
Article Not peer-reviewed version

Machine Learning and Deep Learning

Approaches for Predicting Diabetes

Progression: A Comparative Analysis

Oluwafisayo Babatope Ayoade * , Seyed Shahrestani , Chun Ruan

Posted Date: 6 May 2025

doi: 10.20944/preprints202505.0135.v1

Keywords: deep learning; diabetes mellitus; diabetes prediction; healthcare management outcomes;

machine learning; performance indicators

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/2643131
https://sciprofiles.com/profile/1213307


 

 

Article 

Machine Learning and Deep Learning Approaches 

for Predicting Diabetes Progression:  

A Comparative Analysis 

Oluwafisayo Babatope Ayoade 
1,*, Seyed Shahrestani 

1 and Chun Ruan 
1
 

Western Sydney University, Sydney, Australia 

* Western Sydney University, Sydney, Australia; 22053430@student.westernsydney.edu.au 

Abstract: The global burden of diabetes mellitus (DM) continues to escalate, posing significant 

challenges to healthcare systems worldwide. This study compares machine learning (ML) and deep 

learning (DL) methods and their ensembles for predicting the health outcomes of diabetic patients. 

This work aims to find the best solutions that strike a compromise between computational economy 

and good prediction accuracy. The study systematically assessed a range of predictive models, 

including sophisticated DL techniques and conventional ML algorithms, based on computational 

efficiency and performance indicators. The study assessed prediction accuracy, processing speed, 

scalability and resource consumption, and interpretability using publicly accessible diabetes datasets. 

It methodically evaluates the selected models using key performance indicators (KPIs), training 

times, and memory usage. DT achieved the highest F1-score of 0.98, indicating excellent overall 

performance in balancing precision and recall. However, the RF model demonstrated higher accuracy 

on the hospital dataset. The results highlight how lightweight, interpretable ML models work in 

resource-constrained environments and for real-time health analytics. The study also compares its 

results with existing prediction models, confirming the benefits of selected ML approaches in 

enhancing diabetes-related medical outcomes. This study is substantial for practical implementation, 

providing a reliable and efficient framework for automated diabetes prediction to support proactive 

disease management techniques and tailored treatment. 

Keywords: deep learning; diabetes mellitus; diabetes prediction; healthcare management outcomes; 

machine learning; performance indicators 

 

1. Introduction 

The hallmark of diabetes mellitus (DM), a chronic metabolic disease, is persistent hyperglycemia 

brought on by either decreased insulin action, insulin secretion, or both. Diabetes mellitus has become 

a pandemic in prevalence, impacting millions of people globally and dramatically raising morbidity, 

death, and medical costs of patients. For DM to be effectively managed, major complications like 

retinopathy, neuropathy, and cardiovascular diseases need to be avoided, and healthcare costs be 

significantly reduced. Accurate prediction and early diagnosis of diabetes and its related health 

outcomes are crucial [1,2]. Machine learning (ML) and deep learning (DL) techniques are now 

essential for delivering predictive insights, facilitating individualized patient care, and supporting 

clinical decision-making processes with high precision due to improvements in processing power 

and data availability [3–5]. Obesity, changes in lifestyle, and genetic susceptibility have all been 

implicated in the sharp rise in diabetes incidence. Diabetes can cause serious consequences, such as 

renal failure, neuropathy, and cardiovascular disorders if it is not treated or is not adequately 

controlled [6,7]. 

International Diabetes Foundation (IDF) has reported the rapid rise of people with diabetes aged 

18 to 79 years from 4.7% to 8.5% within three decades from 1980 to 2015. The prevalence in 2019 

increased to an estimated percentage of 9.3% (463 million) and is projected to rise to 10.2% (578 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 May 2025 doi:10.20944/preprints202505.0135.v1

©  2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0135.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 33 

 

million) by 2030 and 10.9% (700 million) by 2045 respectively [2,8]. This indicates a serious problem 

for both developed and developing countries. China, India, and the United States of America are the 

most impacted nations, although this rise is unevenly spread, with estimates of 143% in Africa 

(undiagnosed cases) and 15% in Europe [8]. 

Early identification and precise diabetes prediction are essential for prompt management and 

better patient outcomes, given the disease's increasing cost on healthcare systems [9–11]. Wearable 

technology combined with powerful ML and DL algorithms has enabled real-time glucose 

monitoring and insulin adjustment, significantly enhancing patients' liberation and lifestyle [12]. 

Recent research has proven that ML and DL techniques have evolved in this area. These case studies 

demonstrate industry advancements while laying the groundwork for future advancements [13]. DL-

based prediction models have also revealed remarkable accuracy in detecting early signs and 

progressions of DM-related issues, such as retinopathy, neuropathy, and nephropathy.  

On the other hand, healthcare systems are designed to improve sickness detection and diagnosis 

while simultaneously providing patients with the essentials for optimum health [13,14]. Concerns 

over the quality of care offered by the healthcare system and the availability of treatment resources 

are common among patients [15]. Most people who would immediately benefit from better healthcare 

systems are those who have serious illnesses, including diabetes, hypertension, and irregular blood 

sugar levels [16]. A healthy society must prioritize health and healthcare. Hence, it is imperative to 

use state-of-the-art techniques to track the development of diabetes. Encouraging a healthy 

population and reducing the risk of illnesses like diabetes in future generations enables the 

development of novel techniques or hybrids that may be used in healthcare systems to improve the 

quality of life [17–20]. 

With their automated, data-driven insights that can improve clinical decision-making, ML and 

DL models have become potent medical diagnosis and prediction technologies [21,22]. While DL 

models like convolutional neural networks (CNNs) and recurrent neural networks (RNNs) offer 

sophisticated feature extraction capabilities, a variety of ML models, such as decision trees (DT), 

random forest (RF), logistic regression (LR), and support vector machines (SVM), have been 

extensively utilized for diabetes prediction. Research is ongoing to determine how well these models 

perform in comparison regarding accuracy, dependability, and computing economy.  

This study focuses on two main research topics. The first centres around the differences in 

accuracy and reliability of ML and DL models in predicting diabetic patient outcomes across various 

healthcare settings. The second one compares ML, DL, and ensemble models regarding processing 

time and computational efficiency when applied to selected datasets for diabetes mellitus 

personalized medicine. This demonstrate the effectiveness of various ML, DL, and ensemble models 

in diagnosing diabetes, tracking its progression, and evaluating performance indicators by analyzing 

multiple datasets and comparing different predictive models.  

The rest of the paper is organized into sections as follows: Section 2 presents the review of 

previous related literature addressing diabetes prediction, Section 3 provides an overview of the 

methodology, datasets used, including data preprocessing performance metrics and the models 

employed in this study; Section 4 presents the results of each model, highlighting their respective 

metrics and time efficiency; Section 5 presents a detail discussion of the results and the comparative 

analysis; Section 6 provides the conclusion to the study and future direction. The paper also presents 

a report on the datasets used. 

2. Related Works 

2.1. Synopsis of Diabetes Mellitus 

The term "diabetes" describes a group of metabolic disorders characterized by high blood sugar 

levels caused by inadequate insulin synthesis, use, or both [23]. Chronic hyperglycemia is linked to 

long-term damage and dysfunction of organs such as the heart, blood vessels, kidneys, eyes, and 

nerves [23,24]. Individuals with diabetes have varying effects based on their age, income, race, and 
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ethnicity. Environmental and genetic factors are catalysts for diabetes, resulting in insulin resistance 

and beta-cell death [25–27].  

To prevent comorbidities such as cardiovascular disease, neuropathy, and retinopathy, diabetes 

care entails initial identification and aggressive control. Diabetes is a complicated condition with a 

tendency to develop silently due to lifestyle, environmental, and hereditary factors [9]. Early 

indicators of prediabetic diseases are often misrepresented by traditional diagnostic and treatment 

techniques, which can increase healthcare expenses and delayed interventions. Thus, new methods 

for anticipating and controlling diabetes are crucial for reducing its impact on people and enhancing 

positive world health outcomes [24,28]. Type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus 

(T2DM), and gestational diabetes mellitus (GDM) are the three general forms of diabetes mellitus 

[29]. The hallmark of T1DM, also known as insulin-dependent diabetes, is the autoimmune 

destruction of the pancreatic beta-cells, which leads to insufficient insulin production. T1DM affects 

5–10% of people with diabetes. Ketoacidosis, or high blood acid due to ketones, is often the initial 

sign of T1DM, which can develop slowly in adults or swiftly in children. It is one of the irreversible 

types. T1DM is becoming more common worldwide at a rate of 3% every year, affecting both sexes 

equally and leading to a sharp decline in life expectancy [29,30]. 

Non-insulin-dependent diabetes is another name for type 2 diabetes (T2DM). It is characterized 

by beta-cell malfunction and insulin resistance [29,30]. T2DM accounts for 90 to 95 percent of all 

diabetes cases. The body creates more insulin to compensate for the deficiency; nevertheless, beta-

cell activity progressively decreases, leading to insulin insufficiency [31]. T2DM is associated with 

aging, obesity, sedentary lifestyles, high blood pressure, impaired lipid metabolism, and genetic 

factors. Ethnicity, which is more prevalent in some racial groups, is another aspect [31–33]. 

Pregnancy-related hyperglycemia is a common side effect of gestational diabetes mellitus 

(GDM) [30,34]. Despite impacting the mother and the foetus, it is frequently controllable with 

medicine, food, and exercise. GDM risk factors include obesity, advanced maternal age, and a history 

of glucose intolerance. Women with GDM have a greater lifetime risk of developing T2DM diabetes. 

Although there are differences in international diagnostic methods for GDM, early detection is crucial 

for therapy and issue prevention [35,36]. 

2.2. Existing Comparative Analysis of ML, DL, and Ensemble Models for DM Prediction 

By extracting information from publicly available datasets and comparing various ML, DL and 

ensemble techniques for improved health outcomes based on accuracy, F1-score and computation 

time, a few researchers have made substantial contributions to the study of DM prognosis, 

progression, and therapy. On this wise, the scope of this study is primarily to perform a comparative 

analysis of several ML, DL, and ensemble models to predict the diabetic health outcomes of patients 

using different datasets. The comparative process would focus on the differences in accuracy, F1-

score, and reliability between ML and DL models in predicting diabetic patient outcomes across 

various healthcare settings, as well as comparing these models and their ensembles regarding 

processing time and computational efficiency. 

Firstly, Mahajan et al.  [37] uses 16 datasets from the UCI Machine Learning Repository and 

Kaggle to provide a thorough comparative analysis of 15 ensemble ML approaches for illness 

prediction. Heart disease, liver problems, diabetes, renal disease, and skin cancer are the five main 

chronic illnesses that are the subject of this study. The authors evaluated the performance of various 

bagging, boosting, and stacking ensemble variations using various measures, including accuracy, 

precision, recall, F1 score, AUC, and AUPRC.  

To guarantee strong model performance, datasets are subjected to thorough preparation as part 

of the technique, which includes data cleaning, normalization, and hyperparameter tuning. 

According to experimental data, stacking techniques consistently performed better than alternative 

ensemble approaches, especially multi-level and classical stacking. Regarding accuracy and AUC, 

stacking variants performed the best across all datasets with the highest frequency, whereas Logit 

Boost performed the worst. The results show that ensemble learning (stacking) can greatly improve 
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prediction accuracy in illness detection by utilising the advantages of several classifiers. Researchers 

and practitioners may use this work's valuable insights to help choose the best ensemble 

methodologies for creating accurate and dependable illness prediction systems, eventually 

enhancing patient outcomes in healthcare settings.  

To predict early-stage diabetes, Flores et al. [38] compares various ML approaches, highlighting 

the need for early detection for efficient disease treatment. To decrease dimensionality and eliminate 

less important qualities, the study initially uses a relief-based feature selection approach on a dataset 

of clinical and demographic characteristics gathered from diabetes patients in Bangladesh. Improving 

the prediction models' accuracy and efficiency requires this preprocessing step. The study looks at 

three main classifiers: Support Vector Machines (SVM), Random Forest (RF), and Neural Networks 

(NN). The models are assessed using a 10-fold cross-validation method to ensure reliable 

performance evaluation on unseen data. Performance indicators, including recall, specificity, 

accuracy, and precision were computed for every classifier. According to their results, the RF model 

performs better than the other models, attaining a 98.5% accuracy rate and greater precision, recall, 

and specificity. On the other hand, the prediction performance of NN and SVM models is slightly 

worse. The authors demonstrate how ensemble learning techniques, particularly RF, may manage 

complex feature interactions and non-linear connections in medical data. It also emphasizes how 

crucial thorough validation procedures and efficient feature selection are to creating trustworthy 

diagnostic tools. To improve early-stage diabetes prediction further, the authors suggest more study 

using hybrid models and larger datasets. 

