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Abstract: The Paper points at an important point, which is estimate the reliability of system used for stress-
strength model when the stress and strength follows Topp-Leone distribution. In this context, this work
including two models of stress —strength, the first one when the system has one component with strength
subject to one stress, while the another model concern with system has one component which has strength
subject for two bounded stresses .The expressions of system reliability of two considered models were derived
and estimate using different methods. Comparisons between the considered estimators were made depending
on simulation technique based on statistical criterion namely mean squared error.
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I. Introduction

One of the most popular techniques for data analysis is the stress-strength system, which is
employed in a wide range of disciplines like developed engineering, military presentations,
healthiness, and useful skills.

The reliability of system in stress-strength model is an assessment of a module's
dependability in terms of the random variable X, which stands in for the stress the module is exposed
to, and Y, which stands in for the component's capacity to withstand the potential stress.

In stress—strength model of system, the strength X exposed the stress Y. Both random variables
X and Y supposed to follows specific probability distribution with definite parameters. The reliability
in stress—strength model refers to the probability that strength overdoes stress, i.e. P(X > Y), roughly
p. This topic consumes numerous presentations in several ranges. For example, if Y denotes the
extreme heaviness produced by overflowing and X signifies the strength of the leg of a bridge on a
stream, then p is the probability that the bridge will be hard. Additional instance, if Y and X are
respectively symbolize the regulator and conduct groups, then P processes the treatment
consequence. Then the estimation of P will be significant in creation interpretations. The system
fails when the stress is too great for it to handle.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The stress-strength concept is particularly significant in the research on reliability. Most of the
concerns in the statistical approach to the stress-strength model are predicated on the premise that
the component strengths are randomly and uniformly distributed and are exposed to a single stress
[1].

A system experiences a stress Y and strength X when demonstrated in a conventional reliability
stress-strength analysis. Both random variables are considered to follows specific distribution with
known or unknown parameters. The probability of strength exceeding stress, or P(X>Y), indicates the
reliability of the system. This topic has many applications in many fields

The stress-strength models of the types P(Y<X), P(Y<X<Z), where X, Y and Z are independent
random variables refers to strength X and two stress Y and Z, and its follows specific distribution.
These two models have wide requests in several of engineering subareas, psychology, genetics,
medical trials and others. Kotz [2].

Isaam, K. , Taha, A. and AbbasN. They Estimated P(Y<X) using different estimation
methods[3] .Chandra and Owen [4] derived maximum likelihood estimators (MLEs) and
consequent uniform minimum variance unbiased estimators (UMVUEs) for R= P(Y<X< Z).

Singh [5] offered the minimum variance unbiased, maximum likelihood and empirical
estimators of R= P(Y<X<Z), where X, Y and Z are independent random variables and follows the
normal distribution. Dutta and Sriwastav [6] estimated R when X, Y and Z are exponentially
distributed. Ivshin [7] studied the MLE and UMVUE of R when X, Y and Z are either uniform or
exponential random variables with unknown location parameters. Wang et al. [8] make statistical
inference for P(X<Y<Z) via two methods, the nonparametric normal approximation and the jackknife
empirical likelihood.

The Topp-Leone (TL) distribution is therefore J-shaped through its support. Percentage data,
rates, particle sizes and specific chemical procedure yield data that can be displayed by this
distribution. The TL distribution has a finite support, and various data sets in reliability and life
testing are showed using finite support distributions. [9].

Particularly, when the reliability is measured as the proportion of the quantity of effective trials
to the amount of whole trials, the TL distribution can well be functional. In stress—strength model the
distributions have uses in many spaces. For example, if Y denotes the maximum section elongation
and X signifies the tensile strength of a piece of some material, then p processes the quality of the
material. Another example, if Y refers the radius of the base of a small cup and X represents the radius
of the circular depression in the center of a saucer then P represents the probability of holding the
cup. Also, a consumer research organization may want to compare sales percentages of two products
with a different advertisement policy each.

Topp and Leone [10] presented the TL distribution and display its properties and also showed
its applications for some failure data. Nadarajah and Kotz [11] derive some properties of the TL
distribution and  provided an expression for its characteristic function. Kotz and Van Dorp [12]
given a generalized TL distribution to model some economic facts and they also clear a reflected
general TL distribution and studied its properties. Ghitany et al. [13] considered  the related of the
reliability function of this distribution such as the hazard rate; mean residual life, reversed hazard
rate, expected inactivity time and their stochastic orderings.

