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Abstract: Large Language Models (LLMs) have emerged as a cornerstone of modern artificial intel-
ligence, achieving remarkable capabilities in natural language understanding and generation. As
their scale and utility have increased, two critical and complementary trends have defined their evo-
lution: (1) the distributed systems and algorithms enabling efficient training of ultra-large models
across massive compute infrastructures, and (2) the integration of multiple modalities—such as vision,
audio, and structured data—into unified multimodal large language models (MLLMs). This survey
provides a comprehensive examination of the state-of-the-art in both of these dimensions. We begin
by exploring the foundations and advances in distributed training, including model parallelism,
pipeline parallelism, memory optimization strategies, and the design of sparse and expert models. We
assess system-level techniques such as ZeRO, DeepSpeed, and tensor sharding that allow for scalable,
memory-efficient training at trillion-parameter scale. Next, we turn to multimodality, surveying archi-
tectures and training objectives that extend LLMs to process and generate across diverse input types.
We review contrastive learning, cross-attention fusion, and aligned token embeddings as key tech-
niques that enable cross-modal reasoning, with illustrative examples from models like Flamingo, CLIP,
and GPT-4V. Beyond current methodologies, we identify and formalize the core technical challenges
facing distributed and multimodal LLMs, including memory bottlenecks, communication overhead,
alignment in the absence of ground truth, robustness to modality shifts, and evaluation under open-
ended tasks. To guide future research, we outline six key directions: unified memory-augmented
architectures, modular and composable systems, self-aligning mechanisms, lifelong and continual
learning agents, embodied multimodal cognition, and the emergence of general-purpose foundation
agents. Our goal is to synthesize recent progress while articulating a vision for the next generation
of foundation models—models that are not only scalable and multimodal but are also capable of
reasoning, grounding, and adapting to complex, real-world environments. This survey serves both as a
technical reference and a roadmap for researchers and practitioners navigating the future of large-scale,
multimodal, and distributed AI systems.

Keywords: large language models; distributed training; multimodal learning; foundation models;
model parallelism; contrastive learning; cross-modal alignment; continual learning; modular architec-
tures; AI systems scalability

