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Abstract: Open domain question answering (OpenQA) tasks have been recently attracting more and
more attention from the natural language processing (NLP) community. In this work, we present the
first free-form multiple-choice OpenQA dataset for solving medical problems, MEDQA, collected
from the professional medical board exams. It covers three languages: English, simplified Chinese,
and traditional Chinese, and contains 12,723, 34,251, and 14,123 questions for the three languages,
respectively. We implement both rule-based and popular neural methods by sequentially combining
a document retriever and a machine comprehension model. Through experiments, we find that even
the current best method can only achieve 36.7%, 42.0%, and 70.1% of test accuracy on the English,
traditional Chinese, and simplified Chinese questions, respectively. We expect MEDQA to present
great challenges to existing OpenQA systems and hope that it can serve as a platform to promote
much stronger OpenQA models from the NLP community in the future.

Keywords: Natural Language Processing; Open-domain Question Answering; Multi-choice Question
Answering; Clinical Question Answering

1. Introduction

Question answering (QA) is a fundamental task in Natural Language Processing
(NLP), which requires models to answer a particular question. When given the context
text associated with the question, language pre-training based models such as BERT [1],
RoBERTa [2], and ALBERT [3] have achieved nearly saturated performance on most of
the popular datasets [4-8]. However, real-world scenarios for QA are usually much more
complex and one may not have a body of text already labeled as containing the answer to
the question. In this scenario, models are required to find and extract relevant information
to questions from large-scale text sources such as a search engine [9] and Wikipedia [10].
This type of task is generally called as open-domain question answering (OpenQA), which
has recently attracted lots of attention from the NLP community [11-13] but still remains
far from being solved.

Most previous works for OpenQA focus on datasets in which answers are in the
format of spans (several consecutive tokens) and can be found based on the information
explicitly expressed in the provided text [9,10,14,15]. As a more challenging task, free-
form multiple-choice OpenQA datasets such as ARC [16] and OpenBookQA [17] contain
a significant percentage of questions focusing on the implicitly expressed facts, events,
opinions, or emotions in the retrieved text. To answer these questions, models need to
perform logical reasoning over the information presented in the retrieved text and in some
cases even need to integrate some prior knowledge. Such datasets can motivate a general
QA algorithm that can read any given question, find relevant evidence from a knowledge
bank, and conduct logical reasoning to obtain the answer. Unfortunately, these OpenQA
datasets consist of questions that require only elementary or middle school level knowledge
(e.g., “Which object would let the most heat travel through?”), so even excellent models
trained on them may be unable to support more sophisticated real-world scenarios.

To this end, we introduce a new OpenQA dataset, MEDQA, for solving medical
problems, representing a demanding real-world scenario. Questions in this dataset are
collected from medical board exams in US, Mainland China, and Taiwan, where human
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Table 1: Two examples of MEDQA. The correct answer among options is marked in bold font. Key words in the question
and evidence text to help answer the questions are highlighted in italic font. Evidence for both examples are from the
textbook “Harrison’s Principles of Internal Medicine”.

A 27-year-old male presents to urgent care complaining of pain with urination. He reports that the pain started 3
days ago. He has never experienced these symptoms before. He denies gross hematuria or pelvic pain. He is sexually
active with his girlfriend, and they consistently use condoms. When asked about recent travel, he admits to
recently returning from a “boys’ trip" in Cancun where he had unprotected sex 1 night with a girl he met at a bar.
The patient’s medical history includes type I diabetes that is controlled with an insulin pump. His mother has
rheumatoid arthritis. The patient’s temperature is 99 F (37.2 C), blood pressure is 112/74 mmHg, and pulse is
81/min. On physical examination, there are no lesions of the penis or other body rashes. No costovertebral
tenderness is appreciated. A urinalysis reveals no blood, glucose, ketones, or proteins but is positive for leukocyte
esterase. A urine microscopic evaluation shows a moderate number of white blood cells but no casts or crystals. A
urine culture is negative. Which of the following is the most likely cause for the patient’s symptoms?

Question

A: Chlamydia trachomatis, B: Systemic lupus erythematosus, C: Mycobacterium tuberculosis, D: Treponema

Options pallidum

At least one-third of male patients with C. frachomatis urethral infection have no evident signs or symptoms of

Evidence urethritis. ... Such patients generally have pyuria ..., a positive leukocyte esterase test, ...

A 57-year-old man presents to his primary care physician with a 2-month history of right upper and lower extremity
weakness. He noticed the weakness when he started falling far more frequently while running errands. Since
then, he has had increasing difficulty with walking and lifting objects. His past medical history is significant only
Question| for well-controlled hypertension, but he says that some members of his family have had musculoskeletal problems.
His right upper extremity shows forearm atrophy and depressed reflexes while his right lower extremity is hypertonic
with a positive Babinski sign. Which of the following is most likely associated with the cause of this patient’s
symptoms?

Options ‘ A: HLA-BS8 haplotype, B: HLA-DR2 haplotype, C: Mutation in SOD1, D: Mutation in SMN1, E: Viral infection

1. The manifestations of ALS ... insidiously developing asymmetric weakness, usually first evident distally in one of
the limbs.

2. ... hyperactivity of the muscle-stretch reflexes (tendon jerks) and, often, spastic resistance to passive movements ...