The topic of the Topp-Leone (TL) distribution dealt with this research, and the probability
density function (pdf) is

f&X) =221 - 0)x* (2 - @™

where0<x<landO<a<1.
The distribution function of the TL distribution is given by

0, x<0,
FX)=4x*2—-x)* 0<x<1 (2)
1 x=>1

So if u follows uniform distribution, then X =1 —+v1 — U2 has the TL (a) distribution.
Consequently, the hazard rate will be as below
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The rest of this paper is structured as follows. In Section 1II, the expression of Ri= P(X >Y) and
Ro= P(Y<X< Z) will be derived. Maximum likelihood estimator MLE, the Moment estimator MOM
and the Pre-test single stage shrinkage estimator SH of R is obtained in Section III. Monte Carlo
Simulation and Numerical Outcomes are laid out in Section IV. Finally, conclusions are presented in
Section V.

I1. Expression of Ri=P(X >Y) and R:= P(Y<X< Z)

° Derivation of Ri=P(X >Y)

This Section concentrates on estimating the reliability of when X and Y have independent Topp-
Leone distributions. Let n be the number of observations distributed according to the Topp-Leone
Now let X ~ TL (a) be independent of Y ~ TL (). Then

&=Pw>n=fﬂmmmm
0

1
R, = Za.[ x®B-1(1 — x)(2 — x)**B 1 dx @)
0
poo
1_a+ﬁ

Where a and f are unknown.
e Derivation of R2 =P(Y<X<Z)

This Section concentrates on estimating the reliability of Rz = P(Y<X<Z) when Z, Y and X have
independent Topp-Leone distributions such that X, Y and Z are independent and they are distributed
Topp-Leone with scale parametersa, 8, y respectively such that the p.d.f of the strength Xis

filo,a) =2a(1 —x)x*12-x)*1 x>0,a>0.

Consequently, the p.d.f of the stresses Y, Z are given respectively by

@) =281 —y)yPt2-y)Ft y>0,8>0.

f2z,y) =2y(1—2)z""12-2)'1 z>0,y>0.
The reliability system of this model P(Y<X<Z) given by

R, = PY<X< Z) =f1P(Y<X,X< Z) f(x)dx
0

= [, Fr (O, (x) f(x)dx

= [} FrOf ) - fy FrE®) f(x)dx
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Where , B and y are unknown.

III. Estimation of Ri=P(X>Y) and R:=P(Y<X<Z)

Maximum Likelihood Estimation of R; , R,

The Maximum likelihood estimator MLE technique is an important and commonly estimator,
since its has a good property for estimate which is known as invariant property [14] .

This Section deals with MLE of reliability R;=P(X>Y) and R, =P(Y <X <Z) when X, Y and Z
are independent Topp-Leone distribution with scale parameters (@, 8,y ) respectively.

Let x1, x2, ... . . Xxn be a random strength sample of size n with p.d.f. asin (eq.3) then let y:
Y2, ... ym. . and zi, z3, ... . . zw be the random samples with p.d.f . as in (eq.3) .The

Maximum Likelihood function of the observed sample is:

L@prxyd =] [re] [ron] [rew
i=1 j=1 k=1
(6)

_ _ B-1 p-1
= [1it; 2a(1 - xi)xia 1(2 —x;)% ! H}n:1 2,3(1 - }’j)}’j (2 - }’j) [T¢=12v(1-

Zk)Zky_l(Z —z)V !

Taking the logarithm for the above likelihood function eq (6) and the partial derivative for the
log-likelihood function with respect to unknown parameters a  andy, respectively and equating the
partial derivative to zero to solve this equation:

aLn L(x;) =

n L(X; n

Tl =t El log[x;(2 —x)] =0
i=

JLn L(y]-) _m % _
a5 g 2wl =0

dLnL(z)

w
w
—+ Z loglzg(2 —z5)] =0
ay Y &

The results of the above equations give MLEs of the parameters:
N -n
Ay = 7
= T loglki(2 — )] @

—m

37 logly(2 — ;)] ®)

Bml =
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We obtain the MLE of Riand Rz as
a Q7
Ry = ™ yRuryz = L (10)

ml + .Bml (aml + Bml)(aml + .éml + ?ml)
Moment Estimation Method of Riand Rz
This section concern with the moment estimator method MOM of Ri: and R2The moment
estimators of the unknown parameters a,f and y will be obtained by equating the population
moments with the corresponding sample moments. The population means of random variables X,Y

and Z are as below

=BGy =1 - YF [ Het D (1)

2 F(a+§)

r 1
v =y =1 - YE[TED

2Ar(e+3)

=By =1- (LD 13)
Ly +2)

Suppose that X=(x1, X2, ...xn ) be a random sample of size n and Y=(y1, y2 ...ym) be a random

3

(12)

sample of size m and Z=(z1, z2 ...zw) be a random sample of size w follows Topp-Leone distribution
with unknown scales parameter a, § and y
Then the means of the first and sample moments are given by