1. Introduction
Large Language Models (LLMs) have witnessed rapid and transformative progress over the

past few years, evolving from relatively modest neural architectures trained on limited corpora to
massive, general-purpose systems capable of performing a wide array of linguistic and cognitive tasks
[1]. Models such as GPT-3, PaLM, Chinchilla, and more recently GPT-4, Gemini, and Claude, have
demonstrated that scaling up language models in terms of parameters, data, and compute leads to
significant performance gains across diverse domains such as machine translation, summarization,
question answering, reasoning, and even code generation [2]. However, the growing complexity
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and computational demands of these models have also exposed limitations in centralized training
paradigms, prompting a surge of interest in distributed training and inference frameworks that can
better manage the scale and heterogeneity of contemporary LLM workloads [3]. Simultaneously, the
paradigm of multimodality—integrating language with other modalities such as vision, audio, and
sensory data—has gained significant momentum. Multimodal Large Language Models (MLLMs) ex-
tend the capabilities of conventional LLMs by allowing them to process and reason over multiple types
of data. This fusion has led to state-of-the-art systems like Flamingo, GPT-4V, Kosmos, and Gemini,
which demonstrate an unprecedented ability to interpret images, synthesize speech, generate captions,
understand video, and engage in grounded interaction with real-world inputs [4]. These models are
pushing the boundary of what it means to "understand" and "generate" across modalities, positioning
MLLMs at the forefront of artificial general intelligence (AGI) research. Despite these advances, the
challenges associated with scaling, distributing, aligning, and evaluating LLMs and MLLMs remain
profound [5]. Training models with hundreds of billions of parameters requires distributed systems
capable of managing massive data throughput, parallel computation, and memory efficiency across
heterogeneous hardware [6]. Techniques such as pipeline parallelism, tensor parallelism, model
sharding, and parameter offloading are essential to make these workloads feasible, yet they introduce
new system-level trade-offs and failure modes [7]. Moreover, inference in distributed environments
necessitates low-latency, scalable architectures that can serve billions of tokens per day, often in
real-time applications. At the same time, integrating multimodal inputs adds layers of architectural
complexity and training difficulty [8]. Aligning representations across modalities, co-training encoders
and decoders, and managing different temporal and spatial resolutions present unique algorithmic
and engineering challenges [9]. Additionally, multimodal datasets are often noisy, expensive to curate,
and subject to biases that affect the generalizability and fairness of MLLMs. Addressing these issues
requires innovations in dataset construction, data augmentation, cross-modal learning, and pretraining
strategies that scale. This survey provides a comprehensive overview of the current landscape of
Distributed LLMs and Multimodal Large Language Models [10]. We systematically examine the
architectural foundations, training methodologies, optimization techniques, and system-level innova-
tions that underpin the development and deployment of these large models [11]. We discuss recent
advances in distributed training frameworks such as DeepSpeed, Megatron-LM, and FSDP, as well as
their implications for model scaling laws and efficiency [12]. We then delve into multimodal model
architectures, including early-fusion, late-fusion, and unified encoder-decoder paradigms, highlighting
how these designs handle heterogeneous input types and cross-modal alignment [13]. In addition
to technical advances, we explore the open challenges in this domain. These include the need for
improved scalability, robust alignment across modalities, efficient fine-tuning methods, energy-aware
training, and privacy-preserving computation in distributed environments [14]. We also highlight
emergent concerns related to the interpretability, robustness, and ethical deployment of these models,
particularly in high-stakes applications such as healthcare, education, and law [15]. Finally, we outline
promising future directions for research in both distributed LLMs and MLLMs [16]. These include the
development of sparse and modular architectures, neurosymbolic integration, lifelong and federated
learning, decentralized training paradigms, and the convergence of foundation models across text,
vision, audio, robotics, and more. We posit that the future of AI lies at the intersection of massive-scale
computation and deeply integrated multimodal understanding—realizing models that are not only
large and powerful, but also efficient, interpretable, grounded, and adaptable. Organization of the
Survey. The remainder of this paper is structured as follows. In Section 2, we provide a historical
and technical background on the evolution of LLMs and multimodal modeling. Section 3 focuses
on distributed training and inference for LLMs, covering architectures, system optimizations, and
parallelization strategies [17]. Section 4 presents an in-depth analysis of multimodal LLMs, including
datasets, model architectures, and evaluation [18]. Section 5 outlines the key challenges and limitations
in current systems. Section 6 explores future research directions and open problems. We conclude in
Section 7 with a synthesis of key insights and a vision for the path ahead. Through this survey, we
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aim to provide researchers, practitioners, and system designers with a comprehensive resource that
bridges the rapidly evolving subfields of distributed LLMs and multimodal AI, facilitating informed
research, development, and deployment of the next generation of intelligent systems [19].

2. Background and Preliminaries
The performance of Large Language Models (LLMs) is empirically and theoretically tied to the

scale of three principal axes: model size (N parameters), dataset size (D tokens), and compute budget
(C FLOPs). Kaplan et al. [? ] formalized the power-law relationship between these quantities and
downstream task performance using the following function:

L(N, D, C) = αN−βN + γD−βD + δC−βC , (1)

where L denotes the loss or error metric, and α, γ, δ are task-dependent scaling constants. These
empirical scaling laws suggest that optimal performance is achieved not merely by increasing model
size, but by jointly balancing training data and compute [20]. This relationship has motivated the
development of increasingly large models, such as Chinchilla [? ], which demonstrated that for a
fixed compute budget, training smaller models on more data yields superior results compared to
overparameterized configurations [21].

