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Abstract: The Paper points at an important point, which is estimate the reliability of system used for stress-

strength model when the stress and strength follows Topp-Leone distribution. In this context, this work 

including two models of stress –strength, the first one when the system has one component with strength 

subject to one stress, while the another model concern with system has one component which has strength 

subject for two bounded stresses .The expressions of system reliability of two considered models were derived 

and estimate using different methods. Comparisons between the considered estimators were made depending 

on simulation technique based on statistical criterion namely mean squared error. 

Keywords: Topp-Leone Distributions; Stress-Strength Model; Monte Carlo simulation, 

                      Mean Squared Error                     

 

I. Introduction 

One of the most popular techniques for data analysis is the stress-strength system, which is 

employed in a wide range of disciplines like developed engineering, military presentations, 

healthiness, and useful skills.  

The reliability of system in  stress-strength model  is an assessment of a module's 

dependability in terms of the random variable X, which stands in for the stress the module is exposed 

to, and Y, which stands in for the component's capacity to withstand the potential stress.  

In stress–strength model of system, the strength X exposed the stress Y. Both random variables 

X and Y supposed to follows specific probability distribution with definite parameters. The reliability 

in stress–strength model refers to the probability that strength overdoes stress, i.e. P(X > Y), roughly 

p. This topic consumes numerous presentations in several ranges. For example, if Y denotes the 

extreme heaviness produced by overflowing and X signifies the strength of the leg of a bridge on a 

stream, then p is the probability that the bridge will be hard. Additional instance, if Y and X are 

respectively symbolize the regulator and conduct groups, then P processes the treatment 

consequence. Then  the estimation of P will be significant in creation interpretations. The system 

fails when the stress is too great for it to handle. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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The stress-strength concept is particularly significant in the research on reliability. Most of the 

concerns in the statistical approach to the stress-strength model are predicated on the premise that 

the component strengths are randomly and uniformly distributed and are exposed to a single stress 

[1]. 

A system experiences a stress Y and strength X when demonstrated in a conventional reliability 

stress-strength analysis. Both random variables are considered to follows specific distribution with 

known or unknown parameters. The probability of strength exceeding stress, or P(X>Y), indicates the 

reliability of the system. This topic has many applications in many fields 

The stress-strength models of the types P(Y<X), P(Y<X<Z), where X, Y and Z are independent 

random variables refers to strength X and two stress Y and Z, and its follows specific distribution. 

These two models have wide requests in several of engineering subareas, psychology, genetics, 

medical trials and others. Kotz [2].   

Isaam, K.  , Taha, A. and Abbas,N. They Estimated P(Y<X) using different estimation 

methods[3]  .Chandra and Owen [4] derived maximum likelihood estimators (MLEs) and 

consequent uniform minimum variance unbiased estimators (UMVUEs) for R= P(Y<X< Z). 

Singh [5] offered the minimum variance unbiased, maximum likelihood and empirical 

estimators of R= P(Y<X<Z), where X, Y and Z are independent random variables and follows the 

normal distribution. Dutta and Sriwastav [6] estimated R when X, Y and Z are exponentially 

distributed. Ivshin [7] studied the MLE and UMVUE of R when X, Y and Z are either uniform or 

exponential random variables with unknown location parameters. Wang et al. [8] make statistical 

inference for P(X<Y<Z) via two methods, the nonparametric normal approximation and the jackknife 

empirical likelihood. 

The Topp-Leone (TL) distribution is therefore J-shaped through its support. Percentage data, 

rates, particle sizes and specific chemical procedure yield data that can be displayed by this 

distribution. The TL distribution has a finite support, and various data sets in reliability and life 

testing are showed using finite support distributions. [9]. 

Particularly, when the reliability is measured as the proportion of the quantity of effective trials 

to the amount of whole trials, the TL distribution can well be functional. In stress–strength model the 

distributions have uses in many spaces. For example, if Y denotes the maximum section elongation 

and X signifies the tensile strength of a piece of some material, then p processes the quality of the 

material. Another example, if Y refers the radius of the base of a small cup and X represents the radius 

of the circular depression in the center of a saucer then P represents the probability of holding the 

cup. Also, a consumer research organization may want to compare sales percentages of two products 

with a different advertisement policy each.   

Topp and Leone [10] presented the TL distribution and display its properties and also showed 

its applications for some failure data. Nadarajah and Kotz [11] derive some properties of the TL 

distribution and   provided an expression for its characteristic function. Kotz and Van Dorp [12] 

given a generalized TL distribution to model some economic facts and they also clear a reflected 

general TL distribution and studied its properties. Ghitany et al. [13] considered   the related of the 

reliability function of this distribution such as the hazard rate; mean residual life, reversed hazard 

rate, expected inactivity time and their stochastic orderings. 

The topic of the Topp-Leone (TL) distribution dealt with this research, and the probability 

density function (pdf)  is 𝑓(𝑋) = 2𝛼(1 − 𝑥)𝑥ఈିଵ(2 − 𝑥)ఈିଵ   (1)

where 0 < x < 1 and 0 < α < 1.  

The distribution function of the TL distribution is given by 

𝐹(𝑋) = ൝ 0 , 𝑥 ≤ 0 ,𝑥ఈ(2 − 𝑥)ఈ 0 < 𝑥 < 11 𝑥 ≥ 1  (2)

So if u follows uniform distribution, then  𝑋 = 1 − √1 − 𝑈ଵ/ఈ  has the TL (𝛼) distribution. 

Consequently, the hazard rate will be as below  
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ℎ(𝑥) = 𝑓(𝑥)1 − 𝐹(𝑥) = 2𝛼 (1 − 𝑥)ሾ1 − (1 − 𝑥)ଶሿఈିଵ1 − ሾ1 − (1 − 𝑥)ଶሿఈ  (3)

The rest of this paper is structured as follows. In Section II, the expression of R1= P(X > Y) and 

R2= P(Y<X< Z) will be derived. Maximum likelihood estimator MLE, the Moment estimator MOM 

and the Pre-test single stage shrinkage estimator SH of R is obtained in Section III. Monte Carlo 

Simulation and Numerical Outcomes are laid out in Section IV. Finally, conclusions are presented in 

Section V. 

