
Article Not peer-reviewed version

Bioelectrical Impedance Analysis as a

Non-Invasive Approach to Estimate In

Vivo Body Composition in Rabbit Does

Across Physiological Stages

Nuria Nicodemus * , Nelly Pereda , Joaquín Fuentespila , Pedro Luis Lorenzo , Pilar García-Rebollar

Posted Date: 30 October 2025

doi: 10.20944/preprints202510.2347.v1

Keywords: bioelectrical impedance analysis; body composition; rabbit does; reproductive physiology;

prediction equations; validation

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/1108994
https://sciprofiles.com/profile/4855021
https://sciprofiles.com/profile/733866


 

 

Article 

Bioelectrical Impedance Analysis as a Non‐Invasive 

Approach to Estimate In Vivo Body Composition in 

Rabbit Does across Physiological Stages 

Nuria Nicodemus 1,*, Nelly Pereda 1, Joaquín Fuentespila 2, Pedro Luis Lorenzo 3   

and Pilar García‐Rebollar 1 

1  Departamento de Producción Agraria, ETSI Agronómica, Alimentaria y de Biosistemas,   

Universidad Politécnica de Madrid, 28040, Madrid, Spain 
2  Departamento de Economía Agraria, Estadística y Gestión de Empresas, ETSI Agronómica, Alimentaria y de 

Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain 

3  Departamento de Fisiología Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad 

Universitaria, 28040 Madrid, Spain 

*  Correspondence: nuria.nicodemus@upm.es; Tel.: +34‐9106‐71072 

Simple Summary 

The  assessment  of  temporal  changes  in  body  chemical  composition  of  reproductive  does  across 

successive reproductive cycles  is crucial for research, technical, and commercial applications, as  it 

contributes to optimizing reproductive performance and lifespan. Furthermore, the implementation 

of non‐invasive  techniques  is desirable  to ensure animal welfare. The present study demonstrates 

that  bioelectrical  impedance  analysis  (BIA)  provides  an  accurate  and  non‐invasive  approach  for 

evaluating  the dynamic  changes  in  the  chemical  composition  of  female  rabbits  throughout  their 

productive lifespan, eliminating the need for slaughter. 

Abstract 

This study aimed to develop and validate bioelectrical impedance analysis (BIA)‐based prediction 

equations for estimating the in vivo body composition of reproductive rabbit does across different 

physiological stages. A total of 87 New Zealand × Californian does were used to generate calibration 

models  and  25  additional  does  served  for  independent  validation.  Animals  were  categorized 

according  to  reproductive  status  (nulliparous,  pregnant–lactating,  pregnant–non‐lactating,  non‐

pregnant–lactating,  and  non‐pregnant–non‐lactating).  BIA measurements were  obtained  using  a 

Quantum  II analyzer, and chemical composition was determined by proximate analysis. Multiple 

linear  regression models were  developed,  and  equations were  validated  through  relative mean 

prediction  error  (RMPE).  Significant  effects  of  physiological  status  were  observed  on  body 

composition: pregnant–lactating does showed the highest water content, while non‐pregnant–non‐

lactating  females  exhibited  the  greatest  protein  and  fat  concentrations.  Fat  and  energy  contents 

decreased markedly  (−24% and  −32%,  respectively) during  lactation,  indicating  intense metabolic 

mobilization. Regression models revealed strong correlations between  impedance parameters and 

chemical composition. Validation confirmed high predictive accuracy (RMPE 15–25%), with crude 

protein slightly underestimated  (3‐4%). These  findings confirm  that BIA provides a  reliable, non‐

destructive alternative to comparative slaughter for assessing body composition in breeding rabbit 

does throughout the reproductive cycle. 

Keywords:  bioelectrical  impedance  analysis;  body  composition;  rabbit  does;  reproductive 

physiology; prediction equations; validation 
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1. Introduction 

The body condition of female rabbits has been consistently associated with their reproductive 

performance [1,2] and longevity [3,4]. Recent evidence indicates that obesity represents one of the 

major  risk  factors  for  culling  and mortality  in does, particularly  in nulliparous  and multiparous 

females, as it predisposes them to metabolic disorders such as hepatic lipidosis and requires specific 

management  in breeding stock  [5]. Traditionally, comparative slaughter has been regarded as  the 

reference method for determining whole‐body chemical composition in rabbits [6–8]. However, this 

approach  is  restricted  to experimental settings and does not allow  for  longitudinal monitoring of 

body composition across multiple reproductive cycles. 

In  last  years,  considerable  research  efforts  have  been  directed  toward  developing  in  vivo 

methodologies  that  enable  the  evaluation  of  body  composition without  the  need  for  slaughter. 

Among  the most  commonly used  techniques  are  total body  electrical  conductivity  (TOBEC;  [9]), 

ultrasonographic assessment of perirenal fat thickness [10], and body condition scoring (BCS; [1]). 

Nevertheless, the accuracy of TOBEC in rabbits has been questioned, as it tends to yield unreliable 

estimates of protein and ash content [9]. Although they are not exactly refining methods, their use 

reduces  the number of slaughtered animals, so  they would be considered  in  line with  the use of 

alternative methods that pursue any of the 3Rs [11]. 

