. Let us write the homogeneous system corresponding to the system (13) - (14) in
the following form

N

∑
β=0

t

∑
ν=0

C(ν)
β G(ν+ν

′
)

m (xβ − x
β
′ ) +

m−1

∑
k=ν

′
λk

k!
(k − ν

′)!
x(k−ν

′
)

β = 0, (22)
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β
′
= 0, N, ν

′
= 0, t,

N

∑
β=0

t

∑
ν=0

k!
(k − ν)!

C(ν)
β x(k−ν)

β = 0, k = 0, m − 1, (23)

where

x(k−ν)
β =

x(k−ν)
β if k − ν ≥ 0

0 if k − ν < 0.

Let’s denote by G the matrix of quadratic form (18), and write the homogeneous system (22) - (23)
in the following form

G

(
C
λ

)
=

(
G S∗

S 0

)(
C
λ

)
= 0. (24)

Now we prove that the only solution of the homogeneous system (24) is identically zero, i.e.,
C = 0 and λ = 0.

Let C, λ - be the solution of the system (24).
Consider the functional corresponding to the vector C

µC(x) =
N

∑
β=0

t

∑
ν=0

(−1)νC(ν)
β δ(ν))(x − xβ).

Clearly, µC(x) ∈ L(m)∗
2 (0, 1).

Let us take the following as the extremal function for the functional µC(x):

UC(x) = (−1)mµC(x) ∗ Gm(x) +
m−1

∑
k=ν

′
λk

k!
(k − ν

′)!
x(k−ν

′
).

This is possible because UC(x) ∈ L(m)
2 (0, 1) and is a solution of Eq.

d2mUC(x)
dx2m = (−1)mµC(x).

The system of equations (24) means that U(ν)

C
(x) takes zero values at all nodes xβ, i.e., U(ν)

C
(xβ) = 0,

when β = 0, N, ν = 0, t. Then with respect to the norm in L(m)∗
2 (0, 1) of the functional µC(x) we have

∥µC/L(m)∗
2 ∥2 = (µC(x), UC(x)) =

N

∑
β=0

t

∑
ν=0

C(ν)
β U(ν)

C
(xβ) = 0,

which is possible only at C = 0. Taking this into account from (24) we obtain

S∗λ = 0. (25)

By convention, the matrix S has a right inverse, then S∗ has a left inverse. Hence and from (25) it
follows that λ = 0.

Lemma 2 is proved completely.

Thus, the system (13) - (14) has a single solution. Thus, the vector
◦
C delivers a local minimum to

the quadratic function F(C) on the set of solutions of the system (5). The following theorem follows
directly from Theorem 1 and Lemma 1, 2.
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Theorem 2. Let the error functional of the quadrature formula (3) ℓ(t)N (x) be defined in the space L(m)
2 (0, 1),

i.e., its values for all polynomials of degree m − 1 are zero and optimal, i.e., among all functionals of the form (4)
with given nodes xβ it has the smallest norm in L(m)

2 (0, 1). Then there exists a solution ψℓ(x) of Eq.

d2m

dx2m ψℓ(x) = (−1)mℓ
(t)
N (x),

which goes to zero with its derivatives of order ν(ν = 0, t, t = 0, m − 1) at nodes xβ, i.e., ψ
(m)
ℓ (xβ) = 0 and

belongs to L(m)
2 (0, 1).

Theorem 2 generalizes the theorem of I. Babushka [28], i.e. it is proved that the extremal function
for the error functional goes to zero at nodes xβ.

3. On one method of construction of weighted optimal quadrature formulas with
derivatives

In this section we will consider the following quadrature formula

∫ 1

0
p(x)φ(x)dx ∼=

N

∑
β=0

m−1

∑
ν=0

C(ν)
β φ(ν)(xβ), (26)

i.e., the case t = m − 1 in formula (3). The error of this formula is

(ℓ
(m−1)
N , φ) =

∫ 1

0
p(x)φ(x)dx −

N

∑
β=0

m−1

∑
ν=0

C(ν)
β φ(ν)(xβ) =

=
∫ +∞

−∞
ℓ
(m−1)
N (x)φ(x)dx,

where

ℓ
(m−1)
N (x) = E[0,1](x)p(x)−

m−1

∑
ν=0

N

∑
β=0

(−1)νC(ν)
β δ(ν)(x − xβ). (27)

The quadrature formula (26) with error functional (27), considered in the space L(m)
2 (0, 1), can be

characterized in two ways. On the one hand, it is defined by the coefficients C(ν)
β (ν = 0, m − 1, β = 0, N)

subject to the conditions:
(ℓ

(m−1)
N (x), xα) = 0, α = 0, m − 1, (28)

and, on the other hand, the extreme function ψℓ(x) of the quadrature formula, which is obtained as a
solution of Eq.

d2mU(x)
dx2m = (−1)mℓ

(m−1)
N (x)

and can be written in the form

ψℓ(x) = (−1)mℓ
(m−1)
N (x) ∗ Gm(x) + Pm−1(x), (29)

where

Gm(x) =
x2m−1sign(x)

2(2m − 1)!
,

Pm−1(x) - some polynomial of degree m − 1.
In this case, the square of the norm of the error functional ℓ(m−1)

N (x) is calculated by the formula

∥ℓ(m−1)
N ∥2 = (ℓ

(m−1)
N , ψℓ). (30)
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The function ψℓ(x) is expressed, as we have seen, by formula (29), so calculating the square of the
norm of the error functional using (30), we obtain

∥ℓ(m−1)
N ∥2 = (−1)m[

N

∑
β=0

N

∑
β′=0

m−1

∑
ν=0

m−1

∑
ν′=0

(−1)ν+ν′C(ν)
β Cν′

β′G
(ν+ν′)
m (xβ − xβ′)−

−2
m−1

∑
ν=0

N

∑
β=0

(−1)νC(ν)
β

∫ 1

0
p(x)G(ν)

m (x − xβ)dx+

+
∫ 1

0

∫ 1

0
p(x)p(y)Gm(x − y)dxdy, (31)

where

G(k)
m (x) =

x2m−1−k

2(2m − 1 − k)!
, k ≤ 2m − 1.

4. Method of construction of weighted optimal quadrature formulas derivative
formulas

Let’s xβ = [β], h = 1
N , N = 1, N, N ≥ m, C(ν)

β = C(ν)[β], [β] = hβ.
Our method for constructing optimal quadrature formulas with derivatives is as follows. First,

for m = 1, i.e., in the space L(1)
2 (0, 1) minimizing the square of the norm of the error functional (31) by

the coefficients C(0)
β (β = 0, N), under conditions (28), we obtain the following system for finding C(0)

β :

N

∑
γ=0

◦
C
(0)

γ
(hβ − hγ)sign(hβ − hγ)

2
+ λ0 =

=
∫ 1

0
p(x)

(x − hβ)sign(x − hβ)

2
dx, β = 0, N, (32)

N

∑
γ=0

◦
C
(0)

γ =
∫ 1

0
p(x)dx. (33)

Here (33) is obtained from (28) when m = 1. The system (32) - (33) is solved in [8], i.e. here we find the

optimal coefficients
◦
C
(0)

γ in the space L(1)
2 (0, 1). The application of this quadrature formula to linear

integral equations is given in [40].
Next, let us consider the case m=2. For this purpose, by substituting the found optimal coefficients

into (31), then minimizing the square of the norm on the coefficients
◦
C
(1)

γ in the space L(2)
2 (0, 1), we

obtain the optimal coefficients
◦
C
(1)

γ (β = 0, N).

