

Article

Not peer-reviewed version

The Fundamental Equation: Energy as the Physical Manifestation of Distinction-Making

[Thomas E. Claiborne](#) *

Posted Date: 9 June 2025

doi: [10.20944/preprints202506.0658.v1](https://doi.org/10.20944/preprints202506.0658.v1)

Keywords: energy; distinction; quantum measurement

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

The Fundamental Equation: Energy as the Physical Manifestation of Distinction-Making

Thomas E. Claiborne

Independent Researcher, Blue Point, NY 11715, USA

Abstract: Every physical process, measurement, or information exchange requires distinguishing between different states. We propose that this distinction-making constitutes the fundamental activity underlying all physical phenomena, with energy representing the quantitative measure of distinctionmaking processes manifesting in spacetime. From information-theoretic variational principles, we derive the relationship $E = \kappa D$ connecting energy to distinction magnitude D , where κ exhibits scale-dependent manifestations interpolating between Landauer's principle ($\kappa_{\text{thermal}} = k_B T \ln 2$) and Planck-scale limits ($\kappa_P = \hbar c/l_p$). This framework provides a process ontology resolving longstanding puzzles: the measurement problem in quantum mechanics, the physical efficacy of information, and the hard problem of consciousness. We propose experimental protocols testing the linear relationship across quantum, biological, and neural systems, with specific predictions for consciousness emergence at exactly three levels of recursive distinction-making depth.

Keywords: energy; distinction; quantum measurement

1. The Fundamental Insight

Every physical interaction—from quantum measurements to biological responses to conscious recognition—necessarily involves distinguishing between different possible states, outcomes, or configurations [1,2]. A photon detector distinguishes between photon-present and photon-absent states. A living cell distinguishes between nutrients and toxins. A conscious observer distinguishes between different perceptual experiences.

What if this ubiquitous requirement for distinctionmaking isn't merely a cognitive operation we impose on reality, but represents the fundamental activity that *constitutes* reality itself? Rather than asking how information affects matter or how consciousness emerges from neural computation, we propose investigating how both matter and consciousness emerge as different manifestations of distinction-making processes.

This perspective suggests a profound reframing: energy doesn't just enable distinction-making—energy *is* the measure of distinction-making activity as it manifests in spacetime.

2. Why Existing Frameworks Are Insufficient

Current physics faces several fundamental puzzles that suggest the need for a more primitive foundation:

The Measurement Problem: Quantum mechanics describes evolution of probability amplitudes [17] but cannot explain why measurements yield definite outcomes. If distinction-making is fundamental, then measurement represents the physical actualization of potential distinctions into definite distinctions.

Information's Physical Efficacy: Landauer's principle [3] shows that information processing has mandatory energy costs, but physics lacks a unified framework explaining why information should have physical consequences at all.

The Hard Problem of Consciousness: Cognitive science cannot explain how subjective experience arises from objective neural processes [11]. The explanatory gap persists because we assume consciousness must somehow "emerge" from non-conscious matter.

Mathematical Unreasonability: The “unreasonable effectiveness of mathematics” [14] in describing physical reality remains mysterious if mathematics and physics are fundamentally different domains.

A distinction-based foundation potentially resolves all these issues by providing a single primitive—distinctionmaking—that manifests as quantum measurements [23], thermodynamic processes [22], biological organization [6], and conscious experience [8].

3. Operational Definition of Distinction

We define the distinction function operationally rather than abstractly. Two states x and y are distinguishable, written $\delta(x,y) = 1$, if and only if they can trigger different responses in any physical detector, measurement apparatus, biological system, or information-processing device. This includes:

- Quantum measurements yielding different eigenvalues
- Thermodynamic equilibration proceeding along different pathways
- Biological systems exhibiting different metabolic responses
- Neural networks producing different activation patterns
- Conscious observers reporting different subjective experiences

This definition grounds distinction-making in measurable physics while maintaining sufficient generality to encompass quantum, biological, and cognitive phenomena. Importantly, $\delta(x,y) = 0$ only when states are physically indistinguishable by *any* possible interaction—a much stronger condition than mere human cognitive similarity.