2.1. Distributed Training Paradigms

To scale training to models with hundreds of billions of parameters, distributed training is
essential [22]. We formally define a distributed model as a tuple (M,P ,S) where M is the model
function, P is the set of parallelism strategies, and S is the hardware scheduling policy. The major
parallelism strategies are:

• Data Parallelism (DP): Each worker holds a full replica of the model and processes a unique
batch shard. Gradients are averaged via all-reduce operations:

θt+1 = θt − η · 1
K

K

∑
k=1

∇Lk(θt), (2)

where K is the number of devices [23].
• Tensor Parallelism (TP): Splits tensors across multiple devices. For instance, a matrix multi-

plication A · B is computed by partitioning A column-wise and B row-wise, with intermediate
aggregation.

• Pipeline Parallelism (PP): Model layers are partitioned into segments and assigned to pipeline
stages. Each microbatch flows through stages in a staggered fashion [24].

• Hybrid Parallelism: Combines DP, TP, and PP hierarchically to scale to trillion-parameter models
with minimal memory and latency overhead [25].

Table 1 compares the parallelization techniques across memory, communication, and synchroniza-
tion overheads.

Table 1. Comparison of Parallelism Strategies

Strategy Memory Efficiency Communication Overhead Sync Frequency

Data Parallelism High High (All-reduce) Per step
Tensor Parallelism Moderate Moderate (Slice gather) Per layer

Pipeline Parallelism High Low (Stage buffer) Per microbatch
Hybrid Parallelism Optimal Complex Variable

2.2. Scaling and Efficiency Visualization

To understand the trade-offs involved in scaling LLMs using different parallelism methods,
Figure 1 presents a synthetic benchmark of compute efficiency (in TFLOPs/sec) versus number of
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GPUs used [26,27]. This simulation assumes an idealized model with linear scaling up to 1024 GPUs,
beyond which interconnect bottlenecks reduce efficiency [28].
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Figure 1. Compute efficiency vs. number of GPUs for different parallelism strategies [29]. Hybrid parallelism
achieves the highest scalability with diminishing losses at extreme scales.

2.3. Multimodal Fusion Formalism

Let X = {x(1), x(2), . . . , x(m)} be a set of inputs from m different modalities (e.g., text, image,
audio) [30]. Each x(i) is mapped to a latent embedding h(i) via a modality-specific encoder Ei, i.e.,
h(i) = Ei(x(i)) [31]. Fusion can then be formalized as a function F : Rd1 × · · · ×Rdm → Rd f producing
a joint representation:

z = F (h(1), h(2), . . . , h(m)). (3)

Common fusion functions include:

• Concatenation: z = Concat(h(1), . . . , h(m)) [32].
• Cross-Attention: z = Attention(h(1); h(2)) where one modality attends to another [33].
• Multimodal Transformers: All h(i) are fed as token sequences into a unified Transformer encoder.

This abstraction underlies recent models such as Flamingo and GPT-4V, which interleave image
and text tokens into a unified processing stream. The architecture ensures modality alignment and
joint reasoning, enabling tasks such as visual question answering and image captioning [34]. In
summary, this section has provided the foundational concepts required to understand the scale, design,
and distribution of LLMs, as well as the formal structures that underlie multimodal learning. These
mathematical abstractions and system trade-offs will guide our exploration of distributed training
frameworks and multimodal architectures in subsequent sections.

3. Distributed Training and Inference for LLMs
Training modern LLMs at scale is computationally intractable on a single device due to memory

and throughput limitations [35]. Therefore, distributed training architectures have become foun-
dational [36]. A typical training objective involves minimizing the empirical loss over a dataset
D = {xi, yi}n

i=1 using a model parameterized by θ:

min
θ

L(θ) = 1
n

n

∑
i=1

ℓ( fθ(xi), yi), (4)

where ℓ is a loss function (e.g., cross-entropy), and fθ is the LLM. This optimization is typically solved
using stochastic gradient descent (SGD) or its adaptive variants, executed across distributed nodes.
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3.1. Parallelism Taxonomy and Scheduling

The decomposition of training workloads is not trivial and requires choosing an optimal combina-
tion of model, data, and pipeline parallelism, often across heterogeneous accelerators with different
compute and memory capacities. Let the total parameter count be P, the global batch size be B, and
the number of GPUs be G [37]. The optimization of training throughput T is constrained by:

T =
Effective FLOPs

Communication Overhead + Computation Time
[38]. (5)

Different decomposition strategies lead to varying trade-offs in memory utilization, gradient stal-
eness, and synchronization costs. Table 2 compares popular LLM frameworks along key dimensions.