Using the PIMA Indian Diabetes Dataset (PIDD), Gupta et al. [39] compares the effectiveness of 

DL and quantum ML (QML) for diabetes prediction. The study offers two prognostic models to help 

doctors deal with the growing worldwide burden of diabetes. Several data preparations were 

performed to improve model performance, such as normalization, missing value imputation, and 

outlier rejection.  The QML model uses a variational quantum circuit with adjustable 

hyperparameters, whilst the DL model is built as a multilayer perceptron with four hidden layers 

and optimized via root mean square propagation (RMSprop). By obtaining a precision of 0.90, 

accuracy of 0.95, and an F1 score of 0.93, as opposed to lower values for the QML model, the DL 

model surpasses the QML model, according to a thorough evaluation utilizing metrics including 

precision, accuracy, recall, F1 score, and diagnostic odds ratio. The results indicate that the DL 

approach presently provides better performance for diabetes prediction, even with the promising 

elements of quantum approaches. 

Using the PIMA Indian Diabetes dataset, eight ML classifiers were compared for early diabetes 

prediction. To assess how well they predict diabetes, Aggarwal et al. [40] used Logistic Regression, 

Decision Tree, AdaBoost, Gradient Boosting, K-Nearest Neighbours (KNN), RF, SVM, and Naive 

Bayes (NB). Their study uses assessment criteria, including accuracy, confusion matrix, and F1 score, 

to describe the technique and performance of each classifier. Notably, the outcomes show that the NB 

model attains the maximum accuracy out of the methods evaluated. A thorough history of diabetes 

is also given in the article, along with an explanation of its many forms and related consequences and 

the need for early detection. To enable better clinical decision-making and patient care, the study 

compares these various ML techniques to determine the best effective algorithm for diabetes 

prediction. The results offer insightful information on medical diagnostics and ML applications in 

the healthcare industry.  

Comparing DL and ML techniques for early-stage diabetes prediction, a benchmark UCI 

diabetes dataset with 16 features from 520 patients, implanting 416 training and 104 testing sets, 

respectively, were used by Refat et al. [41]. Performance criteria, including accuracy, recall, F1-score, 

ROC-AUC, and execution time were used to assess a variety of classifiers, including Extreme 

Gradient Boosting (XGBoost), Decision Tree (DT), RF, SVM, Multi-layer Perceptron (MLP), and 

Logistic Regression (LR). According to experimental data, the authors concluded that the XGBoost 

classifier performs better than other models, with a testing accuracy of 99.0% and training accuracy of 

99.99%. The significance of preprocessing procedures and feature selection for enhancing diagnostic 
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accuracy are emphasized in this study. Despite encouraging results, the study admits limitations because 

of the small dataset size and recommends that future research concentrate on obtaining larger datasets and 

investigating new predicting markers for improved early diabetes identification. 

Swathy & Saruladha [42] delivered a thorough comparison of several categorization and 

prediction methods for cardiovascular diseases (CVD), one of the comorbidities of DM, using various 

ML and DL approaches. The authors highlight the importance of early identification to enhance 

clinical outcomes, acknowledging CVD as a primary cause of death. The study divides methods into 

three main categories: DL models for CVD prediction, conventional ML models, and data mining 

and classification strategies. Along with sophisticated DL frameworks like convolutional neural 

networks (CNN) and recurrent neural networks (RNN), it examines a few ML techniques, including 

DR, NB, SVM, RF and neural networks (NN). Performance criteria such as accuracy, precision, recall, 

F1-score, ROC-AUC, and execution time are used to evaluate various approaches. The datasets and 

tools used (e.g., WEKA, TANGARA, MATLAB) are also considered. According to their results, a 

hybrid strategy that combines many methods might improve prediction accuracy and help doctors 

make decisions. The study highlights the promise for individualized healthcare solutions through 

enhanced model integration and real-time data analysis while discussing its limits and future 

research approaches.  

The crucial problems of diabetes prediction utilizing ML and DL approaches are addressed in 

the studies of Fregoso-Aparicio et al. [43] and Butt et al. [5]. Fregoso-Aparicio et al. in their study 

compared 18 distinct model types in a comprehensive analysis of 90 papers on T2DM diabetes 

prediction. Their analysis shows that while deep neural networks (DNN) can handle large and dirty 

datasets, they were suboptimal in several cases. In contrast, like RF, tree-based algorithms typically 

perform better, with high accuracy and near-perfect AUC scores. According to the review, data 

balance and rigorous feature engineering are crucial for model efficiency and interpretability, which 

also emphasized problems with study heterogeneity and opaque feature selection. In a related study, 

Butt et al. integrated an Internet of Things-based monitoring system for real-time blood glucose 

tracking with a useful ML-based framework for diabetes categorization and prediction. Their work 

employed long short-term memory (LSTM), moving averages, and LR for predictive analysis and 

evaluated classifiers such as RF, LR, and MLP for diabetes classification using the benchmark PIMA 

Indian Diabetes dataset. The results of their experimental assessment demonstrated the applicability 

of the suggested technique in healthcare applications, with the MLP classifier and LSTM predictor 

achieving accuracies of 86.08% and 87.26%, respectively [5]. 

Uddin et al. [44] compares several supervised ML methods for disease prediction. Their study 

finds important trends in algorithm performance, utilization, and illness prediction accuracy by 

examining 48 research publications. SVM was the most used algorithm among the methods studied, 

appearing in 29 papers. Other algorithms included RF, Artificial Neural Networks (ANN), DT, K-

Nearest Neighbours (KNN), LR, and NB. Nonetheless, RF continuously showed better accuracy, 

coming in first in 53% of experiments that used it and second in 41% of those that used SVM. The 

authors emphasize how data type, dataset size, and validation techniques frequently influence 

algorithm selection. Their study highlights how RF's ensemble nature makes it resilient, although 

SVM did well on various datasets. According to their results, future medical informatics research 

should use RF and SVM for reliable illness prediction, considering algorithm-specific benefits to 

enhance clinical judgment and patient outcomes. 

Advanced ML techniques for estimating the risk of cardiovascular disease (CVD), a chronic 

consequence of T2DM) were compared by Zarkogianni et al. [9]. Their study looks at Self-Organizing 

Maps (SOMs) and Hybrid Wavelet Neural Networks (HWNNs), using ensemble approaches to tackle 

the problem of imbalanced datasets. Using clinical data from 560 T2DM patients over a five-year 

follow-up, the authors assessed their models, considering various risk variables, including age, BMI, 

cholesterol, glycosylated hemoglobin, smoking status, hypertension, and medication use. With an 

Area Under the Curve (AUC) of 71.48%, ensemble approaches considerably improved predicted 

accuracy when compared to conventional statistical techniques like Binomial Linear Regression 
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(BLR). The hybrid ensemble, which combined HWNN and SOM outputs using intricate voting 

procedures, performed better than the others, highlighting the advantages of intricate, data-driven 

models over traditional regression techniques. The suggested ML architecture enhances risk 

prediction for diabetes-related cardiovascular problems, providing doctors with a valuable decision 

–support tool despite the study's acknowledgement of limitations pertaining to dataset size and 

complexity. 

In addition, several other studies conducted analysis on diabetes prediction. Studies such as Naz 

and Ahuja [45], Hasan et al. [46], Ayon and Islam [4], Sahoo et al. [47], Lai et al. [48] and Dagliati et 

al. [25], all outlined the importance of ML and DL models in predicting DM. These evaluated papers 

investigate ML and cutting-edge DL methods to improve early diagnosis and diabetes prediction 

accuracies.  

Using classifiers like RF, AdaBoost, NB, XGBoost, and MLP, Hasan et al. [46] created an 

ensemble framework. By addressing important issues, including missing data and controlling 

outliers, the authors achieved a 95% AUC with better sensitivity and specificity than conventional 

techniques. The effectiveness of integrating many ML approaches for reliable diabetes predictions 

was demonstrated by the ensemble approach's considerable outperformance over individual models. 

Ayon and Islam [4], on the other hand  used the PIMA dataset to present a DNN-based diabetes 

prediction algorithm. Their DL model outperformed more conventional ML techniques, including 

LR, KN, and SVM, exhibiting remarkable accuracy (98.35%) and great sensitivity. This demonstrates 

how DL models can manage intricate, nonlinear relationships in clinical data, improving the 

prediction accuracy of diabetes diagnosis. 

Using the same PIMA dataset, Naz and Ahuja [45] similarly used DL and other ML methods, 

such as ANN, DT, and NB, reporting accuracy rates as high as 98.07%. Their findings support the 

promise of deep learning for early diabetes diagnosis and better prognostic tools by confirming its 

capacity to extract predictive patterns from medical datasets. 

Lai et al. [48] used LR and gradient boosting machines (GBM) to propose predictive models that 

were specially created for the Canadian population. Their GBM model outperformed other 

approaches like RF and DT with an AROC of 84.7% using demographic and clinical factors, including 

fasting glucose, BMI, HDL, and triglycerides. This shows that GBM may provide good predictive 

performance with standard clinical laboratory data, making it easier for early diabetes identification 

in clinical settings. 

Further study that showed how the ML technique, namely LR, may be used to predict diabetic 

sequelae such as retinopathy, neuropathy, and nephropathy was conducted by Dagliati et al. [25]. 

Their data mining pipeline successfully managed missing data and class imbalance using electronic 

health records, resulting in up to 83.8% prediction accuracies. Their work demonstrates how ML 

models can be used to produce better management for diabetic complications by identifying high-

risk individuals early and enhancing clinical decision-making. 

Additionally, Sahoo et al. [47] carried out a comparison analysis using a Convolutional Neural 

Network (CNN) and several ML techniques for health-related decision-making. Their results 

demonstrated DL's strength in handling complicated and high-dimensional healthcare datasets, 

confirming the superiority of DL-based CNN methods over conventional ML techniques regarding 

prediction accuracy. 

All these research shows that conventional ML techniques, deep learning frameworks and 

sophisticated ensemble methods show increased prediction accuracy in diabetes diagnosis and 

progression. As crucial elements of successful diabetes prediction models, they stress the significance 

of appropriate data preparation, including managing missing values and class imbalance. Using 

these innovative techniques to use ordinary clinical data, medical practitioners may efficiently apply 

automated, accurate, and timely diabetes prediction, improving patient outcomes through proactive 

disease management. 

Therefore, this study will be conducting a comparative analysis of various ML and DL models 

and many ensembles to determine the differences in accuracy and reliability between ML and DL 
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models in predicting diabetic patient outcomes across various healthcare settings. This study will 

compare ML, DL, and ensemble models in terms of their processing time and computational 

efficiency when applied to selected datasets for diabetes mellitus personalized medicine. This study 

employs five different datasets and will implement outlier removal, missing values, and comparative 

analysis using each model's accuracy and the F1 score and their ensembles as a baseline. As such, this 

gives our study a robust approach to comparing the processing time and computational efficiency of 

such selected models regarding diabetes prediction in the existing literature. 

As such, the following ML and DL models would be considered as their ensembles. They are 

LR, NB, DT, RF, SVM, KNN, XGBoost, Adaptive Boosting (AdaBoost), CNN, DNN, Recursive Neural 

Network (RNN), LSTM, Autoencoders and Fated Recurrent Unit (GRU) – a variant of RNN. 

Performance metrics such as accuracy, precision, recall,  

F1-score, Area Under the Receiver Operating Characteristic Curve (AU-ROC), and confusion 

matrix will be applied. In contrast, the computation time of the model’s performance would be 

computed. 

3. Materials and Methods 

An extensive summary of the techniques and algorithms used in this study is presented in this 

section. Its primary goals are to define the methods used and provide a succinct description of how 

they operate. It is separated into different sections: (i.) sampling techniques for dataset imbalance, 

(ii.) ML and DL employed where each model provides an overview of the basic ideas behind the 

techniques, guaranteeing that their function in the research is understood, (iii.) Performance metrics 

used, (iv.) Datasets, and finally (v.) Preprocessing.  

3.1. Sampling Techniques for Datasets Imbalance 

3.1.1. Oversampling Techniques 

1. Synthetic Minority Oversampling Techniques (SMOTE): By creating artificial samples for the 

minority class, SMOTE is a synthetic minority oversampling technique that balances class 

distribution [49,50]. Rather than simply duplicating existing minority class samples, SMOTE 

interpolates between them to create new instances, selecting k nearest neighbours for each 

minority class observation and creating synthetic points along the line segments connecting 

them, with a random interpolation factor between 0 and 1 to ensure diversity [51]. SMOTE is 

represented as: 

𝑆 =  {𝑥𝑖 | 𝑥𝑖 ∈ ℝ𝑛, 𝑖 = 1, 2, … , 𝑁}                    (1) 

where 𝑥𝑖 = ith minority instances, n = No. of features (dimensions) and N = number of minority class 

instances.  

