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Abstract: Optical backbone networks constitute the fundamental infrastructure employed today by 
network operators to deliver services to users. As network capacity is a key factor influencing optical 
network performance, it is important to understand how topological and physical properties impact 
its behavior and to have the capability to estimate its value. In this context, we propose here a 
method to evaluate the network capacity that relies on the optical reach to account for physical layer 
aspects, in conjunction with constrained routing techniques for traffic routing. As this type of 
routing can lead to traffic blocking, particularly due to the limitation on the number of wavelengths 
per fiber, we also propose a fiber assignment algorithm designed to deal with this problem. We 
apply this method to a set of randomly generated networks using a modified Waxman model, and 
for a network with 60 nodes, in a scenario without blocking, we obtain capacities of about 2.5 Pbit/s 
for a symbol rate of 64 Gbaud and about 5 Pbit/s for a symbol rate of 128 Gbaud. Remarkably, this 
duplication in the total network capacity is achieved by an increase in the total fiber length of only 
about 51%. 

Keywords: network capacity; fiber assignment; random networks; optical networks; optical 
communications 

 

1. Introduction 

In recent years, there has been an enormous growth in telecommunications traffic due to the 
surge of applications and services that require high bandwidth and generate large amounts of data, 
such as video streaming services, social media platforms, cloud computing, and the adoption of 
emerging technologies such as 5G, artificial intelligence, etc. This evolving landscape requires the use 
of very high-speed telecommunications networks like optical networks [1]. 

Optical networks are communication infrastructures that utilize light for transmission, 
processing, and routing information and rely on optical fibers as their transmission medium. These 
networks vary in terms of distance and capacity, falling into several tiers: 1) Backbone networks, span 
extensive geographic distances and offer huge capacities (in the order of dozens of Tbit/s); 2) Metro 
networks, cover cities or metropolitan areas, handling data transmission in the range of hundreds of 
Gbit/s; 3) Access networks, also known as ‘last-mile networks,’ encompass small areas, connecting 
end-users to the network providers and delivering data rates on the order of a few Gbit/s. 

WDM (Wavelength Division Multiplexing) is a fundamental technology in the optical 
networking field, as it enables the transmission of large amounts of data across long distances. It 
works by simultaneously transmitting multiple optical signals, often referred to as optical channels, 
through a single optical fiber, with each channel utilizing its own wavelength. The number of 
channels transmitted per fiber depends on both the spacing between wavelengths and the WDM 
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signal bandwidth, which in turn is limited by the bandwidth of the optical amplifiers used to 
compensate the fiber losses. The most commonly used optical amplifier is the EDFA (Erbium-Doped 
Fiber Amplifier), which utilizing standard technology can provide an amplification bandwidth of 
approximately 4800 GHz, although more advanced solutions can achieve values up to 6000 GHz. 
Therefore, for a typical channel spacing of 50 GHz, the first solution can support up to 96 channels, 
while the second one can accommodate up to 120 channels [2]. 

Network capacity is an important performance feature of optical networks. This capacity can be 
defined as the maximum amount of data that the entire network can handle per unit of time, and it 
is closely related to channel capacity. The concept of channel capacity was introduced by Claude 
Shannon in 1948 [3]. This refers to the maximum data rate at which the information can be reliably 
transmitted through a noisy channel without errors. The fundamental assumptions behind this 
definition are that the noise is additive, white, and Gaussian (AWGN) and that the channel is linear, 
i.e., the capacity always increases with increasing signal power. However, the last assumption does 
not hold for optical fiber channels, which are non-linear by nature. This behavior implies that the 
optical channel capacity does not grow indefinitely; instead, it is limited and reaches a maximum 
value as the transmitted signal power increases [4–6]. 

When estimating the capacity of an optical network, one must necessarily consider the optical 
channel capacity. However, the problem is more complex than that, as it is necessary to also consider 
topological aspects, traffic demands, routing, as well as wavelength and modulation assignments. In 
other words, this capacity estimation can be viewed as a multilayer problem, in the sense that it 
requires taking into account not only physical layer properties, but also network layer aspects. 
Furthermore, for an optimized design it would be paramount to have a clear understanding of how 
these different aspects correlate with the network capacity. For that purpose, it is convenient to have 
available a large number of network topologies, which can be obtained using, for example, generative 
graph models [7]. 