Continuing this method, we successively find the optimal coefficients
◦
C
(0)

γ ,
◦
C
(1)

γ , · · · ,
◦
C
(k−1)

γ . Sub-

stituting these coefficients into (31) and minimizing the square of the norm on the coefficients of
◦
C
(k−1)

γ

in the space L(k)
2 (0, 1), we obtain a system for finding the optimal coefficients of

◦
C
(k−1)

γ (β = 0, N):

N

∑
γ=0

◦
C
(k)

γ
(hβ − hγ)sign(hβ − hγ)

2
+ (−1)kk!λk = (−1)kFkβ, (34)

N

∑
γ=0

◦
C
(k)

β =
gk
k!

−
k−1

∑
i=0

N

∑
γ=0

◦
C
(i)

γ
(hγ)k−i

(k − i)!
, β = 0, N, (35)
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Here

Fkβ = fkβ −
k−1

∑
i=0

N

∑
γ=0

(−1)i
◦
C
(i)

γ
(hβ − hγ)k−i+1sign(hβ − hγ)

2(k − i + 1)!
, (36)

fkβ = (−1)k
∫ 1

0
p(x)

(x − hβ)k+1sign(x − hβ)

2(k + 1)!
dx,

gk =
∫ 1

0
p(x)xkdx, k = 0, m − 1.

5. Optimal coefficients of weighted quadrature derivative formulas

We now solve the system of linear algebraic equations (34) - (35) with respect to
◦
C
(k)

β (β = 0, N, k =

0, m − 1) the optimal coefficients of weight quadrature formulas with derivatives.
Let us rewrite the system (34) - (35) in the following form

N

∑
γ=0

◦
C
(k)

γ G1[β](hβ − hγ) + (−1)kk!λk = (−1)kFkβ, (37)

N

∑
γ=0

◦
C
(k)

γ = pk, β = 0, N, k = 0, m − 1. (38)

Here λk - constant, Fkβ is determined by the equality (36),

pk =
gk
k!

−
k−1

∑
i=0

N

∑
γ=0

◦
C
(i)

γ (hγ)k−i(k − i)!, G1(hβ) =
|hβ|

2
, k = 0, m − 1.

The coefficients of the first term of the first equation depend only on the difference (hβ − hγ).
This kind of equations in the continuous case, where instead of the sum there are integrals, are called

Wiener - Hopf equations. As is usually done for Wiener - Hopf equations, we assume that
◦
C
(k)

γ is
defined everywhere, i.e., γ ∈ Z and equal to zero if hγ /∈ [0, 1].

Let us further assume
◦
C
(k)

β =
◦
C
(k)

[β], G1[β] = G1(hβ), Fkβ = Fk[β]. Then the system (37) - (38) is
written in the form of convolution equations

G1[β] ∗
◦
C
(k)

[β] + (−1)kk!λk = (−1)kFk[β], β = 0, N, (39)

N

∑
γ=0

◦
C
(k)

[γ] = pk, (40)

◦
C
(k)

[β] = 0, [β] /∈ [0, 1]. (41)

We now proceed to the actual solution of the system (39) - (41). For this purpose, instead of
◦
C
(k)

[β]

we introduce the following function

u[β] = G1[β] ∗
◦
C
(k)

[β] + (−1)kk!λk.

Next, we define the function u[β] when β ≤ 0 and β ≥ N.
Let β ≤ 0, then by virtue of (40) we obtain

u[β] = −hβpk
2

+ a−k ,
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a−k - unknown.
Let β ≥ N, then

u[β] =
hβpk

2
+ a+k ,

a+k - unknown.
So, we have defined a function u[β] for all values of [β] ∈ Z:

u[β] =


− hβpk

2 + a−k if β ≤ 0,

(−1)kFk[β] if 0 ≤ β ≤ N,
hβpk

2 + a+k if β ≥ N.

(42)

Since in (42) at β = 0 and β = N the left and right parts coincide, so we have

a−k = (−1)kFk[0], a+k = (−1)kFk[N]− pk
2

.

Then we obtain a new representation of the function u[β] in [β] ∈ Z:

u[β] =


− hβpk

2 + (−1)kFk[0] if β ≤ 0,

(−1)kFk[β] if 0 ≤ β ≤ N,
hβpk

2 + (−1)kFk[N]− pk
2 if β ≥ N.

(43)

Now we will need the well-known formula [9]:

hD1[β] ∗ G1[β] = δ[β], (44)

where

D1[β] =


0 if [β] ≥ 2,

h−2 if [β] = 1,

−2h−2 if [β] = 0,

(45)

δ[β] =

0 at [β] ̸= 0,

1 at [β] = 0.
(46)

By virtue of formulas (43) and (44), we find the optimal coefficients
◦
C
(k)

[β] at β = 0, N:

◦
C
(k)

[β] = hD1[β] ∗ u[β] = h
∞

∑
γ=−∞

D1[β − γ]u[γ] =

h[(−1)k
N

∑
γ=0

D1[β − γ]Fk[γ]+

+
−1

∑
γ=−∞

D1[β − γ](−hγpk
2

+ (−1)kFk[0])+

+
∞

∑
γ=N+1

D1[β − γ](
hγpk

2
+ (−1)kFk[N]− pk

2
)], k = 0, m − 1.

Hence, using formula (45), we obtain

◦
C

k
[0] =

pk
2

+ (−1)kh−1[Fk[1]− Fk[0]], (47)
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◦
C

k
[β] = (−1)kh−1[Fk[β − 1]− 2Fk[β] + Fk[beta + 1]], β = 0, N, (48)

◦
C

k
[N] =

pk
2

+ (−1)kh−1[Fk[N − 1]− Fk[N]], k = 0, m − 1 (49)

Thus, the following theorem is proved.

Theorem 3. The optimal coefficients of the quadrature formula of the form (26) in the Sobolev space L(m)
2 (0, 1)

are determined by formulas (47) - (49).

From Theorem 3, when p(x) ≡ 1 we obtain:
Corollary 1: The optimal coefficients of the quadrature formula of the form (26) at p(x) ≡ 1 in the

Sobolev space L(m)
2 (0, 1) are defined by the formulas

◦
C
(0)

[0] =
h
2

,
◦
C
(0)

[β] = h,
◦
C
(0)

[N] =
h
2

,

◦
C
(k)

[0] =
(−1)khk+1Bk+1

(k + 1)!
,

◦
C
(k)

[β] = 0, β = 1, N − 1,

◦
C
(k)

[N] =
(−1)khk+1Bk+1

(k + 1)!
, k = 1, m − 1,

where Bk+1 - the Bernoulli numbers.
Corollary 1 shows that the optimal coefficients are the coefficients of the well-known Euler -

Maclorean quadrature formula. The optimality of the Euler - Maclorean quadrature formula in the
space L(m)

2 (0, 1) is proved in [8,9].
For completeness we give the following theorem.

Theorem 4. Euler - Maclorean quadrature formula

∫ 1

0
φ(x)dx ∼= h

N

∑
n=1

φ(nh) +
m−1

∑
α=0

(−1)αhα+1 Bα+1

(α + 1)!
(φ(α)(1)− φ(α)(0))

with the error functional

ℓ(x) = E[0,1](x)− h
N

∑
n=1

δ(x − hn)−
m−1

∑
α=0

hα+1Bα+1

(α + 1)!
(δ(α)(x − 1)− δ(α)(x))

is the optimal quadrature formula in Sobolev space L(m)
2 (0, 1). The square of the norm of the error functional of

the optimal Euler - Maclorean quadrature formula is defined by the following equality

∥
◦
ℓ|L(m)∗

2 (0, 1)∥2 =

(
h

2π

)2m

∑
γ ̸=0

1
γ2m .

Here h = 1
N , N = 2, 3, · · · , Bα+1- Bernoulli numbers, B1 = − 1

2 ,

δ[β] =

0 at [β] ̸= 0,

1 at [β] = 0.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 April 2025 doi:10.20944/preprints202504.2518.v1

https://doi.org/10.20944/preprints202504.2518.v1


12 of 24

Bα+1

(α + 1)!
=

−(−1)
α+1

2 ∑γ ̸=0
1

(2πγ)α+1 if α + 1 − even number,

0 if α + 1 − odd number.