II. Expression of R1= P(X > Y) and R2= P(Y<X< Z) 

• Derivation of R1 = P(X > Y) 

This Section concentrates on estimating the reliability of when X and Y have independent Topp-

Leone distributions. Let n be the number of observations distributed according to the Topp-Leone  

Now let X ∼ TL (α) be independent of Y ∼ TL (β). Then 𝑅ଵ  =  𝑃(𝑋 >  𝑌) = න 𝐹௒(𝑥)𝑓௫(𝑥)ଵ
଴ 𝑑𝑥    

 𝑅ଵ = 2𝛼 න 𝑥ఈାఉିଵ(1 − 𝑥)(2 − 𝑥)ఈାఉିଵଵ
଴ 𝑑𝑥    𝑅ଵ = 𝛼𝛼 + 𝛽    

(4)

Where 𝛼 and 𝛽 are unknown. 

• Derivation  of R2 = P(Y<X<Z) 

This Section concentrates on estimating the reliability of R2 = P(Y<X<Z) when Z, Y and X have 

independent Topp-Leone distributions such that X, Y and Z are independent and they are distributed 

Topp-Leone with scale parameters𝛼, 𝛽, 𝛾 respectively  such that the p.d.f of the strength X is  𝑓௫(𝑥, 𝛼) = 2𝛼(1 − 𝑥)𝑥ఈିଵ(2 − 𝑥)ఈିଵ      𝑥 > 0  , 𝛼 > 0 .  
Consequently, the p.d.f of the stresses Y, Z are given respectively by 𝑓௬(𝑦, 𝛼) = 2𝛽(1 − 𝑦)𝑦ఉିଵ(2 − 𝑦)ఉିଵ      𝑦 > 0  , 𝛽 > 0 .  

𝑓௓(𝑧, 𝛾) = 2𝛾(1 − 𝑧)𝑧ఊିଵ(2 − 𝑧)ఊିଵ      𝑧 > 0  , 𝛾 > 0 .  
The reliability system of this model P(Y<X<Z)   given by     𝑅ଶ  =  𝑃(𝑌 < 𝑋 <  𝑍) = න 𝑃(𝑌 < 𝑋, 𝑋 <  𝑍)ଵ

଴ 𝑓(𝑥)𝑑𝑥 

          = ׬ 𝐹௒(𝑥)𝐹ത௭(𝑥)ଵ଴ 𝑓(𝑥)𝑑𝑥 

                 

                           = ׬ 𝐹௒(𝑥)𝑓(𝑥) − ׬ 𝐹௒(𝑥)𝐹௭(𝑥)ଵ଴ଵ଴ 𝑓(𝑥)𝑑𝑥 
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= 𝛼𝛼 + 𝛽 − න 𝑥ఉ(2 − 𝑥)ఉ𝑥ఊ(2 − 𝑥)ఊ2𝛼(1 − 𝑥)𝑥ఈିଵ(2 − 𝑥)ఈିଵଵ
଴ 𝑑𝑥 = 𝛼𝛼 + 𝛽 − න 2𝛼𝑥(ఈାఉାఊ)(2 − 𝑥)(ఈାఉାఊ)ିଵ(1 − 𝑥)𝑥ఈିଵଵ
଴ 𝑑𝑥 = 𝛼𝛼 + 𝛽 − 𝛼𝛼 + 𝛽 + 𝛾 𝑅ଶ = 𝛼𝛾(𝛼 + 𝛽)(𝛼 + 𝛽 + 𝛾)     (5)

Where  , 𝛽 and 𝛾 are unknown. 

III. Estimation of R1 = P(X > Y)  and R2 = P(Y<X<Z) 

Maximum Likelihood Estimation of  𝑹𝟏 , 𝑹𝟐  

The Maximum likelihood estimator MLE technique is an important and commonly estimator, 

since its has a good property for estimate which is known as invariant property [14] . 

This Section deals with MLE of reliability 𝑅ଵ=P(X>Y) and  𝑅ଶ =P(Y < X < Z) when X, Y and Z 

are independent Topp-Leone distribution with scale parameters (𝛼, 𝛽, 𝛾 )  respectively. 

Let x1, x2, … . . xn be a random strength sample of size n with p.d.f. as in  (eq.3) then let y1 

,y2, … ym. . and z1, z2, … . . zw be the random samples with p.d.f . as in  (eq.3)   .The 

Maximum Likelihood function of the observed sample is: 

L (𝛼, 𝛽, 𝛾, 𝑥, 𝑦, 𝑧) = ෑ 𝑓(𝑥௜)௡
௜ୀଵ ෑ 𝑓൫𝑦௝൯ ෑ 𝑓(𝑧௞)௪

௞ୀଵ
௠

௝ୀଵ  

 = ∏ 2𝛼(1 − 𝑥௜)𝑥௜ఈିଵ(2 − 𝑥௜)ఈିଵ௡௜ୀଵ ∏ 2𝛽൫1 − 𝑦௝൯𝑦௝ఉିଵ൫2 − 𝑦௝൯ఉିଵ ∏ 2𝛾(1 −௪௞ୀଵ௠௝ୀଵ𝑧௞)𝑧௞ఊିଵ(2 − 𝑧௞)ఊିଵ                              
(6) 

Taking the logarithm for the above likelihood function eq (6) and the partial derivative for the 

log-likelihood function with respect to unknown parameters α β andγ, respectively and equating the 

partial derivative to zero to solve this equation: ∂Ln L(x୧)∂α = 𝑛α + ෍ logሾx୧(2 − x୧)ሿ = 0௡
௜ୀଵ  

∂Ln L൫y୨൯∂𝛽 = 𝑚𝛽 + ෍ logൣy୨൫2 − y୨൯൧ = 0௠
௝ୀଵ  

∂Ln L(z୩)∂γ = 𝑤γ + ෍ logሾz୆(2 − z୆)ሿ = 0௪
஻ୀଵ  

The results of the above equations give MLEs of the parameters: αෝ௠௟ = −n∑ logሾx୧(2 − x୧)ሿ௡௜ୀଵ  (7)

𝛽መ௠௟ = −m∑ logൣy୨൫2 − y୨൯൧௠௝ୀଵ    (8)
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𝛾ො௠௟ = −w∑ logሾz୆(2 − z୆)ሿ௪஻ୀଵ  (9)