The k nearest neighbours of 𝑥𝑖 based on a distance metric (usually Euclidean distance) denoting 

the set of these neighbours as: 

𝑁𝑁(𝑥𝑖) =  {𝑥𝑗  | 𝑥𝑗 ∈ 𝑆, 𝑗 ≠ 𝑖, }                   (2) 

where 𝑥𝑗 = k-nearest neighbours of 𝑥𝑖. Finally, it creates a new synthetic sample 𝑥𝑛𝑒𝑤 by randomly 

choosing a neighbour 𝑥𝑗 ∈ 𝑁𝑁(𝑥𝑖) and then generate the 𝑥𝑛𝑒𝑤  through interpolation between 𝑥𝑖 

and 𝑥𝑗 

𝑥𝑛𝑒𝑤 =  𝑥𝑖 +  𝛼 .  (𝑥𝑗 − 𝑥𝑖)                   (3) 

where 𝛼 is the random scalar randomly drawn from the uniform distribution between 0 and 1 i.e. 

U(0,1). These steps continue until the desired amount of synthetic minority samples has been created. 

2. SMOTE and Edited Nearest Neighbours (SMOTE-ENN): To improve the data quality, this 

method combines SMOTE with Edited Nearest Neighbours (ENN). To balance the dataset, 

SMOTE first creates artificial minority samples. Then, the noisy cases, synthetic and original, 
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where most of their nearest neighbours are in the opposite class, are eliminated using ENN 

[50,52]. By removing incorrectly categorized or unclear samples, this two-step procedure 

guarantees more precise decision limits and improves generalization in classification tasks. 

3. Random Oversampling: To rectify class imbalance, minority class samples are replicated at 

random until the required balance is reached. This approach, in contrast to SMOTE, replicates 

current observations without producing artificial data. Although efficient and straightforward, 

it risks the danger of overfitting if the same data are used too frequently. Subsets of minority 

cases can be resampled using replacement to lower this risk and guarantee variety in the 

enhanced dataset [53]. 

4. Adaptive Synthetic Sampling (ADASYN): As an adaptive extension of SMOTE, ADASYN 

focuses on complex minority class samples. Minority occurrences that are close to the decision 

border or encircled by majority class samples are given greater weights by ADASYN [54]. For 

these "hard-to-learn" situations, more synthetic data is produced, directing the classifier's focus 

to unclear areas [51,54]. By decreasing bias and fine-tuning the decision boundary in unbalanced 

datasets, this adaptability increases model resilience. Mathematically, it is represented in this 

regard: 

𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 =  𝑆𝑚𝑖𝑛 =  {𝑥𝑖 | 𝑥𝑖 ∈ ℝ𝑛, 𝑖 = 1, 2, … , 𝑁𝑚𝑖𝑛}    (4) 

and 

𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 =  𝑆𝑚𝑎𝑗 =  {𝑦𝑖 | 𝑦 ∈ ℝ𝑛, 𝑗 = 1, 2, … , 𝑁𝑚𝑎𝑗}    (5) 

𝐾 nearest neighbours computation for  majority class for each  minority samples 𝑥𝑖 is given as: 

𝑟̂𝑖 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑜𝑓 𝑥𝑖 

 𝐾
 , 𝑖 = 1, 2, … , 𝑁𝑚𝑖𝑛    (6) 

where if  𝑟̂  ≈ 0, 𝑥𝑖 is easy to classify but if 𝑟̂  ≈ 1, 𝑥𝑖 is difficult to classify and hence requires more 

synthetic samples. Normalized density distribution for each minority sample (difficult scores) 

𝑟̂𝑖 =  
𝑟𝑖

 ∑ 𝑟𝑗
𝑁𝑚𝑖𝑛
𝑗=1

 , 𝑖 = 1, 2, … , 𝑁𝑚𝑖𝑛         (7) 

where the distribution 𝑟̂𝑖 represents the importance of each minority sample in oversampling. The 

method then computes how many synthetics to generate from each minority sample as: 

𝑔𝑖 =   𝑟̂𝑖  × 𝐺, 𝑖 = 1, 2, … , 𝑁𝑚𝑖𝑛          (8) 

where 𝑔𝑖  can be rounded to the nearest integer. Therefore, for each minority sample 𝑥𝑖 , it then 

generates 𝑔𝑖 synthetic samples by randomly selecting a minority-class neighbour 𝑥𝑧𝑖 from the K-

nearest neighbours of 𝑥𝑖 belonging to minority class and then generate the synthetic samples 𝑥𝑛𝑒𝑤 

𝑥𝑛𝑒𝑤 =  𝑥𝑖 +  𝛼 . (𝑥𝑧𝑖 − 𝑥𝑖), 𝛼 ~ 𝑈(0,1)      (9) 

This process continues 𝑔𝑖 times for each minority sample 𝑥𝑖 

2.1.1. Undersampling Techniques 

1. Random Undersampling: Most class samples are randomly discarded to balance the dataset. 

Despite being computationally efficient, this approach may increase model variance by 

eliminating useful cases [55,56].  

2. Clustering Centroids: Swapping out clusters for corresponding centroids lowers the number of 

majority class samples. Groups of majority occurrences are compressed into a single 

representative point using K-means clustering [55].  

3. Random Undersampling with Tomek Links: Firstly, random undersampling is used to lower the 

size of the majority class. Next, it eliminates Tomek Links, which are pairings of instances of the 
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opposite class nearest to each other. It then lowers noise and clarifies the decision boundary by 

eliminating the majority of samples from these pairings. This hybrid strategy compromises 

increased classifier performance and efficiency [55]. 

4. NearMiss–3: This method chooses samples from the majority class according to how far away 

they are from minority cases. It finds each minority observation's M nearest neighbours in its 

first phase. Next, it eliminates duplicate or overlapping locations by keeping most samples with 

the most significant average distance to these neighbours. This method improves class 

separability by prioritising the majority instances farthest from the minority class [55,57]. 

5. One-Sided Selection (OSS): This method prunes superfluous majority samples by combining 

Condensed Nearest Neighbour (CNN) and Tomek Links elimination. First, questionable 

situations are removed from Tomek Links. CNN then keeps a small subset of majority instances 

that faithfully capture the initial distribution. By ensuring a small but representative majority 

class, this two-step procedure improves the accuracy and efficiency of the model [55].  

6. Neighbourhood Cleaning: This method improves undersampling by eliminating the noisy 

majority of samples. It detects and removes misclassified majority cases using a k-NN classifier. 

While maintaining essential data structures, this focused cleaning lessens class overlap. For best 

effects, it is frequently used with other undersampling techniques [55]. 

3.2. Machine Learning and Deep Learning Techniques employed 

3.2.1. Machine Learning Models 

ML approaches are a subfield of artificial intelligence (AI) that enables computers to recognize 

patterns in data, learn from them, and respond to them with little to no human intervention. These 

techniques, which have distinct applications in various organizations, can be divided into three main 

categories: supervised learning (classification and regression models dealing with labelled datasets), 

unsupervised learning (clustering and dimensionality reduction processes dealing with unlabelled 

datasets), and reinforcement learning. 

1. Logistic Regression (LR): LR is an ML and statistics algorithm for binary classification tasks. 

The sigmoid (logistic) function, which converts real-valued inputs to a range between 0 and 1, 

describes the connection between input data and the likelihood of a class label. Using methods 

such as Gradient Descent, the log-likelihood function is optimized to train the model. It 

assumes that the log odds of the dependent and independent variables have a linear 

relationship [58,59]. 

2. Naïve Bayes (NB): Based on the Bayes theorem, the Naïve Bayes algorithm is a probabilistic 

classification algorithm that assumes all features are conditionally independent, given the class 

label. Despite this high independence assumption, It works effectively in various real-world 

applications, including spam filtering and text categorization. It uses observed data and past 

knowledge to determine a class's posterior probability [59–61].  

3. Decision Trees (DT): This supervised learning system iteratively divides data into subsets 

according to feature requirements to generate predictions. It is composed of leaves (final 

predictions), branches (outcomes), and nodes (decision points). Mean Squared Error (MSE) for 

regression and Gini Index or Entropy (Information Gain) for classification serve as the 

foundation for the splitting criterion. To minimize impurity until a stopping condition is 

satisfied, the tree develops by choosing the best feature at each stage [61]. 

4. Random Forest (RF): This ensemble learning system builds many DTs during training and 

aggregates their results to provide more accurate predictions. To minimize overfitting and 
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enhance generalization, each tree is trained on a randomly sampled fraction of the data 

(bagging) and employs a randomly chosen subset of features at each split. Either majority 

voting (classification) or average (regression) over all trees determines the final prediction. RF 

delivers feature relevance ratings, is noise-resistant, and can handle numerical and categorical 

data [10,16,59,62].  

5. Support Vector Machine (SVM): This supervised learning technique determines the best 

hyperplane to divide data points by maximising the gap between classes. The most important 

data points defining the decision boundary are support vectors, which are what it depends on. 

SVM uses kernel functions (such as linear, polynomial, and Radial Basis Functions – RBF) to 

translate data that is not linearly separable into a higher-dimensional space where separation is 

possible. It works well with high-dimensional [10,16,59,63]. 

6. K-Nearest Neighbours (KNN): Data points are categorized using this instance-based, non-

parametric learning approach according to the majority class of their k-closest neighbours. The 

Euclidean, Manhattan, or Minkowski distances are commonly used to quantify the separation 

between two points. Because KNN does not require explicit training, it is computationally 

cheap while training but costly when inferring because it needs to store and search the full 

dataset. The amount of k impacts model performance; small values may result in overfitting, 

while high values may result in underfitting [16,64–66].  

7. Extreme Gradient Boosting (XGBoost): XGBoost is a sophisticated gradient boosting method 

that has been fine-tuned for accuracy and efficiency. It approximates the loss function using a 

second-order Taylor expansion to provide more accurate updates during training. Through 

cache-aware access patterns, histogram-based split discovery, and parallelized execution, the 

approach enhances computing performance. L1 (alpha) and L2 (lambda) penalties are two 

regularization strategies that assist in reducing overfitting and managing model complexity. 

To improve generalization, XGBoost further uses column subsampling and shrinkage (learning 

rate tuning) [10,16,62,63].  

8. Adaptive Boosting (AdaBoost): An ensemble learning method builds a robust classifier by 

combining several weak learners, usually decision stumps. Iteratively, it forces weaker learners 

to concentrate on more challenging examples by giving misclassified samples larger weights. 

All weak classifiers cast a weighted majority vote to determine the final prediction. AdaBoost 

dynamically modifies sample importance to enhance model performance and minimizes an 

exponential loss function [16,59].  

3.2.2. Deep Learning Models 

Multiple hidden layers in DL models, which are sophisticated artificial neural networks (ANN), 

allow them to extract intricate and nonlinear patterns from big datasets. Because they can 

automatically extract hierarchical feature representations without requiring much manual 

engineering, they perform very well in fields including image recognition, natural language 

processing (NLP), speech recognition, and healthcare diagnostics. Substantial data and processing 

power are needed for these models to function at their best. 

1. Convolutional Neural Networks (CNN): CNNs are DL models that manage grid-like 

data, including time series and pictures. It comprises fully connected layers that carry 

out classification or regression, pooling layers that lower dimensionality while 

preserving important information, and convolutional layers that use filters to identify 

spatial characteristics. CNNs extract features well because they use weight sharing and 
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local connection. Activation functions like Rectified Linear Unit (ReLU) introduce non-

linearity, which improves learning. Achieving the best performance requires careful 

architectural design consideration, including the number of layers, filter sizes, and 

pooling algorithms [16,67,68].  

2. Deep Neural Networks (DNN): There are hidden layers between the input and output 

layers of this kind of ANN. The DNN model can learn intricate patterns because each 

layer comprises linked neurons with nonlinear activation functions. Backpropagation 

and optimization algorithms such as Adam or Stochastic Gradient Descent (SGD) are 

used for training. DNNs are very good at tasks like image recognition, NLP, and time-

series forecasting because of their superiority in feature extraction and representation 

learning. Overfitting may be avoided, and generalization can be enhanced via 

regularization techniques like batch normalization and dropout [5,14,69] 

3. Recurrent Neural Networks (RNN): RNN is a kind of NN that uses hidden states to 

retain a memory of prior inputs to interpret sequential data. RNNs can capture 

temporal dependencies because, in contrast to feedforward networks, they exchange 

parameters across time steps. They are often employed in applications like NLP, time-

series forecasting, and speech recognition. However, learning long-term dependencies 

is challenging for ordinary RNNs due to issues like disappearing and expanding 

gradients [16]. 

4. Long Short-Term Memory (LSTM): Long-term relationships in sequential data can be 

captured efficiently by this sophisticated RNN. The vanishing gradient issue is solved by 

adding the forget gate, input gate, and output gate, which control the information flow. 

Because of these gates, LSTMs may selectively keep or reject data, which makes them 

ideal for applications like time-series forecasting, language modelling, and speech 

recognition. Long-range dependencies may be learned by LSTMs without a substantial 

loss of information, in contrast to conventional RNNs. Gate activations and sequence 

durations must be tuned appropriately for best results [14,16,68]. 