The problem of estimating the optical channel capacity has been the focus of many studies. Some 
rely on accurate numerical simulations [6], while others offer detailed analytical models based on 
either the Gaussian noise (GN) model [8–10] or a regular perturbation model [11]. More recently, the 
topic of optical network capacity has also received some attention. In [12], the authors presented an 
algorithm to maximize the capacity of an optical network in the presence of physical layer 
impairments. The algorithm was based on an integer linear program (ILP) and was designed with 
the goal of optimizing routing, wavelength assignment, modulation format, and launched power 
allocation. An alternative approach for capacity estimation using a heuristic algorithm for routing 
and wavelength assignment instead of the ILP was provided in [13]. To understand how network 
topology characteristics influence network capacity [14] proposed a new generative graph model. 
This model is based on the classical Barabási-Albert model, which has been properly modified to 
incorporate physical layer aspects. The published results showed that it can maximize the network 
capacity in comparison with classical models. Recently, a framework was also proposed to study the 
relationship between various topological parameters and network performance metrics, including 
network capacity [15]. That framework provided valuable insights into the key parameters that affect 
network capacity. 

Apart from the last work, which relies on dynamic routing, all the other referred studies on 
network capacity used static routing with no channel blocking. However, since the number of optical 
channels per optical fiber is limited, it makes sense to also use a constraint routing approach, as this 
limitation can lead to blocking under certain conditions. Another topic that deserves consideration is 
studying how the symbol rate (also referred to as baud rate) impacts network capacity. In fact, there 
has been considerable research aiming at increasing the symbol rate within optical networks. 
Currently, commercial deployments typically operate between 60-90 Gbaud, while field trials have 
reached 130 Gbaud [16], and laboratory demonstrations have achieved symbol rates of 200 Gbaud 
[17]. 

This paper is focused on the topic of capacity in optical backbone networks and examines how 
different network and physical layer parameters influence its value, giving special emphasis to 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 March 2024                   doi:10.20944/preprints202403.0018.v1



 3 

 

symbol rate. We present an alternative approach to evaluate the capacity of optical networks that 
uses a constrained routing algorithm to account for the limitations in the number of optical channels 
and use the metric optical reach, which measures the maximum distance an optical channel can 
effectively propagate, to describe the impact of the physical layer. Furthermore, a strategy to address 
the blocking caused by insufficient spectral resources (wavelengths) by adding additional optical 
fibers is also proposed. The paper’s results are obtained across hundreds of network topologies 
generated using the modified Waxman method. 

The rest of the paper is organized as follows: Section 2 reviews the concept of channel and 
introduces the necessary background to determine optical reach. Section 3 defines the method used 
to generate random networks. Section 4 introduces a suitable approach to compute the optical 
network capacity taking into account the constraints due to the limited number of optical channels 
per fiber, while Section 5 describes a strategy to overcome blocking by adding more fibers per link. 
Section 6 provides some simulation results and finally, Section 7 summarizes and concludes the 
paper. 

2. Optical Channel Capacity 

An optical channel can be seen as a communication pathway through which information is 
transmitted in the optical domain from a sender to a receiver, utilizing an optical fiber as a 
transmission medium. This channel is characterized by its carrier frequency denoted as 𝜈𝜈𝑐𝑐 (or carrier 
wavelength 𝜆𝜆𝑐𝑐) and occupied bandwidth, denoted as 𝐵𝐵𝑐𝑐ℎ . The minimum bandwidth that guarantees 
a signal transmission over the channel without inter-symbol interference is defined by the Nyquist 
criterion and is equal to the symbol rate 𝑅𝑅𝑠𝑠 [4]. The capacity of an optical channel is defined as the 
maximum data rate at which the information can be effectively transmitted through the channel. This 
capacity is typically expressed in bit/s. This capacity can be calculated using Shannon’s theory [3], 
under the assumption that the noise sources present in these channels are modelled as AWGN 
sources, giving [6] 

𝐶𝐶𝑐𝑐ℎ = 2𝑅𝑅𝑠𝑠 log2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆)      [bit/s]     (1) 

where 𝑆𝑆𝑆𝑆𝑆𝑆 is the signal-to-noise ratio at the receiver side computed for a channel bandwidth equal 
to 𝑅𝑅 𝑠𝑠, given by 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑃𝑃𝑐𝑐ℎ
𝑁𝑁0𝑅𝑅𝑠𝑠

 (2) 

where 𝑃𝑃𝑐𝑐ℎ  is the average optical power per channel in watt, and 𝑁𝑁0  is the noise power spectral 
density (PSD) in watt/Hz. Note that the factor 2 in (1) stems from the fact that the optical fiber channel 
supports two optical channels with orthogonal polarizations, commonly referred to as polarization 
multiplexed (PM) optical channels. 