Bioelectrical impedance analysis (BIA) has emerged as a promising alternative. The principles 

of BIA are based on  the body’s opposition  to  the passage of an alternating electric current, which 

comprises  two components:  reactance  (Xc), originating  from cell membranes, and  resistance  (Rs), 

associated  with  intra‐  and  extracellular  fluids  [12].  The  total  impedance  (Z)  combines  both 

components and is calculated as  𝑍 ൌ √𝑅𝑠ଶ ൅ 𝑋𝑐ଶ. Assuming constant body geometry and applying 

a standardized alternating current, animals with a greater proportion of adipose tissue exhibit higher 

impedance values, due to the low electrical conductivity of fat [13]. 

BIA has been extensively applied to estimate body composition in humans [14,15], pigs [13,16–

18), lambs [19,20], beef cattle [21,22], steers [23], fish [24] and goats [25]. More recently, BIA has been 

validated in growing rabbits to predict carcass composition and nutrient retention [26,27], as well as 

in  broiler  chickens  [28].  These  studies  highlight  its  main  advantages,  namely  high  accuracy, 

repeatability, and non‐invasiveness. 

However, the systematic application of BIA in live reproductive rabbit does has not been fully 

characterized, and, to date, no validated prediction equations have been published for this category 

of  animals. Consequently,  the  scientific  community  still  lacks  access  to  reliable  BIA models  for 

estimating the body composition of reproductive does in vivo. 

Nevertheless, BIA has been employed in numerous studies on the reproductive and nutritional 

physiology of rabbit does conducted by our research group. For instance, previous researchers have 

applied these BIA equations to assess metabolic status—monitoring indices such as blood leptin and 

non‐esterified  fatty  acid  (NEFA)  levels  as  indicators  of  body  reserve mobilization  [29]—and  to 

explore how body reserves relate to fertility performance, finding that higher body protein and fat 

contents were associated with  improved conception rates and  litter outcomes  [3,30,31]. Moreover, 

these equations have been used to evaluate the effects of dietary regimens [32–36] as well as weaning 

and  reproductive management  strategies  [37]  on  the  does’  body  composition.  In  all  cases,  BIA‐

derived  composition  estimates  provided  a  noninvasive  approach  to monitor  changes  in  fat  and 

energy reserves,  thereby  linking  the nutritional and metabolic status of  the does  to key outcomes 

such as endocrine profiles, reproductive performance, and long‐term body condition stability. 

To  date,  the  systematic  application  of  BIA  in  live  reproductive  does  has  not  been  fully 

characterized. Therefore,  the objective of the present study was  to fill this gap by developing and 

validating BIA‐based prediction equations to estimate the in vivo body composition of rabbit does at 

different  physiological  stages  throughout  the  reproductive  cycle.  By  making  these  equations 

available to the scientific community, this work provides researchers and practitioners with a new 

tool to assess body composition in reproductive does—analogous to the models already established 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 October 2025 doi:10.20944/preprints202510.2347.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.2347.v1
http://creativecommons.org/licenses/by/4.0/


  3  of  15 

 

for young growing rabbits and broiler chickens. This will allow others to utilize BIA in reproductive 

does, something that has not been possible until now due to the absence of published equations. 

2. Materials and Methods 

Animals were handled according to the principles for the care of animals in experimentation 

[38,39] and favorably assessed retrospectively by the Ethics Committee of the Polytechnic University 

of Madrid. 

2.1. Animals and Housing 

A total of 87 New Zealand × Californian rabbit does, weighing between 3002 and 5736 g, were 

used as the calibration group (CG) to develop regression equations for the in vivo estimation of body 

composition. All does were artificially inseminated 11 days after parturition, and their litters were 

weaned at 35 days of age. 

Animals were allocated to five groups according to their physiological status: nulliparous (16–

19 weeks old; NUL; n = 15), pregnant (21 days of gestation) and lactating (32 days of lactation; PL; n 

= 18), pregnant (23–28 days of gestation) and non‐lactating (PNL; n = 18), non‐pregnant and lactating 

(11 days of lactation, at insemination; NPL; n = 18), and non‐pregnant and non‐lactating (NPNL; n = 

18). An additional set of 25 females  (five per physiological category), weighing between 2837 and 

5014 g, was used as  the validation group  (VG)  to assess  the predictive accuracy of  the equations 

generated from the CG. Parity order within each reproductive category ranged from 0 to 10 kindlings. 

All animals had ad libitum access to water until slaughter. 

A commercial diet (Cunimax‐A, Cargill SA, Spain; 18.5 MJ GE/kg DM, 188 g CP/kg DM, and 388 

g  NDF/kg  DM)  was  provided  ad  libitum  during  late  pregnancy  (from  day  28  onwards)  and 

throughout lactation, whereas feed intake was restricted to 150 g/day from weaning until day 28 of 

gestation. 

Rabbit does were individually housed at the facilities of the Universidad Politécnica de Madrid 

in  flat‐deck  cages measuring  700  ×  500  ×  320 mm,  under  controlled  environmental  conditions 

(ambient temperature between 16 and 24 °C, and a light:dark photoperiod of 16:8 h). 

