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Abstract: In order to deal with imprecision, ambiguity, and uncertainty in data analysis, Pawlak introduced rough

set theory in 1982. This paper aims to expand the scope of basic set theory developed by presenting the notions of

δP-upper and δP-lower approximations, that are based on the notion of δP-open sets, we additionally examine a

few of their fundamental characteristics.
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1. Introduction

The "rough set theory" [1], a mathematical technique for coping with ambiguity or uncertainty,
is attributed to Pawlak. Rough set theory and applications have substantially advanced since 1982.
Rough set theory has several uses, particular, when analyzing data both cognitive sciences and artificial
intelligence [2–4]. Pawlak and Skowron have recently published several fundamental ideas in rough
set research as well as a number of applications [5,6]. An extension of set theory known as rough set
theory [5,8] describes a portion of the universe as being described by two ordinary sets known as the
lower and upper approximation. Initially, an equivalence was used to introduce Pawlak provides
definitions for both upper and lower approximations. Pawlak and Skowron [5,6] derived numerous
intriguing characteristics of the lower and upper approximations in accordance with the equivalence
relations, the equivalence relation, on the other hand, seems to be a strict requirement that might
restrict the suitability of the rough set model proposed by Pawlak. Equivalence relation or partition
have undergone numerous extensions in recent years by being replaced by concepts like binary
relations [10,12], neighborhood systems, by using a general relation, Abu-Donia [17] talked about
three distinct upper(lower) approximation types based on the appropriate neighborhood. These types
were then used to create a collection of limited binary relationships in in two different methods. This
theory, which primarily depends on a specific topological structure, has been extremely successful
in many fields of real-world applications. Numerous papers on generalizing and interpreting rough
sets have been written [13–15,18,20,21,23–25]. Weginger’s generalization of rough sets is among the
most important [16] in 1989 when he introduced the idea of topological rough sets. The closure and
interior operators of topological spaces were used to define the approximation in this generalization,
which began with a topological space. The notion of δP-open sets was first presented in [11]. This
work presents and investigates the concept of the δP-approximation space. These areas aid in the
development of a new categorization for the cosmos. Additionally, we explore the idea of "δP-lower"
furthermore "δP-upper" approximation. Rough sets are compared to this idea as part of our study of
δP-rough sets. we also provide some opposition examples.

2. Fundamental concepts δP-open sets and topology

A pair (Y, τ) that consists of a set Y and family τ of subset of Y that match the following criteria
is topological space [10]:

• ∅,Y ∈ τ,
• τ is closed under an arbitrary union,
• τ is closed Under finite intersection .
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The pair (Y, τ) is referred to as a topological space, and the subset of Y that belongs to τ is referred to
as open sets in the space. The opposite of the pair is called the closed subsets of Y are those that fall
into the family τ, the family τ of open subsets of Y is often referred to as topology of Y.

S =
⋂{W ⊆ Y : S ⊆ W and W is closed } is known as τ-closure of a subset S ⊂ Y.

It appears that the smallest closed subset of Y that contains S is S. Keep in mind that S is only
closed if and when S = S.

S◦ =
⋃{V ⊆ Y : V ⊂ S and V is open } is known τ-interior of a subset S ⊆ Y.

It appears that S◦ is the union of all Y open subsets that contain in S. Keep in mind that S is only
open if and when S = S◦. Additionally, the τ boundary of a subset S ⊆ Y is denoted as b(S) = S − S◦.

Assume that S is a subset of Y, a topological space. Let S◦,S, and b(S) be interior, closure, and
boundary of S, In that order . If b(S) = ∅ then S is exact , if not, S is rough. If and only if S = S◦, then
it is evident that S is exact.

Definition 1 ([3]). Let (Y, τ) be a topological space the subset S ⊆ Y is referred to as Preopen if S ⊆
Int(Cl(S)).
The opposite of Preopen set is Preclosed set. As we that indicate the set of all Preopen and Preclosed sets by
PO(Y) and PC(Y).

Remark 1. Every topological space (Y, τ), has the property τ ⊆ PO(Y).

