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Abstract: Following Dirac’s notation in Quantum Mechanics (QM), we propose the Probability
Bracket Notation (PBN), by defining a probability-bra (P-bra), P-ket, P-bracket, P-identity, etc. . . Using
the PBN, many formulas, such as normalizations and expectations in systems of one or more random
variables, can now be written in abstract basis-independent expressions, easy to expand by inserting
a proper P-identity. The time evolution of homogeneous Markov processes can also be formatted
in such a way. Our system P-kets are identified with probability vectors and our P-bra system is
comparable with Doi’s state function or Peliti’s standard bra. In the Heisenberg picture of the PBN, a
random variable becomes a stochastic process, and the Chapman-Kolmogorov equations are obtained
by inserting a time-dependent P-identity. Also, some QM expressions in Dirac notation are naturally
transformed to probability expressions in PBN by a special Wick rotation. Potential Applications
show the usefulness of the PBN beyond the constrained domain and range of Hermitian operators on
Hilbert Spaces in QM all the way to IT.

Keywords: bra-ket notation; chapman-kolmogorov theorem; information technology; markov
processes; quantum mechanics; wick rotation

1. Introduction

The postulates of Quantum Mechanics (QM) were established in terms of Hilbert Spaces and
linear Hermitian operators. Values of physical observables such as energy and momentum were
considered as eigenvalues, more precisely as spectral values of linear operators in a Hilbert space.
Dirac’s vector bracket notation (VBN) is a very powerful tool to manipulate vectors in Hilbert spaces.
It has been widely used in QM and quantum field theories. The main beauty of the VBN is that many
formulas can be presented in an abstract symbolic fashion, independent of state expansions or basis
selections, which, when needed, can be easily done by inserting an appropriate v-identity operator [1,
p.96]

v-Bracket : ⟨ψA|ψB⟩ ⇒ v-bra : ⟨ψA| , v-ket : |ψB⟩ (1)

where : ⟨ψA|ψB⟩ = ⟨ψB|ψA⟩∗, ⟨ψA| = |ψA⟩† (2)

v-basis & v-identity: Ĥ|εi⟩ = εi|εi⟩, ⟨εi|ε j⟩ = δij, ÎH = ∑
i
| εi⟩ ⟨εi| (3)

Normalization: 1 = ⟨Ψ|Ψ⟩ = ⟨Ψ| ÎH |Ψ⟩ = ∑i ⟨Ψ|εi⟩⟨εi|Ψ⟩ = ∑i |ci|2 (4)

Expectation: ⟨H⟩ ≡ H̄ ≡ ⟨Ψ|Ĥ|Ψ⟩ = ∑i ⟨Ψ|Ĥ|εi⟩⟨εi|Ψ⟩ = ∑i εi |ci|2 (5)

where † denotes the Hermitian adjoint and ∗ is the complex conjugate. However, when applying
operators, the more mathematically minded worried if the transformation yielded a result contained
within a Hilbert Space or subspace. They had to consider if the operator was bounded or unbounded,
etc. . . One had to develop an entire spectral theory for Hermitian operators in a Hilbert space[2].

Inspired by the great success of the VBN in QM, we now propose the Probability Bracket Notation
(PBN). The latter relies on a sample space which is less constrained than a Hilbert space. Assuming X is

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 April 2024                   doi:10.20944/preprints202404.1399.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0001-8673-925X
https://orcid.org/0000-0002-0228-1673
https://doi.org/10.20944/preprints202404.1399.v1
http://creativecommons.org/licenses/by/4.0/


2 of 16

a random variable (R.V), Ω is the set of all its outcomes and P(xi) is the probability of xi ∈ Ω. Then
we can make an expression like Equation (4):

∑i P(xi) = ∑i P(xi|Ω) = ∑i P(Ω|xi)(xi|Ω) = P(Ω|
{
∑i | xi)P(xi|

}
|Ω) = P(Ω|Ω) = 1

Here we have used the definition of conditional probability for A, B ⊆ Ω [3, p.91].

P(A|B) ≡ P(A ∩ B)/P(B), ∴ P(xi|Ω) = P(xi), P(Ω|xi) = 1 for ∀xi ∈ Ω (6)

Therefore, we seem to have discovered a probability “identity operator”:

IX ≡ ∑i | xi)P(xi| ⇒ P(Ω|Ω) = P(Ω|IX |Ω) = ∑i P(Ω|xi)P(xi|Ω)=
(6)

∑i P(xi) = 1

Then, following Dirac’s notation, we define the probability bra (P-bra), P-ket, P-bracket (as conditional
probabilities by nature), P-basis, the system P-ket, P-identity, normalization, expectation and more,
similar but not identical to their counterparts in Equations (1) - (5). In Section 2, for systems of one
R.V, we show that the PBN has an advantage similar to that of the VBN: miscellaneous probability
expressions [3–5] now can be presented in an abstract way, independent of P-basis and can expanded
by inserting a suitable P-identity.