One important noise source in optical communications systems is the amplified spontaneous 
emission (ASE) noise. This noise is generated inside of optical amplifiers simultaneously with signal 
amplification and can be effectively described by a random optical field with statistical properties 
like those of AWGN noise [6]. Optical amplifiers are used to compensate for the optical fiber losses. 
To achieve this, optical amplifiers, typically EDFAs, are placed at discrete intervals along an optical 
link, with each amplifier exactly compensating the loss incurred by each fiber span. For a link of 
length 𝐿𝐿 composed of 𝑁𝑁𝑠𝑠 identical spans, the span length is 𝐿𝐿𝑠𝑠 = 𝐿𝐿/𝑁𝑁𝑠𝑠, while the span attenuation 
is 𝐴𝐴𝑠𝑠 = 𝛼𝛼 𝐿𝐿𝑠𝑠, where α is the fiber attenuation coefficient in dB/km. Typically, 𝛼𝛼 is approximately 0.2 
dB/km, within the 1550-nm wavelength region, denoted as C-band. The PSD of the ASE noise at the 
end of a chain of 𝑁𝑁𝑠𝑠 amplifiers, spaced by fiber spans of length 𝐿𝐿𝑠𝑠, is given by 

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎,1𝑁𝑁𝑠𝑠 = ℎ𝜈𝜈𝑐𝑐𝑓𝑓𝑛𝑛(𝑎𝑎𝑠𝑠 − 1)𝑁𝑁𝑠𝑠 (3) 

where 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎,1 is the ASE per span, ℎ is the Planck’s constant (in joule-second),  𝑓𝑓𝑛𝑛 is the noise figure 
(𝑓𝑓𝑛𝑛 = 10𝐹𝐹𝑛𝑛/10, with 𝐹𝐹𝑛𝑛 in dB), and 𝑎𝑎𝑠𝑠 = 10𝐴𝐴𝑠𝑠/10. 

Another significant noise source is nonlinear interference (NLI) resulting from the Kerr effect in 
optical fibers. The Kerr effect refers to the dependence of the refractive index of the fiber on the 
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transmitted signal power. This characteristic makes the optical fiber channel intrinsically non-linear 
and, in this sense, different from other transmission media used for information transfer that have a 
linear behavior. Interestingly, it has been demonstrated in [18] through simulations and experiments 
that the impact of NLI noise on WDM links, supported in dispersion uncompensated fibers, can also 
be modeled as additive Gaussian noise. Furthermore, it was shown in [9] that under specific 
conditions, such as the Nyquist limit, the white noise assumption leads to quite accurate results. Note 
that, such limit is achieved when all the WDM channels have a rectangular spectral width and a 
frequency spacing equal to 𝑅𝑅𝑠𝑠 . This permits us to characterize the NLI noise also as an AWGN 
process with power spectral density of 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 . As the ASE and NLI noises are assumed to be 
uncorrelated their power spectral densities simply add, resulting in 𝑁𝑁0 = 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 . In these 
circumstances, the signal-to-noise ratio of an optical channel can be described as 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑃𝑃𝑐𝑐ℎ

(𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛)𝑅𝑅𝑠𝑠
 (4) 

where 𝑃𝑃𝑐𝑐ℎ  denotes the launched average optical power per channel. 
A rigorous characterization of 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 is not an easy task, and many studies have been published 

on this topic (see, for example [18,19]). Fortunately, some closed-form approximations have also been 
published [8,18], which simplifies the evaluation of 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛. One of these approximations, which is based 
on the white noise assumption, allows to write the PSD of the NLI at the end of a fiber link with 𝑁𝑁𝑠𝑠 
spans in the following way: 

𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜇𝜇𝑛𝑛𝑁𝑁𝑠𝑠𝑃𝑃𝑐𝑐ℎ3  (5) 

where 𝜇𝜇𝑛𝑛 is the NLI coefficient per span given by 

𝜇𝜇𝑛𝑛 ≈ 𝜇́𝜇𝑛𝑛
1
𝑅𝑅𝑠𝑠3

= �
2
3
�
3

𝛾𝛾2𝐿𝐿𝑒𝑒𝑒𝑒
ln �𝜋𝜋2|𝛽𝛽2|𝐿𝐿𝑒𝑒𝑒𝑒𝐵𝐵𝑊𝑊𝑊𝑊𝑊𝑊

2 �
𝜋𝜋|𝛽𝛽2|

1
𝑅𝑅𝑠𝑠3

∙ (6) 

In the last equation, one can identify parameters related with the optical fiber, such as 𝛾𝛾, the fiber 
nonlinear coefficient in W−1km−1, 𝛽𝛽2, the fiber dispersion in ps−2km−1 and 𝐿𝐿𝑒𝑒𝑒𝑒, the span effective 
length in km. Additionally, there are parameters related with the signal, such as 𝐵𝐵𝑊𝑊𝑊𝑊𝑊𝑊, the optical 
bandwidth of the WDM signal in Hz, assumed to be composed of 𝑁𝑁𝑐𝑐ℎ channels spaced by Δ𝜈𝜈𝑐𝑐ℎ, in 
such a way that 𝐵𝐵𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑁𝑁𝑐𝑐ℎΔ𝜈𝜈𝑐𝑐ℎ. In addition, the span effective length is given as 