2.2. Bioelectrical Impedance Analysis Measurements 

Bioelectrical  impedance  was  measured  using  a  four‐terminal  body  composition  analyzer 

(Quantum II, Model BIA‐101, RJL Systems, Detroit, MI, USA). Prior to each measurement session, the 

device was calibrated using a standard 500 Ω resistor to verify the accuracy of the system. A constant 

alternating current of 800 µA at 50 kHz was delivered through the black transmitter leads (two distal 

electrodes), while resistance (Rs, Ω) and reactance (Xc, Ω) were recorded via the red detector leads 

(two proximal electrodes). 

Standard stainless‐steel hypodermic needles (21 G × 1½”, 0.8 × 40 mm) were used as electrodes 

and inserted subcutaneously through the skin of the does. Animals were positioned on a flat, non‐

conductive surface and were neither anesthetized nor shaved during the procedure. Electrodes were 

positioned along the dorsal midline: for the distal transmitter pair, one electrode was inserted 4 cm 

caudal to the base of the ears (scapular region) and the other 4 cm cranial to the base of the tail (rump 

region). The proximal detector pair was placed 2 cm caudal (scapular region) and 2 cm cranial (rump 

region) to the respective transmitter electrodes. 

The distance between detector electrodes (D, cm) and the dorsal length (L, cm) from the base of 

the ears to the base of the tail were measured using a flexible steel tape. Live weight (LW, g) and 

parity order (PO) were also recorded for each female. Bioelectrical impedance measurements were 

taken  twice per animal  (at 30‐minute  intervals) between 09:00 and 11:00 h  to assess measurement 

repeatability. 
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2.3. Slaughtering and Processing of the Samples 

Following  BIA  measurements,  animals  were  euthanized  by  intravenous  administration  of 

sodium pentobarbital (Dolethal®, Vetoquinol, Spain) at a dose of 120 mg/kg body weight, injected 

into the marginal ear vein (2–2.5 mL per doe, depending on body weight). After euthanasia, carcasses 

were stored at −20 °C until processing. 

Before grinding, each carcass was thawed slowly for 24 h at 4 °C and subsequently chopped into 

small pieces. Entire animals, including skin, hair, and the full digestive tract, were then homogenized 

using  an  industrial  meat  grinder  (Cruells,  C‐15  EN  60742).  A  representative  portion  of  the 

homogenate was collected  from each  rabbit. One aliquot was  immediately analyzed  for moisture 

content, while the remaining sample was refrozen at −20 °C. Samples were later freeze‐dried for 72 h 

and milled through a 1 mm screen prior to chemical analyses. 

2.4. Analytical Methods 

Dry matter (DM) content of the ground material was determined by mixing 5 g of sample with 

20 g of sea sand and 5 mL of ethanol, followed by drying at 103 °C for 24 h, according to ISO 1442 

method  [40]. Chemical analyses were performed according  to AOAC procedures  [41]: DM  (oven‐

drying method, 934.01), ash  (muffle  furnace  incineration, 923.03), ether extract  (Soxhlet extraction 

following 3 N HCl acid hydrolysis, 920.39), and crude protein  (CP) using  the Dumas combustion 

method  (968.06) with  an  FP‐528  analyzer  (LECO,  St.  Joseph, MI, USA). Gross  energy  (GE) was 

determined by  isoperibol bomb  calorimetry  (Model  1356, Parr  Instrument Company, Moline,  IL, 

USA). 

2.5. Statistical Analysis 

The effects of physiological state on body composition of rabbit does were analyzed using a 

completely  randomized  design,  with  parity  order  (PO)  included  as  a  linear  covariate  and 

physiological state as the main fixed effect. Data were analyzed using the GLM procedure of SAS 

[42]. Results  are presented  as  least‐squares means  (LSMeans),  and pairwise  comparisons  among 

physiological states were performed using the t‐test. 

Repeatability  (SR),  representing  the  intra‐series  variability  of  BIA  measurements  within 

individual does, was estimated using the VARCOMP procedure of SAS. It was calculated as SR = 

√(Se2), where Se denotes the expected variance of error. The coefficient of variation of repeatability 

(CVR) was expressed as the ratio between SR and the mean BIA value, multiplied by 100. 

Pearson correlation coefficients between BIA variables and carcass chemical composition were 

computed using the CORR procedure. 

To identify the regression models that best explained the variation in the dependent variables, 

the RSQUARE option of the REG procedure was applied using data from the calibration group (CG). 

Dependent variables included water (expressed as % and g), crude protein (CP), ash, fat (expressed 

as % DM  and g),  and gross  energy  (kJ/100 g DM  and MJ).  Independent variables  considered  as 

potential predictors were: physiological state  (NUL, PL, PNL, NPL, NPNL), PO, PO2,  live weight 

(LW, LW2), distance between detector electrodes (D, D2), dorsal length (L, L2), resistance (Rs, Rs2), 

reactance (Xc, Xc2), impedance (Z, Z2), and derived volume indices vol1 (D2/Rs) and vol2 (D2/Z). 