Next, in Section 3, we investigate the time evolution of homogeneous Markov chains (HMC) [3–5].
We realize that the time evolution of a continuous-time HMC can be written in a symbolic abstract
expression (in Section 3.2), just like the stationary Schrödinger equation in the VBN:

ih̄
∂

∂t
|Ψ(t)⟩ = Ĥ|Ψ(t)⟩ =

[
− h̄2

2m
∂2

∂x2 − V(x)

]
|Ψ(t)⟩

|Ψ(t)⟩ = U(t)|Ψ(0)⟩ = exp
[
−i
h̄

Ĥ t
]
|Ψ(0)⟩ (7)

We also find that our time-dependent system P-kets can be identified with probability vectors ([3]). Our
system P-bra is closely related to the state function or standard bra introduced in Doi-Peliti Techniques
[6–8]. We show that by transforming from the Schrödinger picture to the Heisenberg picture in the
PBN, the time-dependence of a system P-ket relocates to the R.V, which becomes a stochastic process;
the Chapman-Kolmogorov Theorem [4,5,9] for transition probabilities can be derived by just inserting
a time-dependent P-identity. Section 5 shows that a Schrödinger equation transforms to a master
equation by making a special Wick rotation. Section 6 showcases the potential applications of the PBN,
such as handling non-Hermitian operators and clustering text datasets. Discussion and concluding
remarks are made at the end.

2. Probability Bracket Notation and Random Variable (R.V)

2.1. Discrete random variable

We define a probability space (Ω, X, P) of a discrete random variable (R.V, or observable) X as
follows: the set of all elementary events ω, associated with a discrete random variable X, is the sample
space Ω, and

For ∀ωi ∈ Ω, X(ωi) = xi ∈ ℜ, P : ωi 7→ P(ωi) = m(ωi) ≥ 0, ∑i m(ωi) = 1 (8)

Definition 1. (Probability event-bra and evidence-ket) : Let A ⊆ Ω and, B ⊆ Ω,

1. The symbol P(A| represents a probability event bra, or P-bra;
2. The symbol |B) represents a probability evidence ket, or P-ket.
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Definition 2. (Probability Event-Evidence Bracket): The conditional probability (CP) of event A given
evidence B in the sample space Ω can be treated as a P-bracket, and it can be split into a P-bra and a P-ket,
similar to a Dirac bracket. For A, B ⊆ Ω, we define:

P-bracket: P(A|B) ⇒ P-bra: P(A| , P-ket: |B) Note: P(A| ̸= |A)†

Here: P(A|B) ≡ P(A ∩ B)
P(B)

(a conditional probability by nature) (9)

As a CP, the P-bracket has the following properties for A, B ⊆ Ω:

P(A| B) = 1 if A ⊇ B ⊃ ∅ (10)

P(A| B) = 0 if A ∩ B = ∅ (11)

Definition 3. System P-ket: For any subset, the probability P(E) can be written as a conditional probability,
or a P-bracket:

P(E) = P(E|Ω) (12)

Here |Ω) is called the system P-ket. The P-bracket defined in Equations (9) now becomes:

P(A|B) =
P(A ∩ B)

P(B)
=

P(A ∩ B|Ω)

P(B|Ω)
(13)

We have the following important property expressed in PBN:

For ∀B ⊆ Ω and B ̸= ∅, P(Ω|B) = 1 (14)

The Bayes formula (see [3, Sec.(2.1)]) now can be expressed as:

P(A|B) ≡ P(B|A)P(A)

P(B)
=

P(B|A)P(A|Ω)

P(B|Ω)
(15)

The set of all elementary events in Ω forms a complete mutually disjoint set:⋃
ωi∈Ω

ωi = Ω, ωi ∩ ωj = δij ωi, ∑i m(ωi) = 1 . (16)

Definition 4. (Discrete P-Basis and P-Identity): Using Equations (8-11), we have the following properties
for basis elements in (Ω, X, P):

X(ωj) = xj → X|ωj) = xj|ωj), P(Ω|ωj) = 1, P(ωi|Ω) = m(ωi) (17)

In view of the one-to-one correlation between xj and ωj, from now on, we will use xj to label basis
elements, just like labeling eigenstates in Equation (3) in the VBN for QM:

X(xj) = xj → X|xj) = xj|xj), P(Ω|xj) = 1, P(xi|Ω) = m(xi) (18)

Here X behaves like a right-acting operator. The complete mutually-disjoint events in (16-18) form a
probability basis (or P-basis) and a P-identity, similar to Equation (3) in QM:

P(xi| xk) = δi k, ∑x∈Ω | x)P(x| = ∑i |xi)P(xi| = IX . (19)

The system P-ket, |Ω), now can be expanded from left as:

|Ω) = IX |Ω) = ∑
i
| xi)P(xi|Ω) = ∑

i
m(xi)|xi) (20)
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While the system P-bra, has its expansion from right as:

P(Ω| = P(Ω| IX = ∑i (Ω| xi)P(xi| =
(14)

∑i P(xi| (21)

The two expansions are quite different, and P(Ω| ̸= [|Ω)]†. But their P-bracket is consistent with the
requirement of normalization, similar to Equation (4) in the VBN:

1 = P(Ω) ≡ P(Ω| Ω) = ∑N
i,j=1 P(xi|m(xj)|xj) = ∑N

i,j=1 m(xj) δi j = ∑N
i=1 m(xi) (22)

Definition 5. (Expectation Value): Analogous to Equation (5) in QM, the expected value of the R.V or
observable X in (Ω, X, P) now can be expressed as:

⟨X⟩ ≡ X̄ ≡ E[X] = P(Ω|X|Ω) = ∑x∈Ω P(Ω|X|x)P(x|Ω) = ∑x∈Ω x m(x) (23)

If f (X) is a continuous function of observable X, then it is easy to show that:

⟨ f (X)⟩ ≡ E[ f (X)] ≡ P(Ω| f (X)|Ω) = ∑x∈Ω f (x)m(x) (24)

2.2. Independent random variables

Let X⃗ = {X1, X2, . . . Xn} be a vector of independent random variables and the sample space (i.e.,
the set of possible outcomes) of Xi is the set Ωi. Then the joint probability distribution can be denoted as:

P(x1, ..., xN |Ω) = P(X1 = x1, ..., Xn = xn|Ω), |Ω) = |Ω1 ⊗ . . . ⊗ Ωn) (25)

The joint probability of independent R.V are factorable, e.g.:

P(xi, xk|Ω) = P(xi|Ωi) P(xk|Ωk) = P(xi) P(xk) (26)

The factorable system have the following factorable expectation, for example:

P(Ω|XiXjXk|Ω) = P(Ωi|Xi|Ωi)P(Ωj|Xj|Ωi)P(Ωk|Xk|Ωk) (27)

As an example, in Fock space, we have the following basis from the occupation numbers

⟨Ni⟩ ≡ P(Ω|Ni|Ω) = P(Ωi|Ni|Ωi) = P(Ωi|Ni Ii|Ωi) = ∑ni
ni P(ni|Ωi) (28)

The expectation value of an occupation number now is given by:

⟨Ni⟩ ≡ P(Ω|Ni|Ω) = P(Ωi|Ni|Ωi) = P(Ω|Ni Ii|Ωi) = ∑ni
ni P(ni|Ωi) (29)

Moreover, if sets A and B are mutually independent in Ω, we have following equivalence:

P(A| B) = P(A|Ω) ⇔ P(A ∩ B|Ω) = P(A|Ω)P(B|Ω) (30)

2.3. Continuous P-basis and P-Identity

Equations (17-19) can be extended to the probability space (Ω, X, P) of a continuous random
variable X,

X(x) = x → X|x) = x|x), P(Ω|x) = 1, P : x 7→ P(x) ≡ P(x|Ω) (31)

P(x|x′) = δ(x − x′),
∫

x∈Ω
| x) dx P(x| = IX (32)
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We see that it is consistent with the normalization requirement:

P(Ω|Ω) = P(Ω|IX |Ω) =
∫

P(Ω|x) dx P(x|Ω) =
∫

x∈Ω
dx P(x|Ω) =

∫
x∈Ω

dx P(x) = 1 (33)

The expected value E(X) can be easily extended from (23):

⟨X⟩ ≡ X̄ ≡ E[X] = P(Ω|X|Ω) =
∫

x∈Ω
P(Ω|X|x)dx P(x|Ω) =

∫
x∈Ω

dx x P(x) (34)

The basis-independent expressions in the PBN are similar to those in Dirac VBN, among them are the
expectation and normalization formulas in the two notations:

PBN : ⟨ f (X)⟩ ≡ E[ f (X)] = P(Ω| f (X)|Ω), P(Ω|Ω) = 1 , (35)

VBN: ⟨ f (X̂)⟩ ≡ E[ f (X̂)] = ⟨ψ| f (X̂)|ψ⟩, ⟨ψ|ψ⟩ = 1 . (36)

Of course, there exist differences between the PBN and Dirac VBN. For example, the expansions of bra,
ket and normalization have their own expressions:

PBN : |Ω) =
∫

dx|x)P(x|Ω), P(Ω| =
∫

dxP(x|, P(Ω|Ω) =
∫

dxP(x|Ω) = 1 , (37)

VBN : |ψ⟩ =
∫

dx|x⟩⟨x|ψ⟩, ⟨ψ| =
∫

dx⟨ψ|x⟩⟨x|, ⟨ψ|ψ⟩ =
∫

dx|⟨ψ|x⟩|2 = 1 . (38)

2.4. Conditional probability and expectation

The conditional expectation of X given H ⊂ Ω in the continuous basis (31) can be expressed as
([5, p.61]):

E[X|H] ≡ P(Ω|X|H) =
∫

P(Ω|X|x)dx P(x|H) =
∫

x dx P(x|H) (39)

where: P(x|H)=
(9)

P(x ∩ H|Ω)

P(H|Ω)
(conditional probability) (40)

To get familiar with the PBN, let us see two simple examples.

2.4.1. Example: Rolling a Die, (Ref. [3, Example 2.6-2.8])

A die is rolled once. We let X denote the outcome of this experiment. Then the sample space for
this experiment is the 6-element set Ω = {1, 2, 3, 4, 5, 6}. We assumed that the die was fair, and we
chose the distribution function defined by m(i) = 1/6, for i = 1, . . . 6. Using the PBN, we have the
P-identity for this sample space:

6

∑
i=1

|i)P(i | = ID , (41)

and because the six outcomes have the same probability p, we can calculate the probability for each
outcome:

1 = P(Ω| Ω) =
6

∑
i=1

P(Ω|i)P(i |Ω) =
6

∑
i=1

P( i|Ω) = 6p . (42)

Hence, the probability for each outcome has the same value:

P(i) ≡ P(i|Ω) = p =
1
6

. (43)
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Its expectation value can be readily calculated:

P(Ω|X|Ω) =
6

∑
i=1

P(Ω|X|i)P(i|Ω) =
6

∑
i=1

P(Ω|i|i)P(i|Ω)

=
6

∑
i=1

P(Ω|i) i
6
=

6

∑
i=1

i
6

=
21
6

=
7
2

(44)

And the variance can be calculated as:

σ2 = ⟨X2⟩ − X̄2 =
6

∑
i=1

1
6

i2 − 49
4

=
91
6

− 49
4

=
45
4

(45)

2.4.2. Example: Rolling a Die (Examples 2.1 continued,[3, 2.8 continued])

If E is the event that the result of the roll is an even number, then E = {2, 4, 6} and P(E) =

m(2) + m(4) + m(6) = 1/6 + 1/6 + 1/6 = 1
2 . Using the PBN, the probability of event E can be easily

calculated as:

P(E) ≡ P(E|Ω) = P(E| Î|Ω) =
6

∑
i=1

P(E|i)P(i|Ω) (46)

= ∑
i∈E

P(i|Ω) = ∑
i=2,4,6

p = 3 · 1
6

=
1
2

(47)

Applying Equation (40), we can calculate the conditional probabilities P(i|E) as follows:

P(i|E) =
P(E ∧ i|Ω)

P(E|Ω)
=

{
P(i|Ω)

1/2 = 1/6
1/2 = 1

3 , (i even)
0, (i odd)

(48)

Our discussions above can be easily extended to systems of multiple R.V. For example, we can
introduce the following system of three independent discrete R.V:

X|x, y, z) = x|x, y, z), Y|x, y, z) = y|x, y, z), Z|x, y, z) = z|x, y, z) (49)

P(x, y, z) = P(x, y, z|Ω); P(Ω|Ω) = 1; P(Ω|H) = 1 if H ⊆ Ω → P(Ω|x, y, z) = 1

Orthonormality: P(x, y, z| x′, y′, z′) = δx x′ δy y′ δz z′

Completeness: ∑x,y,z | x, y, z)P(x, y, z| = IX,Y,Z (50)

3. Probability Vectors and Homogeneous Markov Chains (HMCs)

For simplicity, from now on, we will only discuss time evolution for one R.V. We assume our
probability space (Ω, N, P) has the following stationary discrete P-basis from a random variable
(possible for state-labeling or occupation-number counting):

N̂|i) = i|i), P(i|j) = δi j, ∑N
i=1 | i)P(i| = I (51)

3.1. Discrete-time HMC

The transition matrix element pij is defined as ([3, p.407]:

pi j ≡ P(Nt+1 = j|Nt = i) ≡ P(j, t + 1|i, t), ∑N
j=1 pij = 1 (52)
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In matrix form, if we define a probability row vector (PRV) at t = 0 as ⟨u(0)| , then matrix P acting on it
from right for k times gives the PRV at time = k ([3, theorem 11.2]):

⟨u(k)| = ⟨u(0)|Pk, or : ⟨u(k)|i⟩ = u(k)
i = u(0)

jPk
ji (53)

Definition 6. Time-dependent System P-ket: we use the following system P-ket, to represent a probability
column vector in probability space (Ω, X, P):

|Ωt) = ∑N
i | i)P(i|Ωt) = ∑N

i m(i, t)|i), P(Ω|Ωt) = ∑N
i m(i, t) = 1 (54)

The time evolution equation (53) now can be written in a basis-independent way:

|Ωt) = (PT)
t|Ω0) ≡ Û(t)|Ω0), t ∈ N; |Ω0) ≡ [⟨u(0)|]

T
(55)

Definition 7. (Time-dependent Expectation): The expectation value of a continuous function f of occupation
number N̂ in (Ω, N, P) can be expressed as:

⟨ f (N̂)⟩ = P(Ω| f (N̂)|Ωt) = ∑i P(Ω| f (i)|i)P(i|Ωt) = ∑i f ( i)m(i, t) (56)

We can map the P-bra and P-ket into the Hilbert space by using Dirac’s notation:

P(Ω| = ∑i P(i| ↔ ⟨Ψ| = ∑i ⟨i|, |Ωt) ↔ |Ψt⟩ = ∑i | i⟩⟨i|Ψt⟩ = ∑i c(i, t)|i⟩ (57)

Then the expectation Equation (56) can be rewritten in Dirac’s notation as:

⟨ f (N̂)⟩ = ⟨Ψt| f (N̂)|Ψt⟩ = ∑i ⟨Ψt| f (i)|i⟩⟨i|Ψt⟩ = ∑i f ( i) |c(i, t)|2 (58)

∴ P(i|Ωt) ≡ m(i, t) = |c(i, t)|2 ≡ |⟨i|Ψt⟩|2, t ∈ N (59)

3.2. Continuous-time HMC

The time-evolution equation of a continuous-time HMC with a discrete basis (see Equation (85)
or Ref. [5, p.221]) can be written as:

∂

∂t
pj(t) = ∑k pk(t)qk j ⇒ ∂

∂t
P(j|Ωt) = ∑k Q̂T

j kP(k|Ωt) (60)

= ∑k P(j|Q̂T |k)P(k|Ωt) = P(j|Q̂T I|Ωt) = P(j|Q̂T |Ωt) ≡ P(j|L̂|Ωt) (61)

Equations (60-61) lead to a basis-independent master equation (see Equation [8, Eq.(2.12)]):

∂

∂t
|Ωt) = L̂|Ωt), |Ωt) = Û(t)|Ω0) = eL̂ t|Ω0), t ≥ 0 (62)

It looks just like Schrödinger’s equation (7) of a conserved quantum system in Dirac’ notation. With
the discrete P-basis of Fock space in Equation (28), Equations (56-59) now can be written as:

|Ωt) = ∑n⃗ m(⃗n, t) |⃗n), P(Ω| = ∑n⃗ (⃗n|, ∴ ⟨ f (⃗n)⟩ = P(Ω| f (⃗n)|Ωt) (63)

Doi’s definition of the state function and state vector ([8,9]) correspond to our system P-bra and P-ket
respectively:

P(Ω| = ∑n⃗ P(⃗n| ↔ ⟨s | ≡ ∑n⃗ ⟨⃗n|

|F(t)⟩ ≡ ∑n⃗ P(⃗n, t)|⃗n⟩ ↔ |Ωt) = ∑n⃗ |⃗n)P(⃗n| Ωt)