𝐿𝐿𝑒𝑒𝑒𝑒 = (1 − exp(−2𝑎𝑎𝑁𝑁𝐿𝐿𝑠𝑠)) (2𝛼𝛼𝑁𝑁⁄ )     (7) 

where 𝐿𝐿𝑠𝑠  is the span length and 𝑎𝑎𝑁𝑁  is the fibre attenuation coefficient in Np/km, i,e. 𝛼𝛼𝑁𝑁 =
𝛼𝛼𝑑𝑑𝑑𝑑/𝑘𝑘𝑘𝑘 /20 log10 𝑒𝑒. Using (4), (5) and (6), one arrives to 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑃𝑃𝑐𝑐ℎ

�𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎,1 + 𝜇𝜇𝑛𝑛𝑃𝑃𝑐𝑐ℎ3 �𝑁𝑁𝑠𝑠𝑅𝑅𝑠𝑠
∙ (8) 

From (8) one can derive the following equation for the optimum launch power [9] 

𝑃𝑃𝑐𝑐ℎ
𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑅𝑅𝑠𝑠�

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎,1

2𝜇𝜇𝑛́𝑛

3
∙ (9) 

The maximum channel capacity can be determined by inserting (8) and (9), into (1), giving 

𝐶𝐶𝑐𝑐ℎ = 2𝑅𝑅𝑠𝑠 log2 �1 +
𝐿𝐿𝑠𝑠
3𝐿𝐿 �

4
𝜇́𝜇𝑛𝑛𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎,1

2
3

� ∙ (10) 

From (9) and (10) we can see that: 
1) 𝑃𝑃𝑐𝑐ℎ

𝑜𝑜𝑜𝑜𝑜𝑜  depends on ASE and NLI noise and varies linearly with the symbol rate. For the parameters 
given in Table 1 we arrive to 𝑃𝑃𝑐𝑐ℎ

𝑜𝑜𝑜𝑜𝑜𝑜 = 0.89 dBm for 𝑅𝑅𝑠𝑠 = 64 Gbaud, and 𝑃𝑃𝑐𝑐ℎ
𝑜𝑜𝑜𝑜𝑜𝑜=3.89 dBm for 𝑅𝑅𝑠𝑠 =

128 Gbaud. 
2) The channel capacity increases linearly with the symbol rate and decreases linearly with the total 

link length. 
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Table 1. Optical fiber and system parameters. 

Parameter Symbol Value 
Fiber Attenuation Coefficient 𝛼𝛼 0.22 dB/km 
Fiber Dispersion Parameter 𝛽𝛽2 −21.7 𝑝𝑝𝑝𝑝2𝑘𝑘𝑘𝑘−1 
Fiber Nonlinear Coefficient 𝛾𝛾 1.27 𝑊𝑊−1𝑘𝑘𝑘𝑘−1 

Carrier Frequency 𝜈𝜈𝑐𝑐 193.41 THz 
Carrier Wavelength  𝜆𝜆𝑐𝑐 1550 nm 

Span length 𝐿𝐿𝑠𝑠 80 km 
EDFA noise figure 𝐹𝐹𝑛𝑛 5 dB 

Symbol rate 𝑅𝑅𝑠𝑠 64 Gbaud, 128 Gbaud 
Channel Spacing Δ𝜈𝜈𝑐𝑐ℎ 64 GHz, 128 GHz 

Number of Channels 𝑁𝑁𝑐𝑐ℎ 75, 37 
WDM bandwidth  𝐵𝐵𝑊𝑊𝑊𝑊𝑊𝑊 4800 THz 

The optical reach, also denoted as transmission reach, is an important parameter used in the 
context of this work to describe the impact of the physical layer on the performance of an optical 
channel. The optical reach is defined here as the maximum length of an optical channel for which a 
certain value of the capacity can be met. As this length can be viewed as the total link length 𝐿𝐿, one 
can use (10) to obtain the optical reach for various capacity values. Assuming, as seen before, that for 
the 64 Gbaud case, 𝐿𝐿 is a multiple of the span length, Table 2 shows the optical reach obtained using 
(10) for different values of the Shannon channel capacities. Furthermore, in the case of 128 Gbaud, 
we considered a 10% reach reduction compared to the previous scenario, to address additional 
limitations not taken into account in the formulation that leads to (10) (see [19]). Although, these 
capacity values can be seen as upper bounds, it is worth noting that a recent field trial reported an 
800 Gb/s transmission over a distance of 6600 km for a symbol rate of 120 Gbaud [20], which is not 
far from the values of the reach given in Table 2 for that bit rate. 

Table 2. Optical reach values for two symbol rates. 