3. Familial ALS (FALS)... clinically indistinguishable from sporadic ALS... Genetic studies have identified
mutations in multiple genes, including cytosolic enzyme SODI...

Evidence

doctors are evaluated on their professional knowledge and ability to make clinical decisions.
Questions in these exams are varied and generally require a deep understanding of related
medical concepts learned from medical textbooks to answer. Table 1 shows two typical
examples. An OpenQA model must learn to find relevant information from the large
collection of text materials we assembled from medical textbooks, reason over them, and
make decisions about the right answer. Taking the first question in Table 1 as instance,
to obtain the correct answer “Chlamydia trachomatis”, the OpenQA model first needs to
retrieve the relevant evidence as shown in this table from a large collection of medical
textbooks, read over the question body, pay attention to the key findings for this patient:
no evident signs of urethritis, finding of pyuria, and positive leukocyte esterase test, and infer
the correct answer after extensive reasoning.

To provide benchmarks for MEDQA, we implement several state-of-the-art methods
for the OpenQA task based on the standard system design, which consists of two com-
ponents: a document retriever for finding relevant evidence text, and a document reader
that performs machine comprehension over the retrieved evidence. Experimental results
have shown that even the best method powered by the large pre-trained models [1] can
only achieve 36.7%, 42.0%, and 70.1% of test accuracy on the questions collected from US,
Mainland China, and Taiwan, respectively, indicating the great challenge of this dataset.
Through both quantitative and qualitative analysis, we find that the performance of docu-
ment retriever should be the bottleneck since its current form cannot conduct multi-hop
reasoning over the retrieving process. Our hope is that MEDQA can serve as a platform
to encourage researchers to develop a general OpenQA model that can solve complex
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real-world questions via abundant logical reasoning in both retrieval and comprehension
stages.

2. Related Work

Traditionally, QA tasks have been designed to be text-dependent [4,6,18], where a
model is required to comprehend a given text to answer questions. Those given texts
relevant to the questions are specially curated by people, which is infeasible for real-world
applications where annotations of relevant context are expensive to obtain. This gave
rise to the birth of open-domain QA (OpenQA) task, where models must both find and
comprehend the context for answering the questions. As a preliminary trial, Chen ef al.
[10] proposes the DrQA model, which uses a text retriever to obtain relevant documents
from Wikipedia, and further applies a trained reading comprehension model to extract
the answer from the retrieved documents. Afterwards, researchers have introduced more
sophisticated models, which either aggregate all informative evidence [11,12] or filter out
those irrelevant retrieved texts [19,20] to better predict the answers. Benefiting from the
power of neural networks, these models have achieved remarkable progress in OpenQA.

Much of the previous OpenQA work focuses on the datasets whose answers are spans
from the retrieved documents [9,10,14]. In general, most questions concern the facts that
are explicitly expressed in the text, offering an advantage to systems that rely mostly on
surface word matching [21].

To promote more advanced reading skills, another research line has studied OpenQA
tasks in a free-form multiple-choice form [16,17]. These benchmarks allow a relatively more
comprehensive evaluation of different higher-level reading skills such as logical reasoning
and prior knowledge integration. In particular, real-world exams such as SAT and Gaokao
are ideal sources for constructing this kind of OpenQA datasets [16,17,22]. Our proposed
dataset follows this line but differs in three aspects:

e  The source of our dataset is designed to examine the doctors’ professional capability
and thus contains a significant number of questions that require multi-hop logical
reasoning, which helps push the development of reading comprehension models
along this direction [23].

e  Our dataset is the first publicly available large-scale multiple-choice OpenQA dataset
for the medical problems, where extensive prior domain-specific knowledge is an-
ticipated for the model. It can thus contribute to the emerging field where a general
language model will need to be combined with world knowledge.

e  Our dataset is cross-lingual, covering English and simplified/traditional Chinese,
which contributes to the emerging field of cross-lingual natural language understand-
ing.

There are several related medical QA datasets, which are summarized in Table

2. Among them, LiveQA [24], Medication QA [25], MEDIQA [26], and MedQuAD [27]

contain consumer health related questions and the answers are obtained by searching

healthcare websites such as MedlinePlus via the ChiQA system [28] and selecting a snippet
of searching results out, where the answer retrieval is performed by keywords matching and

complex reasoning is seldom involved. BioASQ [29] is similar to the SQuAQ dataset [4],

where a span of text in the given context is used as the answer and thus no external

knowledge source is needed. emrQA [30] aims to rank a list of Electronic Medical Record

(EMR) text lines to find the best line as the answer and the ground truth answers are

obtained via an algorithm rather than human annotation. Overall, none of these related

datasets have been formulated as an OpenQA problem. Last but not the least, Zhang
et al. [22] and Ha and Yaneva [31] have previously worked on the Chinese and English
versions of our proposed dataset, respectively. However, the former one did not release
any data while the latter one only released 454 questions for public use, while we publicize
a large-scale dataset to promote more powerful deep models.
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Table 2: Comparison of our dataset with existing medical QA datasets. In terms of the answer format, “retrieval” means
that the answer is a snippet of retrieval result by searching relevant websites; “ranking” means that the answer is a list of
candidates and the task is to rank them with higher ranking ones being better answers. Automatic annotation is obtained
via an algorithm.