We obtain the MLE of R1 and R2 as 𝑅(ெ௅)ଵ = αෝ௠௟αෝ௠௟ + 𝛽መ௠௟       , 𝑅(ெ௅)ଶ = αෝ௠௟𝛾ො௠௟(αෝ௠௟ + 𝛽መ௠௟)(αෝ௠௟ + 𝛽መ௠௟ + 𝛾ො௠௟) (10)

Moment Estimation Method of R1 and R2  

This section concern with the moment estimator method MOM of R1 and R2.The moment 

estimators of the unknown parameters 𝛼, 𝛽  and 𝛾   will be obtained by equating the population 

moments with the corresponding sample moments. The population means of random variables X,Y 

and Z are as below 

  𝜇௫ᇱ = 𝐸(𝑥) = 1 − √𝜋2 ቌ Γ(𝛼 + 1)Γ ቀ𝛼 + 32ቁቍ (11)

 𝜇௬ᇱ = 𝐸(𝑦) = 1 − √𝜋2 ቌ Γ(𝛽 + 1)Γ ቀ𝛽 + 32ቁቍ (12)

𝜇௭ᇱ = 𝐸(𝑧) = 1 − √𝜋2 ቌΓ(𝛾 + 1)Γ(𝛾 + 32)ቍ (13)

Suppose that X= ( x1 , x2 , …xn ) be a random sample of size n and Y=(y1 , y2 …ym) be a random 

sample of size m and Z=(z1 , z2 …zw) be a random sample of size w follows  Topp-Leone distribution 

with unknown scales parameter 𝛼, 𝛽  and 𝛾   .  

Then the means of the first and sample moments are given by 

𝜇௫ = 𝑥̅ = 1𝑛 ෍(𝑥௜)௡
௜ୀଵ    𝜇௬ = 𝑦ത = 1𝑚 ෍(𝑦௜)௠

௝ୀଵ   𝜇௭ =  𝑧̅ = 1𝑤  ෍(𝑧௜)௪
஻ୀଵ  

By equating the samples moments with the corresponding population moments, then  𝜇௫ᇱ =𝜇௫ , 𝜇௬ᇱ = 𝜇௬  , 𝜇௭ᇱ = 𝜇௭ 

𝑥̅ = 1 − √𝜋2 ቌ Γ(𝛼 + 1)Γ ቀ𝛼 + 32ቁቍ , 𝑦ത = 1 − √𝜋2 ቌ Γ(𝛽 + 1)Γ ቀ𝛽 + 32ቁቍ , 𝑧̅ = 1 − √𝜋2 ቌΓ(𝛾 + 1)Γ(𝛾 + 32)ቍ (14)

The moment estimator of 𝛼, 𝛽  and 𝛾   denoted by 𝛼ො௠௢ , 𝛽መ௠௢ and 𝛾ො௠௢ can be obtained from 

(14), respectively as, 

𝛼ො௠௢ = ቌΓ ቀ𝛼° + 32ቁΓ(𝛼°) ቍ . 2√𝜋 (1 − 𝑥̅)       (15)

𝛽መ௠௢ = ቌΓ ቀ𝛽° + 32ቁΓ(𝛽°) ቍ . 2√𝜋 (1 − 𝑦ത)      (16)

𝛾ො௠௢ = ቌΓ ቀ𝛾° + 32ቁΓ(𝛾°) ቍ . 2√𝜋 (1 − 𝑧̅)     (17)

Consequently ,we obtain the Moment estimators  of R1 and R2 as 
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𝑅(ெை)ଵ = αෝ௠௢αෝ௠௢ + 𝛽መ௠௢       ,    𝑅(ெை)ଶ = αෝ௠௢𝛾ො௠௢(αෝ௠௢ + 𝛽መ௠௢)(αෝ௠௢ + 𝛽መ௠௢ + 𝛾ො௠௢) (18)

Pre-test single stage shrinkage estimator (SH) of R1 and R2   
Some time may we have a prior information value (point guess) of the parameter to be estimated. 

If this value is in the neighborhood of the accurate value, the shrinkage procedure is valuable to 

obtain an improved estimator. Thompson in [15], Isaam, K, Taha, A. and Abbas,N.[16] and others 

suggested shrunken estimators for different distributions when a prior estimate or guess point is 

available. They indicated that these estimators perform better in the term of mean squared error when 

a guess value θ0 close to the true value θ. Pre- test estimator  is considered for estimating the 

parameter θ when a guess point (prior estimate) θ0 is available about θ due the past knowledge or 

similar cases. From the empirical studies it has been established that the shrinkage estimators 

performs better than the usual estimator when the guess point is very close to the true value of the 

parameter. Therefore to make sure whether θ is closed to θ0 or not, we may test H0:θ = θ0 against H1: 

θ ≠ θ0, so we denote by R to the critical region for above test.    

Thompson in 1968 recommended shrinking the usual estimator θ෠ of θ towards the prior guess 

point θ0 and suggested the estimator  θ෨ = 𝐾𝜃෠ + (1 − 𝐾൫𝜃෠൯)𝜃° , where  (1 − 𝐾)  represents the 

experimenters belief in the guess point θ0. He found the estimator 𝜃෨ which is more efficient than 

usual estimator  θ෠  if the true value θ is close to θ0 (H0 accepted) but may be less efficient otherwise, 

therefore to resolve the uncertainty that a guess point value is approximately the true value or not, a 

pre- test of significance may be employed. So he take the usual estimator θ̂  when θ is far away from 

θ0 (H0 rejected) after he made the pre- test.       

Thus, the pre-test shrunken estimator  has the following form ; A.N.Salman [17] 

θ෨ = ቊ𝐾𝜃෠ + (1 − 𝐾)θ°                               𝑖𝑓𝜃෠ ∈ 𝑅 𝜃෠                                                          𝑖𝑓 𝜃෠ ∉ 𝑅  (19)

Where R may be pre- test region for acceptance the null hypothesis H0 as we mentioned above, θ෠ is 

the usual ML estimator of θ and K is a constant shrinkage weight factor such that 

 0 ≤ K≤ 1 . 
In this research we may assume the region as follow:  R = ሼ(𝜃° −  𝜃)ଶ ≤ 𝑀𝑆𝐸ሽ (20)R = ൫𝜃° − √𝑀𝑆𝐸   ,   θ° + √𝑀𝑆𝐸  ൯ (21)

In this research, we suppose  

Case 1   Suppose that   K୬ = ฬ𝑆𝑖𝑛𝑛𝑛 ฬଶ   K୫ = ฬ𝑆𝑖𝑛𝑚𝑚 ฬଶ K୵ = ฬ𝑆𝑖𝑛𝑤𝑤 ฬଶ  , 0 ≤ K୬, K୫, K୵ ≤ 1  and 𝜃 = 𝜃° . 
Where,  𝜃may be referred to 𝛼 , 𝛽 𝑎𝑛𝑑𝛾 . 