Reach (km) 
64 Gbaud 

Capacity (Gb/s) 
64 Gbaud 

Reach (km) 
128 Gbaud 

Capacity (Gb/s) 
128 Gbaud 

23120 200 20808 400 
11120 300 10008 600 
5840 400 5256 800 
3280 500 2952 1000 
1760 600 1584 1200 
1040 700 936 1400 
560 800 504 1600 
320 900 288 1800 
160 1000 144 2000 
80 1100 72 2200 

3. Network Topology Model 

In an abstract way, an optical network can be described as an undirected graph 𝐺𝐺(𝑉𝑉,𝐸𝐸), with 
𝑉𝑉 = {𝑣𝑣1, … , 𝑣𝑣𝑁𝑁} denoting a set of nodes and 𝐸𝐸 = {𝑒𝑒1, … , 𝑒𝑒𝐾𝐾} denoting a set of links, where 𝑁𝑁 = |𝑉𝑉| is 
the number of nodes and 𝐾𝐾 = |𝐸𝐸| is the number of links. In transparent optical networks all node 
functionalities take place in optical domain, and the nodes are built upon reconfigurable optical add-
drop multiplexers (ROADMs). Meanwhile, an optical link represents a physical interconnection 
between two nodes, implemented using optical fibers and optical amplifiers. In bidirectional links, 
some fibers are used in one direction and others (typically the same number) in the opposite direction. 
Each optical fiber supports WDM signals, meaning it carries a specific number of optical channels. 
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Besides 𝑁𝑁 and 𝐾𝐾, other important parameters are the node degree 𝛿𝛿(𝐺𝐺), the network diameter 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺), and the edge connectivity 𝜆𝜆(𝐺𝐺). 𝛿𝛿(𝐺𝐺)defines the number of links connected to a node, 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺) is the length of the longest shortest path between any two nodes, while 𝜆𝜆(𝐺𝐺) represents the 
maximum number of link-disjoint paths between two nodes. The 𝜆𝜆-connectivity is a measure of a 
network’s resilience against link failures, making it a key parameter in designing protection paths in 
optical networks. 

To have a clear understanding of how different topological parameters impact network capacity, 
it is paramount to have available large numbers of network topologies, which can be obtained from 
a set of random graphs designed to describe adequately the characteristics of real-world optical 
networks. Erdős-Rényi and Waxman models are widely used to generate random networks. The last 
model works by randomly placing nodes in a two-dimensional space with specific coordinates and 
connecting them with links based on a probability function determined by the distance between those 
nodes. In the Waxman model, the probability that node 𝑖𝑖 establishes a link to node 𝑗𝑗 is given by [7]: 

𝑃𝑃(𝑖𝑖, 𝑗𝑗) = 𝛽𝛽 exp
−𝑑𝑑(𝑖𝑖, 𝑗𝑗)
𝐿𝐿𝑤𝑤𝛼𝛼

 (11) 

where 𝑑𝑑(𝑖𝑖, 𝑗𝑗) is the Euclidean distance between the nodes, 𝐿𝐿𝑤𝑤 is the maximum distance between 
any two nodes, and 𝛼𝛼 and 𝛽𝛽 are parameters in the range of 0 to 1. 

In contrast, the first model does not reference node positions, and the links are added with a 
uniform probability. Assigning the nodes positions in space makes the Waxman model better suited 
for describing realistic optical networks. However, the Waxman model cannot generate 𝜆𝜆-connected 
graphs, which is a significant limitation in the context of optical backbone networks, where 
survivability is a primordial feature. To overcome such a limitation, one uses in this work the 
modified Waxman model [7]. 

The modified Waxman model is designed to generate optical backbone networks survivable to 
single link failures, conceived as interconnected sets of subnetworks. In this sense, the two-
dimensional space is divided into a set of regions where nodes are randomly placed in the first part 
of the process. In the subsequent steps, nodes are interconnected within each region and then across 
different regions according to the Waxman probability, subject to certain constrains in terms of node 
degree and 𝜆𝜆-connectivity. For exemplification purposes, Figure 1 shows a generated graph with 
𝑁𝑁 = 10 , 𝐾𝐾 = 20 , which gives an average node degree of < 𝛿𝛿 >= 2𝐾𝐾 𝑁𝑁⁄ = 4. Two distinct 
subnetworks 𝑆𝑆1  and 𝑆𝑆2  are clearly identified within the graph with 𝑆𝑆1 = {0, 1, 2, 3}  and 𝑆𝑆2 =
{5, 7, 8, 9}. Furthermore, 𝜆𝜆(𝐺𝐺) = 3, with this value being determined by calculating the minimum 
number of links that need to be removed to disconnect the graph. 

 
Figure 1. Network topology generated by the modified Waxman model with 𝑁𝑁 = 10, 𝐾𝐾 = 20 and 
𝜆𝜆(𝐺𝐺)=3. 
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To ensure that the generated graphs accurately mimic real optical backbone networks it is 
important to compare certain statistics. In [7], it is demonstrated that the node degree distribution of 
these networks follows a Poisson distribution. Figure 2 shows that the node degrees of the random 
graphs generated by the modified Waxman model closely approximate the Poisson statistics seen in 
real networks. 