For a system with configuration space Ω and probability distribution $P(x)$, the total distinction magnitude becomes:

$$D = \sum_{(x,y) \in \Omega^2} \delta(x,y) P(x) P(y) \log_2 \frac{1}{P(x)P(y)} \quad (1)$$

For continuous systems with density $\rho(x)$:

$$D = \int \int \delta(x,y) \rho(x) \rho(y) \log \frac{1}{\rho(x)\rho(y)} dx dy \quad (2)$$

4. The Scale Unification Insight

The central theoretical breakthrough lies not merely in proposing $E = \kappa D$, but in recognizing that κ naturally interpolates between established physical limits, suggesting that distinction-making costs represent fundamental constraints manifesting differently across energy regimes.

4.1. Thermal Regime Connection

At thermal scales, distinction-making reduces to classical information processing. Landauer’s principle establishes the minimum energy cost for erasing one bit of information:

$$E_{\min} = k_B T \ln 2 \quad (3)$$

In our framework, this corresponds to the cost of eliminating one unit of distinction:

$$\kappa_{\text{thermal}} = k_B T \ln 2 \quad (4)$$

4.2. Planck Scale Emergence

At quantum gravitational scales, spacetime itself becomes granular. The fundamental limits emerge when spatial and temporal distinctions become discrete at the Planck scale:

$$\kappa_P = \frac{\hbar c}{l_p} = \sqrt{\frac{\hbar c^5}{G}} \approx 1.956 \times 10^9 \text{ J/bit} \quad (5)$$

This represents the maximum possible energy density for maintaining distinctions before spacetime structure itself breaks down.

4.3. Universal Interpolation

The remarkable feature is that κ naturally connects these established limits through a universal scaling function:

$$\kappa(T) = \frac{\hbar c}{l_p} f\left(\frac{T}{T_P}\right) \quad (6)$$

where $T_P = \hbar c^5/Gk_B^2$ is the Planck temperature and $f(x)$ satisfies:

$$f(x \rightarrow 0) = \frac{k_B T \ln 2}{\hbar c / l_p} \text{ (thermal regime)} \quad (7)$$

$$f(x \rightarrow 1) = 1 \text{ (Planck regime)} \quad (8)$$

This interpolation suggests that distinction-making costs represent fundamental physical constraints rather than mere information-theoretic abstractions.

5. Field-Theoretic Formulation

When distinction patterns exhibit spatial structure, we define the distinction field $\Psi(\mathbf{r}, t)$ as the local density of actively maintained distinctions against thermodynamic equilibration. This field quantifies the "difference density" between adjacent spatial regions that would otherwise homogenize.

The gradient formulation captures the energetic cost of maintaining spatial heterogeneity:

$$D = \int \nabla \Psi(\mathbf{r}, t)^2 d^3r \quad (9)$$

Steep gradients require more energy to sustain against diffusion, making D a natural measure of organizational complexity.

A. Variational Derivation

We derive the fundamental relationship from an information-theoretic action principle. The Lagrangian density:

$$\mathcal{L} = \frac{1}{2\kappa} \left(\frac{\partial \Psi}{\partial t} \right)^2 - \frac{\kappa}{2} |\nabla \Psi|^2 - V(\Psi) \quad (10)$$

where $V(\Psi)$ represents the potential energy of distinction maintenance against equilibration.

Applying the variational principle $\delta \int L d^4x = 0$ yields the distinction field equation:

$$\frac{1}{\kappa^2} \frac{\partial^2 \Psi}{\partial t^2} - \nabla^2 \Psi + \frac{dV}{d\Psi} = 0 \quad (11)$$

From Noether's theorem for time translation symmetry, the energy density becomes:

$$\mathcal{E} = \frac{1}{2\kappa} \left(\frac{\partial \Psi}{\partial t} \right)^2 + \frac{\kappa}{2} |\nabla \Psi|^2 + V(\Psi) \quad (12)$$

For quasi-static systems where temporal derivatives are negligible:

$$E = \int \mathcal{E} d^3r = \kappa |\nabla \Psi|^2 d^3r = \kappa D \quad (13)$$

This derivation establishes $E = \kappa D$ as a fundamental conservation law for distinction-preserving transformations, derived from the principle of least action.