Definition 2 ([9]). Let S be a subset of a topological space (Y, τ). The δ- closure of S is defined as follow
clδ(S) = {x ∈ Y : S∩ int(cl(A)) ̸= ∅, A ∈ τ and y ∈ A}. A set S is referred to as δ-closed if S = clδ(S).The
opposite of a δ-closed set is δ-open.

Observe that intδ(S) = Y\clδ(Y\S).

Definition 3 ([11]). If S is a subset of a topological space (Y, τ) and S ⊆ int(clδ(S)), then S is δP-open.
δPO(Y) is the family of all δP-open sets of Y. δP-closed is the complement of δP-open.
The δP-closure of S is Pclδ(S), which is the intersection of all δP-closed sets that contain S.
The δP-interior of S is represented by Pintδ(S) and is the union of all δP-open sets that are contained in S.

Lemma 1 ([17]). The following hold for a subset S of a topological space (X, τ).

1. Pclδ(S) = S ∪ cl(intδ(S)).
2. Pintδ(S) = S ∩ int(clδ(S)).
3. Pclδ(Pintδ(S)) = Pintδ(S) ∪ cl(intδ(S)).
4. Pintδ(Pclδ(S)) = Pclδ(S) ∩ int(clδ(S)).

3. Rough set

Rough set theory was inspired by the necessity of express subsets of a universe in terms of
equivalency classes of a partition of that universe. A topological space known as approximation space
K = (X, τ) is characterized by the partition, where R is an equivalency relation and X is a set known
as the universe [1]. The terms chunks, granules, and elementary sets are also used to describe the
equivalency classes of R. To denote that an equivalency class contains an x ∈ X, we will use Rx ⊆ X.
Two operators in the approximation space are considered.

• R(S) = {x ∈ X : Rx ⊆ S}.
• R(S) = {x ∈ X : Rx ∩ S ̸= ∅}.

Referred to as, respectively, the lower and upper approximations of S ⊆ X. Furthermore, let
NEGR(S) = X−R(S) represent the negative region of S, and POSR(S) = R(S) represent the positive
region of S, BNR(S) = R(S)−R(S) represent the boundary region ofX.
If we assume that X is a finite, nonempty universe and that S ⊆ X, then the accuracy measure can also
be used to quantify the degree of completeness as follows:

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 March 2024                   doi:10.20944/preprints202403.1461.v1



3 of 11

• ∝R (S) =
| R(S) |
| R(S) |

, S ̸= ∅,

Where | · | the set’s cardinality is represented. The degree of knowledge completeness is attempted
to be expressed via accuracy metrics. ∝R (S) is capable to depict the size of the data sets boundary
region, but the knowledge’s organizational structure is more difficult to depict. Rough set theory has
the essential advantage of being able to handle categories that, given a knowledge basis, cannot be
properly specified. The rough sets framework can be used to measure the properties of potential data
sets, we may quantify imprecision and convey topological characterization of it, with the help of the
following.

1. If R(S) ̸= ∅ and R(S) ̸= X, then S is roughly R- definable, and indicated by RD(X).
2. If R(S) = ∅ and R(S) ̸= X, then S is internally R-undefinable, and indicated by IUD(X),
3. If R(S) ̸= ∅ and R(S) = X, then S is externally R- undefinable, and indicated by EUD(X),
4. If R(S) = ∅ and R(S) = X, then S is totally R- undefinable, and indicated by TUD(X).

We can characterize rough sets in terms of the boundary region’s size and structure by utilizing ∝R (S)
and the previously given categories. Viewed as a particular instance of relative sets, rough sets are
associated with the notion of Belnap’s logic [7].

Remark 2. We indicate the relationship between a class of Preopen sets PO(X) and a topology τ on X that was
utilized to obtain a subbase using RP. Furthermore, we represent P- approximation space by (X,RP).

Definition 4. If (X,RP) be a P-approximation space, then the P-lower (resp., P-upper) approximation of each
nonempty subset S of X follows: as:

• RP(S) =
⋃{V ∈ PO(X) : V ⊆ S},

• RP(S) =
⋂{W ∈ PC(X) : W ⊇ S}.