Model selection was based on Mallows’ Cp statistic [43], ensuring values ≤ p + 1 (where p is the 

number  of  independent  variables)  to  avoid  bias due  to  omission  of  relevant  predictors. Among 

models meeting this criterion, the optimal model was selected according to the minimum values of 

the  following  criteria:  SP  Statistic  [44],  Final  Prediction Error  (JP)  [44,45], Amemiya’s  Prediction 

Criterion (PC) [45,46], and Akaike’s Information Criterion (AIC) [47]. 

Once  the most appropriate predictors were  identified, parameter estimation  for  the multiple 

linear  regression  (MLR)  models  was  performed  using  the  REG  procedure.  Validation  of  the 

regression equations was conducted using independent data from the validation group (VG). 
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Prediction accuracy was evaluated using  the Mean Prediction Error  (MPE), calculated as  the 

square  root  of  the mean  squared  difference  between  the  observed  (chemically  determined)  and 

predicted values of each body composition parameter. The Relative Mean Prediction Error (RMPE, 

%) was  expressed as  the  ratio between MPE and  the mean observed value of  the  corresponding 

parameter. Differences between observed and predicted values derived from MLR equations in the 

validation group were assessed using paired t‐tests. 

3. Results 

3.1. Chemical Composition of Doe Rabbits 

The  chemical  composition  of  the  rabbits  used  for  the  development  and  validation  of  the 

prediction equations  is presented  in Table 1. The average chemical composition of  the calibration 

group was comparable to that of the validation group, indicating a consistent baseline between both 

datasets. 

Table 1. Chemical composition of rabbits does used for calibration and validation. 

  Calibration group (n = 87)  Validation group (n = 25) 

Variable  Mean  Minimum  Maximum  SD1  Mean  Minimum  Maximum  SD1 

Live weight (g)    4267  3002  5736  533  4260  2837  5014  566 

Chemical composition 

Water (%)  61.9  53.0  74.4  4.68  62.9  56.6  70.8  3.42 

Ash (%)  3.14  2.58  4.05  0.29  3.23  2.78  3.79  0.25 

Protein (%)  17.9  15.7  20.8  0.98  18.6  16.0  21.5  1.40 

Lipids (%)  13.7  2.46  23.8  4.65  13.1  6.64  18.4  3.14 

Energy (kJ/100 

g) 
1051  557.3  1372  191  1004  704  1284  138 

Water (g)  2638  1787  3632  347  2678  1724  3181  374 

Ash (g)  133  99.0  179  18.0  137  97.9  166  17.2 

Protein (g)  765  537  1092  101  790  573  987  101 

Lipids (g)  595  90.5  1154  234  563  294  908  174 

Energy (MJ)  45  21.4  71.2  11.1  42.9  30.3  60.7  9.18 

1SD: Standard Deviation. 

Table  2  presents  the  effect  of  physiological  status  on  body  composition  in  does  from  the 

calibration  group.  The  live weight  of  pregnant‐lactating  (PL)  and  pregnant‐non‐lactating  (PNL) 

females was 7.5% and 19.5% higher (p < 0.001), respectively, than that of non‐pregnant lactating (NPL) 

and nulliparous (NUL) does. Non‐pregnant, non‐lactating (NPNL) females exhibited  intermediate 

body weights. 

When  chemical  composition  was  expressed  on  a  percentage  basis,  water  content  was 

significantly higher  (p < 0.001)  in pregnant‐lactating does  compared with  the other physiological 

groups, with the lowest values recorded in non‐pregnant, non‐lactating and nulliparous does. Non‐

pregnant lactating and pregnant non‐lactating does showed intermediate values. 

The highest  crude protein  content was observed  in non‐pregnant, non‐lactating  rabbits  (p  < 

0.001) compared with all other physiological states. Conversely, pregnant‐lactating does showed a 

marked reduction (p < 0.001) in fat (−24%) and energy (−32%) contents relative to the mean values of 

the remaining groups. No significant differences were detected in ash content, which averaged 3.14% 

across all groups. 

The variations in chemical composition among physiological states, when expressed in absolute 

values  (g),  followed  the  same  trend as  those observed when expressed on a percentage basis, as 

shown in Table 2. 
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Table 2. Body composition of rabbit does by physiological state (Calibration group; n = 87). 

  Physiological state1   

  PL  PNL  NPL  NPNL  NUL  SEM2  p‐Value 

Number of animals  18  18  18  18  15  ‐  ‐ 

Live weight, g  4490a  4469a  4167b  4310ab  3748c  115  < 0.001 

Chemical Composition 

   Water, %  65.4a  62.7b  62.3b  59.6c  59.4c  0.36  < 0.001 

    Protein, %  17.8b  17.7b  17.5b  18.9a  17.9b  0.092  < 0.001 

    Lipids, %  11.1b  13.5a  13.7a  15.1a  15.8a  0.39  < 0.001 

   Ash, %  3.14  3.05  3.17  3.28  3.08  0.034  0.21 

    Energy (kJ/100 g)  928b  1044a  1039a  1114a  1147a  15.1  < 0.001 

Total weight 

   Water, g  2786a  2668b  2652b  2524c  2547c  16.2  < 0.001 

    Protein, g  758b  752b  745b  808a  763b  3.87  < 0.001 

    Lipids, g  485b  584ab  591a  661a  665a  17.2  < 0.011 

   Ash, g  133  130  135  139  131  1.11  0.23 

    Energy (MJ)  40.0b  44.9a  44.6a  48.2a  48.5a  0.68  < 0.001 
1PL: Pregnant‐Lactating; PNL: Pregnant‐Non Lactating; NPL: Non Pregnant‐Lactating; NPNL: Non Pregnant‐

Non Lactating; NUL: Nulliparous.  2SEM  : standard error of means. Means within a  row without a common 

superscript differ (p < 0.05). 