Table 2. Comparison of Distributed LLM Frameworks

Framework Parallelism Memory Optimization Inference Used In

Megatron-LM DP, TP, PP Activation recompute Yes GPT-NeoX
DeepSpeed DP, ZeRO (1–3), PP 8-bit Opt [39]. Yes BLOOM

FSDP (PyTorch) DP (sharded weights) sharding Partial Meta OPT-66B
Colossal-AI DP, TP, MoE Low-rank compression Yes OpenBMB

3.2. ZeRO: Memory-Efficient Data Parallelism

Zero Redundancy Optimizer (ZeRO) partitions optimizer states, gradients, and parameters across
devices to reduce memory overhead. Let θ, g, and m denote model parameters, gradients, and
optimizer states respectively [40]. Traditional data parallelism replicates all of them across G GPUs,
requiring memory:

MDP = G · (∥θ∥+ ∥g∥+ ∥m∥). (6)

In contrast, ZeRO reduces this to:

MZeRO =
1
G

· (∥θ∥+ ∥g∥+ ∥m∥), (7)

resulting in near-linear memory savings with increased GPU count [41]. ZeRO-3 further partitions
computation, enabling models with trillions of parameters to be trained on commodity clusters.

3.3. Inference Optimization and Quantization

Inference at scale introduces additional challenges, particularly latency and memory bottlenecks
[42]. Given a trained model fθ , serving requests {xi}M

i=1 with response time Tinfer must satisfy:

Tinfer(xi) ≤ τ, ∀i ∈ [1, M], (8)

for some application-dependent latency threshold τ. Optimization strategies include:

• Quantization: Reducing precision (e.g., FP32 → INT8) while minimizing loss in accuracy.
• KV Cache Reuse: Avoid recomputation of past transformer states [43].
• Speculative Decoding: Use smaller models to propose candidate tokens, then verify with the

large model [44].

3.4. Empirical Scaling of Throughput

We simulate throughput (in samples/sec) on various model sizes and GPU counts [45]. The
results, shown in Figure 2, demonstrate that hybrid parallelism maintains high throughput as model
size grows, while pure data parallelism saturates earlier [46].
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Figure 2. Simulated throughput versus model size under different parallelism strategies [47]. Hybrid parallelism
offers better scalability.

3.5. Summary

This section has systematically dissected the computational, architectural, and algorithmic under-
pinnings of distributed training and inference in the era of massive LLMs. By leveraging advanced
strategies such as ZeRO, pipeline scheduling, quantized inference, and hybrid parallelism, researchers
have significantly pushed the boundaries of scale while maintaining tractable efficiency [48]. These
distributed infrastructures not only enable training trillion-parameter models but also serve as a
backbone for fine-tuning and deployment pipelines in real-world systems. In the following section, we
turn our attention to a different frontier: the integration of multimodal data within LLM frameworks
[49].

4. Multimodal Large Language Models (MLLMs)
While traditional LLMs operate exclusively in the textual modality, an increasing number of

real-world applications necessitate reasoning over multiple modalities simultaneously [50]. Tasks
such as image captioning, visual question answering (VQA), speech-to-text translation, and video
summarization require models that can seamlessly integrate diverse input formats [51]. Formally, a
Multimodal Large Language Model (MLLM) processes a set of inputs X = {x(i)}M

i=1, where each x(i)

belongs to a different modality Mi ∈ {text, vision, audio, . . . } [52].