From Theorem 3, after some simplifications, we obtain the following results in the spaces
L(1)

2 (0, 1), L(2)
2 (0, 1), L(3)

2 (0, 1).

Theorem 5. In the Sobolev space L(1)
2 (0, 1), the following quadrature formula is the optimal quadrature formula

∫ 1

0
p(x)φ(x)dx ∼=

N

∑
β=0

◦
C
(0)

[β]φ[β],

where
◦
C
(0)

[0] = h−1
∫ h

0
p(x)(h − x)dx,

◦
C
(0)

[β] = h−1
∫ h(β+1)

h(β−1)
p(x)[(hβ − x)sign(x − hβ) + h]dx, β = 1, N − 1,

◦
C
(0)

[N] = h−1
∫ 1

1−h
p(x)(x − 1 + h)dx.

Theorem 6. In the Sobolev space L(2)
2 (0, 1), the optimal quadrature formula is the following formula

∫ 1

0
p(x)φ(x)dx ∼=

N

∑
β=0

(
◦
C
(0)

[β]φ[β] +
◦
C
(1)

[β]φ′[β]

)
.

Here
◦
C
(0)

[β] - are determined from Theorem 5, and the optimal coefficients
◦
C
(1)

[β] are computed by the following
formulas below:

◦
C
(1)

[0] = −h−1

2

∫ h

0
p(x)(x − h)xdx,

◦
C
(1)

[β] =
h−1

2

∫ h(β+1)

h(β−1)
p(x)[(x − hβ)2sign(hβ − x) + h(x − hβ)]dx, β = 1, N − 1,

◦
C
(1)

[N] =
h−1

2

∫ 1

1−h
p(x)(x − 1 + h)(x − 1)dx.

Theorem 7. The optimal coefficients
◦
C
(2)

[β] of the quadrature formula of the form

∫ 1

0
p(x)φ(x)dx ∼=

N

∑
β=0

(
◦
C
(0)

[β]φ[β] +
◦
C
(1)

[β]φ′[β] +
◦
C
(2)

[β]φ′′[β]

)
,

in the space L(3)
2 (0, 1) are defined by the formulas

◦
C
(2)

[0] =
h−1

12

∫ h

0
p(x)x(h − x)(2x − h)xdx,

β = 1, N − 1,

◦
C
(2)

[β] =
h−1

12

∫ h(β+1)

h(β−1)
p(x)[(2(x − hβ)3 + h2(x − hβ))sign(hβ − x) + 3h(x − hβ)2]dx,

◦
C
(2)

[N] =
h−1

12

∫ 1

1−h
p(x)(x − 1)(2x + h − 2)(x + h − 1)dx.
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6. Application of the quadrature formula with derivatives to linear Fredholm
equations of the second kind

Consider the following linear Fredholm equation of the second kind

y(x)− λ
∫ 1

0
K(x, s)y(s)ds, x ∈ [0, 1], (50)

where K(x, s) - the kernel of the integral equation, f (x) - the right-hand side, λ - the parameter of the
integral equation, y(x) - an unknown function to be determined.

Several numerical methods have been described for the numerical approximation of the solution
of (50) (collocation methods, projection methods, Galerkin methods, etc.) and have been extensively
investigated in terms of stability and convergence in suitable function spaces, also according to the
smoothness properties of the kernel K and the right-hand side f ; (see. [48]-[66]).

To solve equation (50) we apply the quadrature formula (26) and pass the difference grid on the
argument x

yi − λ
m−1

∑
k=0

N

∑
β=0

C(k)
iβ y(k)β = fi, i = 0, N, m = 1, 2, · · · , (51)

Here C(k)
β - optimal coefficients of the quadrature formula, fi = f (xi), yi = y(xi), y(k)i = y(k)(xi), xi =

i ∗ h, i = 0, N, h - grid spacing.
In the system of equations (51) the number of equations is N + 1, and the number of unknowns is

(N + 1) ∗ m, i.e., in addition to the unknown function, its derivatives at nodal points participate in the
system of equations. To solve this problem, we differentiate equation (50) m − 1 times by the argument
x, we have

y(x)− λ
∫ 1

0
K(x, s)y(s)ds = f (x), x ∈ [0, 1],

y′(x)− λ
∫ 1

0
K′

x(x, s)y(s)ds = f ′(x), (52)

· · ·

y(m−1)(x)− λ
∫ 1

0
K(m−1)

x (x, s)y(s)ds = f (m−1)(x), m = 1, 2, · · · .

Now applying the quadrature formula to the system (52), we obtain

yi − λ
m−1

∑
k=0

N

∑
β=0

C(k)
iβ y(k)β = fi, i = 0, N,

y′i − λ
m−1

∑
k=0

N

∑
β=0

C(k)
iβ y(k)β = f ′i , (53)

· · ·

y(m−1)
i − λ

m−1

∑
k=0

N

∑
β=0

C(k)
iβ y(k)β = f (m−1)

i , m = 1, 2, · · · .

Thus, we have a system of linear algebraic equations with respect y(k)i (i = 0, N, k = 0, m − 1). The

values of the desired function yi = y(0)i (i = 0, N).
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7. Numerical results
The following examples are to solve integral equations by the quadrature method using the

optimal quadrature formula with derivatives at m = 2, 4, 8. Compare the results with the exact solution
and the results of foreign researchers using the absolute error:

Em = max
x

|y(x)− yex(x)|.

Here Em - maximum absolute error, y(x) - approximate solution, yex(x)-exact solution.
It should be noted, according to the above algorithm, a program in Maple language has been

made. All calculations are performed using 32 significant digits.
Example 1. In (50) K(x, s) = −x · (ex·s − 1), f (x) = ex − x, λ = 1, a = 0, b = 1. Then the integral

equation (6.1) will take the following form:

y(x) +
∫ 1

0
x · (ex·s − 1) · y(s)ds = ex − x, x ∈ [0, 1] (54)

Exact solution of the integral equation (54):

yex(x) = 1.

The results for this example are summarized in Table 1.

Table 1

xi ES OQF Absolute error
m = 2 m = 4 m = 8 m = 2 m = 4 m = 8

0.0 1.000 1.000 1.000 1.000 0.00E + 00 0.00E + 00 0.00E + 00
0.1 1.000 1.000 1.000 1.000 1.60E − 31 0.00E + 00 1.80E − 31
0.2 1.000 1.000 1.000 1.000 4.00E − 32 8.00E − 32 4.00E − 31
0.3 1.000 1.000 1.000 1.000 1.70E − 31 2.10E − 31 1.40E − 31
0.4 1.000 1.000 1.000 1.000 1.00E − 31 1.00E − 31 1.00E − 31
0.5 1.000 1.000 1.000 1.000 2.00E − 32 0.00E + 00 5.00E − 32
0.6 1.000 1.000 1.000 1.000 1.00E − 31 2.00E − 31 2.80E − 31
0.7 1.000 1.000 1.000 1.000 0.00E + 00 1.00E − 31 3.00E − 31
0.8 1.000 1.000 1.000 1.000 5.00E − 32 1.60E − 31 2.00E − 31
0.9 1.000 1.000 1.000 1.000 1.00E − 31 1.00E − 31 1.00E − 31
1.0 1.000 1.000 1.000 1.000 1.00E − 31 1.00E − 31 1.00E − 31

MAE 1.70E − 31 3.00E − 31 4.00E − 31

Here ES-Exact solution, OQF-Optimal quadrature formulas, MAE-Maximum absolute error.
The authors of [29] solved this example using a modified multistage average integral method and obtained a result with

maximum absolute error Em = 3.44 · 10−15 for equidistant collocation nodes N = 13.
On the basis of using the method of integral replacement with the twelfth-order quadrature formula, the authors of [45]

obtained the result with the maximum absolute error Em = 4.44 · 10−16 at the number of integration intervals N = 20.
Our method gave the result with the value of the maximum absolute error Em = 4.0 · 10−31 at m = 1.
Example 2. In (50), K(x, s) = x · s, f (x) = cos(x), λ = 1, a = 0, b = 1. Then the integral equation (50) takes the following

form:

y(x)−
∫ 1

0
x · s · y(s)ds = cos(x), x ∈ [0, 1]. (55)

Exact solution of the integral equation (55):

yex(x) = cos(x) + 1.5 · (sin(1) + cos(1)− 1) · x.