Datasets LiveQA Medication QA BioASQ emrQA MEDIQA MedQuAD ‘ MedQA
Question Source consumer health  consumer health biomedical EMR consumer health  consumer health | medical&clinical
Answer Format retrieval retrieval span basedé&binary ranking ranking retrieval multiple choice
Annotation Method manual manual manual automatic manual automatic manual
Dataset Size 660 674 3,743 455,837 383 47,457 61,097
OpenQA? No No No No No No Yes

3. Data

3.1. Task Formulation

The task is defined by its three components:

Question: question in text, either in one sentence asking for a certain piece of knowl-
edge, or in a long paragraph starting with a description of the patient condition.

Answer candidates: multiple answer options are given for each question, of which
only one should be chosen as the most appropriate.

Document collection: a collection of text material extracted from a variety of sources
and organized into paragraphs, which contains the knowledge and information to help
find the answers.

This task is to determine the best answer to the question among the candidates, relying
on the documents.

3.2. Data Collection
3.2.1. Questions and Answers

We collected the questions and their associated answer candidates from the National
Medical Board Examination in the USA!, Mainland ChinaZ, and Taiwan3. For convenience,
we denote the datasets from these three sources as USMLE, MCMLE, and TWMLE, respec-
tively. These tests assess a physician’s ability to apply knowledge, concepts, and principles,
and the ability to demonstrate fundamental patient-centered skills. We include problems
from both real exams and mock tests; all are freely accessible online for public usage.
Details about the sources that we collected data from are described in the Appendix A.

We remove duplicate problems and randomly split the data based on questions, with
80% training, 10% development, and 10% test. The overall statistics of the dataset are
summarized in Table 3. To comply with fair use of law*, we shuffle the order of answer
options and randomly delete one of the wrong options for each question for USMLE and
MCMLE datasets, which results in four options with one right option and three wrong
options. Percentages of each option as the correct answer for the development set are
summarized in the Appendix A.

3.2.2. Document Collection

Extensive medical knowledge is needed to answer every question in our MEDQA
data. For people to obtain answers for these questions, they need to obtain necessary
knowledge from a volume of medical textbooks during years of training. Similarly, for
a machine learning model to be successful in this task, we need to grant it access to the
same collection of text materials as human have. Therefore, for USMLE, we prepared
text materials from a total of 18 English medical textbooks that have been widely used
by medical students and USMLE takers, whereas for MCMLE, we collected 33 simplified
Chinese medical textbooks designated as the official textbooks for preparing the medical

https:/ /www.usmle.org/

http://www.nmec.org.cn

https:/ /wwwq.moex.gov.tw /exam/wFrmExamQand ASearch.aspx
https:/ /www.copyright.gov/fair-use /more-info.html
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Table 3: Overall statistics of MEDQA. Question/option length and vocabulary/character
size are calculated in tokens for English and in characters for Chinese. Vocabulary/character
size is measured on the combination of questions and options. “Avg./Max. option len.”
represents “Average/Maximum option length”.

Metric USMLE MCMLE TWMLE
# of options per question 4 4 4
Avg./Max. option len. 3.5/ 45 7.3 / 100 20.6 / 210
Avg./Max. question len.  116.6 / 530 45.7 /333 61.0 / 1950
vocab/character size 63317 3263 3588
# of questions

Train 10178 27400 11298
Development 1272 3425 1412
Test 1273 3426 1413
All 12723 34251 14123

licensing exam in Mainland China. For TWMLE, since medical students in Taiwan use the
same textbooks as those in USA for exam preparation, USMLE and TWMLE would use the
same document collection for solving questions. We will release the textbooks we collected
upon the license agreement of research use only.

All textbooks we collected are originally in PDF format and we converted them into
digital text via OCR. We performed some clean-up pre-processing over the converted
text such as misspelling correction, and then divided all text into paragraphs. Table 4
summarizes the statistics of the document collection.

Table 4: Overall statistics of the document collection. USMLE and TWMLE share the same
document collection. Token number and vocabulary size are counted in tokens for English
and in characters for Chinese.

Metric USMLE/TWMLE MCMLE
# of books 18 33
# of paragraphs 231,581 116,216
# of tokens 12,727,711 14,730,364
Vocabulary size 245,851 4,695
Avg./Max. paragraph length 55.0 /1,234 126.7 /9,082

To evaluate whether these collected text materials can cover enough knowledge to
answer those questions, we randomly extracted 100 questions from the development
set of all three datasets and let two medical experts with the MD degree annotate how
many of them can be answered by the evidence from our prepared text materials. Table 5
summarizes the results of this evaluation. From this table, we see that our collected text
materials can provide enough information for answering most of the questions in our data.

3.3. Data Analysis

Based on a preliminary analysis of our proposed data, we find that it poses unique chal-
lenges for language understanding compared with existing OpenQA datasets, elaborated
below:

Table 5: Percentage of questions that human experts can find enough evidence from our
collected text material to obtain correct answers for by randomly annotating 100 samples
from the development set.