4.1. Modular Architecture and Embedding Alignment

MLLMs typically employ modality-specific encoders to convert raw data into latent token em-
beddings aligned in a shared representation space. Let x(i) ∈ Mi be a modality-specific input and
Ei : Mi → Rd its encoder. The fused sequence is:

H = [E1(x(1)), E2(x(2)), . . . , EM(x(M))], (9)

which is passed to a cross-modal decoder, often a transformer, producing outputs y = fθ(H). To ensure
representational coherence, alignment objectives such as contrastive loss or token-level supervision
are employed. The most common strategy for aligning vision and language, for instance, is contrastive
learning [53]. Given a batch of image-caption pairs {(vi, ti)}, the objective encourages similarity
between paired embeddings while discouraging others:

LCLIP = −
N

∑
i=1

[
log

exp(⟨vi, ti⟩/τ)

∑N
j=1 exp(⟨vi, tj⟩/τ)

+ log
exp(⟨ti, vi⟩/τ)

∑N
j=1 exp(⟨ti, vj⟩/τ)

]
, (10)

where ⟨·, ·⟩ denotes cosine similarity, and τ is a temperature parameter. This formulation underlies
models like CLIP and Florence [54].
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4.2. Fusion Strategies and Temporal Modeling

Multimodal fusion strategies vary from early fusion (joint tokenization) to late fusion (decision-
level aggregation) [55]. We define:

• Early Fusion: Tokens from different modalities are concatenated before encoding, i.e., z =

Transformer([h(1), h(2), . . . ]) [56].
• Late Fusion: Independent modality outputs are combined at the decision layer, e.g., z =

ϕ(h(1), h(2), . . . ) where ϕ is an MLP or attention function.
• Cross-Attention Fusion: One modality acts as a query over keys/values of another, as in z =

Attn(Q = h(1), K = h(2), V = h(2)) [57].

In video or audio inputs, temporal modeling becomes critical [58]. Let x(v) = [x1, x2, . . . , xT ] be a
sequence of visual or acoustic frames [59]. A spatio-temporal encoder Et processes them as:

h(v) = Et(x(v)) = Transformer(PatchEmbed(x1), . . . , PatchEmbed(xT))[60]. (11)

Temporal attention layers aggregate temporal dependencies across frames, enabling downstream
tasks like video captioning.

4.3. MLLM Architectural Comparison

We compare representative MLLM architectures in Table 3 [61].

Table 3. Comparison of Representative MLLM Architectures

Model Modalities Fusion Method Pretraining Objective Scale (Params)

CLIP Image + Text Contrastive (Late) Contrastive Learning 400M
Flamingo Image + Text Cross-Attention (Late) Language Modeling 80B

PaLI-X Image + Text Unified Transformer Multitask (VQA, OCR) 55B
GPT-4V Image + Text Interleaved Token Stream Causal LM 100B+ (est.)

GIT Image + Text Early Fusion Captioning (Supervised) 345M

4.4. Scaling Multimodal Input Length

A major challenge is managing long multimodal sequences. Let Ttotal be the combined token
length from all modalities. The attention complexity of standard transformers is:

O(T2
total), (12)

which quickly becomes prohibitive [62]. Sparse attention (e.g., Longformer), recurrence (e.g.,
RWKV), and routing (e.g., MoE tokens) have been proposed to alleviate this issue [63]. Figure 3
illustrates how attention cost scales with sequence length under different strategies.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 May 2025 doi:10.20944/preprints202505.1156.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1156.v1
http://creativecommons.org/licenses/by/4.0/


8 of 17

256 512 1,024 2,048 4,096
0

0.25

0.5

0.75

1

Multimodal Sequence Length T

R
el

at
iv

e
A

tt
en

ti
on

C
os

t

Full Attention Sparse Attention MoE Routing

Figure 3. Normalized attention cost as a function of multimodal sequence length for different attention mecha-
nisms [64]. Sparse and MoE-based routing are significantly more efficient at scale.