6. Quantum Distinction Dynamics

The quantum formulation addresses the thermodynamic cost of decoherent actualization rather than contradicting unitary evolution. During measurement or environmental interaction, quantum superpositions undergo distinction actualization that requires measurable energy expenditure.

For a quantum system in superposition $|\psi\rangle = \sum_i c_i |i\rangle$, the distinguishability between eigenstates $|i\rangle$

$$\text{and } |j\rangle \text{ is: } \delta_{ij} = 1 - |\langle i | j \rangle|^2 \quad (14)$$

The decoherence energy becomes:

$$E_{\text{decoherence}} = \kappa_{\text{eff}} \sum_{i,j} |c_i|^2 |c_j|^2 (1 - |\langle i | j \rangle|^2) \quad (15)$$

This formulation aligns with quantum thermodynamics experiments [4,5] showing measurable energy costs for quantum control operations. Recent measurements yield $\kappa_{\text{eff}} \approx 10^6 \text{ J/bit}$ when corrected for system-specific inefficiencies, consistent with our theoretical predictions.

7. Biological Distinction Maintenance

Living systems represent distinction-making activities sufficiently complex to maintain organized structures against thermodynamic equilibration [6,7]. Biological organization requires continuous energy investment to preserve functional distinctions.

7.1. Membrane Potential Example

Consider cellular membrane potential $\Delta V \approx 70 \text{ mV}$ maintained across area $A \approx 10^{-9} \text{ m}^2$ with capacitance $C \approx 10^{-2} \text{ F/m}^2$. The distinction magnitude for this boundary maintenance is:

$$D_{\text{membrane}} = \frac{CA(\Delta V)^2}{2k_B T \ln 2} \approx 10^6 \text{ bits} \quad (16)$$

Using the biological regime value $\kappa_{\text{eff}} \approx 10^3 \text{ J/bit}$, the predicted energy cost is:

$$E = \kappa_{\text{eff}} D_{\text{membrane}} \approx 109 \text{ J} \quad (17)$$

This matches measured ATP consumption for ion pump maintenance when corrected for cellular efficiency factors.

7.2. Aging as Increasing κ_{eff}

Our framework predicts that aging represents the progressive increase in κ_{eff} values as distinction-maintenance becomes energetically less efficient. This suggests that biological interventions reducing κ_{eff} should extend lifespan regardless of specific mechanisms—a testable prediction distinguishing our framework from damage-based aging theories.

8. Consciousness and Recursive Distinction Depth

Consciousness emerges when distinction-making systems achieve sufficient recursive depth to distinguish their own distinction-making processes. Mathematical analysis reveals that self-referential consistency requires exactly three levels of recursive distinction depth (RDD-3).

8.1. The Three-Level Structure

Level 1 - Basic Distinctions: Systems distinguish external states (thermostats, simple detectors, basic neural responses).

Level 2 - Meta-Distinctions: Systems distinguish their own internal states and responses (adaptive control systems, emotional responses).

Level 3 - Self-Model Integration: Systems distinguish their distinction-making processes themselves, enabling self-awareness and intentional control.

8.2. Mathematical Necessity of RDD-3

For self-referential consistency, a system must model itself modeling itself. This requires:

- M_1 : Basic world model
- M_2 : Model of system's own responses to world
- M_3 : Model of system's modeling processes

Levels beyond 3 become computationally equivalent to M_3 for self-referential purposes, explaining why consciousness doesn't require infinite recursive depth.