We are able to obtain the P-approximation operator as shown below.

1. From the provided relation R, find the right neighborhood xR, where xR = {y : xRy}.
2. Taking right neighborhoods xR as a sub-base to obtain the topology τ.
3. Preopen set family obtained by using open sets in topology τ "from Definition 1."
4. To obtain P- approximation operators, use the set of all Preopen sets ( see Definition 4).

Proposition 1. For every S ⊆ X in any P- approximation space (X,RP) the following are hold :

1. b(S) = Edg(S) ∪ Edg(S).
2. Pb(S) = PEdg(S) ∪ PEdg(S).

Proof. (2) It the follows from
Pb(S) = RP(S)−RP(S) = (RP(S)− S) ∪ (S −RP(S)) = PEdg(S) ∪ PEdg.

Definition 5. Assume that S ⊆ Y and that (Y,RP) is a P - approximation space and. Then there are the
memberships ∈, ∈, ∈P, and ∈P, which are defined as , strong, weak, P-strong, and P-weak memberships
respectively.

1. y∈S iff y ∈ R(S),
2. y∈S iff y ∈ R(S),
3. y∈PS iff y ∈ RP(S),
4. y∈PS iff y ∈ RP(S).

Remark 3. As stated by Definition 5, P- lower and P- upper approximation of a set S ⊆ Y is possible to write
as
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• RP(S) = {y ∈ S : y∈PS},
• RP(S) = {y ∈ S : y∈PS}.

Definition 6. Assume that S ⊆ Y and that (Y,Rp) is a P - approximation space. the P - accuracy measure of
S, defined as follows;

• ∝RP(S)=
|RP(S)|
|RP(S)|

, S ̸= ∅.

Definition 7. The subset N ⊆ Y of any P- approximation space (Y,RP) is referred to as;

1. If RP(N) ̸= ∅ and RP(N) ̸= Y, then roughly RP- definable, and indicated by PRD(Y),
2. If RP(N) = ∅ and RP(N) ̸= Y, then internally RP- undefinable, and indicated by PIUD(Y),
3. if RP(N) ̸= ∅ and RP(N) = Y, then externally RP- undefinable, and indicated by PEUD(Y),
4. If RP(N) = ∅ and RP(N) = Y, then totally RP- undefinable, and indicated by PTUD(Y).

Remark 4. For any P - approximation space (Y,RP) the following hold:

1. PRD(Y) ⊇ RD(Y),
2. PIUD(Y) ⊆ IUD(Y),
3. PEUD(Y) ⊆ EUD(Y),
4. PTUD(Y) ⊆ TUD(Y).

4. A novel approach to rough categorization using the δP-open set

Remark 5. A subbase for a topology τ on X and a class of δPO(X) of all δP -0pen sets by RδP are indicated,
along with the relationship that was utilized to obtain them. Furthermore, we designate the approximation space
δP by (X,RδP).

Example 1. Assume a universe X = {u1, u2, u3, u4} and a relation R defined as R = {(u1, u1),
(u1, u2), (u1, u3), (u2, u3), (u3, u4)} thus u1R = {u1, u2, u3}, u2R = {u3}, u3R = {u4} as well u4R = ∅.
Consequently, the topology related to this relationship is τ = {∅,X, {u3}, {u4}, {u3, u4},
{u1, u2, u3}} as well δPO(X) = {∅,X, {u1}, {u2}, {u3}, {u4}, {u1, u2}, {u1, u3}, {u1, u4}, {u2,
u3}, {u2, u4}, {u3, u4}, {u1, u2, u3}, {u1, u3, u4}, {u1, u2, u4}, {u2, u3, u4}}.is a δP- approximation space.

Definition 8. Assume that (X,RδP) is δP- lower approximation as well δP- upper approximation for every
nonempty subset S of X, the definition is:

• RδP(S) =
⋃{V : V ∈ δPO(X), V ⊆ S},

• RδP(S) =
⋂{W : W ∈ δPC(X), W ⊇ S}.