∴ ⟨B̂(⃗n)⟩ = ⟨s|B̂(⃗n)|F(t)⟩ = P(Ω|B̂(⃗n)|Ωt) (64)
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Note that the vector-basis here corresponds to the P-basis in Equation (28):

n̂i |⃗n⟩ = ni |⃗n⟩, ∑n⃗ |⃗n⟩⟨⃗n| = I⃗n, ⟨⃗n|⃗n′⟩ = δ⃗n,⃗n′ = ∏
i=1

δni ,ni
′ (65)

In Peliti’s formalism ([8, p.1472]), the vector-basis (from population operator n) is normalized in a
special way, so the expansion of the system P-bra is also changed:

∑n |n⟩
1
n!
⟨n| = In, ⟨m|n⟩ = n!δm,n (66)

P(Ω| = P(Ω| In =
∞

∑
n

P(Ω| n)
1
n!

P(n| =
(2.3)

∞

∑
n

P(n| 1
n!

(67)

Equation (67) can be identified with the standard bra, introduced in [8, Eq.(2.27-28)]:

P(Ω| = ∑n
1
n!

P(n| ↔ ⟨ | ≡ ∑n
1
n!
⟨n|

|Ω) = ∑n |n)
1
n!

P(n| Ω) ↔ |ϕ⟩ = ∑m |m⟩ 1
m!

⟨m|ϕ⟩

∴ E[Â] ≡ ⟨Â⟩ = ⟨ | Â|ϕ⟩ = P(Ω|Â|Ω) (68)

3.3. The Heisenberg Picture

We call Equation (55) and (62) the evolution equations in the Schrödinger picture. Now we introduce
the Heisenberg picture of a R.V (or observable), similar to what is used in QM [1, p.541]:

|Ωt) = Û(t)|Ω0) ⇒ X̂(t) = Û−1(t) X̂ Û(t) (69)

Based on Û(t), we can introduce following time-dependent P-basis:

|x, t) = Û−1(t)|x), P(x|Û(t) = P(x, t|, P(x, t|x′, t) = P(x|x′), P(Ω|x, t) = 1 (70)

P(x′, t|X̂(t)|x, t) = P(x′|Û(t)Û−1(t) X̂ Û(t)Û−1(t)|x) = P(x′|X̂ |x) = xP(x′ |x) (71)

The probability density now can be interpreted in the two pictures:

P(x, t) ≡ P(x|Ωt) = P(x|Û(t)|Ω0) = P(x, t|Ω0) = P(x, t|Ω) (72)

In the last step, we have used the fact that in the Heisenberg picture, |Ω0) = |Ω).

Definition 8. Time-dependent P-Identity: Equation (69-71) also provides us with a time-dependent
P-identity in the Heisenberg Picture:

Discrete: IX(t) = Û−1(t)IXÛ(t) = Û−1(t)∑i |xi)P(xi| Û(t) =
(70)

∑i |xi, t)P(xi, t| (73)

Continuous: IX(t) = Û−1(t)IXÛ(t) = Û−1(t)
∫

|x) dx P(x| Û(t) =
∫

| x, t) dx P(x, t|

Now the expectation value of the stochastic process X(t) can be expressed as:

P(Ω|X̂(t)|Ω) = P(Ω|X̂(t)IX(t)|Ω) =
∫

dx P(Ω|X̂(t) |x, t)P(x, t|Ω)

=
∫

dx x P(x, t|Ω) =
∫

dx x P(x|Ωt) = P(Ω|X|Ωt) (74)

This suggests that a Markov stochastic process can be thought as an operator in the Heisenberg picture,
and its expectation value can be found from its Schrödinger picture. Additionally, if a Markov process
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X(t) ≡ Xt is homogeneous, with independent and stationary increments ([4, p.15]), we can always set
X0 = 0 , and obtain the following useful property:

P(Xt+s − Xs = x) = P(Xt − X0 = x|Ω)

= P(Xt = x|Ω) = P(x, t|Ω) = P(x|Ωt) ≡ P(x, t) (75)

Moreover, there is a relation between their transition probability and probability density:

P(x2, t2|x1, t1) = P(x2 − x1, t2 − t1|Ω) ≡ P(x2 − x1, t2 − t1), (t1 < t2) (76)

3.4. Chapman-Kolmogorov Equations of transition probability [5,9]

These can now be easily obtained by inserting our time-dependent P-identity in Equations (73).
For the HMC of discrete R.V ([5, p.174]):

pm+n
ij ≡ P(j, m + n|i, 0) = P(j, m + n| Î(m)|i, 0) = ∑

k
P(j, m + n|k, m)P(k, m|i, 0)

=
HMC

∑k P(j, n|k, 0)P(k, m|i, 0)=
52

∑k pm
ik pn

k j (Discrete time) (77)

pij(t + s) ≡ P(j, t + s|i, 0) = P(j, t + s| Î(s)|i, 0) = ∑k P(j, t + s|k, s)P(k, s|0, i)

=
HMC

∑k P(j, t|k, 0)P(k, s|0, i) = ∑k pik(s) pk j(t) (Continuous time) (78)

For a Markov process of both continuous R.V and time [9, (Eq.(3.9),p.31]):

P(x, t|y, s) = P(x, t| Î(τ)|y, s) =
∫

P(x, t|z, τ)dz P(z, τ|y, s) where t > τ > s (79)