5. Gated Recurrent Unit (GRU): It is a sophisticated RNN that deals with the vanishing 

gradient issue and processes sequential input. Introducing gating techniques that control 

information flow enables the network to save essential historical data and eliminate 

extraneous details. GRUs are computationally easier and perform similarly to LSTMs 

since they feature update and reset gates. GRUs are frequently employed in machine 

translation, time-series forecasting, and speech recognition applications. They are effective 

at identifying long-term relationships in sequences because they can adaptively regulate 

memory retention [16]. 

3.2.3. Ensemble Models 

These ML and DL models integrate predictions from individual models to increase overall 

generalization, accuracy, and resilience. These techniques lessen variance, bias, and sensitivity to 

noisy data by using the diversity among individual classifiers or regressors. Boosting, stacking, and 

bagging are examples of common ensemble approaches. Stacking uses an extra meta-model to 

combine predictions from other models. By utilizing complementary capabilities, ensemble 

techniques sometimes outperform single models despite the possibility of higher implementation 

complexity and processing resources [70,71]. 
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3.3. Performance Metrics Tools 

3.3.1. Hyperparameter Tuning 

Through methodical adjustment of configuration parameters that govern the learning process, 

hyperparameter tuning is crucial for optimizing model performance. While more sophisticated 

approaches like Bayesian optimization provide more effective substitutes, conventional methods like 

grid search and random search are frequently computationally costly. To intelligently explore the 

hyperparameter space, this study uses Optuna, a sophisticated optimization system that uses Tree-

structured Parzen Estimators (TPE). Optuna is especially well-suited for intricate ML and DL models 

because of its adaptive sampling and early pruning features, drastically lowering computing 

expenses while guaranteeing ideal parameter selection. Faster convergence to high-performing 

configurations, smooth interaction with different ML frameworks, and improved reproducibility 

through thorough logging and visualization are benefits of utilising Optuna. Optuna is more efficient 

than traditional methods since it dynamically prioritizes promising trials and discards 

underperforming ones. This makes it the perfect option for creating reliable models with enhanced 

generalization powers, especially when computing resources are limited. The framework has shown 

to be a helpful tool for contemporary ML pipelines due to its efficacy in various applications.  

3.3.2. Evaluation Metrics 

To guarantee a thorough model evaluation, we examined six important classification metrics: 

1. Accuracy: calculates the ratio of true predictions (both positive and negative) to all forecasts 

produced to get the total percentage of accurate predictions. Although accuracy seems 

straightforward, it might be deceptive for unbalanced datasets since it does not differentiate 

between different kinds of mistakes. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (10) 

where TP = True Positive, TN = True Negative, FP = False Positive, and FN = False Negative. 

2. Precision: determines how reliable positive predictions are by calculating the percentage of TP 

among all positive forecasts. This measure is crucial when FP might result in significant 

expenses, such as unneeded medical procedures or fraudulent notifications.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (11) 

3. Recall (Sensitivity): calculates the percentage of TP that are successfully detected, which indicates 

how well the model detects positive cases. In applications like illness screening or security threat 

identification, where it is risky to overlook positive instances, high recall is crucial. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (12) 

4. F1-Score: It combines accuracy and recall using their harmonic mean to assess model 

performance fairly. This is our primary assessment statistic since it evenly weights FP and FN, 

effectively managing class imbalance. 

𝐹1 =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
          (13) 

5. AUC-ROC: The model's capacity to differentiate between classes across all potential classification 

thresholds is assessed using the Area Under the Receiver Operating Characteristic curve. A 

perfect classifier obtains an AUC of 1, whereas 0.5 is obtained by random guessing.  

𝐴𝑈𝐶 =  ∫ 𝑅𝑂𝐶
1

0
(𝜏)𝑑𝜏       (14) 
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where 𝝉 represents the decision threshold 

6. Inference Time: This logs the time needed to produce predictions to assess the model's 

computational efficiency. Although it has no bearing on the statistical performance of the model, 

this parameter is essential for real-time applications and deployment in contexts with limited 

resources. 

Because the F1 score offers the fairest assessment for medical diagnostics by equally considering 

false positives and false negatives, the results are sorted by F1 score in the tables in Section 4.  

3.4. Datasets 

This study examines five diabetes-related datasets from the UCI Machine Learning Repository, 

CDC and Kaggle. Appendix A contains information on all five datasets, including their source, 

number of characteristics, total instances, and positive and negative instances. To guarantee the 

quality and integrity of the data, preprocessing and data cleaning were done before analysis. A crucial 

stage in this process was normalization, which maintained all the data on the same scale and 

increased the precision of the findings. Recursive Feature Elimination (RFE) was used for feature 

selection to remove the least important feature from the dataset. To improve performance, 

hyperparameter tuning (using Optuna) was done for each classifier throughout the model's 

construction.  

3.4.1. Dataset 1 

This is the PIMA Indian Diabetes dataset called Dataset 1. It has 768 samples and nine features, 

including clinical measures and patient characteristics. The dataset features are Pregnancy, Blood 

Pressure, Insulin, Skin Thickness, BMI, Diabetes Pedigree-Function, Age, and Outcome. The dataset 

contains no duplicate entries or missing values (NaNs); all characteristics are numerical. However, 

several features, especially those related to blood pressure, skin thickness, insulin, glucose, and BMI, 

contain sundry zero values, which is biologically impossible. Section 3.3 will discuss these 

discrepancies and their ramifications [72–76]. 

3.4.2. Dataset 2 

This is also PIMA Indian Diabetes dataset, henceforth referred to as Dataset 2. It also has numerical 

characteristics about clinical measures and patient demographics and is structured similarly to 

Dataset 1. However, it is much larger with 2000 samples rather than 768 but 9 features. 

3.4.3. Dataset 3 

This is an annual Behaviorual Risk Factor Surveillance System (BRFSS) dataset captured by the 

Center for Disease Control (CDC). This dataset is for the year 2015. Henceforth, the dataset would be 

known as Dataset 3. The target variable has three classes (0, 1, 2). 0 is for no diabetes or only during 

pregnancy, 1 is for prediabetes, and 2 is for diabetes. There is a class imbalance in the dataset, but it 

has 21 features and 253,680 samples [77]  
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Figure 1. Feature Distribution for Dataset 1 and Dataset 2 (PIMA dataset). 

3.4.4. Dataset 4 

This variant of Dataset 3 consists of 253,680 samples and 21 features of the BRFSS dataset 

captured by CDC for 2015. Here, the target consists of two classes (0, 1). 0 is for no diabetes, and 1 is 

for prediabetes or diabetes. It also contains class imbalance and would be known as Dataset 4 in this 

study. 
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Figure 2. Feature Distribution for Dataset 3 and Dataset 4 (BRFSS_2015 dataset). . 

3.4.5. Dataset 5 

The early-stage diabetes risk prediction of patients from Sylhet Diabetes Hospital, Bangladesh, 

were captured in this dataset. Direct surveys from the patients were used in the study [78]. This 

dataset report includes 520 people with diabetes-related symptoms and information on people who 

may have diabetes-related symptoms. The dataset has 520 cases and 17 features, including the target 

class. A certified physician from Sylhet Diabetes Hospital verified the dataset, collected in 2020. The 

dataset, which includes several categorical (Yes/No) variables associated with diabetes diagnosis, is 

displayed in Appendix A. The "Class" property indicates the patient's diabetes status as either 

positive (1) or negative (2). The values of 1 (yes) or 2 (no) for each feature indicate whether the 

associated symptom or condition is present. However, there are four categories for the "Age" 

attribute: 1 for those aged 20–35, 2 for those aged 36–45, 3 for those aged 46–55, 4 for those aged 56–

65 and 5 for those aged above 65. These characteristics and values serve as the foundation for 

developing a classification algorithm that uses patient data to forecast the diagnosis of diabetes 

[79,80]. 

 

Figure 3. Feature Distribution for Dataset 5 (BRFSS_2015 dataset). 

3.5. Preprocessing 

Improving model accuracy and dependability through preprocessing datasets is essential in 

getting raw data ready for ML. Cleaning to deal with outliers and missing values, data transformation 

through standardization or normalization, and categorical feature conversion using one-hot 

encoding is usually part of it. Different dimensionality reduction techniques aid in the management 

of big feature collections. Sampling techniques such as SMOTE can be used to rectify class imbalance. 

Hence, to properly assess this study model performance, the five datasets are divided into ratio 80:20 

subsets for the training and testing/validation process. In addition to lowering computing complexity 
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and improving the prediction ability of ML models, proper preprocessing guarantees the dataset's 

quality.  

Performing the exploratory data analysis (EDA) of each dataset, it was observed that zero values 

exist in columns where they are not physiologically conceivable, which is a significant problem in 

both Datasets 1 and 2. Missing data may be entered as zeros instead of NaN, resulting in inaccurate 

numbers. Table 1 shows zero values concerning affected features under Datasets 1 and 2. 

Table 1. Number of data labelled as zero values. 

Feature Dataset 1 Dataset 2 

Pregnancies 111 301 

Glucose 5 13 

BloodPressure 35 90 

SkinThickness 227 573 

Insulin 374 956 

BMI 11 28 

DiabetesPedigreeFunction 0 0 

Age 0 0 

Two imputation techniques are employed to deal with the problem of zero values in columns 

such as BMI, Insulin, Glucose, Blood Pressure, and Skin Thickness) is biologically impossible: 

1. Median Imputation: In each column, the median of non-zero values for zeros is substituted.  

2. Minimum Imputation: Instead of actual measurement, the zeros may mean data was not collected. 

This might indicate that the physiological levels of the patients with missing results were normal. 

Consequently, we used each column's smallest non-zero value to impute missing data.  

Remarkably, models trained using minimum imputation on the datasets consistently performed 

better than those trained with median imputation. This validates our prediction that missing data 

were likely connected with patients having normal measures rather than abnormal or severe results. 

Given that various imputation techniques can substantially influence model performance, this 

conclusion implies that comprehending the nature of missing data is essential in medical datasets.  

The imbalance in the target variable, where one class was noticeably underrepresented, 

provided another difficulty for us while analyzing all datasets. From the outcome class in Table 2, 

Dataset 1 has 400 entries of 0(No) values and 214 entries of 1(Yes) values, while dataset 2 shows 1053 

entries for a 0(No) values and 547 entries for a 1(Yes) value. The study concentrated on oversampling 

approaches to balance the dataset because undersampling was impractical given the already small 

quantity of data points. The study experimented with various oversampling techniques, such as 

ADASYN, SMOTE-ENN, random oversampling, and SMOTE. In overall, ADASYN produced the 

most significant outcomes out of all of these. ADASYN, like SMOTE, generates synthetic samples 

near the decision border, to improve minority class categorization. Thus, selecting the appropriate 

data balancing strategy is important as it impacts model performance.  

Table 2. Imbalance values in the Outcome (Target) variable. 

Outcome (Target class) Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 

0 400 1053  213703 218334 200 

1 214 547 4631 35346 320 

2 -  - 35346 - - 

Datasets 3 and 4 had considerable data points and were unbalanced, but Datasets 1 and 2 had 

fewer data points, as shown in Table 2. We thus used undersampling to the datasets to lessen this 

problem. Instead of random undersampling, we employed clustering-based undersampling on 

datasets 3 and 4, which maintains the underlying data distribution. Clustering-based undersampling 
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chooses representative samples from each cluster, guaranteeing that important patterns and class 

features are preserved, in contrast to conventional techniques that randomly exclude data points. It 

keeps crucial information from being lost despite its high computational cost. 

Simple binary encoding was used to transform (encode) categorical characteristics into 

numerical representations to guarantee consistency across all datasets. To normalize the data and 

guarantee that each feature had a similar range, feature scaling was also used. This step is essential 

for optimising ML models because it keeps characteristics with bigger magnitudes from 

overpowering those with smaller values.  

Because of the considerable class imbalance, where the dominant class significantly 

outnumbered the minority class, the experimental assessment showed that modelling Datasets 3 and 

4 presented significant obstacles. As demonstrated by the models' total incapacity to detect any 

occurrences of the minority class, this extreme imbalance ratio made it difficult to create useful 

prediction models. Despite the thorough use of a variety of sampling strategies, including 

undersampling techniques like cluster centroids, Tomek links, and random undersampling for the 

majority class and oversampling techniques like SMOTE, ADASYN, and random oversampling for 

the minority class, the failure persisted. This is essentially based on the size of the datasets and the 

corresponding features. 

4. Results Analysis 

The results demonstrate the outcomes of a comprehensive investigation by using comparison 

tables, confusion matrices, density graphs and informative bar charts across all models used. Python 

programming language platform was used to implement all these processes. The model training 

procedure was systematically conducted for each model, following an encoded sequence of features. 

The datasets were split into training and testing groups. The training process was managed using the 

X_train and y_train values. The performance of the models was recorded by generating the 

predictions on the test datasets (X_test). In contrast, the efficiency of the models was accessed by 

evaluating their performance through metrics such as accuracy, precision, recall, F1-score, AUC-

ROC, among others. 