Definition 9. Assume that(X,RδP) is δP- accuracy measure of S specified as follows

• ∝RδP (S) =
| RδP(S) |
| RδP(S) |

, S ̸= ∅.

Theorem 1. Given any binary relation R on X, which generates a topological space (X, τ), we obtain R(S) ⊆
RP(S) ⊆ RδP(S) ⊆ S ⊆ RδP(S) ⊆ RP(S) ⊆ R(S).

Proof. R(S) =
⋃{V ∈ τ : V ⊆ S} ⊆ ⋃{V ∈ PO(X) : V ⊆ S} = RP(S) ⊆ ⋃{V ∈ δPO(X) : V ⊆

S} = RδP(S) ⊆ S, that is, R(S) ⊆ RP(S) ⊆ RδP(S) ⊆ S.
Furthermore, R(S) =

⋂{W ∈ τc : W ⊇ S} ⊇ ⋂{W ∈ PC(X) : W ⊇ S} = RP(S) ⊇ ⋂{W ∈
δPC(X) : W ⊇ S} = RδP(S) ⊇ S, that is, R(S) ⊇ RP(S) ⊇ RδP(S) ⊇ S.

Consequently, R(S) ⊆ RP(S) ⊆ RδP(S) ⊆ S ⊆ RδP(S) ⊆ RP(S) ⊆ R(S).
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Definition 10. Assume that the δP- approximation space is (X,RδP). With consider to any S ⊆ X, the universe
X can be divided into 24 areas as follows.

1. Edg(S) = S −R(S), which is the internal edg of S.
2. PEdg(S) = S −RP(S), which is the P-internal edg of S.
3. δPEdg(S) = S −RδP(S), which is the δP- internal edg of S .
4. Edg(S) = R(S)− S, which is the external edg of S.
5. PEdg(s) = RP(S)− S, which is the P- external edg of S.
6. δPEdg(S) = RδP(S)− S, which is the δP- external edg of S.
7. b(S) = R(S)−R(S), which is the boundary of S.
8. Pb(S) = RP(S)−RP(S), which is the P- boundary of S.
9. δPb(S) = RδP(S)−RδP(S), which is the δP- boundary of S.

10. ext(S) = X−R(S), which is the exterior of S.
11. Pext(S) = X−RP(S), which is the P- exterior of S.
12. δPext(S) = X−RδP(S), which is the δP- exterior of S.
13. R(S)−RP(S).
14. R(S)−RδP(S).
15. R(S)−RδP(S).
16. RP(S)−R(S).
17. RP(S)−RδP(S).
18. RP(S)−RδP(S).
19. RP(S)−R(S).
20. RδP(S)−RP(S).
21. RδP(S)−R(S).
22. RδP(S)−RP(S).
23. RδP(S)−R(S).
24. R(S)−RP(S).

Remark 6. An extension of the study of approximation space is the study of δP - approximation space (Figure 1).
Due to the components of the areas [RP(S)−R(S)], [RδP(S)−RP(S)], and[RδP(S)−R(S)] will be defined
well in S, In Pawlak’s approximation, however, this point was undefinable. Additionally, the component of
the areas [R(S)−RδP(S)],[RP(S)−RδP(S)],additionally [R(S)−RP(S)] don’t belong in S, even though
Pawlak’s approximation space doesn’t provide these components a clear definition.

Figure 1 shows the above 24 areas.

R(S)

RP(S)

RδP(S)

S

RδP(S)

RP(S)

R(S)

Figure 1. Showing the 24 areas given in Definition 10.

Proposition 2. If S is any subset of X, then the following holds for any δP- approximation space(X,RδP):
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1. b(S) = Edg(S) ∪ Edg(S).
2. δPb(S) = δPEdg(S) ∪ δPEdg(S).

Proof. (2) It the follows from
δPb(S) = RδP(S)−RδP(S) = (RδP(S)− S) ∪ (S −RδP(S)) = δPEdg(S) ∪ δPEdg(S).