  
(a) (b) 

Figure 2. Average node degree frequency and Poisson distribution for random graphs generated with 
the modified Waxman model: (a) 𝑁𝑁 = 50 and< 𝛿𝛿 >= 6.52; (b) 𝑁𝑁 = 100 and< 𝛿𝛿 >= 6.0. 

4. Constrained Routing and Network Capacity 

Network capacity, also known as throughput, can be defined as the maximum amount of data 
that a network can handle per unit of time. This capacity depends on various network properties 
such as the physical and logical topology (traffic profile), optical reach, link capacity, node structure, 
routing, and wavelength assignment, etc. Physical topology describes the interconnection pattern of 
nodes and typically is known in advance. Nodes are considered simultaneously as the source and 
destination of traffic. A starting point in the network capacity evaluation is the definition of the traffic 
demand profile. This profile is defined by the traffic matrix 𝑇𝑇 = [𝑡𝑡𝑠𝑠,𝑑𝑑 ], where each entry 𝑡𝑡𝑠𝑠,𝑑𝑑 
represents a traffic demand, or in other terms, the volume of traffic flowing from a source node 𝑠𝑠 to 
a destination node 𝑑𝑑, with 𝑠𝑠,𝑑𝑑 ∈ 𝑉𝑉. In this analysis, it is assumed that the traffic profile is uniform 
and equal among all node pairs, which corresponds to 

𝑡𝑡𝑠𝑠,𝑑𝑑 = �1 𝑠𝑠 ≠ 𝑑𝑑
0 𝑠𝑠 = 𝑑𝑑 (12) 

Note that this traffic profile describes a full-mesh logical topology, in the sense that each node is 
logically connected to every other node within the network [21]. Another important point in the 
network capacity evaluation is the link characterization. The link (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 can be described by two 
attributes: 1) length 𝑙𝑙𝑖𝑖,𝑗𝑗 ; 2) capacity 𝑐𝑐𝑖𝑖,𝑗𝑗 determined by the number of optical channels 𝑁𝑁𝑐𝑐ℎ available 
in the links, given by 𝑐𝑐𝑖𝑖,𝑗𝑗 = 𝑁𝑁𝑐𝑐ℎ. As already seen, this number is limited by the bandwidth 𝐵𝐵𝑊𝑊𝑊𝑊𝑊𝑊 and 
the symbol rate 𝑅𝑅𝑠𝑠. 

For each traffic demand, it is necessary to find a path in the physical topology between each pair 
of nodes. This process is known as routing. Since there are multiple paths between each pair of nodes, 
the objective is to determine the shortest path using a heuristic like the Dijkstra’s algorithm. The 
shortest path corresponds to the one that minimizes the total path length, defined as the sum of the 
lengths of all the links traversed by the path. However, in this case the routing is constrained by the 
capacity 𝑐𝑐𝑖𝑖,𝑗𝑗  leading to the concept of constrained routing (CR) problem [22]. The objective of this 
problem is to maximize the number of allocated traffic demands while minimizing the blocking ratio 
in a network with limited link capacity. The input parameters include the weighted graph 𝐺𝐺(𝑉𝑉,𝐸𝐸), 
with the link (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸, being characterized by 𝑙𝑙𝑖𝑖,𝑗𝑗 and 𝑐𝑐𝑖𝑖,𝑗𝑗 , and the traffic matrix 𝑇𝑇 = [𝑡𝑡𝑠𝑠,𝑑𝑑], while the 
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output parameters include the list of blocked traffic demands 𝐵𝐵 = [𝑏𝑏𝑠𝑠,𝑑𝑑] and the list of established 
paths Ρ = [𝜋𝜋𝑠𝑠,𝑑𝑑], with the path 𝜋𝜋𝑠𝑠,𝑑𝑑 having the length 𝑙𝑙�𝜋𝜋𝑠𝑠,𝑑𝑑� = ∑ 𝑙𝑙𝑖𝑖,𝑗𝑗𝑖𝑖,𝑗𝑗 . 

Furthermore, we assume that each path 𝜋𝜋𝑠𝑠,𝑑𝑑 (also denoted as lightpath) computed using the CR 
approach is physically established using an optical channel with a specific wavelength, which is 
computed in this work using a first-fit heuristic [23]. In other words, a channel 𝑘𝑘 = (𝑠𝑠,𝑑𝑑), defined as 
𝑘𝑘 = {𝜋𝜋𝑘𝑘 , 𝜆𝜆𝑘𝑘} ∈ 𝑆𝑆  has an associated path  𝜋𝜋𝑘𝑘  and wavelength 𝜆𝜆𝑘𝑘 , and belongs to the set of optical 
channels required to implement a logical full mesh topology 𝑆𝑆 = {1, 2, … ,𝑁𝑁(𝑁𝑁 − 1)}. In the process 
of assigning wavelengths to the optical channels, which occurs during the routing process, it must be 
assured that all the optical channels that traverse the same link are assigned different wavelengths, 
as otherwise there would be interference between the channels. That means that there can be different 
channels using the same wavelength, as long as there are no common links in their paths. 