Confusion matrix and AUC-ROC visualization were also used in this study to gain detailed 

information on the performance of each model. This allowed for TP, TN, FP, and FN identification, 

while heatmaps visualization was presented to enhance the perception of performance complexities 

in these matrices. Graphs were used to visualize the outputs and comparisons, while the tables 

illustrate the values assigned to each model’s performance. 

4.1. Result Analysis on Dataset 1 

After performing a series of analysis on Dataset 1 (PIMA – 768/9) shown in Table 3 and Figure 

4, Figure 5 demonstrate the analysis results, its corresponding confusion matrix, Precision/Recall and 

the AUC-ROC representation. The XGBoost model performed the best on this dataset, achieving an 

F1 score of 0.72. 

Table 3. Model Performance Comparison for Dataset 1 using F1-score as reference. 

Model Accuracy Precision Recall F1 Score AUC-ROC 
Time Taken 

(s) 

XGBoost 0.7727 0.6301 0.8519 0.7244 0.8356 0.0122 

XGBoost-CNN 0.7727 0.6338 0.8333 0.7200 0.8224 4.3404 

AdaBoost 0.7727 0.6338 0.8333 0.7200 0.8411 0.0091 

DNN 0.7727 0.6377 0.8148 0.7154 0.8219 0.0144 

RF-GRU 0.7597 0.6164 0.8333 0.7087 0.8120 9.1299 

Random Forest 0.7597 0.6232 0.7963 0.6992 0.8196 0.0095 

Decision Tree 0.7597 0.6308 0.7593 0.6891 0.7984 0.0167 

SVM 0.7532 0.6176 0.7778 0.6885 0.8213 0.0145 
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KNN 0.7403 0.5946 0.8148 0.6875 0.8077 0.0147 

RF-CNN 0.7597 0.6349 0.7407 0.6838 0.8120 0.0134 

Logistic Regression 0.7468 0.6087 0.7778 0.6829 0.8189 0.0138 

LR-MLP 0.7403 0.6029 0.7593 0.6721 0.8200 2.4844 

SVM-RNN 0.7468 0.6119 0.7593 0.6777 0.8225 6.7487 

XGBoost-LSTM 0.7403 0.6000 0.7778 0.6774 0.8219 11.4212 

DT-CNN 0.6818 0.5275 0.8889 0.6621 0.7946 5.4317 

AdaBoost-DBN 0.7013 0.5526 0.7778 0.6462 0.8004 18.8776 

CNN 0.7143 0.5694 0.7593 0.6508 0.8219 0.0165 

KNN-Autoencoders 0.6883 0.5417 0.7222 0.6190 0.7711 9.5224 

Naive Bayes 0.6948 0.5522 0.6852 0.6116 0.7676 0.0908 

RNN 0.6948 0.5522 0.6852 0.6116 0.7806 0.0110 

GRU 0.6623 0.5156 0.6111 0.5593 0.7000 0.0106 

LSTM 0.6688 0.5246 0.5926 0.5565 0.7013 0.0171 

* All values are rounded to four decimal places. 

 

Figure 4. Confusion matrix for XGBoost model. 

 

Figure 5. AUC Curves for XGBoost model. Table 3. Model. 

4.2. Result Analysis on Dataset 2 

Performance analysis on Dataset 2 (PIMA – 2000/9) shown in Table 4 and Figures 6 and 7 

demonstrate the analysis results, its corresponding confusion matrix, Precision/Recall and the AUC-

ROC representation. The Decision Tree model performed the best on this dataset, achieving an F1 

score of 0.98. 
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Table 4. Model Performance Comparison for Dataset 2 sing F1-score as reference. 

Model Accuracy Precision Recall F1 Score 
AUC-

ROC 

Time Taken 

(s) 

Decision Tree 0.9900 0.9716 1.0000 0.9856 0.9924 0.0276 

Random Forest 0.9850 0.9781 0.9781 0.9781 0.9972 0.0104 

KNN 0.9850 0.9781 0.9781 0.9781 0.9942 0.0097 

AdaBoost 0.9850 0.9781 0.9781 0.9781 0.9993 0.0091 

RF-CNN 0.9850 0.9781 0.9781 0.9781 0.9972 0.0158 

XGBoost-LSTM 0.9850 0.9781 0.9781 0.9781 0.9893 14.9132 

RF-GRU 0.9850 0.9781 0.9781 0.9781 0.9958 9.6351 

XGBoost-CNN 0.9850 0.9781 0.9781 0.9781 0.9888 6.3965 

DT-CNN 0.9750 0.9504 0.9781 0.9640 0.9757 7.1950 

SVM-RNN 0.9575 0.9167 0.9635 0.9395 0.9767 8.6150 

SVM 0.9550 0.9103 0.9635 0.9362 0.9693 0.0136 

XGBoost 0.9475 0.8867 0.9708 0.9268 0.9867 0.0107 

KNN-Autoencoders 0.9125 0.8036 0.9854 0.8852 0.9871 21.7245 

AdaBoost-DBN 0.8350 0.7052 0.8905 0.7871 0.9349 22.0284 

DNN 0.8250 0.6872 0.8978 0.7785 0.9140 0.0123 

LR-MLP 0.7975 0.6628 0.8321 0.7379 0.8891 11.9994 

CNN 0.7800 0.6369 0.8321 0.7215 0.8590 0.0108 

RNN 0.7600 0.6051 0.8613 0.7108 0.8549 0.0104 

Logistic Regression 0.7600 0.6145 0.8029 0.6962 0.8524 0.0263 

GRU 0.7400 0.5846 0.8321 0.6867 0.8467 0.0186 

Naive Bayes 0.7525 0.6159 0.7372 0.6711 0.8322 0.0269 

LSTM 0.7000 0.5464 0.7299 0.6250 0.7963 0.0240 

* All values are rounded to four decimal places. 

 

Figure 6. Confusion matrix for Decision Tree model. 
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Figure 7. AUC and Precision-Recall Curves for Decision Tree model. 

4.3. Result Analysis on Dataset 3 

Performance analysis on Dataset 3 (BRFSS – 253,680 samples/21 features with three classes 

outcomes) are shown in Table 5, Figure 8, and Figure 9 demonstrate the results of the analysis, its 

corresponding confusion matrix, Precision/Recall and the AUC-ROC representation. The AdaBoost 

model performed better than other models on this dataset, achieving an F1 score of 0.43. 

Table 5. Model Performance Comparison for Dataset 3 using F1-score as reference. 

Model Accuracy Precision Recall F1 Score AUC-ROC 
Time Taken 

(s) 

AdaBoost 0.6973 0.4317 0.5122 0.4314 0.7103 19.4743 

XGBoost-CNN 0.7018 0.4304 0.5088 0.4271 0.7167 55.5742 

XGBoost 0.7044 0.4293 0.5068 0.4265 0.7137 6.0555 

RF-CNN 0.6693 0.4314 0.5112 0.4249 0.7107 37.4420 

Random Forest 0.6799 0.4274 0.5045 0.4244 0.6997 14.5153 

XGBoost-LSTM 0.6936 0.4273 0.5049 0.4240 0.7094 198.5152 

RF-GRU 0.6599 0.4328 0.5115 0.4230 0.7085 141.7040 

DT-CNN 0.6890 0.4227 0.4783 0.4218 0.6566 43.6537 

Logistic Regression 0.6259 0.4498 0.5154 0.4192 0.7077 3.2978 

GRU 0.6678 0.4327 0.4752 0.4161 0.6729 210.8736 

DNN  0.6428 0.4281 0.5109 0.4134 0.7052 51.4291 

LR-MLP 0.5936 0.4561 0.5197 0.4117 0.7117 0.8947 

Decision Tree 0.6329 0.4247 0.5028 0.4079 0.6878 0.2390 

Naive Bayes 0.6245 0.4364 0.4892 0.4083 0.6803 0.1709 

CNN 0.5787 0.4358 0.5180 0.3988 0.7037 69.0522 

SVM 0.5775 0.4418 0.5012 0.3978 0.7005 453.5940 

KNN-Autoencoders 0.5590 0.4116 0.4473 0.3650 0.6232 19.3189 

KNN (Normal) 0.5327 0.4125 0.4476 0.3589 0.6251 25.1546 

AdaBoost-DBN 0.5393 0.4414 0.4854 0.3806 0.6775 364.6265 

RNN 0.5858 0.4197 0.4958 0.3878 0.6863 119.7845 

LSTM 0.6769 0.4097 0.4746 0.4030 0.6728 278.3175 

* All values are rounded to four decimal places. 

DTs ROC Curve (AUC = 0.992) DTs Precision-Recall Curve (AUC = 0.992) 
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Figure 8. Confusion matrix for the Logistic Regression model. 

 

Figure 9. AUC and Precision-Recall Curves of Logistic Regression Model. 

4.4. Result Analysis on Dataset 4 

Performance analysis on Dataset 4 (BRFSS – 253,680 samples/21 features with two classes 

outcomes) shown in Table 6, Figure 10 and Figure 11 demonstrate the results of the analysis, its 

corresponding confusion matrix, Precision/Recall and the AUC-ROC representation. The logistic 

regression model performed better than other models on this dataset, achieving an F1 score of 0.44. 

Table 6. Model Performance Comparison for Dataset 4 using F1-score as reference. 

Model Accuracy Precision Recall F1 Score AUC-ROC 
Time Taken 

(s) 

Logistic Regression 0.7249 0.3067 0.7731 0.4392 0.8197 0.2650 

LR-MLP 0.7144 0.3017 0.7990 0.4381 0.8235 50.7898 

AdaBoost 0.7251 0.3062 0.7690 0.4380 0.8187 2.0871 

XGBoost 0.7132 0.3005 0.7971 0.4365 0.8209 0.9791 

XGBoost-CNN 0.7079 0.2969 0.8010 0.4332 0.8212 58.5367 

GRU 0.7111 0.2985 0.7947 0.4340 0.8187 217.5773 

CNN 0.7044 0.2959 0.8131 0.4339 0.8238 53.9654 

XGBoost-LSTM 0.7072 0.2960 0.7990 0.4320 0.8204 208.5252 

SVM-RNN 0.7021 0.2943 0.8138 0.4322 0.8112 1804.6831 

RNN 0.7047 0.2947 0.8037 0.4313 0.8184 113.6648 

DNN 0.6872 0.2864 0.8345 0.4264 0.8229 53.0682 

RF-GRU 0.7036 0.2919 0.7906 0.4263 0.8101 252.4819 

LSTM 0.7043 0.2925 0.7911 0.4271 0.8149 203.2224 
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Random Forest 0.7025 0.2899 0.7833 0.4232 0.8070 9.8154 

RF-CNN 0.7034 0.2911 0.7864 0.4249 0.8095 76.8140 

AdaBoost-DBN 0.6859 0.2855 0.8345 0.4254 0.8221 58.1984 

SVM 0.7002 0.2917 0.8068 0.4285 0.8162 1541.3782 

KNN-Autoencoders 0.6753 0.2624 0.7349 0.3868 0.7566 85.9556 

KNN 0.6751 0.2620 0.7333 0.3861 0.7563 38.4936 

Decision Tree 0.6599 0.2391 0.6599 0.3510 0.6606 0.3532 

DT-CNN 0.6649 0.2417 0.6571 0.3534 0.6618 62.1882 

Naive Bayes 0.7235 0.2941 0.7029 0.4147 0.7799 0.0977 

* All values are rounded to four decimal places. 

 

Figure 10. Confusion matrix for the Logistic Regression model. 

 

Figure 10. AUC Curves of Logistic Regression Model. 
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Figure 11. Threshold-dependent metrics for LR. The vertical line denotes the chosen threshold. 

4.5. Result Analysis on Dataset 5 

Performance analysis on Dataset 5 (early-stage diabetes risk prediction of patients of 520 samples 

and 17 features from Sylhet Diabetes Hospital, Bangladesh, shown in Table 7, Figure 12, and Figure 

13 demonstrate the results of the analysis, its corresponding confusion matrix, Precision/Recall and 

the AUC-ROC representation. The Random Forest Tree, DT, and AdaBoost models performed the 

best on this dataset, achieving an F1 score of 0.9921 and a reasonable accuracy of 0.9904. RF is picked 

as the best of their best computation time in predicting diabetes in 0.0074s. 

Table 7. Model Performance Comparison for Dataset 5 using F1-score as reference. 