3.2. Impedance Measurements and Repeatability 

Mean  (±  SD)  values  for  resistance  (Rs),  reactance  (Xc),  and  inter‐electrode  distance  (D)  in 

calibration group rabbits were 106 ± 20.7 Ω, 25.2 ± 7.53 Ω, and 20.2 ± 2.06 cm, respectively (Table 3). 

Table 3. Mean (± SD) of BIA measurements (n = 87) used to develop the prediction equations. 

  Mean  Minimum  Maximum  SE1 

Rs, Ω  106  67.0  157  20.7 

Xc, Ω  25.2  11.0  58.0  7.53 

D, cm  20.2  16.0  26.0  2.06 

1Standard Deviation. 

In Table 4 the values of repeatability (SR, Ω) and coefficient of variation of repeatability (CVR, 

%)  of  Rs  and  Xc  are  shown.  The within‐animal  standard  deviation  of  repeated measurements 

(repeatability,  SR)  was  greater  for  resistance  than  for  reactance  (Table  8).  Nevertheless,  when 

expressed  as  the  coefficient  of  variation  of  repeatability  (CVR),  resistance  exhibited  values were 

approximately eleven percentage points lower than those observed for reactance. 

Table 4. Repeatability (SR) and coefficient of variation of repeatability (CVR) of Resistance (Rs) and Reactance 

(Xc). 

  SR, Ω  CVR, % 

Rs, Ω  10.8  10.6 

Xc, Ω  5.22  21.6 

3.3. Correlation Between BIA Parameters and Body Composition 

When chemical composition was expressed as a percentage, resistance was negatively correlated 

with moisture, protein, ash content, parity, and live weight of does (p < 0.001), as shown in Table 5. 

Conversely,  resistance was  positively  correlated with  fat  and  energy  content, which were  also 

positively  associated with  each other. Fat  and  energy  content of  the  rabbit does were positively 

correlated with live weight (p < 0.05) and negatively correlated with parity (p < 0.001), water content 
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(p < 0.001), ash content (p < 0.0001), and protein content (p < 0.05). Parity was positively correlated (p 

< 0.05) with live weight, moisture, protein, and ash contents of the rabbit does. Correlations among 

variables expressed in absolute values (g) followed the same trend (Table 6). 

Table 5. Correlation matrix of resistance (Ω), reactance (Ω), chemical composition (%), parity order, and  live 

weight (g) in rabbit does (n =87)1. 

  Rs  Xc  Water  Protein  Fat  Ash  Energy  PO  LW 

Rs  1  0.45****  0.40****  0.29***  0.42****  ‐0.31***  0.42****  ‐0.43****  ‐0.29*** 

Xc    1  ‐0.16  ‐0.05  0.17  ‐0.19  0.16  ‐0.21*  ‐0.08 

Water      1  0.17  ‐0.96****  0.51****  ‐0.99****  0.39***  ‐0.23* 

Protein        1  ‐0.33**  0.40****  ‐0.26*  0.23*  0.12 

Fat          1  ‐0.56****  0.97****  ‐0.38***  0.29** 

Ash            1  ‐0.58****  0.36***  ‐0.27* 

Energy              1  ‐0.42****  0.25* 

PO                1  0.32** 

LW                  1 

1 *: p < 0.05; * *: p < 0.01; ***: p < 0.001; ****: p < 0.0001. Rs: resistance; Xc: reactance; PO: parity order; LW: live weight. 

Table 6. Correlation matrix of resistance  (Ω), reactance  (Ω), chemical composition  (g), parity order, and  live 

weight (g) in rabbit does (n =87)1. 

  Rs  Xc  Water  Protein  Fat  Ash  Energy  PO  LW 

Rs  1  0.45****  ‐0.51****  ‐0.39****  0.27**  ‐0.47****  0.16  ‐0.43****  ‐0.29**** 

Xc    1  ‐0.16  ‐0.10  0.11  ‐0.20*  0.07  ‐0.21*  ‐0.08 

Water      1  0.78****  ‐0.005  0.79****  0.15  0.53****  ‐0.28*** 

Protein        1  0.39****  0.79****  0.55****  0.40****  0.91**** 

Fat          1  0.13  0.97****  ‐0.22*  0.55**** 

Ash            1  0.25*  0.54****  0.75**** 

Energy              1  ‐0.15  0.68**** 

PO                1  0.32** 

LW                  1 

1 *: p < 0.05; * *: p < 0.01; ***: p < 0.001; ****: p < 0.0001. Rs: resistance; Xc: reactance; PO: parity order; LW: live weight. 