The algorithm, denoted as Algorithm 1, used for solving this problem can be described as 
follows: 
1) Compute the shortest paths: 

• Run the Dijkstra’s algorithm to find the shortest path between each source-destination node 
pair in the network (𝜋𝜋𝑠𝑠,𝑑𝑑), considering the total path length 𝑙𝑙�𝜋𝜋𝑠𝑠,𝑑𝑑� as the metric that defines 
that computation. 

2) Order the traffic demands: 
• Apply a specific sorting strategy (e.g., shortest-first, longest-first, largest-first) to order traffic 

demands 𝑡𝑡𝑠𝑠,𝑑𝑑 . If the order is “shortest” the traffic demands are sorted by path length in 
ascending order, while for the “longest” order the traffic demands are sorted by path length 
in descending order. Furthermore, if the order is “largest” the traffic demands are sorted by 
their value in descending order. 

3) Route the demand, update link loads and assign a wavelength: 
• For each traffic demand 𝑡𝑡𝑠𝑠,𝑑𝑑 , in accordance with the order established in Step 2, route it 

through 𝜋𝜋𝑠𝑠,𝑑𝑑, updating the load (number of demands routed through the link) of each link in 
𝜋𝜋𝑠𝑠,𝑑𝑑, and assign a wavelength 𝜆𝜆𝑘𝑘 to that optical channel (a wavelength being represented by 
an integer between 1 and 𝑁𝑁𝑐𝑐ℎ). 

4) Blocking: 
• If, in Step 3, a link (or more than one) in 𝜋𝜋𝑠𝑠,𝑑𝑑 doesn’t have enough residual capacity (which is 

defined as the difference between the link capacity and its load) or if a wavelength that fits all 
links of the path doesn’t exist (respecting the principle that two optical channels with the same 
wavelength cannot exist on the same link), then the traffic demand 𝑡𝑡𝑠𝑠,𝑑𝑑 is blocked. 

5) Remove links and determine alternative shortest paths: 
• After routing each traffic demand, remove all the links that have residual capacity zero from 

the weighted graph. 
• With the updated topology, determine new shortest paths, as in Step 1, so that alternative 

paths are found for the remaining traffic demands. 
• Go to Step 3, to route the next traffic demand. 
To compute the total network capacity, one can apply the concepts of channel capacity 

introduced in Section 2, which can be written as [14] 

𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 = �𝐶𝐶𝑐𝑐ℎ,𝑘𝑘
𝑘𝑘∈𝑆𝑆

 (13) 

where 𝐶𝐶𝑐𝑐ℎ,𝑘𝑘 is the capacity of channel 𝑘𝑘, which according to (11) and (13) becomes: 

𝐶𝐶𝑐𝑐ℎ,𝑘𝑘 = 2𝑅𝑅𝑠𝑠 log2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘) (14) 

with 𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘 being the 𝑆𝑆𝑆𝑆𝑆𝑆 of channel 𝑘𝑘. The 𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘 can be readily evaluated using (4), assuming 
that the optical nodes (ROADMs) are ideal and, as a result, do not affect the calculations. In this 
context, the number of spans for optical channel 𝑘𝑘  is denoted as 𝑛𝑛𝑠𝑠,𝑘𝑘 = ⌊𝐿𝐿𝑘𝑘/𝐿𝐿𝑠𝑠⌋ , with 𝐿𝐿𝑘𝑘 
representing the length of path 𝜋𝜋𝑘𝑘. To avoid calculating the 𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘 and reduce the computation time, 
we can take advantage of the analysis undertaken in Section 2 and use the optical reach to obtain the 
channel’s capacities. For instance, by knowing the lengths of the different paths and utilizing the data 
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from Table 1, we can obtain the capacities of the different channels for a span length of 80 km and 
two values of the symbol rate (64 Gbaud and 128 Gbaud) (see Table 2). These capacities are referred 
to as Shannon capacities because the reach values are obtained using the Shannon theory. 