The results for this example are shown in Table 2.
To solve the Fredholm integral equation of the second kind, the authors of [30] developed a method using spline

technology. Using this method, they obtained the result for this example. The maximum absolute error was Em = 2.0 · 10−5

at N = 11, n = 10. Our method gave the result with the value of maximum absolute error Em = 1.62 · 10−8 − 2.43 · 10−19 at
m = 3, 8.
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Table 2

xi ES OQF Absolute error
m = 2 m = 4 m = 8 m = 2 m = 4 m = 8

0,0 1, 000 1, 000 1, 000 1, 000 0, 00E + 00 0, 00E + 00 0, 00E + 00
0,1 1, 052 1, 052 1, 052 1, 052 1, 62E − 09 3, 85E − 13 2, 43E − 20
0,2 1, 095 1, 095 1, 095 1, 095 3, 23E − 09 7, 69E − 13 4, 86E − 20
0,3 1, 127 1, 127 1, 127 1, 127 4, 85E − 09 1, 15E − 12 7, 29E − 20
0,4 1, 150 1, 150 1, 150 1, 150 6, 46E − 09 1, 54E − 12 9, 72E − 20
0,5 1, 164 1, 164 1, 164 1, 164 8, 08E − 09 1, 92E − 12 1, 21E − 19
0,6 1, 169 1, 169 1, 169 1, 169 9, 69E − 09 2, 31E − 12 1, 46E − 19
0,7 1, 166 1, 166 1, 166 1, 166 1, 13E − 08 2, 69E − 12 1, 70E − 19
0,8 1, 155 1, 155 1, 155 1, 155 1, 29E − 08 3, 08E − 12 1, 94E − 19
0,9 1, 137 1, 137 1, 137 1, 137 1, 45E − 08 3, 46E − 12 2, 19E − 19
1,0 1, 113 1, 113 1, 113 1, 113 1, 62E − 08 3, 85E − 12 2, 43E − 19

MAE 1, 62E − 08 3, 85E − 12 2, 43E − 19

Example 3. In (50), K(x, s) = x2 − x − s2 + s, f (x) = −2x3 + 3x2 − x, λ = 1, a = 0, b = 1. Then the integral equation (50)
will take the following form:

y(x) +
∫ 1

0
(x2 − x − s2 + s)y(s)ds = −2x3 + 3x2 − x, x ∈ [0, 1]. (56)

Exact solution of the integral equation (56):
yex(x) = −2x3 + 3x2 − x.

The results for this example are given in Table 3.

Table 3

xi ES OQF Absolute error
m = 2 m = 4 m = 8 m = 2 m = 4 m = 8

0,0 0, 000 0, 000 0, 000 0, 000 4, 30E − 33 2, 47E − 32 2, 47E − 32
0,1 −0, 072 −0, 072 −0, 072 −0, 072 1, 10E − 32 5, 00E − 33 5, 00E − 33
0,2 −0, 096 −0, 096 −0, 096 −0, 096 7, 00E − 33 4, 00E − 33 4, 00E − 33
0,3 −0, 084 −0, 084 −0, 084 −0, 084 6, 00E − 33 1, 20E − 32 1, 20E − 32
0,4 −0, 048 −0, 048 −0, 048 −0, 048 1, 00E − 33 3, 00E − 33 3, 00E − 33
0,5 0, 000 0, 000 0, 000 0, 000 7, 80E − 34 1, 46E − 32 1, 46E − 32
0,6 0, 048 0, 048 0, 048 0, 048 2, 00E − 33 3, 00E − 33 3, 00E − 33
0,7 0, 084 0, 084 0, 084 0, 084 1, 70E − 32 4, 00E − 33 4, 00E − 33
0,8 0, 096 0, 096 0, 096 0, 096 1, 00E − 32 1, 30E − 32 1, 30E − 32
0,9 0, 072 0, 072 0, 072 0, 072 1, 00E − 33 8, 00E − 33 8, 00E − 33
1,0 0, 000 0, 000 0, 000 0, 000 4, 38E − 33 2, 47E − 32 2, 47E − 32

MAE 1, 70E − 32 2, 47E − 32 2, 47E − 32

The authors of [42] developed a graph-theoretic polynomial using Hosoi polynomials and solved the integral equation
(56). They obtained the result with the maximum absolute error Em = 8.88 · 10−16 at n = 3.

The authors of [43] solved the integral equation (56) and obtained the result with the maximum absolute error Em =

4.97 · 10−4 at N = 8.
Our method gave the result with the value of the maximum absolute error Em = 1.0 · 10−32 at m = 1.
Example 4. In (50) K(x, s) = x · es, f (x) = e−x , λ = 1, a = 0, b = 1. Then the integral equation (50) will take the following

form:

y(x) +
∫ 1

0
x · es · y(s)ds = e−x , x ∈ [0, 1]. (57)

Exact solution of the integral equation (57):

yex(x) = e−x − x
2

.

The results for this example are given in Table 4.

To solve (57) integral equation, the author [32] of the paper applied polynomial method using
Boo-Baker polynomials and obtained the result with maximum absolute error Em = 7.1 · 10−3 at
N = 11.
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Table 4

xi ES OQF Absolute error
m = 2 m = 4 m = 8 m = 2 m = 4 m = 8

0,0 1, 000 1, 000 1, 000 1, 000 0, 00E + 00 0, 00E + 00 0, 00E + 00
0,0 1, 000 1, 000 1, 000 1, 000 0, 00E + 00 0, 00E + 00 0, 00E + 00
0,1 0, 855 0, 855 0, 855 0, 855 1, 39E − 08 3, 31E − 12 2, 09E − 19
0,2 0, 719 0, 719 0, 719 0, 719 2, 78E − 08 6, 62E − 12 4, 18E − 19
0,3 0, 591 0, 591 0, 591 0, 591 4, 17E − 08 9, 92E − 12 6, 27E − 19
0,4 0, 470 0, 470 0, 470 0, 470 5, 56E − 08 1, 32E − 11 8, 35E − 19
0,5 0, 357 0, 357 0, 357 0, 357 6, 95E − 08 1, 65E − 11 1, 04E − 18
0,6 0, 249 0, 249 0, 249 0, 249 8, 34E − 08 1, 98E − 11 1, 25E − 18
0,7 0, 147 0, 147 0, 147 0, 147 9, 73E − 08 2, 32E − 11 1, 46E − 18
0,8 0, 049 0, 049 0, 049 0, 049 1, 11E − 07 2, 65E − 11 1, 67E − 18
0,9 −0, 043 −0, 043 −0, 043 −0, 043 1, 25E − 07 2, 98E − 11 1, 88E − 18
1,0 −0, 132 −0, 132 −0, 132 −0, 132 1, 39E − 07 3, 31E − 11 2, 09E − 18

MAE 1, 39E − 07 3, 31E − 11 2, 09E − 18

The authors of [36] also applied the polynomial method. They used the Tushar polynomial and
obtained the result with the maximum absolute error Em = 2.0 · 10−3 at N = 11 for n = 2.