4.5. Summary

Multimodal LLMs extend the capability of standard transformers to process rich and structured
inputs across modalities. The integration of encoders, cross-modal attention, contrastive alignment
losses, and scalable fusion techniques has enabled significant progress in unified models capable
of perception and reasoning. Nonetheless, the challenges of sequence length, modality alignment,
and inference cost continue to pose active research questions. In the next section, we synthesize
the challenges and open problems that emerge at the intersection of distributed LLM training and
multimodal representation learning [65].

5. Challenges and Open Problems
Despite substantial advances in both distributed training and multimodal LLM architectures,

several critical challenges remain unresolved [66]. These challenges span computational, architectural,
theoretical, and ethical domains, and form the basis for ongoing and future research directions. In this
section, we categorize and analyze these challenges along multiple dimensions [67].

5.1. Scalability Bottlenecks in Distributed Environments

Scaling to trillions of parameters and billions of tokens requires not only efficient algorithms but
also robust systems engineering. One key bottleneck is communication overhead. Let G be the number
of GPUs, and let B be the per-GPU batch size [68,69]. The effective throughput Teff is defined as:

Teff =
FLOPstotal

Computation Time + Communication Time
[70]. (13)

When using model parallelism or ZeRO-based optimization, the communication cost C(G) scales
non-linearly:

C(G) = α · log G + β · P
G

, (14)

where α accounts for synchronization latency and β for bandwidth-related cost per parameter P [71].
Efficient all-reduce, parameter sharding, and asynchronous communication methods must continue to
evolve to keep pace with increasing model and hardware scale.

5.2. Cross-Modal Representation Alignment

Multimodal models rely heavily on alignment mechanisms. However, such alignment can fail
when modalities are semantically mismatched or underrepresented in training data. For a pair
of modalities (x(v), x(t)), suppose their latent embeddings are zv and zt [72]. The alignment loss
Lalign = ∥zv − zt∥2 assumes these representations can converge. In practice, due to differences in
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abstraction levels and information density, the alignment manifold is often non-convex, leading to
partial or failed convergence. Additionally, contrastive objectives encourage discriminative alignment
but may fail to encode fine-grained semantics or compositional reasoning, as they do not model
token-wise dependencies [73].

5.3. Evaluation and Benchmarks

The lack of robust, multi-faceted evaluation frameworks for LLMs and MLLMs impairs repro-
ducibility and progress. Current benchmarks often focus on single metrics—e.g., BLEU for text
generation, accuracy for classification, CIDEr for captioning—which ignore calibration, uncertainty,
and generalization under distribution shift. Let Dtrain and Dtest denote the training and test distribu-
tions, with a shift δ = ∥Ptrain − Ptest∥TV [74]. The generalization error is:

Egen = Ex∼Dtest [ℓ( fθ(x), y)]−Ex∼Dtrain [ℓ( fθ(x), y)]. (15)

As δ increases, Egen tends to grow non-linearly, highlighting the importance of OOD evaluation
and continual learning protocols [75].

5.4. Trade-offs in Model Design

The intersection of performance, memory efficiency, latency, and interpretability presents inherent
trade-offs [76]. These trade-offs are often in tension, as improving one dimension degrades another.
We represent this using a simplified radar plot (Figure 4) comparing different model types along five
axes:

• P : Predictive accuracy.
• M: Memory footprint [77].
• L: Latency per inference.
• T : Training cost.
• I : Interpretability [78].

GPT-4V
CLIP

Distilled MLLM

Figure 4. Trade-off radar for different MLLM model types across key design objectives.

This trade-off space illustrates that no current architecture achieves dominance across all metrics.
The choice of model must be task-specific, resource-aware, and aligned with deployment constraints
[79].