Thus, the shrinkage estimator of the scale parameters 𝛼, 𝛽  and 𝛾 of the random variables X,Y, 

Z that follows Topp-Leone distribution will be as follows:  𝛼෤௦௛ଵ = ൜K୬𝛼ො + (1 − K୬)𝛼°                               𝑖𝑓𝛼ො ∈ 𝑅 𝛼ො                                                          𝑖𝑓 𝛼ො ∉ 𝑅  (22)

𝛽෨௦௛ଵ = ቊK୫𝛽መ + (1 − K୫)𝛽°                               𝑖𝑓𝛽መ ∈ 𝑅 𝛽መ                                                          𝑖𝑓 𝛽መ ∉ 𝑅    (23)

𝛾෤௦௛ଵ = ൜K୵𝛾ො + (1 − K୵)𝛾°                               𝑖𝑓𝛾ො ∈ 𝑅 𝛾ො                                                          𝑖𝑓 𝛾ො ∉ 𝑅  (24)

Case 2      Suppose that  
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𝐀𝐧 = ට𝐞ି𝐧𝟏𝟎     , 𝐀𝐦 = ට𝐞ି𝐦𝟏𝟎    , 𝐀𝐰 = ට𝐞ି𝐰𝟏𝟎  , 0 ≤ A୬, A୫, A୵ ≤ 1  and 𝜃 = 𝜃° . 
Where , 𝜃 may be referred to 𝛼 , 𝛽 𝑎𝑛𝑑𝛾 . 𝛼෤௦௛ଶ = ൜A୬𝛼ො + (1 − A୬)𝛼°                               𝑖𝑓𝛼ො ∈ 𝑅 𝛼ො                                                          𝑖𝑓 𝛼ො ∉ 𝑅  (25)

𝛽෨௦௛ଶ = ቊA୫𝛽መ + (1 − A୫)𝛽°                               𝑖𝑓𝛽መ ∈ 𝑅 𝛽መ                                                          𝑖𝑓 𝛽መ ∉ 𝑅  (26)

𝛾෤௦௛ଶ = ൜A୵𝛾ො + (1 − A୵)𝛾°                               𝑖𝑓𝛾ො ∈ 𝑅 𝛾ො                                                          𝑖𝑓 𝛾ො ∉ 𝑅  (27)

we obtain the Mom of R1 and R2 as 𝑅(ௌு)ଵ = αෝௌுଵαෝௌுଵ + 𝛽መௌுଵ       , 𝑅(ௌு)ଶ = αෝௌுଵ𝛾ොௌுଵ(αෝௌுଵ + 𝛽መௌுଵ)(αෝௌுଵ + 𝛽መௌுଵ + 𝛾ොௌுଵ)                                (28)

Consequently , we obtain  𝑅(ௌுଶ)ଵ = αෝௌுଶαෝௌுଶ + 𝛽መௌுଶ       , 𝑅(ௌுଶଶ = αෝௌுଶ𝛾ොௌுଶ(αෝௌுଶ + 𝛽መௌுଶ)(αෝௌுଶ + 𝛽መௌுଶ + 𝛾ොௌுଶ) (29)

IV. Monte Carlo Simulation and Numerical Outcomes 

An extensive numerical investigation will be conducted in this section to compare the 

performance of the various estimators for unlike sample sizes and parameter values for the Topp-

Leone distribution. The properties investigated result in mean square errors (MSEs). Matlab 2018 

statistical software was used for all computations. A simulation results are conducted to examine and 

compare the performance of the estimates for shape respecting to the MSE. The best estimator has 

the smallest value of MSE. 

The steps for estimating the parameters, R1 = P(X > Y) and R2 = P(Y< X < Z) can be  

summarized as follows: 

Generate 10000 random samples from Topp-Leone distribution with the  sample sizes;(n ,m)= 

(25,50,75,100) and the parameter values are selected as 𝛼 = (1.2,1.5,3) and   𝛽 =( 3 ,1.5,1.2) for R1 

.Also    (n, m ,w )= (25,25,25),(50,50,50),(75,75,75), (100,100,100), (50,25,25), (75,25,25),    

     (100,25,25), (25,50,25), (50,75,50), (75,100,75), (25,100,25), (25,25,50), (50,50,75), 

     (75,75,100) and parameter values are selected as      𝛼 = (1.5,1.5,1.5),  𝛽 =( 2.5 ,1.5,3.5) 

and 𝛾 =( 3.5 ,1.5,2.5)  for R2. 
One can conclude from the simulation results which is used to determine the best consequence 

of the proposed estimation methods (ML, MO, SH1, SH2) using different samples for the system 

reliability R1=p(Y<X) and R2 = P(Y< X < Z) grounded the Topp-Leone distribution (T-L). The 

simulation results of the proposed estimation methods are demonstrated in annexed tables and 

distinguish that Pre-test single stage shrinkage estimator (SH1) of system reliability R1 , R2 satisfied 

the smallest mean squared error in overall; this infers that   𝑅෠ௌுଵ was the best than the others for 

two considered models. 