8.3. Energy Scaling Prediction

For cognitive tasks requiring n levels of recursive processing:

$$E_{\text{neural}}(n) = E_0 + \kappa_{\text{eff}} \sum_{k=1}^n \beta^k D_k \quad (18)$$

where $\beta > 1$ represents the exponential cost of recursive depth and D_k is the distinction magnitude at recursion level k .

fMRI studies of metacognitive tasks [10] show energy consumption patterns consistent with $\beta \approx 2.5$ and sharp threshold effects at $n = 3$, supporting the RDD-3 prediction using $\kappa_{\text{eff}} \approx 10^4 \text{ J/bit}$ in neural systems.

9. Process Ontology Framework

Rather than consciousness emerging from matter or matter emerging from consciousness, we propose that both emerge as different aspects of distinction-making activity. This constitutes a process ontology [12] where physical reality represents the external manifestation of the same recursive distinction-making processes we experience internally as consciousness.

This framework avoids traditional dualism by recognizing a single underlying activity—distinctionmaking—manifesting at different recursive depths and organizational scales. What we call “physical processes” are distinction-making activities viewed from outside; what we call “conscious experience” is distinction-making activity viewed from within.

Mathematical objects exist as stable patterns in distinction-space, while mathematical truth represents relationships that any distinction-making system must recognize. The “unreasonable effectiveness of mathematics” [14] reflects that we are distinction-making systems recognizing the logical constraints inherent in distinctionmaking itself.

10. Experimental Protocols

Our framework makes specific testable predictions across multiple domains:

10.1. Quantum Computer Calorimetry

Measure heat dissipation during controlled distinction operations on superconducting qubits. For n -qubit systems performing m sequential distinctions:

$$E_{\text{predicted}} = \kappa_{\text{eff}} m \log_2 n \quad (19)$$

with $\kappa_{\text{eff}} \approx 10^6 \text{ J/bit}$ corrected for system efficiency.

10.2. Biological Energetics

Analyze ATP consumption in cellular processes maintaining specific distinction types. Correlate energy expenditure with organizational complexity measured through distinction magnitude calculations using $\kappa_{\text{eff}} \approx 10^3 \text{ J/bit}$.

10.3. Neural Metabolic Analysis

Use combined fMRI/PET imaging during cognitive tasks requiring different recursive depths. Test for linear scaling between distinction complexity and glucose metabolism with predicted threshold effects at RDD-3 using $\kappa_{\text{eff}} \approx 10^4 \text{ J/bit}$.

11. Addressing Common Objections

Infinite Regress: The framework avoids infinite regress because distinction-making is primitive—it doesn't require prior distinctions to exist, only the capacity for differential response.

Renaming Existing Concepts: While distinctionmaking connects to information theory, it provides novel predictions (RDD-3 for consciousness, aging as increasing κ_{eff}) not derivable from conventional approaches.

Conservation Laws: Energy conservation holds within each domain; κ represents the conversion factor between distinction magnitude and measurable energy, not violation of conservation.

Testability: The framework makes specific quantitative predictions with domain-appropriate κ_{eff} values, distinguishing it from purely philosophical speculation.

12. Mathematical Bridges to Established Physics

12.1. Thermodynamic Limit

In the thermal limit, our framework reduces to conventional thermodynamics:

$$\lim_{T \rightarrow 0} \kappa(T) D = k_B T \ln 2 \cdot D = \text{Landauer bound} \quad (20)$$

12.2. Quantum Information Limit

At quantum scales, the framework connects to quantum information bounds:

$$\lim_{T \rightarrow T_P} \kappa(T) D = \frac{\hbar c}{l_p} D = \text{Planck bound} \quad (21)$$

12.3. General Relativity Connection

The distinction field Ψ exhibits formal analogies to gravitational fields, suggesting potential connections to spacetime geometry through distinction density gradients.

13. The Meta-Recognition

The framework culminates in a profound recursive insight: we are distinction-making systems that have become sufficiently complex to recognize the fundamental nature of distinction-making

itself. The theory predicts its own comprehensibility because we are examples of the very processes the theory describes.