1w 1% 1w
=X = ;Z(xi) ﬂyzj_/:EZ(yi) Uz = Z_=WZ(ZL')
i=1 Jj=1 B=1

By equating the samples moments with the corresponding population moments, then pu) =
#xﬁﬂy My :#z—."lz
_ Vi Te+1) | _ Ve (T@+1) ) Ve [T +1)
X=1—7—3 ,y=1—7—3 ,Z=1—7—3 (14:)
r(a+3) r(s+3) [r+3)
The moment estimator of @, and y denoted by &,,,, Pmo and P,,, can be obtained from
(14), respectively as,

3
. F(ao +7) 2 y
@mo =\ —ray '\/_E(l —x) (15)
3
“ F(ﬂo +§) 2 _
Bmo = TG '\/_E(l -¥) (16)
3
N r(r+3)\ 2 i}
Pmo = BTN '\/_E(l —7) (17)

Consequently ,we obtain the Moment estimators of Riand Rz as

do0i:10.20944/preprints202310.0481.v1
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R _ Omo R _ Qo Vmo
Mol == 5 Moy = 5 — 5 =
Xno + Pmo (@mo + Bmo) @mo + Bmo + Vmo)

Pre-test single stage shrinkage estimator (SH) of Riand R:

Some time may we have a prior information value (point guess) of the parameter to be estimated.
If this value is in the neighborhood of the accurate value, the shrinkage procedure is valuable to
obtain an improved estimator. Thompson in [15], Isaam, K, Taha, A. and Abbas,N.[16] and others
suggested shrunken estimators for different distributions when a prior estimate or guess point is
available. They indicated that these estimators perform better in the term of mean squared error when
a guess value 6o close to the true value 0. Pre- test estimator is considered for estimating the
parameter 8 when a guess point (prior estimate) 6o is available about 6 due the past knowledge or
similar cases. From the empirical studies it has been established that the shrinkage estimators
performs better than the usual estimator when the guess point is very close to the true value of the
parameter. Therefore to make sure whether 6 is closed to 6o or not, we may test Ho:0 = 60 against Hu:
0 # 6o, so we denote by R to the critical region for above test.

Thompson in 1968 recommended shrinking the usual estimator § of 8 towards the prior guess
point 60 and suggested the estimator 0=KO+(1-K (9))60 , where (1—K) represents the
experimenters belief in the guess point 8. He found the estimator § which is more efficient than
usual estimator 8§ if the true value 0 is close to 80 (Ho accepted) but may be less efficient otherwise,
therefore to resolve the uncertainty that a guess point value is approximately the true value or not, a

(18)

pre- test of significance may be employed. So he take the usual estimator © when6is far away from
0o (Ho rejected) after he made the pre- test.
Thus, the pre-test shrunken estimator has the following form ; A.N.Salman [17]
z_ (K& +(1-K)6: if6 € R
g KO+ ) ff A (19)
] if 6 &R
Where R may be pre- test region for acceptance the null hypothesis Ho as we mentioned above, 8 is
the usual ML estimator of 6 and K is a constant shrinkage weight factor such that
0<K<1.
In this research we may assume the region as follow:

R = {(6- — 6)2 < MSE} (20)
R =(6-—VMSE , 6.+ VMSE ) (21)
In this research, we suppose
Casel Suppose that
Sinn? Sinm|? Sinw|?
n= m= w=| ,0 <Ky KKy <1 and 6 = 6.

Where, Omay be referred to a, § andy .
Thus, the shrinkage estimator of the scale parameters a,8 and y of the random variables XY,
Z that follows Topp-Leone distribution will be as follows:

Gy = {Kga +(1-Kpa i ;’f&&: 15 )
5~ (KpB+ (A —Kp)p ifB €R
.Bshl_{ ‘BA ifBER (23)
L K, 7+ (1 =K,y ify €ER
Vsm—{ 9 if7 R (24)

Case 2 Suppose that_
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—h —In —w
A,=.e10 A, =.el0 A, =.ell0, 0<A,,AnLAy<1andf =6..
Where , 8 may be referred to a, § andy .

~ A8+ (1—A)a iféd € R
%m={§ ) v%eR (25)

~ A+ (1 —ALp ifBER
Bz = { mf m)f E 26)

B if B&R

~ Aw? + (1 - Aw)]/" lf? ER
=3 2 o 27
Ysh2 { 7 lf]/ e R ( )

we obtain the Mom of Riand R2 as
Usy1 Asp1 Vs
Rspyn =———75— Rismz =% Py — 5 ~ (28)
S Usp1 + Bsur ) (@sy1 + Psu1) @syr + Bsu1 + Vsu)
Consequently , we obtain
Aspz Qsy2Vsuz
Risuopn =———5— Reuzz =2 3 —~ 5 = (29)
H2) Uspz + Bsnz ¢ (@spz + Bsuz) @spz + Bsuz + Vsuz)

IV. Monte Carlo Simulation and Numerical Outcomes

An extensive numerical investigation will be conducted in this section to compare the
performance of the various estimators for unlike sample sizes and parameter values for the Topp-
Leone distribution. The properties investigated result in mean square errors (MSEs). Matlab 2018
statistical software was used for all computations. A simulation results are conducted to examine and
compare the performance of the estimates for shape respecting to the MSE. The best estimator has
the smallest value of MSE.