Model Accuracy Precision Recall F1 Score AUC-ROC 

Time 

Taken 

(s) 

Random Forest 0.9904 1.0000 0.9844 0.9921 1.0000 0.0074 

Decision Tree 0.9904 1.0000 0.9844 0.9921 0.9922 0.0299 

AdaBoost 0.9904 1.0000 0.9844 0.9921 0.9992 0.0389 

SVM 0.9808 0.9844 0.9844 0.9844 0.9977 0.0181 

SVM-RNN 0.9808 0.9844 0.9844 0.9844 0.9984 6.6874 

RF-GRU 0.9808 1.0000 0.9688 0.9841 1.0000 8.2692 

RF-CNN 0.9808 1.0000 0.9688 0.9841 0.9992 0.0132 

XGBoost-LSTM 0.9808 1.0000 0.9688 0.9841 1.0000 11.2858 

XGBoost-CNN 0.9808 1.0000 0.9688 0.9841 0.9977 4.1041 

CNN 0.9712 0.9841 0.9688 0.9764 0.9977 0.0132 

DT-CNN 0.9712 0.9841 0.9688 0.9764 0.9826 5.6472 

LR-MLP 0.9712 0.9841 0.9688 0.9764 0.9992 9.9053 

XGBoost 0.9615 0.9688 0.9688 0.9688 0.9926 0.0244 

KNN-Autoencoders 0.9615 1.0000 0.9375 0.9677 0.9828 8.6576 

DNN 0.9615 0.9839 0.9531 0.9683 0.9988 0.0146 
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RNN 0.9615 0.9839 0.9531 0.9683 0.9918 0.0112 

Logistic Regression 0.9519 1.0000 0.9219 0.9594 0.9914 0.0515 

KNN 0.9519 0.9836 0.9375 0.9600 0.9633 0.0190 

Naive Bayes 0.9423 0.9677 0.9375 0.9524 0.9863 0.0146 

AdaBoost-DBN 0.9231 0.9828 0.8906 0.9344 0.9863 9.2428 

LSTM 0.8654 0.9464 0.8281 0.8833 0.9512 0.0118 

GRU 0.8365 0.9273 0.7969 0.8571 0.9305 0.0124 

* All values are rounded to four decimal places. 

 

Figure 12. Confusion matrix for Random Forest model. 

 

Figure 13. AUC Curves for Random Forest model. 

5. Discussion 

Regarding both computational efficiency and predictive effectiveness, the experimental findings 

from all five datasets consistently show that classical machine learning models outperform deep 

learning techniques. These results address our study issues about processing time and model 

correctness based on the size of the datasets and the importance of the features concerning the 

datasets. 

According to the analysis, tree-based models continuously strike the optimum balance between 

speed and accuracy. On Dataset 1, XGBoost performs best with an F1-score of 0.7244 and completes 

predictions in 0.0122 seconds, about 350 times quicker than similar hybrid models such as XGBoost-

LSTM (11.4212s). Decision Trees demonstrate perfect recall (1.0000) on Dataset 2, while Random 
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Forest achieves immaculate precision (1.0000) on Dataset 5, all while keeping prediction durations 

under a second. This trend is consistent across datasets. 

Compared to their computing cost, deep learning models routinely perform poorly, which is 

evident based on the size of all the datasets that might not be adequate for DL models. Some neural 

network variations in need orders of magnitude demand more processing time, even when they 

attain competitive accuracy (within 2-3% of the top ML models). AdaBoost, for example, performs 

correspondingly results to XGBoost- CNN (F1 0.4314 vs 0.4271) on Dataset 3, but completes 

predictions three times quicker (19.4743s vs. 55.5742s). A distinct hierarchy in model efficiency is 

evident from the time measurements.  

Across all datasets, traditional machine learning techniques (Decision Trees, Random Forest, 

XGBoost) consistently provide the quickest prediction speeds, usually less than a second. On Dataset 

4, Logistic Regression is especially effective, obtaining a decent result (F1 0.4392) in just 0.2 seconds. 

On the other hand, DL models and hybrid techniques show noticeably higher processing times; for 

Dataset 4 predictions, some RNN variations take more than 1800 seconds to make their predictions. 

Nevertheless, Xie et al. [77] in their study proved that NN produces a better accuracy of 0.8240 but a 

lower recall of 0.3781. This is evident because the dataset size is inadequate for DL models. 

According to the comparative analysis of Dataset 5, the results show ML models performing 

well across all metrics compared to DL models as reported by Xie et al. [78] even though both studies 

showed that RF outperformed other classical ML models. However, the analysis shows a value of 

0.9740 across all metrics, while our study performed better using the same ML model with a value of 

0.9921. 

5.1. Comparative Analysis of Results with Already Developed Diabetes Prediction Models 

The results analysed above compare the methods of ML and DL and their ensembles for 

predicting the health outcomes of diabetic patients. The generated outcomes must be compared with 

other models and existing developed predictive models based on the datasets used in this study (i.e. 

Datasets 1 – 5 ). It was observed that ML models demonstrated excellent accuracy and computation 

time with sufficient results, although this cannot be denied concerning the size of the datasets. 

However, the ML models presented good accuracy, speed, F1-score, AUC-ROC, and a reasonable 

computation time frame compared to DLs and ensembles, as well as some existing predictive models 

based on the same samples and features. Table 8 presents a comparative analysis of the results of the 

models for datasets and existing predictive models. 

Table 10. Comparative analysis of models used and existing diabetes prediction models using F1-score [39]. 

Datasets Authors Outliers Missing Values Model Precision Accuracy Recall 
F1 

score 

Dataset 1 [46] IQR Attribute Mean AB + XB -- -- 0.7900 -- 

Dataset 2 [48] – – GBM - - 0.8700 -- 

 [81] -- -- DA -- 0.7400 0.7200 -- 

 [82] - - ANN - 0.7600 0.5300 – 

 [83] ESD k-NN 
HM-

BagMoov 
- 0.8600 0.8500 0.7900 

 [39] IQR 
Class wise 

median 
QML 0.7400 0.8600 0.8500 0.7900 

 [84] – NB RF 0.8100 0.8700 0.8500 0.8300 

 [85] – – k-NN 0.8700 0.8800 0.9000 0.8800 

 [59] 
Group 

Median 
Median RF – 0.9300 0.7970     -  

 [86] -- -- RF 0.9400 0.9400 0.8800 
     

0.9100 
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 [39] IQR 
Class wise 

median 
DL 0.9000 0.9500 0.9500 0.9300 

 Our Study IQR ADASYN RF 0.9781 0.9850 0.9781 0.9781 

 Our Study IQR ADASYN k-NN 0.9781 0.9850 0.9781 0.9781 

 Our Study IQR ADASYN DT 0.9716 0.9900 1.0000 0.9856 

         

Dataset 

3 
[77] -- Excluded NN -- 0.8240 0.3781 -- 

Dataset 

4 
Our Study IQR Clustering AdaBoost 0.4317 0.6973 0.5122 0.4314 

 Our Study IQR Clustering LR 0.3067 0.7249 0.7731 0.4392 

         

Dataset 

5 
[78] -- Ignoring Tuple RF 0.9740 0.9740 0.9740 0.9740 

 Our Study IQR -- RF 1.0000 0.9904 0.9844 0.9921 

 Our Study IQR -- DT 1.0000 0.9904 0.9844 0.9921 

 Our Study IQR -- AdaBoost 1.0000 0.9904 0.9844 0.9921 

* IQR – Interquartile Range, GBM – gradient boosting machine, DA – discriminant analysis, ESD – extreme 

studentized deviate, QML – Quantum ML, HM-BagMoov – hierarchical multi-level classifiers bagging with multi-

objective optimized voting. 

6. Conclusions 

In this study, we used five publicly accessible datasets to compare different machine learning, 

deep learning, and ensemble algorithms and their modifications in the context of predicting the 

health outcomes of diabetic patients. The outcome of the analysis was also compared with existing 

predictive models. The results showed that ML models were consistently superior to alternative DL 

and ensemble techniques, demonstrating their efficacy in correctly predicting DM illnesses across 

various datasets considering accuracy, reliability, processing time and computational efficiency. ML 

models demonstrated their promise as a robust and dependable approach by achieving notable 

accuracy, recall, and F1-score with strong AUC-ROC scores on almost all five datasets. However, 

given the scale of the datasets, these performances of DL and ensemble models might not be 

disregarded. Nevertheless, RF, DT, AdaBoost, LR, k-NN, and XGBoost performed well, while other 

classifiers in ML, DL, and ensemble performed to their capacity, depending on size. However, 

ensemble models, including XGBoost-CNN, RF-CNN, RF-GRU, and XGBoost-LSTM, also showed 

exceptional performance across all five datasets. 

People of all ages are becoming more susceptible to diabetes. The current study showed that 

early diabetes identification might be crucial for treatment and enhanced health outcomes for 

individuals with the disease. Obesity may be prevented by taking easy awareness-raising steps like 

eating a low-sugar diet, exercising frequently, and leading a healthy lifestyle. Its relevance in 

healthcare is apparent since models and its ensembles show increasing promise in predicting diabetes 

and eventually lowering treatment costs and increasing computing efficiency. Finding the optimal 

model for predicting datasets created for diabetes progression and risk prediction is the primary 

contribution of this work.  

We discovered that the ML models had the best accuracy and better computing cost. Lastly, 

using the same dataset, a comparison of the models with current predictive models showed how 

important it is to improve the health outcomes for diabetes patients. The ML models in this study 

performed better than the existing predictive models in terms of accuracy, F1-score, and recall. 

Nonetheless, this study may be updated often with a more complete dataset and additional examples, 

and it can include other commonly used methods for prediction.  

There are not many restrictions on our study, though we could not prove causation since some 

datasets were cross-sectional, particularly the health risk indicators (Datasets 3 and 4) and Dataset 5 
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(BRFSS_2015) data, and the biological entries were inaccurate. Another drawback of the Dataset 

5 data was that it was self-reported and hence susceptible to memory biases, which may impact how 

well our prediction models performed. Nonetheless, our prediction algorithms could be more 

effective in forecasting the health outcomes of diabetes patients now that clinical data and biomarkers 

are available. 
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Abbreviations 

DM Diabetes Mellitus 

ML Machine Learning 

DL Deep Learning 

AU-ROC Area under the ROC 

KPI Key Performance Indicators 

IDF International Diabetes Federation 

T1DM Type 1 DM 

T2DM Type 2 DM 

GDM Gestational DM 

RF Random Forest 

LR Logistic Regression 

XGBoost Extreme Gradient Boosting 

NB Naive Bayes 

SVM Support Vector Machine 

NN Neural Networks 

RNN Recurrent NN 

CNN Convolutional NN 

DNN Deep NN 

QML Quantum ML 

KNN k-Nearest Neighbour 

CVD Cardiovascular diseases 

DT Decision Tress 

LSTM Long Short-Term Memory 

AdaBoost Adaptive Boosting 

GRU Gated Recurrent Unit 

ANN Artificial Neural Networks 
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Appendix A 

Table A1. Datasets Information. 

Datasets 

StatisticsDescription 

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 

Source UCL Machine Learning Repository, Kaggle and CDC websites 

Samples 768 2000 253,680 253,680 520 

Features 9 9 21 21 17 

Positive instances 268 684 35346 35346 320 

Negative instances 500 1316 218334 35346 200 

References 

1. I. Kavakiotis, O. Tsave, A. Salifoglou, N. Maglaveras, I. Vlahavas, and I. Chouvarda, "Machine Learning 

and Data Mining Methods in Diabetes Research," Computational and Structural Biotechnology Journal, vol. 15, 

pp. 104-116, 2017, doi: 10.1016/j.csbj.2016.12.005. 

2. IDF, International Diabetes Federation (IDF) Diabetes Atlas 2021 (IDF Atlas 2021). 2021, pp. 1-141. 

3. M. A. R. Refat, M. A. Amin, C. Kaushal, M. N. Yeasmin, and M. K. Islam, "A Comparative Analysis of Early 

Stage Diabetes Prediction using Machine Learning and Deep Learning Approach," in 6th IEEE International 

Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 2021 2021: IEEE, pp. 654-659, 

doi: 10.1109/ISPCC53510.2021.9609364. [Online]. Available: https://ieeexplore.ieee.org/document/9609364/ 

4. I. S. Ayon and M. M. Islam, "Diabetes Prediction: A Deep Learning Approach," International Journal of 

Information Engineering and Electronic Business, vol. 11, no. 2, pp. 21-27, 2019, doi: 10.5815/ijieeb.2019.02.03. 

5. U. M. Butt et al., "Machine Learning Based Diabetes Classification and Prediction for Healthcare 

Applications," Journal of Healthcare Engineering, vol. 2021, pp. 9930985-17, 2021, doi: 10.1155/2021/9930985. 

6. S. Alex David et al., "Comparative Analysis of Diabetes Prediction Using Machine Learning," in Soft 

Computing for Security Applications, vol. 1428, G. Ranganathan, X. Fernando, and S. Piramuthu Eds., 

(Advances in Intelligent Systems and Computing. Singapore: Springer, 2022, ch. 13, pp. 155-163. 

7. E. Longato, G. P. Fadini, G. Sparacino, A. Avogaro, L. Tramontan, and B. Di Camillo, "A Deep Learning 

Approach to Predict Diabetes' Cardiovascular Complications From Administrative Claims," IEEE journal 

of biomedical and health informatics, vol. 25, no. 9, pp. 3608-3617, 2021, doi: 10.1109/JBHI.2021.3065756. 