Definition 11. Assume that S ⊆ Y and that (X,RδP) is a δP- approximation space. Then there are the
memberships ∈δP ,∈δP, which are defined as, δP - strong and δP - weak membership respectively

1. y∈δPS iff y ∈ RδP(S),
2. y∈δPS iff y ∈ RδP(S).

Remark 7. As stated by definition 10 , δP- lower and δP- upper approximations of a set S ⊆ Y is possible to
write as:

1. RδP(S) = {y ∈ S : y∈δPS},
2. RδP(S) = {y ∈ S : y∈δPS}.

Remark 8. Assume that (X,RδP) is a δP - approximation space, S ⊆ Y. Then

1. y∈S ⇒ y∈PS ⇒ y∈δPS,
2. y∈δPS ⇒ y∈PS ⇒ y∈S .

The converse of Remark 8 It might not always be the case, as demonstrated by the example below.

Example 2. In example 1. Let N={u2, u4}, we have u2 ∈δP N but u3 /∈P N. Let N ={u1, u3}, u1 ∈P N but
u1 /∈ N. Let N ={u1, u4} then we have u2 ∈ N but u2 /∈P N. Let N ={u3}, u1 ∈P N but u1 /∈δP N.

Example 3. We can deduce from example 1 with the following table, which displays the degree of accuracy
measure ∝R(S), P -accuracy measure ∝RP(S) additionally δP- accuracy measure ∝RδP(S) for some subset of X.

Table 1. Showing the degree of accuracy measure ∝R(S), ∝RP (S) and ∝RδP (S).

Power Set ∝R(S) ∝RP(S) ∝RδP(S)

{u1} 0 0 1
{u2} 0 0 1
{u3} 1/3 1/3 1
{u4} 1 1 1

{u1, u2} 0 0 1
{u1, u3} 1/3 2/3 1
{u1, u4} 1/3 1/2 1
{u2, u3} 1/3 2/3 1
{u2, u4} 1/3 1/2 1
{u3, u4} 1/2 1/2 1

{u1, u2, u3} 1 1 1
{u1, u2, u4} 1/3 1/3 1
{u1, u3, u4} 1/2 3/4 1
{u2, u3, u4} 1/2 3/4 1

The set S = {u3, u4} has a degree of precision of 50% according to the accuracy measure, and
100% according to the δP - accuracy measure. Furthermore, the set N = {u1, u3, u4} according to
P - accuracy measure equal to 75% and according to δP - accuracy measure equal to 100%. Thus,
δP-accuracy measures are superior to accuracy and P-accuracy metrics.

We study δP- rough inclusion, using the rough inclusion method that Novotny and Pawlak
developed in [19,20].
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Definition 12. Assume that (X,RδP) is a δP approximation space where S,N ⊆ X. Then we state:

1. S is δP- roughly bottom included in N if RδP(S) ⊆ RδP(N),
2. S is δP- roughly top included in N if RδP(S) ⊆ RδP(N),
3. S is δP- roughly included in N if (1) and (2).

Example 4. As shown in Example 1, {u2, u4} is δP- roughly bottom included in {u1, u2, u4}.
Furthermore {u2, u4} is δP- roughly top included in {u1, u2, u4} . Additionally {u2, u4} is δP- roughly

included in {u1, u2, u4}.

Definition 13. Assume that (X,RδP) is δP- approximation space, a subset S of X is referred to as

1. RδP- definable (δP− exact) when RδP(S) = RδP(S),
2. δP - rough when RδP(S) ̸= RδP(S).

Example 5. For any δP- approximation space (X,RδP) as in Example 1. We have the set {u2, u3, u4} is δP-
exact.

Definition 14. The subset S ⊆ X of any δP- approximation space (X,RδP) is referred to as;

1. If RδP(S) ̸= ∅ and RδP(X) ̸= X, then roughly RδP- definable, and indicated by δPRD(X),
2. If RδP(S) = ∅ and RδP(S) ̸= X, then internally RδP- undefinable, and indicated by δPIUD(X),
3. if RδP(S) ̸= ∅ and RδP(S) = X, then externally RδP- undefinable, and indicated by δPEUD(X),
4. If RδP(S) = ∅ and RδP(S) = X, then totally RδP- undefinable, and indicated by δPTUD(X).