The steps for estimating the parameters, Ri1=P(X >Y) and R2=P(Y< X < Z) can be

summarized as follows:

Generate 10000 random samples from Topp-Leone distribution with the sample sizes;(n ,m)=
(25,50,75,100) and the parameter values are selected as a« = (1.2,1.5,3) and f =(3,1.5,1.2) for Ru
Also  (n, m ,w )= (25,25,25),(50,50,50),(75,75,75), (100,100,100), (50,25,25), (75,25,25),

(100,25,25), (25,50,25), (50,75,50), (75,100,75), (25,100,25), (25,25,50), (50,50,75),
(75,75,100) and parameter values are selected as a =(1515,15), B =(25,1535)
and y =(3.5,1.5,2.5) forRa.

One can conclude from the simulation results which is used to determine the best consequence
of the proposed estimation methods (ML, MO, SH1, SH2) using different samples for the system
reliability Ri=p(Y<X) and R: = P(Y< X < Z) grounded the Topp-Leone distribution (T-L). The
simulation results of the proposed estimation methods are demonstrated in annexed tables and
distinguish that Pre-test single stage shrinkage estimator (SH1) of system reliability Ri1, Rz satisfied
the smallest mean squared error in overall; this infers that  Rgy; was the best than the others for
two considered models.

V. Conclusion

From above results, it observed that in general the best performance of the consider estimators
(ML, MO, SH1, SH2,) under the different sample sizes and for the different Parameters of this study
is the pre-test single stage shrinkage estimator (SH1) of system reliability Ri, Ra for two considered
models .This important method has proven its efficiency in estimation as prior estimate approach to
real value which depends on classical estimation method and prior information (initial estimate) as
a linear combination and make pretest region to know how close the initial value from the actual
value .
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Appendix A
Table A1l. Shown estimates of Ri, when Ri=0.28571, a =1.2, 8 =3.
n m Rui Rvio Rsin Rsin
25 0.22795 0.76549 0.26949 0.65166
25 50 0.29000 0.69709 0.28616 0.59951
75 0.25700 0.83259 0.27238 0.71323
100 0.30891 0.70636 0.29865 0.60523
25 0.22768 0.72594 0.26577 0.60214
50 50 0.25496 0.79200 0.28253 0.66948
75 0.31010 0.66498 0.28581 0.59447
100 0.38670 0.58104 0.29034 0.5384
25 0.38350 0.58687 0.30097 0.54219
50 0.36616 0.64820 0.29003 0.58296
75 75 0.27682 0.72916 0.28453 0.62165
100 0.32255 0.65676 0.28536 0.57684
25 0.31769 0.69842 0.28650 0.60441
50 0.30583 0.72137 0.28373 0.61462
100 75 0.34595 0.62115 0.28556 0.55979
100 0.24077 0.78389 0.28439 0.66114
Table A2. MSE of Ri, when Ri=0.28571, a =12, § =3.
n m ML MO SH1 SH2 Best
25 3.3362e-07 2.3018e-05 2.6327e-08 1.3392¢-05 SH
75 50 1.8372e-09 1.6923e-05 1.9773e-11 9.8467e-06 SH
75 8.2468e-08 2.9907e-05 1.7781e-08 1.8277e-05 SH
100 5.3794e-08 1.7695e-05 1.6745e-08 1.0209¢-05 SH
25 3.3683e-07 1.938e-05 3.9771e-08 1.0012e-05 SH
50 50 9.4604¢-08 2.5633e-05 1.0121e-09 1.4727e-05 SH
75 5.9453e-08 1.4384e-05 9.8482¢-13 9.5327e-06 SH
100 1.0197e-06 8.7219¢-06 2.1393e-09 6.3848e-06 SH
25 9.5616e-07 9.5616e-07 2.3269¢-08 6.5779¢-06 SH
75 50 6.4721e-07 1.314e-05 1.8666¢-09 8.8355e-06 SH
75 7.9146e-09 1.9664¢e-05 1.3949¢-10 1.1286e-05 SH
100 1.3571e-07 1.3767e-05 1.2546¢-11 8.4754e-06 SH
25 1.0226e-07 1.7032e-05 6.1133e-11 1.0157e-05 SH
100 50 4.0479e-08 1.898e-05 3.926e-10 1.0818e-05 SH
75 3.6288e-07 1.1252e-05 2.3293e-12 7.5116e-06 SH
100 2.0201e-07 2.4818e-05 1.7668e-10 1.4095e-05 SH
Table A3. Shown estimation when R1=0.5, betal =15, beta2=1.5.
n m ML MO SH1 SH2
25 0.52585 0.44398 0.50746 0.47914
50 0.52351 0.34866 0.50910 0.40764
25 75 0.53547 0.52974 0.50933 0.52313
100 0.52507 0.54220 0.50871 0.53144
25 0.47686 0.56972 0.56972 0.53694
50 0.51562 0.53771 0.50141 0.52235
50 75 0.50862 0.52169 0.50146 0.5146
100 0.53958 0.40917 0.50059 0.44168
25 0.51675 0.46870 0.50091 0.47168
50 0.52847 0.53250 0.50018 0.52059
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75 75 0.53742 0.42200 0.50086 0.45271
100 0.55972 0.43488 0.50177 0.46178
25 0.47113 0.61394 0.49444 0.55794
50 0.49079 0.53128 0.50097 0.52011
100 75 0.52326 0.53541 0.50074 0.53282
100 0.53481 0.43170 0.50023 0.45482