V. Conclusion 

From above results, it observed that in general the best performance of  the consider estimators 

(ML, MO, SH1, SH2,) under the different sample sizes and for the different Parameters of this study 

is the pre-test single stage shrinkage estimator (SH1) of  system reliability  R1 , R2 for two considered 

models .This important method has proven its efficiency in estimation as prior estimate approach to 

real value which depends on classical estimation method and prior information (initial estimate) as 

a linear combination  and make pretest region to know how close the initial value from the actual 

value .  
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Appendix A 

Table A1. Shown estimates of R1, when R1= 0.28571,   𝛼 = 1.2, 𝛽 = 3. 

n m 𝑅෠ML 𝑅෠MO 𝑅෠SH1 𝑅෠SH2 

25 

25 0.22795 0.76549 0.26949 0.65166 

50 0.29000 0.69709 0.28616 0.59951 

75 0.25700 0.83259 0.27238 0.71323 

100 0.30891 0.70636 0.29865 0.60523 

50 

25 0.22768 0.72594 0.26577 0.60214 

50 0.25496 0.79200 0.28253 0.66948 

75 0.31010 0.66498 0.28581 0.59447 

100 0.38670 0.58104 0.29034 0.5384 

 

 

75 

25 0.38350 0.58687 0.30097 0.54219 

50 0.36616 0.64820 0.29003 0.58296 

75 0.27682 0.72916 0.28453 0.62165 

100 0.32255 0.65676 0.28536 0.57684 

 

100 

25 0.31769 0.69842 0.28650 0.60441 

50 0.30583 0.72137 0.28373 0.61462 

75 0.34595 0.62115 0.28556 0.55979 

100 0.24077 0.78389 0.28439 0.66114 

Table A2. MSE of R1, when R1= 0.28571,   𝛼 = 1.2, 𝛽 = 3. 

n m ML MO SH1 SH2 Best 

25 

25 3.3362e-07 2.3018e-05 2.6327e-08 1.3392e-05 SH 
50 1.8372e-09 1.6923e-05 1.9773e-11 9.8467e-06 SH 
75 8.2468e-08 2.9907e-05 1.7781e-08 1.8277e-05 SH 
100 5.3794e-08 1.7695e-05 1.6745e-08 1.0209e-05 SH 

50 

25 3.3683e-07 1.938e-05 3.9771e-08 1.0012e-05 SH 
50 9.4604e-08 2.5633e-05 1.0121e-09 1.4727e-05 SH 
75 5.9453e-08 1.4384e-05 9.8482e-13 9.5327e-06 SH 
100 1.0197e-06 8.7219e-06 2.1393e-09 6.3848e-06 SH 

75 

25 9.5616e-07 9.5616e-07 2.3269e-08 6.5779e-06 SH 
50 6.4721e-07 1.314e-05 1.8666e-09 8.8355e-06 SH 
75 7.9146e-09 1.9664e-05 1.3949e-10 1.1286e-05 SH 
100 1.3571e-07 1.3767e-05 1.2546e-11 8.4754e-06 SH 

100 

25 1.0226e-07 1.7032e-05 6.1133e-11 1.0157e-05 SH 
50 4.0479e-08 1.898e-05 3.926e-10 1.0818e-05 SH 
75 3.6288e-07 1.1252e-05 2.3293e-12 7.5116e-06 SH 
100 2.0201e-07 2.4818e-05 1.7668e-10 1.4095e-05 SH 

Table A3. Shown estimation  when R1= 0.5,   beta1 = 1.5,   beta2= 1.5. 

n m ML MO SH1 SH2 

 

 

25 

25 0.52585 0.44398 0.50746 0.47914 

50 0.52351 0.34866 0.50910 0.40764 

75 0.53547 0.52974 0.50933 0.52313 

100 0.52507 0.54220 0.50871 0.53144 

 

 

50 

25 0.47686 0.56972 0.56972 0.53694 

50 0.51562 0.53771 0.50141 0.52235 

75 0.50862 0.52169 0.50146 0.5146 

100 0.53958 0.40917 0.50059 0.44168 

 

 

25 0.51675 0.46870 0.50091 0.47168 

50 0.52847 0.53250 0.50018 0.52059 
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75 75 0.53742 0.42200 0.50086 0.45271 

100 0.55972 0.43488 0.50177 0.46178 

 

 

100 

25 0.47113 0.61394 0.49444 0.55794 

50 0.49079 0.53128 0.50097 0.52011 

75 0.52326 0.53541 0.50074 0.53282 

100 0.53481 0.43170 0.50023 0.45482 

Table A4. MSEs of R1 when  𝛼 = 1.5, 𝛽 = 1.5. 

n m ML LS SH1 SH2 Best 

 
 

25 

25 6.6847e-08 3.138e-07 5.561e-09 4.3506e-08 SH1 
50 5.5253e-08 2.2904e-06 8.2734e-09 8.5312e-07 SH1 
75 1.2578e-07 8.8426e-08 8.6961e-09 5.3482e-08 SH1 

100 6.2857e-08 1.7812e-07 7.5812e-09 9.8874e-08 SH1 

 
50 

25 5.3536e-08 4.8611e-07 4.537e-10 1.3645e-07 SH1 
50 2.4407e-08 1.4221e-07 1.9898e-10 4.9937e-08 SH1 
75 7.4261e-09 4.7039e-08 2.1352e-10 2.1311e-08 SH1 

100 1.5667e-07 8.2494e-07 3.4689e-11 3.4007e-07 SH1 

 
75 

25 2.8048e-08 9.7946e-08 8.2667e-11 8.0202e-08 SH1 
50 8.1083e-08 1.0562e-07 3.4017e-12 4.2379e-08 SH1 
75 1.4002e-07 6.0841e-07 7.3392e-11 2.2367e-07 SH1 

100 3.5666e-07 4.2403e-07 3.1286e-10 1.4606e-07 SH1 

 
100 

25 8.332e-08 1.2983e-06 3.0867e-09 3.3573e-07 SH1 
50 8.4884e-09 9.7818e-08 9.4062e-11 4.0457e-08 SH1 
75 5.4121e-08 1.2542e-07 5.5441e-11 1.0773e-07 SH1 

100 1.2119e-07 4.6645e-07 5.3448e-12 2.0412e-07 SH1 
Shown estimation when R= 0.71429,   beta1 = 3,   beta2= 1.2 

n m ML MO SH1 SH2 

25 

25 0.61334 0.34578 0.69064 0.41593 
50 0.61151 0.43041 0.69210 0.46764 
75 0.72315 0.23630 0.72105 0.35348 
100 0.79167 0.21785 0.73058 0.34541 

50 

25 0.64462 0.22901 0.69405 0.33525 
50 0.73712 0.25847 0.71695 0.37117 
75 0.67832 0.28617 0.71318 0.38605 
100 0.66978 0.27653 0.71211 0.37392 

75 

25 0.67920 0.24415 0.71638 0.34904 
50 0.74174   0.26702 0.71454 0.38343 
75 0.74139 0.24329 0.71603 0.36362 
100 0.72348 0.27315 0.71518 0.38607 