USMLE MCMLE TWMLE
Coverage (%) 88.0 100.0 87.0
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e Professional Knowledge: For most existing QA datasets, the question answering
process relies largely on the basic understanding of language and general world
knowledge reasoning. Some works have revealed that the large-scale pretrained lan-
guage models bear a certain level of common-sense and symbolic reasoning capability
besides their linguistic knowledge [32,33], which may contribute significantly to the re-
markable performance of current QA models. However, answering of every question
in our dataset needs abundant professional domain-specific knowledge, particularly
medical knowledge, which forces the model to have a deep understanding of the
extracted context.

o Diversity of Questions: The field of clinical medicine is diverse enough for questions
to be asked about a wide range of topics. In general, there are two categories of
questions: 1). The question is asking for a single piece of knowledge, for instance via
the question "Which of the following symptoms belongs to schizophrenia?" 2). The
question first describes a patient’s condition and then asks for the most probable diagnosis
/ the most appropriate treatment / the examination needed / the mechanism of certain conditions
/ the possible outcome for a certain treatment, etc. Table 1 shows two typical examples
for type 2. Table 6 summarizes the percentages of these two types of questions for
each dataset by annotating randomly selected 100 questions from the development
set. Typically, type 1 questions need one-step reasoning while type 2 questions require
multi-hop reasoning and are thus much more complicated than type 1 ones, imposing
challenges not only to the reading comprehension model but also to the relevant text
retrieval module. For example, in order to solve the first question in Table 1, the model
needs to first extract, understand, and interpret the symptoms of this patient among
a long paragraph of description, then match these symptoms to millions of medical
knowledge text snippets and find out the most relevant one, and finally understand
the evidence sentence for answer selection.

e Complex Reasoning over Multiple Evidence: Many questions in our data involve
complex multi-hop reasoning over several evidence snippets. For instance, the second
example is a typical question that requires multiple steps of reasoning over three
evidences, where from the symptoms and signs we can know that this patient is highly
likely an ALS case by looking at the evidence 1 and 2. Afterwards, from evidence 3,
we know that the SOD1 is the possible genetic mutation for familial ALS, which is the
correct answer.

e Noisy Evidence Retrieval: Retrieving relevant information from large-scale text is
much more challenging than reading a short piece of text. Passages from textbooks
often do not directly give answers to questions and many passages retrieved by the
most widely adopted term-matching based information retrieval (IR) systems turn
out to be noisy distractors and not relevant, especially for type 2 questions. For
those questions involving multi-hop reasoning, models must identify all relevant
information scattered in different passages, and missing any single piece of evidence
would lead to failures.

Table 6: Percentages of type 1 and type 2 questions by annotating 100 randomly samples
data from the development set. Type 1 questions ask about a single knowledge point,
whereas type 2 questions simulate the realistic clinical settings by studying a patient case.

Question Types USMLE MCMLE TWMLE

Type 1 2.0 75.0 69.0
Type 2 98.0 25.0 31.0

4. Approaches

We implement both classical rule-based methods and recent state-of-the-art neural
network based models.
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4.1. Rule-based Methods

We first propose two rule-based methods that do not involve a training process.

4.1.1. Pointwise Mutual Information (PMI)

This method is based on the PMI score function [34], which measures the strength of
association between two n-grams x and y and is defined as:

PMI(x,y) = logPPW),
p(xy)
where p(x,y) is the joint probability that x and y occur together in our document collection
C, within a certain window of text (we use a 10 word window); p(x) is the probability that
x occurs in C. In practice, we use the frequency to represent the probability. The larger this
PMI score, the stronger the association between x and y.
This method extracts unigrams, bigrams, trigrams, and skip-bigrams from the question
g and each answer option 4; and calculates the average PMI score over all pairs of question
n-grams and answer option n-grams. The answer option with the highest average PMI
score will be picked as the prediction.

4.1.2. Information Retrieval (IR)

As the preliminary trial, we adopt a standard off-the-shelf text retrieval system built
upon Apache Lucene, Elasticsearch, using inverted index lookup followed by BM25 rank-
ing. Specifically, for each question g4 and each answer option a;, we send q + a; as a query
to the search engine, and return the search engine’s score for the top-N retrieved sentences.
This is repeated for all options to score them all, and the option with the highest score is
selected. We denote this version as IR-ES.

To seek for better IR performance, we enhance the above using a BM25 re-weighting
mechanism inspired by Chen et al. [10]. The updated scoring function is detailed in the
Appendix B. Our best performing system uses unigram counts. For English questions, we
perform Snowball stemming to both documents and questions; and we use the MetaMap®
tool to identify and remove the non-medically-related words out of the questions since
they are not useful for medical evidence retrieval. Details of this step can be found in the
Appendix C. We denote this version as IR-CUSTOM.

4.2. Neural Models

Following the DrQA system by Chen et al. [10], this line of models consists of two
components: (1) the Document Retriever module for finding relevant passages and (2) a
machine comprehension model, Document Reader, for obtaining the answer by reading
the small collection of passages.

4.2.1. Document Retriever

We use the best IR system developed in Section 4.1.2 and obtain the top-N ranked
passages from the large-scale document collection C, concatenating them into a long
sequence c. Then for each question and option pair ga; = g + 4;, qa; and c are then passed
to the Document Reader for reasoning and decision-making.