Table A4. MSEs of Riwhen a =15, B =1.5.

n m ML LS SH1 SH2 Best
25 6.6847¢e-08 3.138e-07 5.561e-09 4.3506¢-08 SH1
50 5.5253e-08 2.2904¢-06 8.2734e-09 8.5312e-07 SH1
25 75 1.2578e-07 8.8426e-08 8.6961e-09 5.3482e-08 SH1
100 6.2857e-08 1.7812e-07 7.5812e-09 9.8874e-08 SH1
25 5.3536e-08 4.8611e-07 4.537¢-10 1.3645e-07 SH1
50 2.4407¢-08 1.4221e-07 1.9898e-10 4.9937¢-08 SH1
50 75 7.4261e-09 4.7039¢-08 2.1352e-10 2.1311e-08 SH1
100 1.5667¢e-07 8.2494¢-07 3.4689¢-11 3.4007e-07 SH1
25 2.8048¢-08 9.7946¢-08 8.2667e-11 8.0202e-08 SH1
50 8.1083e-08 1.0562¢e-07 3.4017e-12 4.2379¢-08 SH1
75 75 1.4002e-07 6.0841e-07 7.3392e-11 2.2367¢-07 SH1
100 3.5666¢e-07 4.2403e-07 3.1286e-10 1.4606e-07 SH1
25 8.332e-08 1.2983e-06 3.0867e-09 3.3573e-07 SH1
50 8.4884e-09 9.7818e-08 9.4062¢-11 4.0457¢-08 SH1
100 75 5.4121e-08 1.2542e-07 5.5441e-11 1.0773e-07 SH1
100 1.2119¢-07 4.6645¢-07 5.3448e-12 2.0412¢-07 SH1
Shown estimation when R=0.71429, betal =3, beta2=1.2
n m ML MO SH1 SH2
25 0.61334 0.34578 0.69064 0.41593
25 50 0.61151 0.43041 0.69210 0.46764
75 0.72315 0.23630 0.72105 0.35348
100 0.79167 0.21785 0.73058 0.34541
25 0.64462 0.22901 0.69405 0.33525
50 50 0.73712 0.25847 0.71695 0.37117
75 0.67832 0.28617 0.71318 0.38605
100 0.66978 0.27653 0.71211 0.37392
25 0.67920 0.24415 0.71638 0.34904
75 50 0.74174 0.26702 0.71454 0.38343
75 0.74139 0.24329 0.71603 0.36362
100 0.72348 0.27315 0.71518 0.38607
25 0.76171 0.42327 0.71933 0.48892
100 50 0.68467 0.30166 0.71191 0.39779
75 0.73210 0.24035 0.71535 0.35858
100 0.68185 0.31757 0.71511 0.40896
mse
n m ML MO SH1 SH2 Best
25 1.0191e-06 1.358¢-05 5.5891e-08 8.9014e-06 SH1
25 50 1.0562e-06 8.0585e-06 4.9205e-08 6.0834e-06 SH1
75 7.8616€-09 2.2847e-05 4.5744-09 1.3018e-05 SH1
100 5.9891e-07 2.4645e-05 2.6549e-08 1.3607e-05 SH1
25 4.853e-07 2.3549-05 4.095e-08 1.4367¢-05 SH1
50 50 5.2132e-08 2.0777e-05 7.0912e-10 1.1773e-05 SH1
75 1.2934e-07 1.8328e-05 1.2289¢-10 1.0774e-05 SH1
100 1.9804e-07 1.9163e-05 4.7435e-10 1.1585e-05 SH1
s 25 1.2307e-07 2.2103e-05 4.3956e-10 1.334e-05 SH1