Remark 9. Assume that (Y,RδP) is a δP- approximation space. These are on hold :

1. δPRD(Y) ⊇ PRD(Y) ⊇ RD(Y),
2. δPIUD(Y) ⊆ PIUD(Y) ⊆ IUD(Y),
3. δPEUD(Y) ⊆ PEUD(Y) ⊆ EUD(Y),
4. δPTUD(Y) ⊆ PTUD(Y) ⊆ TUD(Y).

Example 6. As shown in Example 1, the set {u1, u2} ∈ δPRD(X) but {u1, u2} /∈ pRD(X).The set
{u2} ∈ PIUD(X) but {u2} /∈ δPIUD(X). The set {u2} ∈ PIUD(X) and {u2} ∈ δPIUD(X). the
set {u1, u3, u4} ∈ PEUD(X) but {u1, u3, u4} /∈ δPEUD(X).

Proposition 3. Assume that the δP - approximation space is (Y,RδP). After that

1. Each P - exact set in Y is δP - exact
2. Each δP - rough set in Y is P - rough

Proof. Evident.
As demonstrated by the example that follows, the converse of every part of proposition 3, might

not always hold.

Example 7. Consider (X,RδP) as an δP - approximation space for in example 1. Consequently the subset
{u1, u2} is δP- exact but not P-exact, while {u2, u3, u4} is P-rough but not δP-rough.

Proposition 4. Assuming that S, N ⊆ X and any δP- approximation space (X,RδP).Next

1. RδP(S) ⊆ S ⊆ RδP(S),
2. RδP(∅) = RδP(∅) = ∅,RδP(X) = RδP(X) = X,
3. If S ⊆ N then RδP(S) ⊆ RδP(N) and RδP(S) ⊆ RδP(N)

Proof. .
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1. Assume x ∈ RδP(S), meaning that x ∈ ⋂{V ∈ δPO(X), V ⊆ S}. And after that, there V0 ∈
δPO(X) in such a manner that x ∈ V0 ⊆ S. So x ∈ S, therefore RδP(S) ⊆ S, furthermore, assume
x ∈ X additionally, by definition of RδP(S) =

⋃{W ∈ δPC(X), S ⊆ W}, then x ∈ W for everyone
W ∈ δPC(X). Therefore S ⊆ RδP(S).

2. Adheres directly.
3. Assume x ∈ RδP(S), meaning that x ∈ ⋃{V ∈ δPO(X), V ⊆ S} however S ⊆ N, so V ⊆ N

and x ∈ V, then x ∈ RδP(N). Additionally let x /∈ RδP(N) this implies that x /∈ ⋂{W ∈
δPC(X), N ⊆ W} afterward, there are W ∈ δPC(X), N ⊆ W and x /∈ W meaning that, there
is W ∈ δPC(X), S ⊆ N ⊆ W and x /∈ W which suggest x /∈ ⋂{W ∈ δPC(X), S ⊆ W}, so
x /∈ RδP(S). Consequently RδP(S) ⊆ RδP(N).

Proposition 5. Assuming that S, N ⊆ X and any δP- approximation space (X,RδP).Next:

1. RδP(X\S) = X\RδP(S),
2. RδP(X\S) = X\RδP(S),
3. RδP(RδP(S)) = RδP(S),
4. RδP(RδP(S)) = RδP(S),
5. RδP(RδP(S)) ⊆ RδP(RδP(S)),
6. RδP(RδP(S)) ⊆ RδP(RδP(S).

Proof. .

1. Assume x ∈ RδP(X\S) meaning that x ∈ ⋃{V ∈ δPO(X), V ⊆ X\S}. Consequently, there
V0 ∈ δPO(X) in such a manner that x ∈ V0 ⊆ X\S. And after that, there Vc

0 such that S ⊂
Vc

0 , Vc
0 ∈ δPC(X). So x /∈ RδP(S). So x ∈ X\RδP(S). Consequently RδP(X\S) = X\RδP(S).