3.4. Regression Equations 

The multiple linear regression (MLR) equations developed from the calibration group (CG) are 

presented in Tables S1‐S5, including the estimated coefficients, standard errors (SE), and p‐Values of 

each  variable,  as well  as  the  coefficient  of  determination  (R2),  residual  standard  deviation  (SD), 

coefficient of variation (CV), Mallows’ Cp statistic, and model significance (p‐M) for each equation. 

3.5. Validation of Prediction Equations 

Independent validation results obtained from the multiple  linear regression (MLR) equations 

are summarized  in Table 7. Equations predicting chemical composition  in grams accounted  for a 

larger proportion of total model variance than those expressed as percentages. Nevertheless, relative 

mean prediction errors (RMPE) were comparable across variables, irrespective of expression basis 

(percentage or grams). 

Among the predicted components, fat content showed the greatest variability, with coefficients 

of  variation  of  21.5%  and  22.0%  when  expressed  as  percentages  and  grams,  respectively. 

Consequently, this variable also exhibited the highest RMPE values (23.9% and 24.6%, respectively) 

in the independent validation dataset. 
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Table 7. Prediction equations accuracy assesed with an independent data set (n=25). 

  R2  MEC  CV, %  MPE  RMPE, % 

Chemical body composition, % 

 Water    0.71  2,70  4,36  3,71  5,90 

 Protein  0.43  0,77  4,31  1,21  6,50 

 Ash  0.40  0,24  7,52  0,27  8,35 

  Fat  0.64  2,96  21,5  3,14  23,9 

 Energy, kJ/100 g DM  0.70  112  10,7  150  14,9 

Chemical body composition, g 

 Water  0.90  119  4,48  159  5,94 

 Protein  0.89  35,6  4,65  52,3  6,62 

 Ash  0.71  10,1  7,57  11,3  8,23 

  Fat  0.72  131  22,0  139  24,6 

 Energy, MJ  0.83  4,91  10,9  6,51  15,2 

R2: determination coefficient; MEC: mean error of calibration; CV: coefficient of variation; MPE: mean prediction 

error; RMPE: relative mean prediction error. 

For  the validation group, paired  t‐tests were performed  to  compare analyzed and predicted 

values derived from MLR models. As reported in Table 8, significant differences were detected only 

for crude protein content (p ≤ 0.012), both when expressed as percentages and grams. The equations 

slightly underestimated actual protein content by 3.91% and 3.40%, respectively. 

Table 8. Comparison between analyzed and predicted chemical composition (mean [SD]) with multiple linear 

regression (MLR) using a paired t‐test. 

  Analyzed  Predicted by MLR  p−Value 

Chemical body composition, % 

Water  62.9 (3.43)  62.7 (3.04)  0.83 

Protein    18.6 (1.40)  17.9 (0.79)    0.003 

Ash  3.23 (0.26)  3.21 (0.20)  0.62 

Fat  13.1 (3.14)  13.2 (3.34)  0.95 

Energy, kJ/100 g DM  1004 (138)  1021 (133)  0.57 

Chemical body composition, g 

Water  2678 (374)  2658 (365)  0.54 

Protein  790 (101)  764 (86.0)  0.012 

Ash  137 (17.2)  136 (15.8)  0.69 

Fat  563 (174)  567 (184)  0.88 

Energy, MJ  42.9 (9.18)  43.8 (9.11)  0.46 

The  relationship  between  the  analyzed  and  estimated  values  obtained  from  the  prediction 

equations, as well as the distribution of residuals (analyzed—estimated values) associated with each 

prediction model for each variable, expressed both in % and in g, are shown in Figures S1–S8. When 

the variables were expressed in grams, the residual distribution was more homogeneous than when 

expressed as percentages. Figure S1 shows  that,  the residual distribution  for body water  (%) was 

homogeneous except for values above 70%, where overestimation occurred. Ash (%) and protein (%) 

contents were  also  overestimated  for  values  exceeding  3.4%  and  20%,  respectively. Conversely, 

underestimation was observed for ash and protein contents below 3% and 17%, respectively. Fat (%) 

and energy (kJ/100 g) were underestimated for values below 9% and 800 kJ/100 g (Figure S4), while 

fat content values above 20% led to overestimation of this variable. The residual distribution for the 

estimation of moisture (g), fat (g), and energy (MJ) contents was homogeneous (Figures S6 and S8). 

However,  for  values  below  110  g  of  ash  and  650  g  of  protein,  led  to  underestimation  of  the 

corresponding variables. 
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4. Discussion 

4.1. Chemical Composition of Doe Rabbits 

The weight ranges of the rabbit does used and their chemical composition (expressed both in % 

and in g) were notably broad and were comparable to those reported in other studies predicting in 

vivo  body  condition  and  body  chemical  composition  [9,10]. More  recently,  Taghouti  et  al.  [2] 

confirmed strong relationships between body chemical composition and reproductive traits in rabbit 

does. Changes in rabbit body composition are determined not only by nutritional factors, but also by 

a range of non‐nutritional variables including physiological stage, genotype, reproductive rhythm, 

reproductive success, and environmental or management conditions [48]. 

In this study, the body composition of the females varied according to their physiological status. 