50 7.5363e-08 2.0004e-05 6.3547e-12 1.0946e-05 SH1
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75 7.349e-08 2.2184e-05 3.0541e-10 1.2297e-05 SH1
100 8.4551e-09 1.946e-05 8.0755e-11 1.0773e-05 SH1
25 2.6294e-07 1.6149e-05 1.995e-10 9.6001e-06 SH1
100 50 8.7697e-08 1.7026e-05 5.6266e-10 1.0017e-05 SH1
75 3.174e-08 2.2462e-05 1.1351e-10 1.2653e-05 SH1
100 1.0524e-07 1.5738e-05 6.7611e-11 9.3224e-06 SH1
R=0.175,{;=1.5, {,=2.5, {5=3.5and qg=10000
Method
n,m,w Mle Mom SH1 SH2 Best
(25,25,25) R 0.21921 0.12232 0.18717 0.15602 SHI
MSE 1.9542¢-07 2.7753e-07 1.4807¢-08 3.6021e-08
(50,50,50) R 0.15329 0.15246 0.17317 0.17118
T MSE 4.7154e-08 5.0796e-08 3.3671e-10 1.4578e-09 SH1
R 0.16695 0.15469 0.17473 0.18071
(75,75,75) MSE 6.486¢-09 4.1266¢-08 7.4067e-12 3.2602¢-09 SH1
R 0.20633 0.10786 0.17513 0.13863
(100,100,100) MSE 9.8161e-08 4.5076e-07 1.5626¢-12 1.3226e-07 SH1
(50,25,25) R 0.17236 0.10592 0.17598 0.13517 SHI
MSE 6.9677e-10 4.7716e-07 9.5917e-11 1.5864¢e-07
(75,25,25) R 0.19945 0.11034 0.17960 0.13528
MSE 5.9768e-08 4.1811e-07 2.119e-09 1.5773e-07 SH1
(100,25.25) R 0.19819 0.10900 0.18023 0.15131
T MSE 5.3782e-08 4.3554¢-07 2.733e-09 5.6115e-08 SH1
R 0.17935 0.12105 0.17843 0.15127
(25,50,25) MSE 1.8924¢-09 2.9108e-07 1.1757e-09 5.6325e-08 SH1
R 0.18495 0.11786 0.17604 0.15383
(50,75,50) MSE 9.9087¢-09 3.2649¢-07 1.0817e-10 4.4799¢-08 SH1
(75,100,75) R 0.17638 0.13235 0.1747 0.15697 SHI
MSE 1.9162e-10 1.8189e-07 8.7569e-12 3.2494e-08
(25,100,25) R 0.19069 0.11492 0.17653 0.1392
MSE 2.4633e-08 3.6099¢-07 2.3519¢-10 1.2816e-07 SH1
(25.25.,50) R 0.23891 0.12393 0.1901 0.15131
o MSE 4.0841e-07 2.6079¢-07 2.2813e-08 5.611e-08 SH1
(50,50.75) R 0.16162 0.1557 0.17367 0.16523
T MSE 1.7909¢-08 3.7239¢-08 1.7809e-10 9.5422e-09 SH1
R 0.15119 0.13748 0.17433 0.16805
(75,75,100) MSE 5.6692¢-08 1.408e-07 4.4538e-11 4.8245e-09 SH1
R=0.16667 , {(;=1.5, {,=1.5, {,=1.5and g=10000
Method
nmw Mle Mom SH1 SH2 Best
(25,25,25) R 0.15676 0.18541 0.16392 0.17445 SH1
MSE 9.82e-09 3.5124e-08 7.5502e-10 6.0599¢-09
(50,50,50) R 0.1404 0.21087 0.16415 0.18916
T MSE 6.8985e-08 1.9543e-07 6.3217e-10 5.0602¢-08 SH1
R 0.1454 0.17792 0.16618 0.17245
(75,75,75) MSE 4.3016¢-08 1.2655e-08 2.3994e-11 3.3414e-09 SH1
R 0.17169 0.16521 0.1667 0.16773
(100,100,100) MSE 2.522e-09 2.1217e-10 1.3565¢e-13 1.1396¢-10 SH1
(50,25,25) R 0.12897 0.29976 0.15687 0.23538 SHI
MSE 1.4211e-07 1.7713e-06 9.5912¢-09 4.7217¢-07
(75,25,25) R 0.1175 0.20579 0.14959 0.18288
MSE 2.4171e-07 1.5307e-07 2.9154e-08 2.6288e-08 SH1
(100,25,25) R 0.16667 0.14741 0.23725 0.21319
T MSE 3.7084e-08 4.9826¢-07 4.7221e-09 2.1646e-07 SH1
R 0.18239 0.12568 0.17596 0.14649