2. Comparable to (1).
3. By definition RδP(S) =

⋃{V ∈ δPO(X), V ⊆ S}, That suggests that RδP(RδP(S)) =
⋃{V ∈

δPO(X), V ⊆ RδP(S) ⊆ S}} =
⋃{V ∈ δPO(X), V ⊆ S} = RδP(S).

4. RδP(RδP(S)) = RδP(X\RδP(X\S)) = X\RδP(X\RδP(X\S)). From (1), (2) and (3), we get
RδP(RδP(S)) = X\RδP(X\S) = X\(X\RδP(S)) = RδP(S).

5. Since RδP(S) ⊆ RδP(RδP(S)) and by (3) we have RδP(RδP(S)) = RδP(S), then RδP(RδP(S)) ⊆
RδP(RδP(S)).

6. Since RδP(RδP(S)) ⊆ RδP(S) and by (4), we have RδP(RδP(S)) = RδP(S), then RδP(RδP(S)) ⊆
RδP(RδP(S)).

Proposition 6. Assume that (X,RδP) is a δP- approximation apace and S, N ⊆ X. Then

1. RδP(S ∪ N) ⊇ RδP(S) ∪RδP(N),
2. RδP(S ∪ N) ⊇ RδP(S) ∪RδP(N),
3. RδP(S ∩ N) ⊆ RδP(S) ∩RδP(N),
4. RδP(S ∩ N) ⊆ RδP(S) ∩RδP(N).

Proof. .

1. Given that we have S ⊆ S ∪ N and N ⊆ S ∪ N. And after that RδP(S) ⊆ RδP(S ∪ N) and
RδP(N) ⊆ RδP(S ∪ N) by (3) in the Proposition 4, then RδP(S ∪ N) ⊇ RδP(S) ∪RδP(N).

2. (2), (3) and (4) the same as (1).

Theorem 2. Assuming that S, N ⊆ X and any δP- approximation space (X,RδP) If S is RδP-definable. The
next items are then held.
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1. RδP(S ∪ N) = RδP(S) ∪RδP(N).
2. RδP(S ∩ N) = RδP(S) ∩RδP(N).

Proof. .

1. Evidently RδP(S)∪RδP(N) ⊆ RδP(S ∪ N). To include the opposite, assume x ∈ RδP(S ∪ N), that
implies x ∈ ⋃{V is δPO(X), V ⊆ S ∪ N}. And after that, there V0 ∈ δPO(X) in such a manner
that x ∈ V0 ⊂ ∪N. We present three instances:

(a) If V0 ⊂ S, x ∈ V0 and V0 is a δP-open the set, then x ∈ RδP(S).
(b) If V0 ∩ S = ∅, then V0 ⊆ N and x ∈ V0, thus x ∈ RδP(N).
(c) If V0 ∩ S ̸= ∅. Since x ∈ V0 and V0 is an δP-open the set, then x ∈ δPcl(S), each V0 in

the previously mentioned condition, therefore x ∈ RδP(S), then x ∈ RδP(S), since S is δP-
definable. Thus, in three instances x ∈ RδP(S) ∪RδP(N).

2. Evidently RδP(S ∩ N) ⊆ RδP(S) ∩ RδP(N). We demonstrate the opposite inclusion, assume
x ∈ RδP(S) ∩RδP(N), then x ∈ RδP(S) denotes x ∈ RδP(S) and x ∈ V ⊆ X, in which V is an
δP-open the set and x ∈ RδP(N) suggests for every V ∈ δPO(X), V ∩ N ̸= ∅. Consequently
V ∩ (S ∩ N) = (V ∩ S) ∩ N = V ∩ Y ̸= ∅. Therefore x ∈ RδP(S ∩ N).

Theorem 3. Assuming that S, N ⊆ X and any δP- approximation space (X,RδP). Afterwards, the following
are held.

1. RδP(cl(S) ∪ N) = cl(S) ∪RδP(N),
2. RδP(int(S) ∩ N) = int(S) ∩RδP(N).

Proof. .