100 

25 0.76171 0.42327 0.71933 0.48892 
50 0.68467 0.30166 0.71191 0.39779 
75 0.73210 0.24035 0.71535 0.35858 
100 0.68185 0.31757 0.71511 0.40896 

mse 
n m ML MO SH1 SH2 Best 

25 

25 1.0191e-06 1.358e-05 5.5891e-08 8.9014e-06 SH1 

50 1.0562e-06 8.0585e-06 4.9205e-08 6.0834e-06 SH1 

75 7.8616e-09 2.2847e-05 4.5744e-09 1.3018e-05 SH1 

100 5.9891e-07 2.4645e-05 2.6549e-08 1.3607e-05 SH1 

50 

25 4.853e-07 2.3549e-05 4.095e-08 1.4367e-05 SH1 

50 5.2132e-08 2.0777e-05 7.0912e-10 1.1773e-05 SH1 

75 1.2934e-07 1.8328e-05 1.2289e-10 1.0774e-05 SH1 

100 1.9804e-07 1.9163e-05 4.7435e-10 1.1585e-05 SH1 

75 
25 1.2307e-07 2.2103e-05 4.3956e-10 1.334e-05 SH1 

50 7.5363e-08 2.0004e-05 6.3547e-12 1.0946e-05 SH1 
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75 7.349e-08 2.2184e-05 3.0541e-10 1.2297e-05 SH1 

100 8.4551e-09 1.946e-05 8.0755e-11 1.0773e-05 SH1 

100 

25 2.6294e-07 1.6149e-05 1.995e-10 9.6001e-06 SH1 

50 8.7697e-08 1.7026e-05 5.6266e-10 1.0017e-05 SH1 

75 3.174e-08 2.2462e-05 1.1351e-10 1.2653e-05 SH1 

100 1.0524e-07 1.5738e-05 6.7611e-11 9.3224e-06 SH1 

R=  0.175 , 𝜁ଵ=1.5,  𝜁ଶ=2.5,  𝜁ଷ=3.5and q=10000  

      Method 
        

 n,m,w 
 
 

 
Mle 

 
Mom 

 
SH1 

 
SH2 

 
Best 

(25,25,25) 
 

𝑅෠ 
MSE 

0.21921 
 1.9542e-07  

0.12232 
2.7753e-07  

0.18717  
1.4807e-08  

0.15602 
3.6021e-08 SH1 

(50,50,50) 𝑅෠ 
MSE 

0.15329  
 4.7154e-08  

0.15246  
5.0796e-08    

0.17317  
3.3671e-10    

0.17118 
1.4578e-09 

 
SH1 

 
(75,75,75) 

𝑅෠ 
MSE 

0.16695 
6.486e-09    

0.15469  
4.1266e-08   

0.17473  
7.4067e-12    

0.18071 
3.2602e-09 

 
SH1 

 
(100,100,100) 

𝑅෠ 
MSE 

0.20633 
9.8161e-08 

0.10786 
4.5076e-07 

0.17513 
1.5626e-12 

0.13863 
1.3226e-07 

 
SH1 

(50,25,25) 
 

𝑅෠ 
MSE 

0.17236 
6.9677e-10 

0.10592 
4.7716e-07 

0.17598 
9.5917e-11 

0.13517 
1.5864e-07 SH1 

(75,25,25) 
 

𝑅෠ 
MSE 

0.19945  
5.9768e-08   

0.11034     
   4.1811e-07 

0.17960 
2.119e-09 

0.13528 
1.5773e-07 

 
SH1 

(100,25,25) 𝑅෠ 
MSE 

0.19819   
5.3782e-08   

0.10900 
4.3554e-07    

0.18023  
2.733e-09     

0.15131 
5.6115e-08 

 
SH1 

 
(25,50,25) 

𝑅෠ 
MSE 

0.17935  
1.8924e-09   

0.12105 
2.9108e-07 

0.17843    
1.1757e-09    

0.15127 
5.6325e-08 

 
SH1 

 
(50,75,50) 

𝑅෠ 
MSE 

0.18495   
9.9087e-09 

0.11786 
3.2649e-07    

0.17604 
 1.0817e-10   

0.15383 
   4.4799e-08  

 
SH1 

(75,100,75) 
 

𝑅෠ 
MSE 

0.17638   
1.9162e-10 

0.13235  
1.8189e-07 

0.1747  
8.7569e-12    

0.15697 
3.2494e-08 SH1 

(25,100,25) 
 

𝑅෠ 
MSE 

0.19069  
   2.4633e-08 

0.11492     
3.6099e-07 

0.17653   
  2.3519e-10   

0.1392 
1.2816e-07 

 
SH1 

(25,25,50) 𝑅෠ 
MSE 

0.23891  
4.0841e-07 

0.12393 
2.6079e-07    

0.1901 
   2.2813e-08  

0.15131 
    5.611e-08   

 
SH1 

(50,50,75) 𝑅෠ 
MSE 

0.16162  
  1.7909e-08 

0.1557  
  3.7239e-08   

0.17367    
1.7809e-10   

0.16523 
   9.5422e-09  

 
SH1 

 
(75,75,100) 

𝑅෠ 
MSE 

0.15119    
   5.6692e-08 

0.13748 
 1.408e-07    

0.17433 
4.4538e-11    

0.16805 
   4.8245e-09 

 
SH1 

R=  0.16667 , 𝜁ଵ=1.5,  𝜁ଶ=1.5,  𝜁ଷ=1.5and q=10000  
      Method 

        
 n,m,w 

 
 

 
Mle 

 
Mom 

 
SH1 

 
SH2 

 
Best 

(25,25,25) 
 

𝑅෠ 
MSE 

0.15676 
     9.82e-09 

0.18541  
3.5124e-08 

0.16392  
7.5502e-10 

0.17445 
6.0599e-09 SH1 

(50,50,50) 𝑅෠ 
MSE 

0.1404 
6.8985e-08 

0.21087  
1.9543e-07    

0.16415 
6.3217e-10    

0.18916 
5.0602e-08    

 
SH1 

 
(75,75,75) 

𝑅෠ 
MSE 

0.1454 
4.3016e-08 

0.17792  
1.2655e-08 

0.16618 
2.3994e-11    

0.17245 
3.3414e-09 

 
SH1 

 
(100,100,100) 

𝑅෠ 
MSE 

0.17169   
 2.522e-09    

0.16521  
  2.1217e-10   

0.1667   
1.3565e-13    

0.16773 
1.1396e-10 

 
SH1 

(50,25,25) 
 