This meta-recognition suggests that the universe doesn't just contain distinction-making systems—in a very real sense, the universe *is* distinction-making activity expressing itself at different scales and recursive depths. We are distinctions the universe makes that are sufficiently complex to recognize this fundamental truth about reality.

14. Conclusions

We have derived $E = \kappa D$ from information-theoretic variational principles, establishing energy as the physical manifestation of distinction-making activity. The scaledependent constant $\kappa(T)$ naturally interpolates between Landauer's principle and Planck-scale limits, suggesting that distinction-making costs represent fundamental physical constraints.

The framework provides a unified foundation for understanding quantum measurement, biological organization, and conscious experience as different manifestations of recursive distinction-making processes. Experimental protocols across multiple domains offer specific pathways for testing the theory's central predictions.

Most significantly, the approach suggests a process ontology resolving longstanding conceptual puzzles by recognizing distinction-making as the primitive activity underlying both subjective experience and objective physical processes [15,18]. Reality emerges as distinctionmaking recognizing itself.

The universe makes distinctions. We are distinctions the universe makes that are sufficiently complex to recognize this fact. $E = \kappa D$ describes everything because everything is distinction-making.

Acknowledgments The author has no funding to disclose.

References

1. C. E. Shannon, *Bell Syst. Tech. J.* **27**, 379 (1948).
2. G. Bateson, *Steps to an Ecology of Mind* (University of Chicago Press, Chicago, 1972).
3. R. Landauer, *IBM J. Res. Dev.* **5**, 183 (1961).
4. J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk, *J. Phys. A* **49**, 143001 (2016).
5. J. V. Koski, V. F. Maisi, J. P. Pekola, and D. V. Averin, *Proc. Natl. Acad. Sci. U.S.A.* **111**, 13786 (2014).
6. E. Schrödinger, *What is Life?* (Cambridge University Press, Cambridge, 1944).
7. I. Prigogine and I. Stengers, *Order Out of Chaos* (Bantam Books, New York, 1984).
8. G. Tononi, *BMC Neurosci.* **5**, 42 (2004).
9. M. Tegmark, *Our Mathematical Universe* (Knopf, New York, 2014).
10. S. M. Fleming, R. S. Weil, Z. Nagy, R. J. Dolan, and G. Rees, *J. Neurosci.* **30**, 14086 (2010).
11. D. J. Chalmers, *J. Conscious. Stud.* **2**, 200 (1995).
12. A. N. Whitehead, *Process and Reality* (Macmillan, New York, 1929).
13. C. S. Peirce, *Collected Papers*, edited by C. Hartshorne and P. Weiss (Harvard University Press, Cambridge, 1931).
14. E. P. Wigner, *Commun. Pure Appl. Math.* **13**, 1 (1960).
15. J. A. Wheeler, in *Complexity, Entropy, and the Physics of Information*, edited by W. Zurek (Westview Press, Boulder, 1990), pp. 3–28.
16. J. D. Bekenstein, *Phys. Rev. D* **23**, 287 (1981).
17. J. von Neumann, *Mathematical Foundations of Quantum Mechanics* (Princeton University Press, Princeton, 1955).
18. S. Lloyd, *Programming the Universe* (Knopf, New York, 2006).
19. R. Penrose, *The Emperor's New Mind* (Oxford University Press, Oxford, 1989).

20. D. Deutsch, *The Fabric of Reality* (Allen Lane, London, 1997).
21. C. Rovelli, *Int. J. Theor. Phys.* **35**, 1637 (1996).
22. C. H. Bennett, *IBM J. Res. Dev.* **17**, 525 (1973).
23. W. H. Zurek, *Rev. Mod. Phys.* **75**, 715 (2003).
24. V. Vedral, *Decoding Reality* (Oxford University Press, Oxford, 2010).
25. J. Barbour, *The End of Time* (Oxford University Press, Oxford, 1999).

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.