5.5. Ethical, Social, and Data Bias Challenges

The incorporation of multimodal data exacerbates biases already present in textual corpora [80].
Visual and auditory modalities encode implicit demographic, cultural, and geographic priors. Let
x ∈ X denote a multimodal input and y a predicted label or caption. If x encodes protected attribute
a ∈ A (e.g., race, gender), then bias can be measured via:

Biasa = |E[ f (x) | a = 0]−E[ f (x) | a = 1]|[81]. (16)
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Disparities in Biasa across protected groups indicate representational harm. Furthermore, mul-
timodal hallucination—where models generate plausible but incorrect or fabricated visual/textual
responses—poses a serious risk for safety-critical applications such as healthcare and autonomous
navigation.

5.6. Summary

The challenges discussed in this section expose the multidimensional complexity of developing
scalable, robust, and trustworthy distributed multimodal LLMs. Communication overheads, cross-
modal alignment issues, evaluation inadequacies, model trade-offs, and ethical concerns represent open
frontiers. Solving these problems requires cross-disciplinary collaboration across machine learning,
systems design, human-computer interaction, and fairness in AI [82]. In the final section, we outline
promising directions for future work that aim to address these foundational limitations [83].

6. Future Directions
The convergence of distributed large language model (LLM) training and multimodal integration

presents a fertile ground for future research. While the current generation of models like GPT-4V,
Flamingo, and CLIP demonstrate impressive capabilities, fundamental limitations remain in scalability,
alignment, reasoning, memory efficiency, and generalizability. This section delineates several forward-
looking trajectories that we believe will define the next phase of progress in LLM research.

6.1. Unified Multimodal Memory-Augmented Architectures

One promising direction involves augmenting LLMs with structured memory systems capable of
storing and retrieving cross-modal knowledge [84]. Instead of relying solely on static parameter storage,
future models may use memory-augmented transformers, where memory slots M = {m1, . . . , mK}
are updated based on context vectors ht:

m(t+1)
k = m(t)

k + η · Attention(ht, m(t)
k ), (17)

where η is a learnable or fixed update rate [85]. Such models could dynamically store facts or
representations from vision, language, or audio modalities and retrieve them conditionally at inference
time. This aligns with the goals of continual learning and episodic reasoning [86].

6.2. Modular, Composable LLM Systems

Current LLMs operate as monoliths [87]. However, future architectures will likely embrace
modularity [88]. Consider a compositional model:

f (x) = flang(xtext) + fvision(ximg) + flogic(xstruct), (18)

where each fi is a specialized expert. Such systems can be trained with routing functions or controller
policies to activate the relevant submodules based on context [89]. This opens the path toward
task-specific specialization without duplicating the base model. Moreover, modular systems offer
better interpretability and lower carbon footprints due to sparse activation. However, they raise new
challenges in interface standardization, latency coordination, and consistency.

6.3. Toward Self-Aligning and Self-Evaluating LLMs

Alignment today depends on external reward models or human feedback (e.g., RLHF) [90]. We
envision self-aligning LLMs that use internalized reward estimation. For instance, a multimodal LLM
could contain a critic network Rϕ(y, x) estimating alignment quality between predicted outputs y and
multimodal inputs x [91]. This leads to a meta-learning objective:

Lmeta = E(x,y)
[
ℓ( fθ(x), y) + λ · Rϕ( fθ(x), x)

]
, (19)
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where λ trades off external supervision and internal reward [92]. Such mechanisms allow for continu-
ous self-supervision, adaptation, and even model repair during deployment [93].

6.4. Emergence of Continual and Lifelong Multimodal Agents

LLMs are currently trained in static batches. Future LLMs will learn continuously from streaming,
evolving data sources across modalities. Let Dt represent data observed at time t [94]. A continual
learning system optimizes:

θt+1 = θt −∇θL( fθt(xt), yt) + γ · ∇θR(θt,Mt), (20)

where R is a regularizer ensuring stability and Mt is a memory bank or replay buffer. Addressing
catastrophic forgetting and domain shift will be critical, particularly for applications like assistive
robotics, AR/VR agents, or real-time captioners [95].