4.2.2. Document Reader
We implement the following widely used document reader models:

MAX-OUT:

Following Mihaylov et al. [17], we first use the same bi-directional gated recurrent
unit (BiGRU) model to encode both the context ¢ and the question and option pair ga;, and
then perform max-pooling to obtain the final representation vectors h, € R" and hqa,. We

5 https:/ /metamap.nlm.nih.gov/
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then use the following equation to calculate the probability score of how likely this option
a; is to answer this question g given the retrieved context c:

h = [hc;hqai;hc : hqai; |hc - hqaiH/
p(q,ailc) = Wi (tanh(Wah)) € B,

where [-; -] represents the concatenation operation; W; € R™" and W, € R are weight
matrices to be learned. We compute such a probability score for each option and select the
option with the highest score.

Fine-Tuning Pre-Trained Language Models:

We also apply the framework of fine-tuning a pretrained language model such as
BERT [1] on our data following Jin et al. [35], Yan et al. [36]. Specifically, we construct the
input sequence by concatenating [CLS], tokens in ¢, [SEP], tokens in ga;, [SEP], where [CLS]
and [SEP] are the classifier token and sentence separator in a pre-trained language model,
respectively. We denote the hidden state output by the first token as h € R" and obtain
the unnormalized log probability p(g,a;|c) = Wh € R!, where W € R/ is the weight
matrix. We obtain the final prediction by applying a softmax layer over the unnormalized
log probabilities of all options associated with g and picking the option with the highest
probability.

5. Experiments
5.1. Experimental Settings
Dealing with TWMLE Data:

Since TWMLE uses the same document collection as USMLE for solving problems,
we translate the questions in TWMLE from traditional Chinese to English via Google
Translation and then use the same models as USMLE.

MAX-OUT:

We use spaCy as the English tokenizer and HanLP as the Chinese tokenizer. We
use the 200-dimensional word2vec word embeddings induced from PubMed and PMC
texts [37] for English text, and use the 300-dimensional Chinese fastText word embeddings
[38]. The maximum sequence length for a passage is limited to 450 tokens while that for
the question and answer pair is limited to 150 tokens.

Fine-Tuning Pre-Trained Language Models:

We use the following pre-trained language models for Chinese: Chinese BERT-Base
(denoted as BERT-BASE-ZH) released by Google [1], Chinese BERT-Base with whole word
masking during pre-training over larger corpora (denoted as BERT-BASE-WWM-EXT) [39],
multilingual BERT-Base (uncased, denoted as MBERT-BASE) [1], Chinese RoBERTa-Large
with whole word masking over the same corpora as BERT-Base-wwm-ext (denoted as
ROBERTA-LARGE-WWM-EXT) [39].

For English, we consider the following pre-trained models: English BERT-Base (de-
noted as BERT-BASE-EN) [1], English BioBERT-Base and BioBERT-Large that fine-tune the
English BERT models further over the bio-medical literature from PubMed (denoted as
BIOBERT-BASE/LARGE) [40], English Clinical BERT-Base that fine-tunes the BERT-Base
model further over the clinical notes extracted from MIMIC-III (denoted as CLINICAL-
BERT) [41], bio-medical RoBERTa-Base by adapting RoBERTa-Base to bio-medical scientific
papers from the Semantic Scholar corpus (denoted as BIOROBERTA-BASE) [42], English
RoBERTa-Large (ROBERTA-LARGE) [2]. We did not try further fine-tuning BERT models
on our collected textbooks since they only contain 12-15 M tokens, which are far less than
the typical corpus size for model pre-training (containing over billions of tokens).
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We set the learning rate and effective batch size (product of batch size and gradient
accumulation steps) to 2 x 107> and 18 for base models, and 1 x 107> and 6 for large
models. We truncate the longest sequence to 512 tokens after sentence-piece tokenization
(we only truncate context). We fine-tune English /Chinese models for 8/16 epochs, set the
warm-up steps to 1000, and keep the default values for the other hyper-parameters [1].

Table 7: Performance of baselines in accuracy (%) on the MCMLE dataset.

Methods Dev Test
CHANCE 25.0 25.0
PMI 36.6 36.9
IR-ES 383 372
IR-CusTOM 39.1 378
MAX-OUT 51.8 50.9
BERT-BASE-ZH 66.5 65.8
BERT-BASE-WWM-EXT 64.4 64.0
MBERT-BASE 62.1 623

ROBERTA-LARGE-WWM-EXT 69.3 70.1

5.2. Baseline Results

Tables 7 and 8 summarize the performance of all baselines on the three datasets. By
looking at these two tables, we observe:

e  Our customized IR system outperforms the off-the-shelf version and the improvement
is larger on the English questions.

e  For the MCMLE dataset, pretrained models significantly outperform non-pretrained
models and all neural models outperform the non-neural baselines. However, for the
USMLE and TWMLE datasets, the non-pretrained neural models (MAX-OUT) cannot
even surpass the IR baseline, and most surprisingly, most of the pretrained models for
the USMLE dataset cannot even beat the IR baseline.

Overall, even the strongest pretrained model (BIOBERT-LARGE, ROBERTA-LARGE)
cannot harvest good scores on any of the three datasets, validating the great challenge of
our proposed data. Notably, we did not include human performance for comparison due
to the high variance of scores for human examinees (best medical students can earn almost
full marks while worse ones cannot pass the exams).

Table 8: Performance of baselines in accuracy (%) on the USMLE and TWMLE datasets.