3.4.1. Absolute probability distribution (APD)

Likewise, we can find the time evolution of APD for a HMC simply by inserting P-identity
I(t = 0) = I(0). For the HMC with discrete states ([5, p.174,214]):

Discrete time : P(i, m) = P(i, m|Ω) = P(m)
i , P(i, 0) ≡ p(0)i

∴ P(m)
i = P(i, m|I(0)|Ω) = ∑k P(i, m|k, 0)P(k, 0|Ω) = ∑k p(0)

k
pm

ki (80)

Note that Equations (80) are identical to Equation (52):

Continuous time : P(xi, t) = P(xi, t|Ω) = P(xi|Ωt), P(xi, 0) ≡ pi(0)

∴ P(xi, t) = P(xi, t|I(0)|Ω) = ∑k P(xi, t|xk, 0)P(xk, 0|Ω) = ∑k pk(0)pki(t) (81)

For a Markov process of both continuous R.V and time ([9, p.26]):

P(x, t) = P(x, t|Ω) = P(x|Ωt), P(x, 0) ≡ p(0)(x) (82)

∴ P(x, t) = P(x, t|I(0)|Ω) =
∫

dyP(x, t|y, 0)P(y, 0|Ω) =
∫

dyP(x, t|y, 0)p(0)(y)

3.5. Kolmogorov Forward and Backward Equations

If the Markov chains are stochastically continuous, then for infinitesimal h, the transition probability
has the Taylor expansions ([4, Sec.(6.8)]; [5, p.217]):

pij(h) = pij(0) + pij
′(0)h + o(h2) = δij + qijh + o(h2) (83)
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Then, using the Chapman-Kolmogorov Equation (78), we have:

pi j(t + h) = ∑
k

pik(t) pk j(h) = ∑
k

pik(t) (δkj + qkjh + o(h2))

= pi j(t) + ∑
k

pik(t) (qkjh + o(h2)) (84)

Therefore, we get following Kolmogorov Forward equations:

p′ i j(t) = lim
h→0

[(pi j(t + h) − pi j(t))/h] = ∑
k

pik(t) qk j (85)

Similarly, we can derive the Kolmogorov Backward equations:

pi j(h + t) = ∑
k

pik(h) pk j(t) ⇒ p′ i j(t) = ∑
k

qik pk j(t) (86)

Using Equations (81) and (83) one can extend Equation (62) to a continuous-time HMC.

3.6. Transition Probability and Path Integrals

From Equation (62) and (70) the transition probability of a Markov process can be expressed as
follows (assuming ta < t0 < tb):

P(xb, tb|xa, tb) = P(xb|U(tb, t0)U−1(ta, t0)|xa) = P(xb|U(tb, ta)|xa) = P(xb|e
∫ tb

ta dtL|xa) (87)

We can divide time interval into small pieces and insert the P-identity N times:

∆t = tn+1 − tn = (tb − ta)/(N + 1) > 0, tN = tb, t0 = ta; xN = xb, x0 = xa, (88)

P(xb, tb|xa, ta) = P(xb, tb|I(tN)..I(t1)|xa, ta) = ∏N
n=1

∫ ∞

−∞
dxnP(xn, tn|xn−1, tn−1)

= ∏N
n=1

∫ ∞

−∞
dxnP(xn|Û(tn, tn−1)|xn−1) = ∏N

n=1

∫ ∞

−∞
dxnP(xn|eL ∆t|xn−1) (89)

It perfectly matches the starting equation of Feynman’s path integral for the transition amplitude in
QM ([10, Eq.(2.4),p.90]):

⟨xb, tb|xa, ta⟩ = ∏N
n=1

∫ ∞

−∞
dxn⟨xn|Û(tn, tn−1)|xn−1⟩ = ∏N

n=1

∫ ∞

−∞
dxn⟨xn|e−

i
h̄ Ĥ ∆t|xn−1⟩ (90)

For a free particle, V(x) = 0, the Schrödinger equation and resulted transition amplitude from
Feynman’s path integral are (see [10, Eq.(2.125)]):

ih̄
∂

∂t
ψ(x) = ⟨x|Ĥ|Ψ(t)⟩ = − h̄2

2m
∂2

∂x2 ψ(x), ⟨x|Ψ(t)⟩ = ψ(x) (91)

⟨xb, tb|xa, ta⟩ =
√

m
2πih̄(tb − ta)

exp

[
im (xb − xa)

2

2h̄(tb − ta)

]
(92)

4. Examples of Homogeneous Markov Processes

Now let us observe some important examples of the HMC using the PBN.

4.1. Poisson Process ([4, p.250], [5, p.161])

It is a counting process, N(t), having following properties:
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1. {N(t), t ≥ 0} is non-negative process with independent increments and N(0) = 0;
2. It is homogeneous and its probability distribution is given by:

m(k, t) ≡ P([N(t + s)− N(s) = k]|Ω) =
independent
increment

P([N(t)− N(0) = k]|Ω)

=
N(0)=0

P([N(t) = k]|Ω) ≡ P(k|Ω(t)) =
Poisson

Distribution

(λt)k

k!
e−λt (93)

It can be shown [5, p.161] that:

µ(t) ≡ N̄(t) = ∑
k

k m(k, t) = λt; σ2(t) ≡ P(Ω|[N(t)− N̄(t)]2|Ω) = λt (94)

It can be shown (see [5, p.215]; [11, Theorem 1.5,p.6]) that Poisson Process has Markov property, and
its transition probability is:

P([N(t + s) = j]|N(t) = i) = P([N(t + s)− N(t) = j − i]|Ω) =
(λt)j−i

(j − i)!
e−λt, if j ≥ i

pij(t) = 0, if j < i (95)

4.2. Wiener-Levy Process (see [5, p.159]; [9, sec.(3.6),p.32])

It is a homogeneous process with independent and stationary increments and W(0) = 0. Its
probability density is a normal (Gaussian) distribution N(0, tσ2):

P(x, t) ≡ P([W(t + s)− W(s) = x]|Ω) =
homogeneous

P([W(t)− W(0) = x]|Ω) (96)

Its stationary increment is defined as:

P(x2, t2|x1, t1) =
1√

2π(t2 − t1)σ
exp

[
− (y2 − y1)

2

2(t2 − t1)σ2

]
, (t1 < t2) (97)

We see that the Wiener-Levy process satisfies Equation (76).