https://doi.org/10.20944/preprints202310.0481.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 October 2023

d0i:10.20944/preprints202310.0481.v1

11

(25,50,25) MSE 2.4725e-08 1.6795e-07 8.6408e-09 4.072e-08 SH1
R 0.16269 0.15295 0.1671 0.15776
(50,75,50) MSE 1.5778e-09 1.8804¢e-08 1.907e-11 7.9395e-09 SH1
(75,100,75) R 0.13608 0.20373 0.1662 0.18712 SHI
MSE 9.3539¢-08 1.374¢-07 2.1631e-11 4.1833¢-08
(25,100,25) R 0.16371 0.2123 0.1644 0.19272
MSE 8.7604¢-10 2.0823e-07 5.1378e-10 6.7874e-08 SH1
(25,25.50) R 0.13021 0.22961 0.15341 0.2007
T MSE 1.3291e-07 3.9616e-07 1.7581e-08 1.1581e-07 SHI
(50,50,75) R 0.1759 0.13769 0.16607 0.14916
T MSE 8.5328e-09 8.3974e-08 3.5792e-11 3.0655e-08 SH1
R 0.15083 0.18493 0.1664 0.17714
(75,75,100) MSE 2.5079¢-08 3.3366¢e-08 7.1447¢e-12 1.0978e-08 SH1
R=0.1,,=1.5, {,=3.5, (s=2.5and q=10000
Method
nm,w Mle Mom SH1 SH2 Best
(25,25,25) R 0.1439 0.18133 0.11091 0.17023 SHI
MSE 1.9272e-07 6.6146e-07 1.1897¢e-08 4.9322¢-07
(50,50,50) R 0.13639 0.14832 0.10279 0.1621
T MSE 1.3241e-07 2.3344e-07 7.8026e-10 3.8563e-07 SH1
R 0.10428 0.20421 0.099843 0.18633
(75,75,75) MSE 1.8297e-09 1.0859¢-06 2.4697¢e-12 7.4528e-07 SH1
R 0.10724 0.18486 0.099781 0.18265
(100,100,100) MSE 5.2398e-09 7.2017e-07 4.8049¢-12 6.8303e-07 SH1
(50,25,25) R 0.11243 0.18481 0.10198 0.17709 SHI
MSE 1.5447¢-08 7.1931e-07 3.9077e-10 5.9426e-07
(75,25,25) R 0.11521 0.17945 0.10323 0.17097
MSE 2.3139¢-08 6.3123e-07 1.0435e-09 5.0368e-07 SH1
(100,25,25) R 0.10514 0.16091 0.10201 0.16608
T MSE 2.6379¢-09 3.7101e-07 4.033¢-10 4.3671e-07 SH1
R 0.10903 0.18471 0.10377 0.19206
(25,50,25) MSE 8.1614¢-09 7.1758e-07 1.42e-09 8.4754e-07 SHI
R 0.1112 0.21963 0.10171 0.19207
(50,75,50) MSE 1.2543¢-08 1.4312e-06 2.9161e-10 8.4765e-07 SH1
(75,100,75) R 0.10183 0.21353 0.099982 0.18867 SH1
MSE 3.3388e-10 1.289¢-06 3.1663e-14 7.8616e-07
(25,100,25) R 0.12711 0.19176 0.11079 0.17787
MSE 7.3519¢-08 8.4195e-07 1.1645¢-08 6.063e-07 SH1
(25.25.50) R 0.12573 0.19876 0.10639 0.18526
T MSE 6.6195e-08 9.7531e-07 4.0889¢-09 7.2684¢e-07 SH1
(50,50,75) R 0.11281 0.1895 0.10081 0.18458
T MSE 1.6403e-08 8.0111e-07 6.6176¢-11 7.1541e-07 SH1
R 0.13862 0.15759 0.10038 0.16339
(75,75,100) MSE 1.4917e-07 3.317e-07 1.4333¢-11 4.0187¢-07 SHI
R=0.11667, {;=3.5, {,=2.5, {3=1.5and q=10000
Method
Mle Mom SH1 SH2 Best
n,m,w
(25,25,25) R 0.11541 0.25489 0.11629 0.21104 SH1
MSE 1.5718e-10 1.9104¢-06 1.4074e-11 8.9072e-07
(50,50,50) R 0.13119 0.22845 0.11754 0.20084
T MSE 2.1082¢-08 1.2496¢-06 7.7031e-11 7.0857e-07 SH1
R 0.10116 0.25097 0.116 0.21287
(75,75,75) MSE 2.4034e-08 1.8038e-06 4.4505e-11 9.256e-07 SH1