8. P. Saeedi et al., "Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 

2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition," Diabetes Res Clin 

Pract, vol. 157, p. 107843, Nov 2019, doi: 10.1016/j.diabres.2019.107843. 

9. K. Zarkogianni, M. Athanasiou, A. C. Thanopoulou, and K. S. Nikita, "Comparison of Machine Learning 

Approaches Toward Assessing the Risk of Developing Cardiovascular Disease as a Long-Term Diabetes 

Complication," IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 5, pp. 1637-1647, 2018, doi: 

10.1109/JBHI.2017.2765639. 

10. A. Dinh, S. Miertschin, A. Young, and S. D. Mohanty, "A data-driven approach to predicting diabetes and 

cardiovascular disease with machine learning," BMC Med Inform Decis Mak, vol. 19, no. 1, p. 211, Nov 6 

2019, doi: 10.1186/s12911-019-0918-5. 

11. M. M. Hasan et al., "Cardiovascular Disease Prediction Through Comparative Analysis of Machine 

Learning Models," presented at the 2023 International Conference on Modeling & E-Information Research, 

Artificial Learning and Digital Applications (ICMERALDA), Karawang, Indonesia, 24-24 November 2023, 

2023. 

12. X. Lin et al., "Global, regional, and national burden and trend of diabetes in 195 countries and territories - 

an analysis from 1990 to 2025," Sci Rep, vol. 10, no. 1, 14790, pp. 1-11, 2020, doi: 10.1038/s41598-020-71908-

9. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 May 2025 doi:10.20944/preprints202505.0135.v1

https://ieeexplore.ieee.org/document/9609364/
https://doi.org/10.20944/preprints202505.0135.v1


 29 of 33 

 

13. S. Kodama et al., "Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: A 

meta-analysis," J Diabetes Investig, vol. 13, no. 5, pp. 900-908, May 2022, doi: 10.1111/jdi.13736. 

14. S. Larabi-Marie-Sainte, L. Aburahmah, R. Almohaini, and T. Saba, "Current Techniques for Diabetes 

Prediction: Review and Case Study," Applied sciences, vol. 9, no. 21, p. 4604, 2019, doi: 10.3390/app9214604. 

15. S. Islam and F. Tariq, "Machine Learning-Enabled Detection and Management of Diabetes Mellitus," in 

Artificial Intelligence for Disease Diagnosis and Prognosis in Smart Healthcare, 2023, pp. 203-218. 

16. E. Afsaneh, A. Sharifdini, H. Ghazzaghi, and M. Z. Ghobadi, "Recent applications of machine learning and 

deep learning models in the prediction, diagnosis, and management of diabetes: a comprehensive review," 

Diabetol Metab Syndr, vol. 14, no. 1, p. 196, Dec 27 2022, doi: 10.1186/s13098-022-00969-9. 

17. C. Giacomo, V. Martina, S. Giovanni, and F. Andrea, "Continuous Glucose Monitoring Sensors for Diabetes 

Management - A Review of Technologies and Applications," Diabetes Metabolism Journal, vol. 43, pp. 383-

397, 2019, doi: 10.4093/dmj.2019.0121. 

18. A. Nomura, M. Noguchi, M. Kometani, K. Furukawa, and T. Yoneda, "Artificial Intelligence in Current 

Diabetes Management and Prediction," Curr Diab Rep, vol. 21, no. 12, p. 61, Dec 13 2021, doi: 10.1007/s11892-

021-01423-2. 

19. Z. Guan et al., "Artificial intelligence in diabetes management: Advancements, opportunities, and 

challenges," Cell Rep Med, vol. 4, no. 10, p. 101213, Oct 17 2023, doi: 10.1016/j.xcrm.2023.101213. 

20. H. Y. Lu et al., "Digital Health and Machine Learning Technologies for Blood Glucose Monitoring and 

Management of Gestational Diabetes," IEEE Rev Biomed Eng, vol. 17, pp. 98-117, 2024, doi: 

10.1109/RBME.2023.3242261. 

21. T. Ba, S. Li, and Y. Wei, "A data-driven machine learning integrated wearable medical sensor framework 

for elderly care service," Measurement, vol. 167, 2021, doi: 10.1016/j.measurement.2020.108383. 

22. I. J. Kakoly, M. R. Hoque, and N. Hasan, "Data-Driven Diabetes Risk Factor Prediction Using Machine 

Learning Algorithms with Feature Selection Technique," Sustainability (Basel, Switzerland), vol. 15, no. 6, pp. 

1-15, 2023, Art no. 4930, doi: 10.3390/su15064930. 

23. T. Mora, D. Roche, and B. Rodriguez-Sanchez, "Predicting the onset of diabetes-related complications after 

a diabetes diagnosis with machine learning algorithms," Diabetes Res Clin Pract, vol. 204, pp. 1-7, Oct 2023, 

doi: 10.1016/j.diabres.2023.110910. 

24. B. C. Han, J. Kim, and J. Choi, "Prediction of complications in diabetes mellitus using machine learning 

models with transplanted topic model features," Biomedical engineering letters, vol. 14, no. 1, pp. 163-171, 

2024, doi: 10.1007/s13534-023-00322-7. 

25. A. Dagliati et al., "Machine Learning Methods to Predict Diabetes Complications," Journal of Diabetes Science 

and Technology, vol. 12, no. 2, pp. 295-302, 2018, doi: 10.1177/1932296817706375. 

26. D. Ochocinski et al., "Life-Threatening Infectious Complications in Sickle Cell Disease: A Concise Narrative 

Review," Front Pediatr, vol. 8, p. 38, 2020, doi: 10.3389/fped.2020.00038. 

27. K. R. Tan et al., "Evaluation of Machine Learning Methods Developed for Prediction of Diabetes 

Complications: A Systematic Review," Journal of Diabetes Science and Technology, vol. 17, no. 2, pp. 474-489, 

2023, doi: 10.1177/19322968211056917. 

28. A. S. Chauhan, M. S. Varre, K. Izuora, M. B. Trabia, and J. S. Dufek, "Prediction of Diabetes Mellitus 

Progression Using Supervised Machine Learning," Sensors (Basel), vol. 23, no. 10, May 11 2023, doi: 

10.3390/s23104658. 

29. J. S. Skyler et al., "Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis," Diabetes, 

vol. 66, no. 2, pp. 241-255, 2017, doi: 10.2337/db16-0806. 

30. M. Z. Banday, A. S. Sameer, and S. Nissar, "Pathophysiology of diabetes - An overview," Avicenna Journal 

of Medicine, vol. 10, no. 4, pp. 174–188, 2020, doi: 10.4103/ajm.ajm_53_20. 

31. W. Y. Fujimoto, "The Importance of Insulin Resistance in the Pathogenesis of Type 2 Diabetes Mellitus," 

American Journal of Medicine, vol. 108, 6A, pp. 9S-14S, 2000, doi: 10.1016/s0002-9343(00)00337-5. 

32. U. Galicia-Garcia et al., "Pathophysiology of Type 2 Diabetes Mellitus," International Journal of Molecular 

Science, vol. 21, no. 17, 2020, doi: 10.3390/ijms21176275. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 May 2025 doi:10.20944/preprints202505.0135.v1

https://doi.org/10.20944/preprints202505.0135.v1


 30 of 33 

 

33. A. Agliata, D. Giordano, F. Bardozzo, S. Bottiglieri, A. Facchiano, and R. Tagliaferri, "Machine Learning as 

a Support for the Diagnosis of Type 2 Diabetes," Int J Mol Sci, vol. 24, no. 7, pp. 1-14, Apr 5 2023, Art no. 

6775, doi: 10.3390/ijms24076775. 

34. H. D. McIntyre, P. Catalano, C. Zhang, G. Desoye, E. R. Mathiesen, and P. Damm, "Gestational diabetes 

mellitus," Nature Reviews. Disease Primers, vol. 5, no. 1, pp. 1-19, 2019, Art no. 47, doi: 10.1038/s41572-019-

0098-8. 

35. J. F. Plows, J. L. Stanley, P. N. Baker, C. M. Reynolds, and M. H. Vickers, "The Pathophysiology of 

Gestational Diabetes Mellitus," International Journal of Molecular Sciences, vol. 19, no. 11, pp. 1-21, 2018, Art 

no. 3342, doi: 10.3390/ijms19113342. 

36. R. Ahmad, M. Narwaria, and M. Haque, "Gestational diabetes mellitus prevalence and progression to type 

2 diabetes mellitus: A matter of global concern," Advances in Human Biology, vol. 13, no. 3, pp. 232-237, 2023, 

doi: 10.4103/aihb.aihb_65_23. 

37. P. Mahajan, S. Uddin, F. Hajati, M. A. Moni, and E. Gide, "A comparative evaluation of machine learning 

ensemble approaches for disease prediction using multiple datasets," Health and technology, vol. 14, no. 3, 

pp. 597-613, 2024, doi: 10.1007/s12553-024-00835-w. 

38. L. Flores, R. M. Hernandez, L. H. Macatangay, S. M. G. Garcia, and J. R. Melo, "Comparative analysis in the 

prediction of early-stage diabetes using multiple machine learning techniques," Indonesian Journal of 

Electrical Engineering and Computer Science, vol. 32, no. 2, p. 887, 2023, doi: 10.11591/ijeecs.v32.i2.pp887-899. 

39. H. Gupta, H. Varshney, T. K. Sharma, N. Pachauri, and O. P. Verma, "Comparative performance analysis 

of quantum machine learning with deep learning for diabetes prediction," Complex & intelligent systems, 

vol. 8, no. 4, pp. 3073-3087, 2022, doi: 10.1007/s40747-021-00398-7. 

40. N. Aggarwal, C. B. Basha, A. Arya, and N. Gupta, "A Comparative Analysis of Machine Leaming-Based 

Classifiers for Predicting Diabetes," presented at the 2023 International Conference on Advanced 

Computing & Communication Technologies (ICACCTech), Banur, India, 23-24 December 20, 2023. 

41. M. A. R. Refat, M. A. Amin, C. Kaushal, M. N. Yeasmin, and M. K. Islam, "A Comparative Analysis of Early 

Stage Diabetes Prediction using Machine Learning and Deep Learning Approach," in 6th IEEE International 

Conference on Signal Processing, Computing and Control (ISPCC 2k21), Solan, India, 2021 2021: IEEE, pp. 654-

659, doi: 10.1109/ISPCC53510.2021.9609364. [Online]. Available: 

https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=&arnumber=9609364&ref= 

42. M. Swathy and K. Saruladha, "A comparative study of classification and prediction of Cardio-Vascular 

Diseases (CVD) using Machine Learning and Deep Learning techniques," ICT Express, vol. 8, no. 1, pp. 109-

116, 2022, doi: 10.1016/j.icte.2021.08.021. 

43. L. Fregoso-Aparicio, J. Noguez, L. Montesinos, and J. A. Garcia-Garcia, "Machine learning and deep 

learning predictive models for type 2 diabetes: a systematic review," Diabetology and Metabolic Syndrome, 

vol. 13, no. 1, pp. 148-148, 2021, doi: 10.1186/s13098-021-00767-9. 

44. S. Uddin, A. Khan, M. E. Hossain, and M. A. Moni, "Comparing different supervised machine learning 

algorithms for disease prediction," BMC Medical Informatics and Decision Making, vol. 19, no. 1, pp. 281-281, 

2019, doi: 10.1186/s12911-019-1004-8. 

45. H. Naz and S. Ahuja, "Deep learning approach for diabetes prediction using PIMA Indian dataset," Journal 

of Diabetes and Metabolic Disorders, vol. 19, no. 1, pp. 391-403, 2020, doi: 10.1007/s40200-020-00520-5. 

46. M. K. Hasan, M. A. Alam, D. Das, E. Hossain, and M. Hasan, "Diabetes Prediction Using Ensembling of 

Different Machine Learning Classifiers," IEEE Access, vol. 8, pp. 76516-76531, 2020, doi: 

10.1109/ACCESS.2020.2989857. 

47. A. K. Sahoo, C. Pradhan, H. Das, M. Rout, H. Das, and J. K. Rout, "Performance Evaluation of Different 

Machine Learning Methods and Deep-Learning Based Convolutional Neural Network for Health Decision 

Making," in Nature Inspired Computing for Data Science, vol. 871, M. Rout, J. K. Rout, and H. Das Eds., 

(Studies in Computational Intelligence. Switzerland: Springer International Publishing AG, 2020, ch. 

Chapter 8, pp. 201-212. 

48. H. Lai, H. Huang, K. Keshavjee, A. Guergachi, and X. Gao, "Predictive models for diabetes mellitus using 

machine learning techniques," BMC Endocrine Disorders, vol. 19, no. 1, pp. 101-101, 2019, doi: 

10.1186/s12902-019-0436-6. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 May 2025 doi:10.20944/preprints202505.0135.v1

https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=&arnumber=9609364&ref
https://doi.org/10.20944/preprints202505.0135.v1


 31 of 33 

 

49. D. Elreedy and A. F. Atiya, "A Comprehensive Analysis of Synthetic Minority Oversampling Technique 

(SMOTE) for handling class imbalance," Information Sciences, vol. 505, pp. 32-64, 2019, doi: 

https://doi.org/10.1016/j.ins.2019.07.070. 