P(x2, t2|x1, t1) = P(x2 − x1, t2 − t1), (t1 < t2) (98)

It can be verified ([5, p.161]) that it is an N(0, tσ2):

µ̃(t) ≡ P(Ω|W(t)|Ω) = 0, σ̃2(t) ≡ P(Ω|W(t)2|Ω) = tσ2 (99)

4.3. Brownian motion ([4, Sec.(10.1), p.524]; [9, p.6,42])

The stochastic process X(t) has X(0) = 0, has stationary and independent increments for t ≥ 0 and
its density function for t > 0 is a normal distribution N(tµ, tσ2), or:

P(x, t) ≡ P(x|Ω(t)) =
1√

2π t σ
exp

[
− (x − µ t)2

2tσ2

]
(100)
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Brownian motions have stationary and independent increments ([4, Sec.(10),p.524,529]), so they are
a HMC and satisfy Equation (76). They are the solution of the following master equation (Einstein’s
diffusion equation, see [9, p.6]) with a drift speed µ:

∂

∂t
P(x, t) = D

∂2

∂x2 P(x, t), D =
σ√
2

. (101)

Here the constant D is called the diffusion coefficient. Equation (101) can be interpreted as a special
HMC case of Equation (62), given in the x-basis:

∂

∂t
P(x|Ωt) =

∫
dx′P(x|L̂|x′)P(x′|Ωt), P(x|L̂|x′) = D

∂2

∂x2 δ(x − x′) (102)

Equation (102) closely resembling Schrödinger’s Equation (7) for a free particle in the x-basis:

ih̄
∂

∂t
⟨x|Ψ(t)⟩ =

∫
dx′⟨x|Ĥ|x′⟩⟨x′|Ψ(t)⟩, P(x|Ĥ|x′) = −h̄2

2m
∂2

∂x2 δ(x − x′) (103)

5. Special Wick Rotation, Time Evolution and Induced Diffusions

The induced microscopic diffusion is defined by the following equation:

∂

∂t
P(x, t) = Ĝ (x)P(x, t), Ĝ =

1
2µh̄

∂2

∂x2 − µh̄ u(x), µh̄ ≡ m
h̄

(104)

The Special Wick Rotation (SWR), caused by the imaginary time rotation Wick rotation (i t → t) [12], is
defined by:

SWR:i t → t, |ψ(t)⟩ → |Ωt), ⟨xb, tb|xa, ta⟩ → P(xb, tb|xa, ta) (105)

Under a SWR, Schrödinger Equation (7) is shifted to the induced micro diffusion (104):

∂

i ∂t
|ψ(t)⟩ =

−1
h̄

Ĥ|ψ(t)⟩ → ∂

∂t
|Ωt) = G|Ωt) (106)

−1
h̄

Ĥ =
h̄∂x

2

2m
− m

h̄
V(x)

m
≡ ∂x

2

2µh̄
− µh̄u(x) → Ĝ =

1
2µh̄

∂2

∂x2 − µh̄u(x) (107)

The simplest example is the Induced Micro Einstein-Brown motion when u(x) = 0 in Equation (104).
Applying (105) to the transition amplitude in Equation (92), we get the transition probability:

P(xb, tb|xa, ta) =

√
1

4πDh̄(tb − ta)
exp

[
− (xb − xa)

2

4Dh̄(tb − ta)

]
(108)

Here we have introduced the induced micro diffusion coefficient,

Dh̄ ≡ 1/(2µh̄) = h̄/(2m) (109)

Similarly, applying (105) to the Schrödinger for free particle, Equation (103), we get the Einstein’s
diffusion equation (102), with Dh̄ → D.

5.0.1. A Special non-Hermitian Case

We can apply Dirac notation and the PBN together to solve the following special quantum system
with a non-Hermitian Hamiltonian:

Ĥ = Ĥ1 − iĤ2; Ĥ1 = Ĥ†
1 ; Ĥ2 = Ĥ†

2 ; [Ĥ1, Ĥ2] = 0; ∂tĤ = 0 (110)
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Then the time-evolution equation can be written as:

ih̄∂t [|Ψt⟩|Ωt)] =
[
Ĥ1|Ψt⟩

]
|Ωt) + |Ψt⟩

[
−iĤ2|Ωt)

]
(111)

It leads to two equations:

∂t|Ψt⟩ = − i
h̄

Ĥ1|Ψt⟩, ∂t|Ωt) =
−1
h̄

Ĥ2|Ωt) =
(106)

Ĝ|Ωt)) (112)

The first is an ordinary Schrodinger equation while the second is a master equation for an induced
micro diffusion. The product of their solutions is the solution of Equation (111). Suppose we have Ĥ1(x)
and Ĥ2(y), then the product of Equation (89) and Equation (90) gives the path-integral expression of
the system:

[⟨xb, tb|P(yb, tb|]e−
∫ tb

ta dt i
h̄ [Ĥ1(x)−iĤ2(y)]|[xa, ta⟩|ya, ta)]

= ∏N
m=1

∫ ∞

−∞
dxm⟨xm|e−

i
h̄ Ĥ1(x)∆t|xm−1⟩∏N

n=1

∫ ∞

−∞
dynP(yn|eĜ(y)∆t|yn−1) (113)

6. Potential Applications

Hermitian operators are sufficient for “pure” eigenvalue states for closed systems where the
energies are conserved and real valued. However, for mixed states and in a number of physical
circumstances, non-Hermitian operators have had to be considered. It is well known that any
non-Hermitian linear operator Ĉ can be expressed in the form:

Ĉ = Â + iB̂ (114)

where Â and B̂ are Hermitian and commute with each other, by letting Â = (Ĉ + Ĉ†)/2 and B̂ =

(Ĉ − Ĉ†)/(2i). Note that B̂ → iB̂ can be treated as a wick rotation in the path-integral application of
the PBN. Section 5.0.1 dovetails into the matter of general linear operators where there have been a
number of applications. We mention:

1. The method of “complex scaling” applied to quantum mechanical Hamiltonians was a “hot”
area in the area of atomic and molecular Physics during the 1970s and early 1980s and involved
non-Hermitian linear operators. We cite an application by the Mathematician Barry Simon of
complex scaling to non-relativistic Hamiltonians for molecules [13].

2. Another application requiring such an operator was made by Botten et al.[14]. They show how
to solve a practical problem involving wave scattering using a bi-orthogonal basis, where there
is a VPN bra basis and a ket basis consisting of different functions. In a unitary problem, these
VPN bra and ket basis functions would be the same. Here, the Helmholtz equation Laplacian
∇2 f + k2 f = 0 has a wave number k which is complex. The imaginary part of k indicates loss or
gain depending on its sign.

3. Konstantin G. Zloshchastiev has made many applications on the general density operator
approach with non-Hermitian Hamiltonians of the form Equation (114) applied to e.g. open
dissipative systems, which automatically deals with mixed states (see [15–17]).

4. Consider a rectangular real data matrix Q̂. Its similarity matrix (or adjacency matrix) Ŝ and
corresponding row stochastic (Markov) matrix R̂ defined by:

Ŝ = Q̂ ∗ Q̂T Ri,j = Sij/ ∑
k

Si,k (115)

The symmetric matrix Ŝ has real eigenvalues as does R̂ even though the latter is non-symmetric.
R̂ is a transition matrix in the language of QM but also the key operator in the Meila-Shi algorithm
of spectral clustering, and quantum clustering with IT applications in science, engineering,
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(unstructured) text using a “bag-of-words” model [18–21] and even medicine [22]. Probably,
the PBN may provide us with some new approaches to quantum clustering.

If the real data matrix Q̂ in Equation (115) is huge but very sparse (as is often the case in a “bag-of-words”
model[20]), we may use the PBN to find other alternative algorithms for text document clustering.
Suppose that the dataset has a vocabulary of N labeled keywords, which serve as the P-basis in
Equation (28), and qµ,k represents the frequency of kth keyword in document Qµ. Since qµ,k can be
greater than 1, they behave like the occupation numbers of a Boson system in Quantum Field Theory.
The conditional probability of finding doc Qµ given doc Qν is:

P(Qµ|Qν) = ∑N
k P(Qµ|k)(k|Qν) =

(14)
∑k∈Qµ

P(k|Qν); P(k|Qµ) = qµ,k/ ∑k∈Qµ
qµ,k (116)

Now, for example, we can define the relevance of two docs and get its expression as:

Rµ,ν ≡ 1
2
[P(Qµ|Qν) + P(Qν|Qµ)] =

1
2

[
∑k⊂Qµ

P(k|Qν) + ∑k⊂Qv
P(k|Qµ)

]
(117)

This algorithm may be very effective for huge data sets with a lot of abstracts of articles published in
many journals with different subjects.

7. Summary and Discussion

Inspired by Dirac’s notation used in quantum mechanics (QM), we proposed the Probability
Bracket Notation (PBN). We demonstrated that the PBN could be a very useful tool for symbolic
representation and manipulation in probability modeling, like the various normalization and
expectation formulas for systems of single or multiple random variables, as well as the master
equations of homogeneous Markov processes. We also show that a stationary Schrödinger Equation
(103) naturally becomes a master equation under the special Wick rotation (see Equations 106-107).

We have shown the similarities between many QM expressions in VBN and related probabilistic
expressions in PBN, which might provide us with a beneficial bridge connecting the quantum world
with the classical one. We also showed how the PBN could be applied to problems which require
non-Hermitian operators. We make no pretense that the PBN creates new Physics. Rather it provides a
notational interdisciplinary “umbrella” to various statistical and physical processes and thereby opens
up the possibility of their synthesis and integration.

8. Conclusions

Of course, more investigations need to be done to verify the consistency (or correctness),
usefulness and limitations of our proposal of the PBN but it is is intriguing in its possibility of
expressing formulations from classical statistics and QM and handling non-Hermitian operators.
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APD Absolute Probability Distribution
CP Conditional Probability
HMC Homogeneous Markov Chains
IT Information Technology
PBN Probability Bracket Notation
P-basis Probability basis
P-bra Probability (event) bra
P-identity Probability identity
P-ket Probability (event) ket
PRV Probability Row Vector
QM Quantum Mechanics
R.V Random Variable
SWR Special Wick Rotation
VBN (Dirac) Vector Bracket Notation
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