6.5. Toward General-Purpose Foundation Agents

The ultimate vision is the construction of general-purpose foundation agents that can perceive,
reason, and act across diverse contexts using unified representations. These agents will need:

• Causality-aware reasoning to distinguish correlation from intervention [96].
• Goal-conditioned generation with latent goal variables g, such that outputs y ∼ p(y | x, g) are

steered by high-level intent.
• Embodied learning where language and perception are grounded in sensorimotor experiences,

leading to emergent affordances and world models [97].

We envision architectures that incorporate planning modules, environment simulators, and
modular knowledge graphs [98]. These systems will represent a shift from “chatbot-style” LLMs to
agents capable of autonomous, goal-driven behavior.

6.6. Roadmap Summary

Figure 5 outlines a conceptual roadmap of capability evolution from present LLMs to future
agents [99]. The vertical axis represents representational and decision-making generality, while the
horizontal axis tracks system complexity.

Static LLMs Multimodal LLMs Modular Agents Continual AgentsFoundation Agents
Closed-Task

Few-Modal

Task-Specific

Generalist

Goal-Aware

System Complexity
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en

er
al
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Figure 5. Conceptual trajectory from static unimodal LLMs toward goal-aware, general-purpose foundation
agents.

6.7. Concluding Remarks

The next generation of large-scale models will not only span multiple modalities but will also
exhibit increasing degrees of autonomy, adaptability, and grounding [100]. The challenges are sig-
nificant—requiring new learning paradigms, scalable infrastructure, and ethical foresight. However,
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the trajectory is clear: toward foundation models that can act as collaborators, problem solvers, and
agents of understanding across the full spectrum of human communication. This survey has aimed
to provide a rigorous, detailed foundation for understanding the present landscape and motivating
research that shapes the future of distributed and multimodal large language models [101].

7. Conclusions
The rapid evolution of large language models (LLMs) and their extension into the multimodal

domain marks a pivotal inflection point in artificial intelligence research [102]. From the development
of distributed training systems that scale to hundreds of billions of parameters, to the emergence
of models that can fluently process and generate across modalities—including vision, speech, and
structured knowledge—this field has seen both foundational breakthroughs and complex challenges
[103]. In this survey, we presented a comprehensive overview of the architectural principles, systems
methodologies, and multimodal extensions that underpin modern LLMs. We first explored the key
enablers of distributed LLMs, such as tensor and pipeline parallelism, parameter sharding, and system-
level optimizations including ZeRO, DeepSpeed, and MoE-based sparsity. These mechanisms not
only enable scaling but introduce new problems related to synchronization, memory efficiency, and
communication bottlenecks [104].

We then examined the rise of multimodal LLMs (MLLMs), emphasizing how models like
Flamingo, GPT-4V, and CLIP have expanded the representational space of LLMs to include vision,
audio, and structured data. These models depend on alignment losses, contrastive learning, and
cross-attention mechanisms to bridge semantic gaps between modalities. Yet, they also face limitations
in modality coverage, sample efficiency, and grounded reasoning.

Throughout the paper, we have formalized the major challenges—ranging from scalability and
alignment to evaluation and ethical risks. These are not merely engineering limitations but are
fundamentally tied to the representational and algorithmic foundations of current models. Problems
such as distributional bias, hallucination, and task generalization continue to constrain real-world
deployment.

Looking ahead, we outlined a vision for future research, identifying six forward-looking trajecto-
ries: memory-augmented architectures, modular composition, self-alignment mechanisms, continual
learning systems, general-purpose agents, and roadmap-based capability progression. We believe
that solving these problems will require bridging deep learning with symbolic reasoning, causality,
human-computer interaction, and hardware-aware systems design.

As LLMs continue to scale in size and scope, their impact will extend beyond language to become
foundational tools across science, medicine, education, and creativity. But this promise comes with
responsibility: to ensure that such models are robust, fair, transparent, and beneficial to all. This survey
aims to serve as both a technical resource and a research agenda—charting the terrain from today’s
distributed and multimodal LLMs to tomorrow’s intelligent, adaptive, and grounded foundation
agents.
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