USMLE TWMLE

Datasets Dev Test Dev Test
CHANCE 250 25.0 25.0 25.0
PMI 29.8 31.1 308 31.1
IR-ES 34.0 355 249 268
IR-CusTOM 383 361 351 348
MAX-OUT 289 28,6 294 278
BERT-BASE-EN 339 343 343 333

CLINICALBERT-BASE 33.7 324 334 321
BIOROBERTA-BASE 351 361 387 369
BIOBERT-BASE 343 341 416 411

ROBERTA-LARGE 352 350 396 393
BIOBERT-LARGE 36.1 36.7 422 420
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5.3. Error Analysis
5.3.1. Quantitative Analysis

Since our approaches to the proposed data involve two stages, i.e., document retrieval
and reading comprehension, both stages could be the potential error sources. We first check
the performance of the IR based document retrieval stage by letting two medical doctors
annotate whether the top 25 retrieved paragraphs by IR-CUST contain enough evidence
for answering the questions over 100 randomly selected samples from the development
set. We have three annotation levels: full evidence (evidence is totally complete to derive
the answer), partial evidence (evidence is useful but not complete), and no evidence (no
evidence is found at all). Table 9 summarizes the results of the annotation. We also
summarize the percentages of samples for which we find full, partial, or no evidence
individually for type 1 and type 2 questions on the MCMLE and TWMLE datasets. From
this table, we see that only the MCMLE dataset has a good retrieval recall while for the
majority of samples in USMLE, we cannot find any evidence in the retrieved text. Moreover,
among those samples that can find full or partial evidence, we calculate the percentage of
samples that find the evidence in the top N (1, 5, 10, 15) retrieved paragraphs, as shown in
Table 10. Overall, we have two findings: 1). The MCMLE and TWMLE datasets have much
higher percentage of type 1 questions than USMLE, which is positively correlated with
their much better IR retrieval performance; 2). Such poor evidence retrieval performance
for the USMLE dataset should be the main cause of the extremely low baseline models’
performance as shown in Table 8 (neural models are even beaten by the IR baseline).

Table 9: Percentage of samples that can find full evidence, partial evidence, or no evidence
in the top 25 retrieved paragraphs. For numbers within parenthesis, the left number is for
type 1 while the right one is for type 2 questions. Since almost all questions are type 2 for
USMLE, we do not have percentage numbers specifically for type 1 and 2 questions.

Types USMLE MCMLE TWMLE
Full Evidence 240 75.0(82.7/52.0) 60.0 (63.4/52.6)
Partial Evidence 80 21.0(14.7/40.0) 16.7 (19.5/10.5)
No Evidence 68.0 40(2.6/8.0) 23.3(17.1/36.9)

Table 10: Percentage of samples that can find evidence in the top N (1, 5, 10, 15) retrieved
paragraphs among samples that can find full or partial evidence.

Datasets Topl Top5 Top10 Top15

USMLE 0.0 31.2 56.2 81.2
MCMLE 66.7 92.7 96.9 100.0
TWMLE 0.0 717 91.3 93.5

5.3.2. Qualitative Analysis

Seeing such poor retrieval performance on the USMLE dataset, we wonder what
could be the reasons. After taking a close look into the successful and failed samples in the
retrieval stage, we can summarize one success pattern as well as two failure patterns for
the majority of cases, described in the sections below. Remember that almost all questions
in USMLE are about case studies (type 2 questions). And the IR system always returns us
snippets with each of which matching to only a small portion of the question text.

Success Patterns:

The question asks about the most probable diagnosis, which involves only one step of
reasoning (inference from symptoms / signs / findings to diagnosis of diseases), and it is
easy to constrain the possible diagnosis candidates to one or two based on some special
condition terms. In this case, it is easy for the IR system to obtain useful evidence snippets
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by matching those key condition terms. For example, given a case of a stressful young
female patient suffering from recurrent headaches that alternately affect the right or left brain
and are exacerbated by loud sounds or bright light, along with nausea, the IR system can identify
these typical, condition-specific terms (highlighted by italic font) and retrieve the suitable
evidence about the disease of migraine headache.

Failure Patterns:

1). The question still asks about the most probable diagnosis, however, each of the
patient’s symptoms is very common and could correspond to many possible diagnoses. In
this case, the IR system may return miscellaneous diseases’ descriptions, each of which
can match part of the patient’s symptoms, signs or other findings. However, none of
these retrieved texts are relevant to the correct diagnosis. We provide one example in the
Appendix D. 2). The question asks about the the most appropriate treatment / the examination
needed / the mechanism of certain condition, etc., which all involve two-steps of reasoning.
That is, we need to first derive the diagnosis based on the patient’s condition and then
answer this question based on the inferred diagnosis. In this case, it is highly likely that
the IR system only return evidence that enables the first step of reasoning (making the
diagnosis) but not the second one. We also provide an example in the Appendix D.

Last but not the least, we did a qualitative analysis of the translation quality from
traditional Chinese to English for TWMLE questions during experiments and found that
most of the sentences are good enough while a few of them look not that fluent. However,
since all medical terms in TWMLE questions are originally in English, such minor in-fluency
would not affect evidence retrieval and question answering.