Using the Gauss - Lobatto quadrature formula, the author of [41] obtained good results. The
maximum absolute error was Em = 1.28 · 10−15 at N = 11 and n = 6.

The authors of [44] applied the polynomial method using Bernstein polynomials to solve the
integral equation (57) and obtained the result with the maximum absolute error Em = 3.5 · 10−3 at
N = 11 and n = 6.

Our method gave the result with the value of maximum absolute error Em = 2.09 · 10−18 at m = 8.
Example 5. In (50), K(x, s) = ex+s, f (x) = e−x, λ = 1, a = 0, b = 1. Then the integral equation

(6.1) will take the following form:

y(x) +
∫ 1

0
ex+s · y(s)ds = e−x, x ∈ [0, 1] (58)

Exact solution of the integral equation (58):

yex(x) = e−x +
2ex

3 − e2 .

The results for this example are shown in Table 5.

Table 5

xi ES OQF Absolute error
m = 2 m = 4 m = 8 m = 2 m = 4 m = 8

0,0 0, 544 0, 544 0, 544 0, 544 1, 27E − 07 3, 01E − 11 1, 90E − 18
0,1 0, 401 0, 401 0, 401 0, 401 1, 40E − 07 3, 33E − 11 2, 10E − 18
0,2 0, 262 0, 262 0, 262 0, 262 1, 55E − 07 3, 68E − 11 2, 32E − 18
0,3 0, 126 0, 126 0, 126 0, 126 1, 71E − 07 4, 07E − 11 2, 57E − 18
0,4 −0, 009 −0, 009 −0, 009 −0, 009 1, 89E − 07 4, 50E − 11 2, 84E − 18
0,5 −0, 145 −0, 145 −0, 145 −0, 145 2, 09E − 07 4, 97E − 11 3, 14E − 18
0,6 −0, 281 −0, 281 −0, 281 −0, 281 2, 31E − 07 5, 49E − 11 3, 47E − 18
0,7 −0, 421 −0, 421 −0, 421 −0, 421 2, 55E − 07 6, 07E − 11 3, 83E − 18
0,8 −0, 565 −0, 565 −0, 565 −0, 565 2, 82E − 07 6, 71E − 11 4, 24E − 18
0,9 −0, 714 −0, 714 −0, 714 −0, 714 3, 11E − 07 7, 42E − 11 4, 68E − 18
1,0 −0, 871 −0, 871 −0, 871 −0, 871 3, 44E − 07 8, 19E − 11 5, 17E − 18

MAE 3, 44E − 07 8, 19E − 11 5, 17E − 18
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The authors of [33] solved the integral equation (58) using the integral method of mean values
and obtained the result with the maximum absolute error Em = 2.0 · 10−5 at N = 11.

Our method gave the result with the value of maximum absolute error Em = 3.44 · 10−7 − 5.17 ·
10−18 at m = 2, 8.
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Example 6. In (50) K(x, s) = ex−s−12, f (x) = cos(x)− e−x−12

2 [e · sin(1) + e · cos(1)− 1], λ = 1, a =

0, b = 1. Then the integral equation (50) will take the following form:

y(x) +
∫ 1

0
ex−s−12 · y(s)ds = cos(x)− e−x−12

2
· (e · sin(1) + e · cos(1)− 1), x ∈ [0, 1]. (59)

Exact solution of the integral equation (59):

yex(x) = cos(x).

The results for this example are given in Table 6.

Table 6

xi ES OQF Absolute error
m = 2 m = 4 m = 8 m = 2 m = 4 m = 8

0,0 1, 000 1, 000 1, 000 1, 000 4, 02E − 13 9, 56E − 17 6, 04E − 24
0,1 0, 995 0, 995 0, 995 0, 995 3, 63E − 13 8, 65E − 17 5, 46E − 24
0,2 0, 980 0, 980 0, 980 0, 980 3, 29E − 13 7, 83E − 17 4, 94E − 24
0,3 0, 955 0, 955 0, 955 0, 955 2, 98E − 13 7, 08E − 17 4, 47E − 24
0,4 0, 921 0, 921 0, 921 0, 921 2, 69E − 13 6, 41E − 17 4, 05E − 24
0,5 0, 878 0, 878 0, 878 0, 878 2, 44E − 13 5, 80E − 17 3, 66E − 24
0,6 0, 825 0, 825 0, 825 0, 825 2, 20E − 13 5, 25E − 17 3, 31E − 24
0,7 0, 765 0, 765 0, 765 0, 765 1, 99E − 13 4, 75E − 17 3, 00E − 24
0,8 0, 697 0, 697 0, 697 0, 697 1, 80E − 13 4, 30E − 17 2, 71E − 24
0,9 0, 622 0, 622 0, 622 0, 622 1, 63E − 13 3, 89E − 17 2, 45E − 24
1,0 0, 540 0, 540 0, 540 0, 540 1, 48E − 13 3, 52E − 17 2, 22E − 24

MAE 4, 02E − 13 9, 56E − 17 6, 04E − 24

The authors of [34] solved the integral equation (59) by applying a new type of spline function
of fractional order and obtained the result with the maximum absolute error Em = 3.1 · 10−6 at
N = 11 and n = 2. Our method gave the result with the value of maximum absolute error Em =

7.06 · 10−9 − 6.04 · 10−24 at m = 1, 8.
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Example 7. In (50) K(x, s) = e2x− 5s
3 , f (x) = e2x+ 1

3 , λ = 1, a = 0, b = 1. Then the integral
equation (50) will take the following form:

y(x) +
1
3

∫ 1

0
e2x− 5s

3 · y(s)ds = e2x+ 1
3 , x ∈ [0, 1]. (60)

Exact solution of the integral equation (60):

yex(x) = e2x.

The results for this example are given in Table 7.

Table 7

xi ES OQF Absolute error
m = 2 m = 4 m = 8 m = 2 m = 4 m = 8

0,0 1, 000 1, 000 1, 000 1, 000 1, 16E − 06 1, 10E − 09 1, 11E − 15
0,1 1, 221 1, 221 1, 221 1, 221 1, 41E − 06 1, 34E − 09 1, 36E − 15
0,2 1, 492 1, 492 1, 492 1, 492 1, 72E − 06 1, 64E − 09 1, 66E − 15
0,3 1, 822 1, 822 1, 822 1, 822 2, 11E − 06 2, 01E − 09 2, 03E − 15
0,4 2, 226 2, 226 2, 226 2, 226 2, 57E − 06 2, 45E − 09 2, 48E − 15
0,5 2, 718 2, 718 2, 718 2, 718 3, 14E − 06 2, 99E − 09 3, 02E − 15
0,6 3, 320 3, 320 3, 320 3, 320 3, 84E − 06 3, 66E − 09 3, 69E − 15
0,7 4, 055 4, 055 4, 055 4, 055 4, 69E − 06 4, 47E − 09 4, 51E − 15
0,8 4, 953 4, 953 4, 953 4, 953 5, 73E − 06 5, 45E − 09 5, 51E − 15
0,9 6, 050 6, 050 6, 050 6, 050 6, 99E − 06 6, 66E − 09 6, 73E − 15
1,0 7, 389 7, 389 7, 389 7, 389 8, 54E − 06 8, 14E − 09 8, 22E − 15

MAE 8, 54E − 06 8, 14E − 09 8, 22E − 15

The authors of [35] solved the integral equation (60) based on a special representation of vector
forms of triangular functions and obtained the result with the maximum absolute error Em = 6.4 · 10−7

at m = 1024.
The authors of [39] using a combination of Taylor series and block-plus functions solved the same

integral equation (60). They obtained the result with the maximum absolute error Em = 4.6 · 10−4 at
N = 80.