1. In accordance with propositions 4 (1) and 6 (2), we cl(S) ⊂ RδP(cl(S)). Then cl(S) ∪RδP(N) ⊂
RδP(cl(S)) ∪ RδP(N) ⊂ RδP(cl(S) ∪ N). However, since cl(S) ∪ M ⊂ cl(S) ∪ RδP(N) and the
union of an δP-open set and a closed set is δP-closed, and after that RδP(cl(S)∪ N) ⊂ RδP(cl(S)∪
RδP(N)) = cl(S) ∪RδP(N). Consequently RδP(cl(S) ∪ N) = cl(S) ∪RδP(N).

2. Given that an open set’s intersection with int(S) and an δP-open set RδP(N) is δP-open, int(S) ∩
RδP(N) = RδP(int(S) ∩RδP(N)) ⊂ RδP(int(S) ∩ N). However, by applying proposition 6 (3),
RδP(int(S) ∩ N) ⊂ RδP(int(S)) ∩RδP(N) ⊂ int(S) ∩RδP(N). Consequently RδP(int(S) ∩ N) =

int(S) ∩RδP(N).

Lemma 2. For any δP-approximation space (X,RδP) furthermore, for everyone c, d ∈ X, the state of c ∈
RδP({d}) and d ∈ RδP({c}) infers RδP({c}) = RδP({d}).

Proof. According to the definition of δP-upper approximation a set is a δP-closure of this set, fur-
thermore δPcl({d}) is a δP-closed set containing c (according to the condition) but δPcl({c}) is the
tiniest δP-closed set containing c, thus δPcl({c}) ⊆ δPcl({d}). Therefore RδP({c}) ⊆ RδP({d}) By
symmetry, the opposite inclusion occurs δPcl({d}) ⊆ δPcl({c}). therefore RδP({d}) ⊆ RδP({c}) we
obtain RδP({c}) = RδP({d}).

Lemma 3. Assume that (X,RδP) be a δP-approximation space, where each δP-open subset S of X is δP-closed,
Then d ∈ RδP({c}) therefore c ∈ RδP({d}) for every c, d ∈ X.

Proof. If c /∈ RδP({d}), then there is a δP-open set V include c such that V ∩ {d} = ∅ which suggests
that {d} ⊆ (X\V) but (X\V) is a δP-closed set additionally is a δP-open set does not include c, thus
(X\V) ∩ {c} = ∅. Therefore d /∈ RδP({c}).
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Proposition 7. Assume that (X,RδP) be a δP- approximation space, and all of them δP-open subset S of X is
δP-closed. After that, the family of sets {RδP({c}) : c ∈ S} is a division of the set X.

Proof. If c, d, f ∈ S furthermore f ∈ RδP({c}) ∩ RδP({d}), then f ∈ RδP({c}) furthermore f ∈
RδP({d}). Consequently, by Lemma 3, c ∈ RδP({ f }) and d ∈ RδP({ f }) furthermore by Lemma 2, as
we have RδP({c}) = RδP({ f }) and RδP({d}) = RδP({ f }). Consequently RδP({c}) = RδP({d}) =

RδP({ f }). Therefore either RδP({c}) = RδP({d}) or RδP({c}) ∩RδP({d}) = ∅

5. Conclusions

This paper introduces the δP- approximation operator, a new class of approximations that we
introduced using the δP-open sets class. Furthermore, the δP- approximation yields 24 unique granules
of the discourse universe. The most extensive granulation based on closure and interior operator
in topological spaces is used in our method, which is the class of δP- open sets. Because of this,
the accuracy measurements are higher than when using any kind of near-open sets, like α-open,
etc. There are some generalizations of significant characteristics of the traditional Pawlak’s rough
sets. Additionally, we used our approach to define the notion of rough membership function. It is an
extension of the traditional rough membership function of Pawlak rough sets. In a decision information
system, depending on a conditional attribute. The decision that has to be made can be done using the
generalized rough membership function. Intelligent computational versions of granular beneficial
computing is generated by the rough set approach to approximation of sets.
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