The gestating‐lactating (GL) females exhibited the highest water content and the lowest proportion 

of fat and energy. These findings are consistent with earlier reports [3,6] and have been attributed to 

the high water content of milk and placental fluid. A structural characteristic of this species is the 

large amount of fluid in the placenta relative to the embryo’s size from very early in gestation. Indeed, 

the blastocyst at implantation practically occupies the entire lumen of the uterine horn, and by mid‐

gestation  already  contains more  than  1 mL  of fluid  [49].  Furthermore,  the  lower  fat  and  energy 

proportions  in  these physiological states are a consequence of  the overlap between gestation and 

lactation, which induces greater mobilization of fat and energy reserves [29,34,35,50]. 

Non‐gestating non‐lactating (NGNL) rabbits showed a 6.3% higher protein content than all other 

experimental  groups.  This  indicates  that  in  GL  females,  or  in  females  experiencing  overlap  of 

gestation and  lactation, protein mobilization  is greater — necessary  for both milk production and 

foetal growth  [6,34,35].  In nulliparous  females  the  lower protein proportion  compared  to NGNL 

females likely arises from incomplete growth [2]. 

4.2. Impedance Measurements and Repeatability 

The mean resistance values obtained in this work (106 Ω) were higher than those reported in 

previous studies conducted with pigs or lambs [13,18,20], which ranged between 40 and 50 Ω, despite 

the latter species having a higher fat content than rabbits. Similarly, in growing animals, resistance 

values decrease with age, both in growing rabbits (from 120 to 63 Ω between 25 and 77 days of age) 

[26,27] and in broiler chickens (from 1200 to 185 Ω between 0 and 42 days of age) [28]. 

These results can be explained by differences in body volume among animals, since impedance 

values  depend  on  the  geometry  and  volume  of  the  body  being measured.  Lukaski  et  al.  [14] 

established that the relationship between body volume and impedance can be expressed as: Volume 

= [(Length)2 / (Impedance)]1ᐟ2. 
Consequently,  larger animals  exhibit  lower  impedance values. Assuming  constant geometry 

and volume across  rabbits,  the observed differences would  then depend solely on body chemical 

composition, with fatter animals showing higher impedance due  to  the  low conductivity of  lipids 

compared with other body components [16]. 

The  repeatability  of  bioelectrical  impedance  analysis  (BIA) measurements  has  been widely 

studied in humans [51–54]. The coefficients of variation (CV) for resistance and reactance reported in 

those studies were  lower  (between 0.3 and 2.8%,  respectively)  than  those obtained  in  the present 

work, which ranged from 10.8% for resistance to 21.6% for reactance. These values were nonetheless 

lower than those observed in growing rabbits by Saiz et al. [26] (20% and 21.5% for resistance and 

reactance,  respectively). The  same  authors  [27] developed predictive  equations  based  on BIA  to 

estimate rabbit carcass composition, reporting CVs of 15.9% for resistance and 17.6% for reactance. 

No comparable data have been found for other animal species. A major source of variation may arise 

beyond  the precision of  the  impedance  analyzer  itself,  from methodological differences between 

human and animal applications. In humans, electrodes are placed on the skin surface, whereas in doe 

rabbits and young rabbits, the electrical current is applied through subcutaneous needles. The depth 

of needle insertion — a potential source of variation — could significantly influence the results. These 
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findings  therefore support  the recommendation  that at  least  two measurements be  taken  for each 

rabbit to ensure reliability. 

4.3. Correlation Between BIA Parameters and Body Composition 

The negative correlations observed between resistance and the water, ash, and protein contents 

of rabbit does, as shown in the correlation matrices where variables are expressed in both % and g 

(Tables 5 and 6), can be explained by the fact that fat‐free tissues contain a higher proportion of water 

[13,22]. Consequently, electric current passes more easily through these tissues, a pattern that has also 

been reported in other species. Parity and live weight of the does were likewise negatively correlated 

with resistance, which may reflect  the greater body mass and size of older animals; as previously 

noted, larger body size is associated with lower resistance values [14]. 

In  contrast,  resistance was  positively  correlated with  fat  and  energy  contents.  Since  energy 

content increases proportionally with fat deposition, these tissues—with their low water content—

offer greater resistance to the passage of electrical current  [18,22]. A negative correlation was also 

detected between parity and the fat and energy contents of the does, which may be attributed to the 

gradual depletion of body reserves over successive reproductive cycles. Similar trends were reported 

by other authors [34,35,55], who observed a linear decrease in fat and energy content from the first to 

subsequent parturitions. 

4.4. Validation of Prediction Equations 

The results of this study indicate that the equations obtained through multiple linear regression 

(MLR) were robust, as the relative mean prediction error (RMPE) obtained during independent data 

validation were not high. Among  the variables analyzed,  fat content exhibited  the highest RMPE 

(24.6%). However, the estimated fat content in the validation population (13.1%) was very similar to 

that  in  the analyzed population  (13.2%; p = 0.95). When  fat was  expressed  in grams, only minor 

variations were  observed  between  the  estimated  and  analyzed  values  (563  vs  567  g),  and  these 

differences were not statistically significant. 