The authors of [40] solved the integral equation (60) using Chebyshev polynomial approximation
and obtained the result with the maximum absolute error Em = 0.49 · 10−4 at N = 10.

With the scheme based on Legendre polynomials and Legendre wavelets, the authors of [43]
solved the integral equation (60) and obtained the result with the maximum absolute error Em = 10−4

at N = 11, M = 8 and k = 3.
Our method gave the result with the maximum absolute error from Em = 8.14 · 10−9 to Em =

8.22 · 10−15 at m = 4, 8.
Example 8. In (50) K(x, s) = x · s, f (x) = ex − x, λ = 1, a = 0, b = 1. Then the integral equation

(50) will take the following form:

y(x)−
∫ 1

0
x · s · y(s)ds = ex − x, x ∈ [0, 1] (61)

Exact solution of the integral equation (61):

yex(x) = ex.

The results for this example are shown in Table 8.
The author [37] solved the integral equation (61) using the Pell-Lucas series method and obtained

the result with the maximum absolute error Em = 7.5 · 10−8 at N = 11.
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Table 8

xi ES OQF Absolute error
m = 2 m = 4 m = 8 m = 2 m = 4 m = 8

0,0 −0, 186 −0, 186 −0, 186 −0, 186 6, 00E − 32 2, 30E − 31 2, 70E − 31
0,1 −0, 205 −0, 205 −0, 205 −0, 205 0, 00E + 00 6, 00E − 32 1, 00E − 31
0,2 −0, 227 −0, 227 −0, 227 −0, 227 1, 00E − 32 2, 90E − 31 3, 00E − 31
0,3 −0, 250 −0, 250 −0, 250 −0, 250 2, 20E − 31 2, 60E − 31 1, 80E − 31
0,4 −0, 277 −0, 277 −0, 277 −0, 277 4, 90E − 31 6, 50E − 31 6, 60E − 31
0,5 −0, 306 −0, 306 −0, 306 −0, 306 3, 40E − 31 5, 30E − 31 6, 10E − 31
0,6 −0, 338 −0, 338 −0, 338 −0, 338 3, 30E − 31 5, 20E − 31 6, 60E − 31
0,7 −0, 374 −0, 374 −0, 374 −0, 374 1, 20E − 31 5, 00E − 31 4, 90E − 31
0,8 −0, 413 −0, 413 −0, 413 −0, 413 1, 20E − 31 6, 00E − 32 1, 70E − 31
0,9 −0, 456 −0, 456 −0, 456 −0, 456 5, 00E − 32 5, 00E − 32 1, 30E − 31
1,0 −0, 504 −0, 504 −0, 504 −0, 504 6, 00E − 32 8, 00E − 32 6, 00E − 32

MAE 4, 90E − 31 6, 50E − 31 6, 60E − 31

Our method gave the result with the maximum absolute error Em = 3.57 · 10−11 − 2.25 · 10−18 at
m = 4, 8.

Example 9. In (50) K(x, s) = e
x−s

2 , f (x) = x, λ = 1
2 , a = 0, b = 1. Then the integral equation (50)

will take the following form:

y(x)− 1
2

∫ 1

0
e

x−s
2 y(s)ds = x, x ∈ [0, 1]. (62)

Exact solution of the integral equation (62):

yex(x) = x + (4 ·
√

e − 6) · e
x−1

2 .

The results for this example are shown in Table 9.

Table 9

xi ES OQF Absolute error
m = 2 m = 4 m = 8 m = 2 m = 4 m = 8

0,0 1, 000 1, 000 1, 000 1, 000 0, 00E + 00 0, 00E + 00 0, 00E + 00
0,1 1, 105 1, 105 1, 105 1, 105 1, 50E − 08 3, 57E − 12 2, 25E − 19
0,2 1, 221 1, 221 1, 221 1, 221 3, 00E − 08 7, 14E − 12 4, 51E − 19
0,3 1, 350 1, 350 1, 350 1, 350 4, 50E − 08 1, 07E − 11 6, 76E − 19
0,4 1, 492 1, 492 1, 492 1, 492 6, 00E − 08 1, 43E − 11 9, 01E − 19
0,5 1, 649 1, 649 1, 649 1, 649 7, 50E − 08 1, 78E − 11 1, 13E − 18
0,6 1, 822 1, 822 1, 822 1, 822 8, 99E − 08 2, 14E − 11 1, 35E − 18
0,7 2, 014 2, 014 2, 014 2, 014 1, 05E − 07 2, 50E − 11 1, 58E − 18
0,8 2, 226 2, 226 2, 226 2, 226 1, 20E − 07 2, 86E − 11 1, 80E − 18
0,9 2, 460 2, 460 2, 460 2, 460 1, 35E − 07 3, 21E − 11 2, 03E − 18
1,0 2, 718 2, 718 2, 718 2, 718 1, 50E − 07 3, 57E − 11 2, 25E − 18

MAE 1, 50E − 07 3, 57E − 11 2, 25E − 18

The authors of [38] solved the integral equation (62) using the Taylor series expansion method
and obtained the result with the maximum absolute error Em = 8.88 · 10−16 in N = 11 and p = 12.

Our method gave the result with the maximum absolute error Em = 3.84 · 10−17 − 2.43 · 10−21 at
m = 6, 8.
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Example 10. In (50) K(x, s) = x + s, f (x) = ex + (1 − e) · x − 1, λ = 1, a = 0, b = 1. Then the
integral equation (50) will take the following form:

y(x)−
∫ 1

0
(x + s) · y(s)ds = ex + (1 − e) · x − 1, x ∈ [0, 1]. (63)

Exact solution of the integral equation (63):

yex(x) = ex.

The results for this example are shown in Table 10.

Table 10

xi ES OQF Absolute error
m = 2 m = 4 m = 8 m = 2 m = 4 m = 8

0,0 0, 361 0, 361 0, 361 0, 361 6, 26E − 09 3, 73E − 13 1, 47E − 21
0,1 0, 479 0, 479 0, 479 0, 479 6, 59E − 09 3, 92E − 13 1, 55E − 21
0,2 0, 599 0, 599 0, 599 0, 599 6, 92E − 09 4, 12E − 13 1, 63E − 21
0,3 0, 719 0, 719 0, 719 0, 719 7, 28E − 09 4, 33E − 13 1, 71E − 21
0,4 0, 841 0, 841 0, 841 0, 841 7, 65E − 09 4, 55E − 13 1, 80E − 21
0,5 0, 963 0, 963 0, 963 0, 963 8, 04E − 09 4, 79E − 13 1, 89E − 21
0,6 1, 087 1, 087 1, 087 1, 087 8, 46E − 09 5, 03E − 13 1, 99E − 21
0,7 1, 212 1, 212 1, 212 1, 212 8, 89E − 09 5, 29E − 13 2, 09E − 21
0,8 1, 338 1, 338 1, 338 1, 338 9, 35E − 09 5, 56E − 13 2, 19E − 21
0,9 1, 466 1, 466 1, 466 1, 466 9, 83E − 09 5, 85E − 13 2, 31E − 21
1,0 1, 595 1, 595 1, 595 1, 595 1, 03E − 08 6, 15E − 13 2, 43E − 21

MAE 1, 03E − 08 6, 15E − 13 2, 43E − 21

The authors of [38] solved the integral equation (63) and obtained the result with the maximum
absolute error Em = 5.6 · 10−9 in N = 11 and p = 8.

The authors of [39], in addition to the integral equation (60), solved the integral equation (63) and
obtained the result with maximum absolute error Em = 2.84 · 10−6 at N = 80.

The authors of [46] solved the integral equation (63) using general Legendre wavelets and obtained
the result with the highest absolute error Em = 0.7 · 10−13 in M = 11 and N = 4. Our method gave the
result with the maximum absolute error Em = 8.82 · 10−18 at m = 8.