R 0.11467 0.21453 0.1164 0.19455
(100,100,100) MSE 3.9876¢-10 9.5781e-07 7.0629¢-12 6.0656e-07 SHI
(50,25,25) R 0.12773 0.22401 0.11957 0.19822 SH1
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MSE 1.2229¢-08 1.1522e-06 8.4428e-10 6.6501e-07
(75,25,25) R 0.14116 0.18953 0.12366 0.18391
MSE 5.9999¢-08 5.3089¢-07 4.8937e-09 4.522e-07 SH1
(100,25.25) R 0.13117 0.20523 0.12032 0.19259
T MSE 2.1028e-08 7.8439¢-07 1.334¢-09 5.7639¢-07 SH1
R 0.11238 0.18634 0.11584 0.17234
(25,50,25) MSE 1.8361e-09 4.855e-07 6.8685¢-11 3.0991e-07 SH1
R 0.12615 0.2232 0.11812 0.19613
(50,75,50) MSE 8.9875e-09 1.1349¢-06 2.1166e-10 6.3138e-07 SH1
(75,100,75) R 0.11136 0.23389 0.11633 0.20431 SHI
MSE 2.8167¢-09 1.3742¢-06 1.1273e-11 7.682¢-07
(25,100,25) R 0.13305 0.20444 0.1194 0.18279
MSE 2.6836¢e-08 7.7047e-07 7.4595e-10 4.3717e-07 SH1
(25,25.50) R 0.13803 0.15661 0.11943 0.16303
T MSE 4.5657¢-08 1.5957e-07 7.6543¢-10 2.1493¢-07 SHI
(50,50,75) R 0.12893 0.22632 0.117 0.19254
T MSE 1.5035e-08 1.2024e-06 1.1364e-11 5.7566e-07 SH1
R 0.13302 0.19233 0.11656 0.18769
(75,75,100) MSE 2.6751e-08 5.7249e-07 1.0731e-12 5.0448e-07 SH1
R=023333 ,{;=3.5, {,=1.5, {5=2.5and q=10000
Method
nm,w Mle Mom SH1 SH2 Best
(25,25,25) R 0.21429 0.13464 0.22908 0.15108 SHI
MSE 3.6267¢e-08 9.7408e-07 1.8092e-09 6.7651e-07
(50,50,50) R 0.19785 0.11743 0.2306 0.13693
T MSE 1.2591e-07 1.3433¢-06 7.4572¢-10 9.2927e-07 SHI
R 0.21823 0.10601 0.23325 0.13887
(75,75,75) MSE 2.2806e-08 1.6212e-06 6.592¢-13 8.9235e-07 SH1
R 0.21461 0.12208 0.23348 0.15091
(100,100,100) MSE 3.5065e-08 1.2378e-06 2.1933e-12 6.7935e-07 SH1
(50,25,25) R 0.2452 0.11016 0.23601 0.14458 SH1
MSE 1.4077e-08 1.5172e-06 7.1686¢-10 7.8772e-07
(75,25,25) R 0.17944 0.14782 0.2162 0.1579
MSE 2.9049¢-07 7.3125e-07 2.9371e-08 5.6829¢-07 SH1
(100,25,25) R 0.26793 0.10931 0.24479 0.14556
T MSE 1.1967e-07 1.5382¢-06 1.3124e-08 7.705e-07 SH1
R 0.18239 0.10106 0.22039 0.13968
(25,50,25) MSE 2.595e-07 1.7496¢-06 1.6755e-08 8.7702e-07 SH1
R 0.22786 0.10771 0.23371 0.13791
(50,75,50) MSE 2.9949¢-09 1.5781e-06 1.3946e¢-11 9.106e-07 SH1
(75,100,75) R 0.24163 0.10018 0.23389 0.13539 SH1
MSE 6.878e-09 1.7731e-06 3.0849¢-11 9.5927e-07
(25,100,25) R 0.188 0.13646 0.22451 0.15624
MSE 2.0554¢e-07 9.3851e-07 7.7868e-09 5.943¢-07 SH1
(25.25.50) R 0.29333 0.10743 0.24206 0.14321
T MSE 3.6e-07 1.5852e-06 7.6197e-09 8.1225e-07 SH1
(50,50,75) R 0.18978 0.14026 0.23203 0.1577
T MSE 1.8966¢-07 8.6626e-07 1.6882¢-10 5.7203e-07 SH1
R 0.22703 0.10696 0.23361 0.13775
(75,75,100) MSE 3.9738e-09 1.597¢-06 7.6452¢-12 9.1362e-07 SHI
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