Because fat and energy composition were highly correlated (r = 0.97; p < 0.0001), and the RMPE 

for energy prediction was  lower  (15%), energy could serve as a reliable predictor of overall body 

composition in does. The differences between analyzed and estimated energy were comparable in 

magnitude to those observed for fat (1004 vs 1021 kJ/100 g, respectively). These findings are consistent 

with  those  of  Fortun‐Lamothe  et  al.  [9],  who  applied  the  TOBEC  method  to  estimate  body 

composition in breeding does using linear multiple regression. Although these authors did not report 

RMPE values, they obtained a coefficient of variation for fat prediction close to 25%, slightly higher 

than that observed in the present study (21.5% and 22% for fat expressed in % and g, respectively). 

They also  found somewhat  larger,  though nonsignificant, differences between  the calibration and 

validation datasets compared to those observed here, with overestimations of 3.8% for percentage fat 

and 4.9% for fat expressed in grams. 

In the present study, the only variable showing a significant difference between analyzed and 

estimated values was protein content (both  in % and g), resulting  in an underestimation of 3–4%. 

Nevertheless,  the  RMPE  for  protein  (6.37–6.62%;  Table  24)  was  considerably  lower  than  those 

obtained for fat and energy. In addition, the correlations between analyzed and estimated protein 

values were higher  (r = 0.69 when expressed  in %, and  r = 0.89 when expressed  in g)  than  those 

obtained for fat (r = 0.51 in % and r = 0.70 in g) or energy (r = 0.36 in kJ/100 g and r = 0.74 in MJ). These 

results  suggest  that  the  significant differences observed between analyzed and  estimated protein 

values  likely  stem  from  the  lower  intrinsic  variability  of  protein  content  compared with  other 

chemical components. 

The prediction equations estimating  the chemical composition of  rabbits expressed  in grams 

yielded  a more  homogeneous  residual distribution,  stronger  correlations  between  analyzed  and 

estimated  variables,  and  higher  coefficients  of  determination  than  equations  expressed  in 

percentages. This finding is logical, as the range of variation for the independent variables is narrower 
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when expressed in % than in g, leading to weaker fits. Nevertheless, calibration and prediction errors 

were  similar  for  each  variable  regardless  of  the  unit  of  expression,  suggesting  that  although 

percentage‐based  equations  exhibit  a  slightly poorer fit,  their predictive  accuracy  is  comparable. 

Therefore, both  types of equations can be used  interchangeably, with percentage‐based equations 

offering the additional advantage that variations in body composition are independent of changes in 

body weight. 

Overall, these results align with previous studies [9,34,35,56], which also reported higher total 

variability explained by models predicting body composition when expressed in grams rather than 

in percentages. 

5. Conclusions 

It  can  be  concluded  that:  (1)  the  estimation  of  chemical  composition  is more  accurate with 

equations expressing  the chemical composition as a percentage  than  in grams and  they have  the 

advantage  that  they do not depend on variations  in  the body weight of  the doe  rabbits;  (2) The 

bioelectrical impedance analysis (BIA) method can be applied to determine the chemical composition 

of  breeding  rabbits  during  successive  reproductive  cycles;  (3)  BIA  predicts, with  accuracy,  the 

chemical composition of does rabbits, showing values such as those obtained using the comparative 

slaughter technique. 

Supplementary Materials: The  following  supporting  information  can be downloaded at  the website of  this 

paper posted on Preprints.org, Table S1: Regression coefficients and standard errors determined by multiple 

linear regression (MLR) for predicting body water content. Table S2: Regression coefficients and standard errors 

determined  by multiple  linear  regression  (MLR)  for  predicting  body  protein  content. Table  S3: Regression 

coefficients and standard errors determined by multiple linear regression (MLR) for predicting body fat content. 

Table  S4:  Regression  coefficients  and  standard  errors  determined  by multiple  linear  regression  (MLR)  for 

predicting body ash content. Table S5: Regression coefficients and standard errors determined by multiple linear 

regression (MLR) for predicting body energy content. Figure S1: Relationship between estimated and analyzed 

values of body ash (a), water (b), and protein (c) from multiple linear regression equations, expressed as % (n = 

87). Figure S2: Residual distribution from the multiple linear regression models for body ash (a), water (b), and 

protein (c) contents, expressed as % (n = 87). Figure S3: Relationship between estimated and analyzed values of 

body fat (a), and energy (b) from multiple linear regression equations, expressed as % and kJ/100g (n = 87). Figure 

S4: Residual distribution from the multiple linear regression models for body fat (a) and energy (b) contents, 

expressed as % and kJ/100 g (n = 87). Figure S5: Relationship between estimated and analyzed values of body 

ash (a), water (b), and protein (c) from multiple linear regression equations, expressed as g (n = 87). Figure S6: 

Residual distribution  from  the multiple  linear  regression models  for body ash  (a), water  (b), and protein  (c) 

contents, expressed as g (n = 87). Figure S7: Relationship between estimated and analyzed values of body fat (a), 

and energy (b) from multiple linear regression equations, expressed as g and MJ (n = 87). Figure S8: Residual 

distribution from the multiple linear regression models for body fat (a) and energy (b) contents, expressed as g 

and MJ (n = 87). 
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