8. Conclusion
The present work is devoted to the solution of the optimization problem of weight quadrature

formulas with derivatives in the Sobolev space and to determine by means of examples on linear
Fredholm integral equations of the second kind the theoretical validity of the constructed quadrature
formula comparing the results of works performed by other authors.

The main results of the study are as follows:
- the square of the norm of the error functional of the considered quadrature formula was

calculated using the extremal function;
- minimized this norm by the coefficients of the quadrature formula and obtained a system of

linear algebraic equations for finding the optimal coefficients of the quadrature formula;
- the singularity of solutions of this system is proved;
- an algorithm for the solution of this system is constructed with the help of which the optimal

coefficients of weight quadrature formulas with derivatives are found;
- an algorithm of application of weight quadrature formulas with derivatives for an approximate

solution of linear Fredholm integral equations of the second kind is given;
- simplified formulas for the optimal coefficients of the quadrature formula with derivatives in

the spaces L(1)
2 (0, 1), L(2)

2 (0, 1) and L(3)
2 (0, 1) were obtained;
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- in the end, the numerical results are compared with the results of other authors.

References
1. Sobolev S.L. Introduction to the theory of cubature formulas. Moscow: Nauka, 1974, p. 808.
2. Sobolev S.L., Vaskevich V.L. Cubature formulas. -Novosibirsk: izvo IM SB RAS, 1996, p. 484.
3. Bakhvalov N.S. About optimal methods of solving problems. Appl. Math. V. 1, 1968, Vol. 3.
4. Polovinkin V.I. Weighted cubature formulas in the periodic case. Mat. Zametki. 1968, Vol. 3, No. 3, pp. 319-326.
5. Polovinkin V.I. Weighted cubature formulas. DAN USSR. 1968. Vol. 179, No 3, pp. 42-44
6. Ramazanov M. D. Theory of lattice cubature formulas with a bounded boundary layer. Ufa 2009, 178 p.
7. Noskov M. V. About Cartesian products of cubature formulas. Kn. Theory of cubature formulas and computational

mathematics. Novosibirsk. Nauka. 1980, pp. 114-116.
8. Shadimetov, Kh.M. On the optimal lattice quadrature and cubature formulas. Doklady Akademii Nauk, 2001,

376(5), pp. 597-600.
9. Shadimetov, Kh.M. Optimal lattice quadrature and cubature formulas. Doklady Mathematics, 2001, 63(1), pp.

92–94.
10. Ramazanov, M.D., Shadimetov, Kh.M. Weight optimal formulas in Sobolev’s periodic space. Doklady Akademii

Nauk, 1999, 368(4), pp. 453–455.
11. Ramazanov, M.D., Shadimetov, Kh.M. Weight Optimal Cubature Formulas in Periodic Sobolev Space. Doklady

Mathematics, 1999, 60(2), pp. 217–219.
12. Sard A. Best approximate integration formulas, best approximate formulas. // American J. of Math. 1949. -LXXI.

pp. 80-91.
13. Nikolsky S.M. Quadrature formulas. -Moscow: Nauka, 1988. p. 256.
14. Lanzara F. On optimal quadrature formulae// Journal of Ineq. Appl. 2000. vol.5. pp. 201-225.
15. Boltaev A. Hayotov A.R. Shadimetov Kh.M. Construction of Optimal Quadrature Formulas Exact for

Exponentional-trigonometric Functions by Sobolev’s Method. // Acta Mathematica Sinica, English Series. 2021.
-vol. 37. No. 7. -pp. 1066–1088.

16. Shadimetov Kh., Boltaev A., Parovik R. Optimization of the approximate integration for mula using
the discrete analogue of a high-order differential operator, // Mathematics, 2023, vol. 11, no.14, 3114.
DOI:https://doi.org/10.3390/math11143114.

17. Hayotov A.R., Milovanovic G.V., Shadimetov Kh.M. Optimal quadratures in the sense of Sard in a Hilbert space//
Applied Mathematics and Computation. Elsevier, 2015. Vol.259. -pp.637-653.

18. Shadimetov Kh.M., Akhmedov D.M. Approximate Solution of a Singular Integral Equation Using the Sobolev
Method. // Lobachevskii Journal of Mathematics. 2022. -vol. 43, issue. 2. –pp. 496–505. ISSN 1995-0802.

19. Shadimetov, K.M., Hayotov, A.R., Azamov, S.S. Optimal quadrature formula in K2(P2) space. Applied Numerical
Mathematics, 2012, 62(12), pp. 1893–1909.

20. Cabada, A., Hayotov, A.R., Shadimetov, K.M. Construction of Dm-splines in L(m)
2 (0, 1) space by Sobolev method.

Applied Mathematics and Computation, 2014, 244, pp. 542–551.
21. Shadimetov, K.M., Nuraliev, F.A. Optimal formulas of numerical integration with derivatives in Sobolev space.

Journal of Siberian Federal University – Mathematics and Physics, 2018, 11(6), pp.
22. Shadimetov, K.M., Hayotov, A.R., Nuraliev, F.A. Optimal interpolation formulas with derivative in the space

L(m)
2 (0, 1). Filomat, 2019, 33(17), pp. 5661–5675.

23. Shadimetov, K.M., Boltaev, A.K. An exponential-trigonometric spline minimizing a seminorm in a Hilbert space.
Advances in Difference Equations, 2020, Vol. 2020, 352.

24. Hayotov, A.R., Jeon, S., Lee, C.-O., Shadimetov, Kh.M. Optimal Quadrature Formulas for Non-periodic Functions
in Sobolev Space and Its Application to CT Image Reconstruction. Filomat, 2021, 35(12), pp. 4177–4195.

25. Akhmedov, D.M., Shadimetov, K.M. Optimal quadrature formulas for approximate solution of the first kind singular
integral equation with Cauchy kernal. Studia Universitatis Babes-Bolyai Mathematica, 2022, 67(3), pp. 633-651.

26. Shadimetov, K.M., Daliev, B.S. Optimal formulas for the approximate- analytical solution of the general Abel integral
equation in the Sobolev space. Results in Applied Mathematics, 2022, 15, 100276.

27. Shadimetov, K.M., Boltaev, A.K. An Exponential-Trigonometric Optimal Interpolation Formula. Lobachevskii
Journal of Mathematics, 2023, 44(10), pp. 4379–4392.

28. Babushka I. Optimal quadrature formulas. DAN SSSR, 149, 1963, pp. 227-230.
29. Ahmad Molabahrami1, Sakineh Niasadegh, Multistage Integral Mean Value Method for the Fredholm Integral

Equations of the Second Kind, Thai Journal of Mathematics, Vol. 18, Number 2, 2020, pp 751–763.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 April 2025 doi:10.20944/preprints202504.2518.v1

https://doi.org/10.20944/preprints202504.2518.v1


23 of 24

30. Ahmed Flayih Jaber, Adil Alrammahi. Spline technique for second type Fredholm integral equation. Journal of
Kufa for Mathematics and Computer, vol. 7, No. 1, Mar., 2020, pp. 31-40.

31. M. Arrai, C. Allouch, H. Bouda, M. Tahrichi. Legendre-Kantorovich method for Fredholm integral equations of the
second kind. Mathematical modeling and computing, 2022, Vol. 9, No. 3, pp. 471–482.

32. Balasim Taha Abdilrazak. Approximate solutions for solving two types linear integral equations by using Boubaker
polynomials method, Journal of Engineering and Sustainable Development Vol. 21, No. 6, 2017.

33. Bulent Yilmaz, Yasin Cetin. Numerical solutions of the Fredholm integral equations of the second type. NTMSCI 5,
No. 3, 284-292 (2017).

34. Faraidun K. Hamasalih, Rahel J. Qadir. On the numerical solution of Volterra and Fredgholm integral equations
using the fractional spline function method. Journal of numerical analysis and approximation theory, vol. 51
(2022) no. 2, pp. 167–180.