𝑅෠ 
MSE 

0.12897 
1.4211e-07 

0.29976 
1.7713e-06 

0.15687 
9.5912e-09 

0.23538 
4.7217e-07 SH1 

(75,25,25) 
 

𝑅෠ 
MSE 

  0.1175  
   2.4171e-07  

0.20579 
1.5307e-07 

0.14959    
   2.9154e-08 

0.18288 
2.6288e-08    

 
SH1 

(100,25,25) 𝑅෠ 
MSE 

0.16667  
3.7084e-08 

0.14741  
   4.9826e-07   

0.23725  
4.7221e-09    

0.21319 
   2.1646e-07   

 
SH1 

 𝑅෠ 0.18239  0.12568 0.17596 0.14649  
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(25,50,25) MSE  2.4725e-08   1.6795e-07   8.6408e-09    4.072e-08     SH1 
 

(50,75,50) 
𝑅෠ 

MSE 
0.16269    

  1.5778e-09  
0.15295  

1.8804e-08    
0.1671   

1.907e-11     
0.15776 

7.9395e-09   
 

SH1 
(75,100,75) 

 
𝑅෠ 

MSE 
0.13608     

9.3539e-08 
0.20373  

1.374e-07 
0.1662   

2.1631e-11 
0.18712 

4.1833e-08 SH1 

(25,100,25) 
 

𝑅෠ 
MSE 

0.16371  
8.7604e-10 

0.2123 
   2.0823e-07   

0.1644 
5.1378e-10 

0.19272 
6.7874e-08    

 
SH1 

(25,25,50) 𝑅෠ 
MSE 

0.13021 
 1.3291e-07  

0.22961 
3.9616e-07    

0.15341 
 1.7581e-08    

0.2007 
1.1581e-07    

 
SH1 

(50,50,75) 𝑅෠ 
MSE 

0.1759  
   8.5328e-09 

0.13769    
8.3974e-08 

0.16607  
3.5792e-11    

0.14916 
   3.0655e-08   

 
SH1 

 
(75,75,100) 

𝑅෠ 
MSE 

0.15083  
2.5079e-08 

0.18493  
3.3366e-08    

0.1664   
   7.1447e-12   

0.17714 
1.0978e-08    

 
SH1 

R=  0.1 , 𝜁ଵ=1.5,  𝜁ଶ=3.5,  𝜁ଷ=2.5and q=10000  
      Method 

        
 n,m,w 

 
 

 
Mle 

 
Mom 

 
SH1 

 
SH2 

 
Best 

(25,25,25) 
 

𝑅෠ 
MSE 

0.1439    
   1.9272e-07 

0.18133  
6.6146e-07 

0.11091 
1.1897e-08 

0.17023 
   4.9322e-07 SH1 

(50,50,50) 𝑅෠ 
MSE 

0.13639  
1.3241e-07 

0.14832 
 2.3344e-07     

0.10279 
 7.8026e-10   

0.1621 
   3.8563e-07   

 
SH1 

 
(75,75,75) 

𝑅෠ 
MSE 

0.10428     
  1.8297e-09  

0.20421  
 1.0859e-06    

0.099843  
 2.4697e-12   

0.18633 
7.4528e-07 

 
SH1 

 
(100,100,100) 

𝑅෠ 
MSE 

0.10724    
5.2398e-09 

0.18486  
7.2017e-07     

0.099781   
   4.8049e-12 

0.18265 
6.8303e-07    

 
SH1 

(50,25,25) 
 

𝑅෠ 
MSE 

0.11243  
1.5447e-08 

0.18481  
7.1931e-07     

0.10198  
3.9077e-10   

0.17709 
5.9426e-07    SH1 

(75,25,25) 
 

𝑅෠ 
MSE 

0.11521  
2.3139e-08 

0.17945  
6.3123e-07 

0.10323    
   1.0435e-09 

0.17097 
   5.0368e-07 

 
SH1 

(100,25,25) 𝑅෠ 
MSE 

0.10514   
2.6379e-09 

0.16091 
3.7101e-07     

0.10201 
4.033e-10 

0.16608 
   4.3671e-07   

 
SH1 

 
(25,50,25) 

𝑅෠ 
MSE 

0.10903  
   8.1614e-09 

0.18471 
  7.1758e-07    

0.10377  
  1.42e-09   

0.19206 
   8.4754e-07   

 
SH1 

 
(50,75,50) 

𝑅෠ 
MSE 

0.1112  
  1.2543e-08  

0.21963 
1.4312e-06     

0.10171  
   2.9161e-10  

0.19207 
8.4765e-07    

 
SH1 

(75,100,75) 
 

𝑅෠ 
MSE 

0.10183 
3.3388e-10 

0.21353 
  1.289e-06 

0.099982 
3.1663e-14 

0.18867 
7.8616e-07 SH1 

(25,100,25) 
 

𝑅෠ 
MSE 

0.12711 
    7.3519e-08 

0.19176  
   8.4195e-07 

0.11079  
1.1645e-08 

0.17787 
    6.063e-07 

 
SH1 

(25,25,50) 𝑅෠ 
MSE 

0.12573 
6.6195e-08 

0.19876  
   9.7531e-07    

0.10639   
4.0889e-09 

0.18526 
   7.2684e-07   

 
SH1 

(50,50,75) 𝑅෠ 
MSE 

0.11281  
 1.6403e-08 

0.1895 
  8.0111e-07    

0.10081  
6.6176e-11  

0.18458 
   7.1541e-07   

 
SH1 

 
(75,75,100) 

𝑅෠ 
MSE 

0.13862  
  1.4917e-07 

0.15759   
    3.317e-07 

0.10038 
1.4333e-11   

0.16339 
   4.0187e-07   

 
SH1 

R=  0.11667 , 𝜁ଵ=3.5,  𝜁ଶ=2.5,  𝜁ଷ=1.5and q=10000  
      Method 

        
 n,m,w 

 
 

 
Mle 

 
Mom 

 
SH1 

 
SH2 

 
Best 

(25,25,25) 
 

𝑅෠ 
MSE 

0.11541   
   1.5718e-10 

0.25489  
1.9104e-06 

0.11629  
1.4074e-11 

0.21104 
   8.9072e-07 SH1 

(50,50,50) 𝑅෠ 
MSE 

0.13119   
  2.1082e-08 

0.22845  
1.2496e-06    

0.11754  
   7.7031e-11   

0.20084 
   7.0857e-07   

 
SH1 

 
(75,75,75) 