6. Conclusion

We present the first open-domain multiple-choice question answering dataset for solv-
ing medical problems, MEDQA, collected from the real-world professional examinations,
requiring extensive and advanced domain knowledge to answer questions. This dataset
covers three languages: English, simplified Chinese, and traditional Chinese. Together
with the question data, we also collect and release a large-scale corpus from medical text-
books from which the reading comprehension models can obtain necessary knowledge for
answering the questions. We implement several state-of-the-art methods as baselines to
this dataset by cascading two components: document retrieval and reading comprehension.
And experimental results demonstrate that even current best approach cannot achieve
good performance on these data. We anticipate more research efforts from the community
can be devoted to this dataset so that future OpenQA models can be strong enough to solve
such real-world complex problems.
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Appendix A Data Collection

For USMLE and MCMLE datasets, we scraped several websites that provide the
question banks, and for TWMLE dataset, we downloaded the examination materials in
PDF format directly from the official National Examination website in Taiwan and then
converted them into digital format via Optical Character Recognition (OCR). Table A.11
lists the websites that we obtained data from.

Table A.11: Websites that we collected our data from.

Datasets Websites

https:/ /stepl.medbullets.com
USMLE  https://www.amboss.com/us/usmle
https:/ /www.lecturio.com/usmle-step-1

MCMLE  http://www.offcn.com/yixue/linchuang

https:/ /wwwq.moex.gov.tw /exam/

TWMLE wFrmExamQandASearch.aspx

Table A.12: Percentages of each option as the correct answer for the development sets.

Options USMLE MCMLE TWMLE

A 22.5 259 20.3
B 271 248 25.8
C 26.1 27.7 29.0
D 24.3 21.5 249

Appendix B Information Retrieval (IR)

In this section we describe how the BM25 re-weighted BM25 scoring function works
using the following equation:

_ & BMs(qi, D) - IDF(q;) - £(qi, Q) - (kg +1)

S(Q,D) o queryLen 4
i=1 f(9i,Q) + kg - (1 = bg + b - ZoegueryLen)

IDF(q;) - D) (kp+1
BMjs(q;, D) = (4:)-f(@,D) - (kp+1)

F(4i,Q) +kp - (1—bp +bp - Aoster )

where Q = {41,492, ...,qn } is the query consisting of 1 query terms (each query term in our

method is actually a n-gram); IDF(gq;) the inverse document frequency of the query term
gi; f(9:, Q) and f(g;, D) represents the frequency of query term ¢; in the query Q and the
document D, respectively; kp, ko, bp, and by are hyper-parameters and their values in
our experiments are summarized in the Table B.13; queryLen and docLen are the length in
tokens of the current query Q and document D, respectively; avgQueryLen and avgDocLen
are the average length of all queries and documents.
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Table B.13: Hyper-parameters for the IR system tuned on the development set.

Datasets ko bg kp bp

USMLE 040 0.70 090 0.35
MCMLE 110 0.20 090 0.35
TWMLE 090 1.00 090 0.35

Appendix C MetaMap for IR

Since type 2 questions are long and contain many words that are not useful for
retrieving the relevant context, we adopt the MetaMap tool to filter out those unwanted
words. MetaMap was developed by the National Library of Medicine (NLM) to map
biomedical text to concepts in the Unified Medical Language System (UMLS). It uses a
hybrid approach combining a natural language processing (NLP), knowledge-intensive
approach and computational linguistic techniques. We can use it to extract and standardize
medical concepts from any biomedical/clinical text. Table C.14 shows one example by
sending one question to MetaMap API and parsing the returned result, where the bold
font highlighted words are identified medically-related entities and we concatenate them
together as the processed question for retrieval.

Table C.14: An example showing the extracted medically-related entities (highlighted in
bold font) by MetaMap.

Question

A 61-year-old man presents to the emergency department
because he has developed blisters at multiple locations
on his body. He says that the blisters appeared several
days ago after a day of hiking in the mountains with his
colleagues. When asked about potential triggering events,
he says that he recently had an infection and was treated
with antibiotics but he cannot recall the name of the drug
that he took. In addition, he accidentally confused his med-
ication with one of his wife’s blood thinner pills several
days before the blisters appeared. On examination, the
blisters are flesh-colored, raised, and widespread on his
skin but do not involve his mucosal surfaces. The blisters
are tense to palpation and do not separate with rubbing.
Pathology of the vesicles show that they continue under
the level of the epidermis. Which of the following is the
most likely cause of this patient’s blistering?

Appendix D Failure Patterns of IR

In Table D.15, we showcase examples for each of the two failure patterns mentioned
in the main text.

In this table, the first example illustrates the first failure pattern, where the model
fails to perform the correct one-step reasoning for disease diagnosis since the symptoms
and patient history mentioned in the case description are very common symptoms (e.g.
cough with sputum, increased urinary frequency) and are not disease- or condition-specific.
Although the better option for this case is to examine the patient’s abdomen due to his
age and the lacking information of his abdominal condition, the IR system can only return
some miscellaneous evidences about (1) a similar case, (2) lung cancer and smoking, (3)
urinary tract infection, and (4) cholesterol issue, which can not actually answer the given
question.