35. S. Hatamzadeh-Varmazyar, Z. Masouri. Numerical solution of second kind Volterra and Fredholm integral
equations based on a direct method via triangular functions, Int. J. Industrial mathematics, Vol. 11, No. 2, 2019,
pp. 79-87.

36. Jalil Talab Abdullah1, Ali Hussein Shuaa Al-Taie. A comparison of Numerical Solutions for Linear Fredholm
Integral Equation of the Second Kind. IOP Conf. Series: Journal of Physics: Conf. Series 1279 (2019) 012067, p. 9.

37. Lukonde Peter Alpha. Pell-Lucas Series Solution for Fredholm Integral Equations of the Second Kind. International
Journal of Science and Research ISSN: 2319-7064 SJIF (2020): 7.803, pp. 1376-1383.

38. Majid Amirfakhrian, Seyyed Mahmood Mirzaei. A modified Taylor-series for solving a Fredholm integral equation
of the second kind. Mathematical Analysis and its Contemporary Applications, Volume 4, Issue 4, 2022, pp.
39–48.

39. K. Maleknejad, Y. Mahmoudi. Numerical solution of linear Fredholm integral equation by using hybrid Taylor and
Block - Pulse functions, Applied Mathematics and Computation, 149(2004), pp. 799-806.

40. M. Gulsu, Y. Ozturk. Chebyshev polynomial approximation for solving the second kind linear Fredholm integral
equation, Erciyes University Journal of Institute of Science and Technology, 26(3), pp. 203-216(2010).

41. Peng Guo, Numerical Simulation for Fredholm Integral Equation of the Second Kind, Journal of Applied Mathe-
matics and Physics, 2020, 8, pp. 2438-2446.

42. H. S. Ramane, S.C. Shiralashetti, R. A. Mundewadi, R. B. Jummannaver. Numerical Solution of Fredholm
Integral Equations Using Hosoya Polynomial of Path Graphs, American Journal of Numerical Analysis, 2017, Vol.
5, No. 1, 11-15.

43. Ravikiran A. Mundewadi, Bhaskar A. Mundewadi. Legendre Wavelet Collocation Method for the Numerical
Solution of Integral and Integro-Differential Equations. International Journal of Advanced in Management,
Technology and Engineering Sciences. Volume 8, Issue 1, JAN/2018, pp.151-170.

44. Shihab S. N., Asmaa A. A., Mohammed Ali M. N. Collocation Orthonormal Bernstein Polynomials method for
Solving Integral Equations. Mathematical Theory and Modeling, Vol. 5, No 12, 2015, p. 9.

45. N. K. Volosova, K. A. Volosov, A. K. Volosova, M. I. Karlov, D. F. Pastuhov, Yu. F. Pastuhov. Solution of the
Fredholm Integral Equations Method of Replacing the Integral by a Quadrature with the Twelveth Order of Error in
Matrix Form, Bulletin of Perm University. Mathematics. Mechanics. Computer Science, 2022, 4(59), pp. 9–17.

46. Xing Tao Wang and Yuan Min Li. Numerical Solution of Fredholm Integral Equation of the Second Kind by General
Legendre Wavelets, International Journal of Innovative Computing, Information and Control, Vol. 8, No. 1(B),
Jan. 2012, pp. 799-805.

47. Kholmat Shadimetov, Khojiakbar Usmanov. Quadrature Method for Linear Integral Equations in L(1)
2 (0, 1). AIP

Conference Proceedings, 3004, 060050 (2024)
48. Atkinson,K.E. The Numerical Solution of Integral Equations of the Second Kind, Cambridge Monographs on

Applied and Computational Mathematics, Cambridge University Press, Cambridge (Series number 4), 2009,
551 p.

49. Davis, P.J., Rabinowitz, P. Methods of Numerical Integration Second Edition. Dover Publications, Mineola, New
York, 2007, 612 p.

50. DeBonis,M.C.,Laurita, C. Numerical treatment of second kind Fredholm integral equations systems on bounded
intervals. J. Comput. Appl. Math. Vol. 217, 2008, pp. 64-87

51. De Bonis, M.C., Mastroianni, G. Projection methods and condition numbers in uniform norm for Fredholm and
Cauchy singular integral equations. SIAM J. Numer. Anal. Vol. 44, 2006, pp. 1351–1374

52. Fermo, L., Russo, M.G. Numerical methods for Fredholm integral equations with singular right-hand sides. Adv.
Comput. Math. Vol. 33, 2010, pp. 305–330

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 April 2025 doi:10.20944/preprints202504.2518.v1

https://doi.org/10.20944/preprints202504.2518.v1


24 of 24

53. Golberg M.A. Solution Methods for Integral Equations: Theory and Applications. Springer Science and Business
Media, 2013, 350 p.

54. Kress, R. Linear Integral Equations, Applied Mathematical Sciences. Springer Science and Business Media,
2012, 299 p.

55. Mastroianni, G., Milovanovic, G.V.: Interpolation Processes: Basic Theory and Applications. Springer Mono-
graphs in Mathematics. Springer, Berlin, 2008, 446 p.

56. Occorsio, D., Russo, M.G. Numerical methods for Fredholm integral equations on the square. Appl. Math. Comput.
Vol. 218, 2011, pp. 2318–2333

57. Prossdorf, S., Silbermann, B.: Numerical Analysis for Integral and Related Operator Equations. Akademie-
Verlag and Birkhauser Verlag, Berlin, Basel, 1991, 542 p.

58. Sloan, I.H. A quadrature-based approach to improving the collocation method. Numer. Math. Vol. 54, 1988, pp.
41–56

59. Sloan, I.H., Spence, A. Projection methods for solving integral equations on the half line. IMA J. Numer. Anal. Vol.
6, 1986, pp. 153–172

60. Sloan, I.H., Thomee, V.: Superconvergence of the Galerkin iterates for integral equations of the second kind.
J. Integral Equ. Vol. 9, 1985, pp. 1–23

61. C.A. Micchelli, Y. Xu and Y. Zhao. Galerkin methods for second-kind integral equations, J. Comp. Appl. Math.
Vol. 86, 1997, pp. 251–270.

62. Z. Chen, C.A. Michelli and Y. Xu. Multiscale methods for Fredholm integral equations, Cambridge University
Press, Cambrige, 2015, 537 p.

63. Z. Avazzadeh, M. Heydari, G.B. Loghmani. Numerical solution of Fredholm integral equations of the second kind
by using integral mean value theorem, Applied Mathematical Modelling, 2011, Vol. 35, issue 5, pp. 2374-2383.

64. X.Z. Liang, M.C. Liu, X.J. Che. Solving second kind integral equations by Galerkin methods with continuous
orthogonal wavelets, J. Comput. Appl. Math, 2001, Vol. 136, pp. 149-161.

65. K. Maleknejad, M. Tavassoli Kajani. Solving second kind integral equations by Galerkin methods with hybrid
Legendre and Block-Pulse functions, Appl. Math. Comput., 2003, Vol. 145, pp. 623-629.

66. A. Golbabai, S. Seifollahi. Numerical solution of the second kind integral equations using radial basis function
networks, Appl. Math. Comput., 2006, Vol. 174, pp. 877-883.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 April 2025 doi:10.20944/preprints202504.2518.v1

https://doi.org/10.20944/preprints202504.2518.v1

	Introduction
	Compound quadrature formulas of Hermite type
	On one method of construction of weighted optimal quadrature formulas with derivatives
	Method of construction of weighted optimal quadrature formulas derivative formulas
	Optimal coefficients of weighted quadrature derivative formulas
	Application of the quadrature formula with derivatives to linear Fredholm equations of the second kind
	Numerical results
	Conclusion
	References