50. T. Wongvorachan, S. He, and O. Bulut, "A Comparison of Undersampling, Oversampling, and SMOTE 

Methods for Dealing with Imbalanced Classification in Educational Data Mining," Information - MDPI, vol. 

14, no. 1, 2023, doi: 10.3390/info14010054. 

51. R. Kaur, R. Sharma, and M. K. Dhaliwal, "Evaluating Performance of SMOTE and ADASYNtoClassify Falls 

and Activities of Daily Living," in Proceedings of the 12th International Conference on Soft Computing for Problem 

Solving. SocProS 2023, Springer, Singapore, M. Pant, K. Deep, and A. Nagar, Eds., 2024, vol. 995: Springer, 

in Lecture Notes in Networks and Systems, doi: https://doi.org/10.1007/978-981-97-3292-0_22.  

52. R. Panigrahi, L. Kumar, and S. K. Kuanar, "An Empirical Study to Investigate Different SMOTE Data 

Sampling Techniques for Improving Software Refactoring Prediction," in Neural Information Processing. 

ICONIP 2020. Communications in Computer and Information Science, vol. 1332, H. Yang, K. Pasupa, A. C. 

Leung, J. T. Kwok, J. H. Chan, and I. e. King Eds. Switzerland: Springer, Cham, 2020, pp. 23-31. 

53. H. Sahlaoui, E. A. A. Alaoui, S. Agoujil, and A. Nayyar, "An empirical assessment of smote variants 

techniques and interpretation methods in improving the accuracy and the interpretability of student 

performance models," Education and Information Technologies, vol. 29, no. 5, pp. 5447-5483, 2023, doi: 

10.1007/s10639-023-12007-w. 

54. H. Haibo, B. Yang, E. A. Garcia, and L. Shutao, "ADASYN: Adaptive synthetic sampling approach for 

imbalanced learning," presented at the 2008 IEEE International Joint Conference on Neural Networks (IEEE 

World Congress on Computational Intelligence), 2008. 

55. E. A. Elsoud et al., "Under Sampling Techniques for Handling Unbalanced Data with Various Imbalance 

Rates - A Comparative Study," International Journal of Advanced Computer Science and Applications (IJACSA), 

vol. 15, no. 8, pp. 1274-1284, 2024. 

56. M. Bach and A. Werner, "Improvement of Random Undersampling to Avoid Excessive Removal of Points 

from a Given Area of the Majority Class," in Computational Science – ICCS 2021 - 21st International Conference  

Krakow, Poland, June 16–18, 2021 Proceedings, Part III, Poland, M. Paszynski, D. Kranzlmüller, V. V. 

Krzhizhanovskaya, J. J. Dongarra, and P. M. Sloot, Eds., 2021, vol. 12744: Springer, Cham, in ICCS 2021. 

Lecture Notes in Computer Science, pp. 172-186, doi: https://doi.org/10.1007/978-3-030-77967-2_15.  

57. G.Rekha, A. K. Tyagi, and V. K. Reddy, "Performance Analysis of Under-Sampling and Over-Sampling 

Techniques for Solving Class Imbalance Problem," International Conference on Sustainable Computing in 

Science, Technology & Management (SUSCOM-2019), pp. 1305-1315, Feb 26-28, 2019 2019. 

58. R. D. Joshi and C. K. Dhakal, "Predicting Type 2 Diabetes Using Logistic Regression and Machine Learning 

Approaches," International Journal of Environmental Research and Public Health, vol. 18, no. 14, pp. 1-17, 2021, 

Art no. 7346, doi: 10.3390/ijerph18147346. 

59. M. Maniruzzaman et al., "Accurate Diabetes Risk Stratification Using Machine Learning: Role of Missing 

Value and Outliers," J Med Syst, vol. 42, no. 5, p. 92, Apr 10 2018, doi: 10.1007/s10916-018-0940-7. 

60. S. Mittal and Y. Hasija, "Applications of Deep Learning in Healthcare and Biomedicine," in Deep Learning 

Techniques for Biomedical and Health Informatics, vol. 68, S. Dash, B. R. Acharya, M. Mittal, A. Abraham, and 

A. Kelemen Eds. Switzerland: Springer International Publishing AG, 2019, ch. Chapter 4, pp. 57-78. 

61. A. Iyer, J. S, and R. Sumbaly, "Diagnosis of Diabetes Using Classification Mining Techniques," International 

journal of data mining & knowledge management process, vol. 5, no. 1, pp. 1-14, 2015, doi: 

10.5121/ijdkp.2015.5101. 

62. S. Barik, S. Mohanty, S. Mohanty, and D. Singh, "Analysis of Prediction Accuracy of Diabetes Using 

Classifier and Hybrid Machine Learning Techniques," in Intelligent and Cloud Computing, D. Mishra, R. 

Buyya, P. Mohapatra, and S. Patnaik Eds., (Smart Innovation, Systems and Technologies. Singapore: 

Springer Singapore, 2020, pp. 399-409. 

63. S. M. Ganie, M. B. Malik, and T. Arif, "Performance analysis and prediction of type 2 diabetes mellitus 

based on lifestyle data using machine learning approaches," Journal of Diabetes and Metabolic Disorders, vol. 

21, no. 1, pp. 339-352, 2022, doi: 10.1007/s40200-022-00981-w. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 May 2025 doi:10.20944/preprints202505.0135.v1

https://doi.org/10.1016/j.ins.2019.07.070
https://doi.org/10.1007/978-981-97-3292-0_22
https://doi.org/10.1007/978-3-030-77967-2_15
https://doi.org/10.20944/preprints202505.0135.v1


 32 of 33 

 

64. O. Iparraguirre-Villanueva, K. Espinola-Linares, R. O. Flores Castaneda, and M. Cabanillas-Carbonell, 

"Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 

Diabetes," Diagnostics (Basel), vol. 13, no. 14, Jul 15 2023, doi: 10.3390/diagnostics13142383. 

65. A. Altamimi et al., "An automated approach to predict diabetic patients using KNN imputation and 

effective data mining techniques," BMC Medical Research Methodology, vol. 24, no. 1, 2024, doi: 

10.1186/s12874-024-02324-0. 

66. S. Suriya and J. J. Muthu, "Type 2 Diabetes Prediction using K-Nearest Neighbor Algorithm," Journal of 

Trends in Computer Science and Smart Technology, vol. 5, no. 2, pp. 190-205, 2023, doi: 

https://doi.org/10.36548/jtcsst.2023.2.007. 

67. S. S. Salam and R. Rafi, "Deep Learning Approach for Sleep Apnea Detection Using Single Lead ECG: 

Comparative Analysis Between CNN and SNN," presented at the 2023 26th International Conference on 

Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh, 13-15 December 2023, 2023. 

68. M. Rahman, D. Islam, R. J. Mukti, and I. Saha, "A deep learning approach based on convolutional LSTM 

for detecting diabetes," Computational biology and chemistry, vol. 88, pp. 107329-107329, 2020, doi: 

10.1016/j.compbiolchem.2020.107329. 

69. B. M. K. P, S. P. R, N. R K, and A. K, "Type 2: Diabetes mellitus prediction using Deep Neural Networks 

classifier," International Journal of Cognitive Computing in Engineering, vol. 1, pp. 55-61, 2020, doi: 

10.1016/j.ijcce.2020.10.002. 

70. M. Z. Wadghiri, A. Idri, T. E. Idrissi, and H. Hakkoum, "Ensemble blood glucose prediction in diabetes 

mellitus - A review," Computational and Structural Biotechnology Journal, vol. 147, 105674, pp. 1-25, 2022, doi: 

10.1016/j.compbiomed.2022.105674. 

71. Y. Guan and T. Plotz, "Ensembles of Deep LSTM Learners for Activity Recognition using Wearables," ACM, 

vol. 0, pp. 1-28, 2017. 

72. M. Y. Shams, Z. Tarek, and A. M. Elshewey, "A novel RFE-GRU model for diabetes classification using 

PIMA Indian dataset," Sci Rep, vol. 15, no. 1, p. 982, Jan 6 2025, doi: 10.1038/s41598-024-82420-9. 

73. M. Raquibul Hossain, M. J. Hossain, M. M. Rahman, and M. Manjur Alam, "Machine Learning Based 

Prediction and Insights of Diabetes Disease: Pima Indian and Frankfurt Datasets," Journal of Mechanics of 

Continua and Mathematical Sciences, vol. 20, no. 1, 2025, doi: 10.26782/jmcms.2025.01.00007. 

74. A. Mousa, W. Mustafa, and R. B. Marqas, "A Comparative Study of Diabetes Detection Using The Pima 

Indian Diabetes Database," The Journal of University of Duhok, vol. 26, no. 2, pp. 277-288, 2023, doi: 

10.26682/suod.2023.26.2.24. 

75. O. S. Zargar, A. Bhagat, T. A. Teli, and S. Sheikh, "Early Prediction of Diabetes Mellitus on Pima Dataset 

Using ML And DL Techniques," Journal of Army Engineering University of PLA, vol. 23, no. 1, pp. 230-249, 

2023. 

76. V. Chang, J. Bailey, Q. A. Xu, and Z. Sun, "Pima Indians diabetes mellitus classification based on machine 

learning (ML) algorithms," Neural Comput Appl, pp. 1-17, Mar 24 2022, doi: 10.1007/s00521-022-07049-z. 

77. Z. Xie, O. Nikolayeva, J. Luo, and D. Li, "Building Risk Prediction Models for Type 2 Diabetes Using 

Machine Learning Techniques," Prev Chronic Dis, vol. 16, p. E130, Sep 19 2019, doi: 10.5888/pcd16.190109. 

78. M. M. F. Islam, R. Ferdousi, S. Rahman, and H. Y. Bushra, "Likelihood Prediction of Diabetes at Early Stage 

Using Data Mining Techniques," in Computer Vision and Machine Intelligence in Medical Image Analysis, 

(Advances in Intelligent Systems and Computing, 2020, ch. Chapter 12, pp. 113-125. 

79. A. Sadhu and A. Jadli, "Early-Stage Diabetes Risk Prediction - A Comparative Analysis of Classification 

Algorithms," International Advanced Research Journal in Science, Engineering and Technology, vol. 8, no. 1, pp. 

193-201, 2021, doi: 10.17148/IARJSET.2021.8228. 

80. Q. A. Al-Haija, M. Smadi, and O. M. Al-Bataineh, "Early Stage Diabetes Risk Prediction via Machine 

Learning," Proceedings of the 13th International Conference on Soft Computing and Pattern Recognition (SoCPaR 

2021), vol. 417, pp. 451-461, 2022, doi: https://doi.org/10.1007/978-3-030-96302-6_42. 

81. S. P. Chatrati et al., "Smart home health monitoring system for predicting type 2 diabetes and hypertension," 

Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 3, pp. 862-870, 2022, doi: 

10.1016/j.jksuci.2020.01.010. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 May 2025 doi:10.20944/preprints202505.0135.v1

https://doi.org/10.36548/jtcsst.2023.2.007
https://doi.org/10.1007/978-3-030-96302-6_42
https://doi.org/10.20944/preprints202505.0135.v1


 33 of 33 

 

82. M. R. Bozkurt, N. Yurtay, Z. Yilmaz, and C. Sertkaya, "Comparison of different methods for determining 

diabetes," Turkish Journal of Electrical Engineering & Computer Sciences, vol. 22, pp. 1044-1055, 2014, doi: 

10.3906/elk-1209-82. 

83. S. Bashir, U. Qamar, and F. H. Khan, "IntelliHealth: A medical decision support application using a novel 

weighted multi-layer classifier ensemble framework," J Biomed Inform, vol. 59, pp. 185-200, Feb 2016, doi: 

10.1016/j.jbi.2015.12.001. 

84. Q. Wang, W. Cao, J. Guo, J. Ren, Y. Cheng, and D. N. Davis, "DMP_MI: An Effective Diabetes Mellitus 

Classification Algorithm on Imbalanced Data With Missing Values," IEEE Access, vol. 7, pp. 102232-102238, 

2019, doi: 10.1109/access.2019.2929866. 

85. H. Kaur and V. Kumari, "Predictive modelling and analytics for diabetes using a machine learning 

approach," Applied Computing and Informatics, vol. 18, no. 1/2, pp. 90-100, 2020, doi: 10.1016/j.aci.2018.12.004. 

86. N. Yuvaraj and K. R. SriPreethaa, "Diabetes prediction in healthcare systems using machine learning 

algorithms on Hadoop cluster," Cluster Computing, vol. 22, no. S1, pp. 1-9, 2017, doi: 10.1007/s10586-017-

1532-x. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 May 2025 doi:10.20944/preprints202505.0135.v1

https://doi.org/10.20944/preprints202505.0135.v1