The second example for explaining the second failure pattern is a case about a mother
with gestational diabetes / hypertension and her baby. In this case, the IR system can
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identify the medical condition of the mother and retrieve relevant information to this
mother. However, the question is actually asking about the baby, which is only described
in the very end of this question. Unfortunately, the IR system only returns the evidence
for the first-step reasoning (mother’s diagnosis) but not for the second-step (diagnose the
baby’s disease based on the mother’s diagnosis).
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Table D.15: Two examples of failure patterns for the IR system. The first example demonstrates the failure of capturing
the correct one-step reasoning, and the second example shows the failure of focusing on the question target while correctly
identifying the medical condition of the given case. The correct option is marked by the bold font. The top 6 retrieved
paragraphs are shown here.

A 67-year-old man presents to a primary care clinic to establish care after moving from another state.
According to his prior medical records, he last saw a physician 4 years ago and had no significant
medical problems at that time. Records also show a normal EKG and normal colonoscopy results at
that time. The patient reports feeling well overall, but review of systems is positive for 1 year of mild
cough productive of clear sputum and 2 years of increased urinary frequency. He denies fever, chills,
dyspnea, dysuria or hematuria. He denies illicit drug use but has been drinking approximately 1-2
beers per night and smoking 1 pack of cigarettes per day since age 20. Physical exam is unremarkable.
Which of the following tests is indicated at this time?

Question|

A: Abdominal ultrasound, B: Bladder ultrasound, C: Colonoscopy, D: Serum prostate specific antigen

Options (PSA) testing, E: Sputum culture

1. ... This patient is a 67-year-old man with weight loss of 10 pounds in 4 weeks and a 35 pack-
year history of cigarette smoking. He quit smoking 10 year ago. He had left shoulder pain for 4
months with no dyspnea, cough, hemoptysis, or other symptoms. Massage and other musculoskeletal
manipulation did not improve his symptoms. ...

2. Lung cancer, which was rare prior to 1900 with fewer than 400 cases described in the medical
literature, is considered a disease of modern man. ... Tobacco consumption is the primary cause of
lung cancer, ... Given the magnitude of the problem, it is incumbent that every internist has a general
knowledge of lung cancer and its management.

3. The symptoms and signs of UTI vary markedly with age. ...

4. Cigarette smoking is a well-established risk factor in men and probably accounts for the increasing
incidence and severity of atherosclerosis in women. ...

5. Smoking within 30 minutes of waking, smoking daily, smoking more cigarettes per day, and
waking at night to smoke are associated with tobacco use disorder. ... Serious medical conditions,
such as lung and other cancers, cardiac and pulmonary disease, perinatal problems, cough, shortness
of breath, and accelerated skin aging, often occur.

6. Alcohol and cigarette smoking are well-known modifiers of cholesterol. ...

Evidence

A 37-year-old G1P1001 delivers a male infant at 9 pounds 6 ounces after a C-section for preeclampsia
with severe features. The mother has a history of type II diabetes with a hemoglobin Alc of 12.8% at
her first obstetric visit. Before this pregnancy, she was taking metformin, and during this pregnancy,
she was started on insulin. At her routine visits, her glucose logs frequently showed fasting fingerstick
glucoses above 120 mg/dL and postprandial values above 180 mg/dL. In addition, her routine third
trimester culture for group B Streptococcus was positive. At 38 weeks and 4 days gestation, she was
found to have a blood pressure of 176/103 mmHg and reported a severe headache during a routine
obstetric visit. She denied rupture of membranes or vaginal bleeding. Her physician sent her to the
obstetric triage unit, and after failure of several intravenous doses of labetalol to lower her blood
pressure and relieve her headache, a C-section was performed without complication. Fetal heart rate
tracing had been reassuring throughout her admission. Apgar scores at 1 and 5 minutes were 7 and
10. After one hour, the infant is found to be jittery; the infant’s temperature is 96.1 F (35.6 C), blood
pressure is 80/50 mmHg, pulse is 110/min, and respirations are 60/min. When the first feeding is
attempted, he does not latch and begins to shake his arms and legs. After 20 seconds, the episode
ends and the infant becomes lethargic. Which of the following is the most likely cause of this infant’s
presentation?

Question

A: Transplacental action of maternal insulin, B: p-cell hyperplasia, C: Neonatal sepsis, D: Inborn

Options error of metabolism, E: Neonatal encephalopathy

1. At Parkland Hospital, women with diabetes are seen in a specialized obstetrical clinic every 2
weeks. During these visits, glycemic control records are evaluated and insulin adjusted. ...

2. Once pregnancy is established, glucose control should be managed more aggressively than in
the nonpregnant state. In addition to dietary changes, this enhanced management requires more
frequent blood glucose monitoring and often involves additional injections of insulin or conversion
to an insulin pump. ...

3. 2-hour postprandial values of 100 to 120 mg/dL, and mean he action proiles of commonly used
short-and long-termdaily glucose concentrations < 110 mg/dL. ...

4. The gold standard for diagnosis of insulinoma is the 72-hour monitored fast. ...

5. Treatment of gestational diabetes with a two-step strategy—dietary intervention followed by
insulin injections if diet alone does not adequately control blood sugar ...

6. The rate of vertical transmission is reduced to less than 8% by chemoprophylaxis with a regimen of
zidovudine to the mother (100 mg five times/24 hours orally) started by 4 weeks gestation, ...

Evidence
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