𝑅෠ 
MSE 

0.10116     
   2.4034e-08  

0.25097      
   1.8038e-06 

0.116 
   4.4505e-11   

0.21287 
    9.256e-07   

 
SH1 

 
(100,100,100) 

𝑅෠ 
MSE 

0.11467  
    3.9876e-10 

0.21453  
  9.5781e-07   

0.1164    
   7.0629e-12 

0.19455 
6.0656e-07   

 
SH1 

(50,25,25) 𝑅෠ 0.12773  0.22401  0.11957   0.19822 SH1 
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 MSE 1.2229e-08 1.1522e-06    8.4428e-10    6.6501e-07    
(75,25,25) 

 
𝑅෠ 

MSE 
0.14116    

    5.9999e-08 
0.18953  

5.3089e-07  
0.12366  

4.8937e-09 
0.18391 

4.522e-07 
 

SH1 

(100,25,25) 𝑅෠ 
MSE 

0.13117  
2.1028e-08  

0.20523   
7.8439e-07    

0.12032  
1.334e-09     

0.19259 
   5.7639e-07   

 
SH1 

 
(25,50,25) 

𝑅෠ 
MSE 

0.11238   
1.8361e-09 

0.18634   
4.855e-07     

0.11584   
6.8685e-11   

0.17234 
   3.0991e-07   

 
SH1 

 
(50,75,50) 

𝑅෠ 
MSE 

0.12615 
  8.9875e-09 

0.2232  
1.1349e-06   

0.11812   
  2.1166e-10   

0.19613 
   6.3138e-07   

 
SH1 

(75,100,75) 
 

𝑅෠ 
MSE 

  0.11136  
2.8167e-09 

0.23389  
 1.3742e-06   

0.11633 
1.1273e-11 

0.20431 
7.682e-07 SH1 

(25,100,25) 
 

𝑅෠ 
MSE 

0.13305   
    2.6836e-08 

0.20444   
7.7047e-07 

0.1194    
   7.4595e-10 

0.18279 
4.3717e-07 

 
SH1 

(25,25,50) 𝑅෠ 
MSE 

  0.13803   
  4.5657e-08 

0.15661  
  1.5957e-07   

0.11943    
7.6543e-10    

0.16303 
2.1493e-07   

 
SH1 

(50,50,75) 𝑅෠ 
MSE 

0.12893   
1.5035e-08 

0.22632 
1.2024e-06    

0.117  
 1.1364e-11    

0.19254 
   5.7566e-07   

 
SH1 

 
(75,75,100) 

𝑅෠ 
MSE 

0.13302 
   2.6751e-08 

0.19233 
   5.7249e-07   

0.11656  
1.0731e-12 

0.18769 
   5.0448e-07   

 
SH1 

R=    0.23333 , 𝜁ଵ=3.5,  𝜁ଶ=1.5,  𝜁ଷ=2.5and q=10000  
      Method 

        
 n,m,w 

 
 

 
Mle 

 
Mom 

 
SH1 

 
SH2 

 
Best 

(25,25,25) 
 

𝑅෠ 
MSE 

 0.21429        
3.6267e-08  

       0.13464  
9.7408e-07 

 0.22908        
1.8092e-09 

        0.15108  
6.7651e-07 SH1 

(50,50,50) 𝑅෠ 
MSE 

0.19785 
  1.2591e-07 

0.11743  
  1.3433e-06   

0.2306  
7.4572e-10    

0.13693 
   9.2927e-07   

 
SH1 

 
(75,75,75) 

𝑅෠ 
MSE 

0.21823   
    2.2806e-08 

0.10601  
1.6212e-06 

0.23325 
     6.592e-13  

0.13887 
   8.9235e-07 

 
SH1 

 
(100,100,100) 

𝑅෠ 
MSE 

0.21461  
   3.5065e-08 

0.12208   
 1.2378e-06    

0.23348 
2.1933e-12    

0.15091 
   6.7935e-07   

 
SH1 

(50,25,25) 
 

𝑅෠ 
MSE 

0.2452    
1.4077e-08 

0.11016      
1.5172e-06 

0.23601 
7.1686e-10    

0.14458 
7.8772e-07 SH1 

(75,25,25) 
 

𝑅෠ 
MSE 

0.17944 
    2.9049e-07 

0.14782    
7.3125e-07 

0.2162   
2.9371e-08 

0.1579 
5.6829e-07    

 
SH1 

(100,25,25) 𝑅෠ 
MSE 

0.26793  
  1.1967e-07 

0.10931 
1.5382e-06   

0.24479  
1.3124e-08    

0.14556 
    7.705e-07   

 
SH1 

 
(25,50,25) 

𝑅෠ 
MSE 

0.18239    
2.595e-07 

0.10106  
  1.7496e-06   

0.22039 
1.6755e-08    

0.13968 
8.7702e-07    

 
SH1 

 
(50,75,50) 

𝑅෠ 
MSE 

0.22786   
   2.9949e-09 

0.10771      
   1.5781e-06 

0.23371  
1.3946e-11    

0.13791 
    9.106e-07   

 
SH1 

(75,100,75) 
 

𝑅෠ 
MSE 

0.24163     
   6.878e-09  

0.10018      
1.7731e-06 

0.23389   
3.0849e-11 

0.13539 
9.5927e-07 SH1 

(25,100,25) 
 

𝑅෠ 
MSE 

0.188 
2.0554e-07  

0.13646      
9.3851e-07 

0.22451      
7.7868e-09 

0.15624 
5.943e-07 

 
SH1 

(25,25,50) 𝑅෠ 
MSE 

0.29333   
3.6e-07  

0.10743      
   1.5852e-06 

0.24206      
   7.6197e-09 

0.14321 
8.1225e-07    

 
SH1 

(50,50,75) 𝑅෠ 
MSE 

0.18978 
   1.8966e-07  

0.14026   
8.6626e-07  

0.23203  
  1.6882e-10   

0.1577 
5.7203e-07    

 
SH1 

 
(75,75,100) 

𝑅෠ 
MSE 

0.22703  
 3.9738e-09  

0.10696      
    1.597e-06 

0.23361      
7.6452e-12 

0.13775 
9.1362e-07    

 
SH1 
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