An additional important metric for network analysis is the network-wide average channel 
capacity, defined as [24] 

𝐶𝐶𝑐̅𝑐ℎ = �𝐶𝐶𝑐𝑐ℎ,𝑘𝑘
𝑘𝑘∈𝑆𝑆

�𝛾𝛾𝑘𝑘
𝑘𝑘∈𝑆𝑆

�  (15) 

where 𝛾𝛾𝑘𝑘 denotes the expected utilization ratio of channel 𝑘𝑘. For the sake of simplicity, it is assumed 
that 𝛾𝛾𝑘𝑘 = 1 for all channels. As a result, the sum in the denominator of (15) equals the total number 
of paths in the network, which for a full-mesh logical topology, amounts to 𝑁𝑁(𝑁𝑁 − 1). With this 
simplification, the network capacity for a full-mesh logical topology reduces to 

𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐶𝐶𝑐̅𝑐ℎ × 𝑁𝑁(𝑁𝑁 − 1) × (1 − 𝐵𝐵�) (16) 

where 𝐵𝐵�  is the average blocking ratio obtained as 

𝐵𝐵� = �𝑏𝑏𝑘𝑘 
𝑘𝑘∈𝑆𝑆

(𝑁𝑁(𝑁𝑁 − 1) ∙�  (17) 

5. Unconstrained Routing and Fiber Assignment 

Optical backbone networks are typically designed to avoid blocking of traffic demands. Blocking 
occurs when there is insufficient capacity to accommodate all the incoming traffic demands at a 
particular node or link. In the previous analysis, blocking occurred due to the limited number of 
optical channels and their corresponding wavelengths on each link. This limitation arises, namely, 
from bandwidth constraints of the optical amplifiers, which, in this work, are assumed to be 
operating in the C-band. To address the blocking problem in optical backbone networks, one can 
utilize optical amplifiers that operate in other bands different from the C-band, such as the L-band 
and the S-band. Nevertheless, this solution has some drawbacks: one can refer, for example, to the 
technical difficulties associated with building optical amplifiers to operate in the S-band, and the need 
to add band multiplexer/ demultiplexers to separate the different bands for individual amplification, 
which can significantly increase the transmission losses. 

A more straightforward solution for increasing the overall capacity of an optical backbone 
network is to add more optical fibers per link. However, this can be a costly and complex solution, 
particularly when extensive upgrades are required. Nonetheless, in common scenarios where 
network operators own dark fibers, lighting additional fibers emerges as a viable and cost-effective 
solution. This study will explore this approach as a means of overcoming blocking. To achieve this 
objective a fiber-assignment algorithm, designated as Algorithm 2, will be proposed. The input 
parameters of this algorithm are also a weighted graph 𝐺𝐺(𝑉𝑉,𝐸𝐸), as in Algorithm 1, but now with 
𝑐𝑐𝑖𝑖,𝑗𝑗 = ∞, the traffic matrix 𝑇𝑇 = [𝑡𝑡𝑠𝑠,𝑑𝑑] and the maximum number of available optical channels per fiber 
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑁𝑁𝑐𝑐ℎ. On the other hand, the output parameters comprise the list of established paths Ρ =
[𝜋𝜋𝑠𝑠,𝑑𝑑] with the path 𝜋𝜋𝑠𝑠,𝑑𝑑 having the length 𝑙𝑙(𝜋𝜋𝑠𝑠,𝑑𝑑), as in the Algorithm 1, and an 𝑁𝑁 × 𝑁𝑁 matrix with 
the number of optical fibers per link, 𝑁𝑁𝑁𝑁 = [𝑛𝑛𝑛𝑛𝑖𝑖,𝑗𝑗], where 𝑛𝑛𝑛𝑛𝑖𝑖,𝑗𝑗 is the number of optical fibers in the 
link (𝑖𝑖, 𝑗𝑗). The first part of the algorithm is equivalent to Steps 1-3 of Algorithm 1, but now using an 
unconstrained routing strategy, which permits obtaining the list Ρ, and an 𝑁𝑁 × 𝑁𝑁 matrix with the 
wavelengths in each link, 𝑊𝑊 = [𝑤𝑤𝑖𝑖,𝑗𝑗], where 𝑤𝑤𝑖𝑖,𝑗𝑗 is the list of all the wavelengths 𝜆𝜆𝑘𝑘 present in the 
link (𝑖𝑖, 𝑗𝑗), 𝑤𝑤𝑖𝑖,𝑗𝑗 = [𝜆𝜆𝑘𝑘]. Subsequently, the next steps of the algorithm are the following: 
4) Assign fibers when there is no traffic in a link: 

• If there is no traffic in that link but the link does exist in the network’s physical topology, set 
𝑛𝑛𝑛𝑛𝑖𝑖,𝑗𝑗 = 1 

5) Assign fibers when there is traffic in a link: 
• Set 𝑛𝑛𝑛𝑛𝑖𝑖,𝑗𝑗 = max (𝑛𝑛𝑛𝑛𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟_𝑤𝑤𝑖𝑖,𝑗𝑗), where 𝑛𝑛𝑛𝑛𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟_𝑤𝑤𝑖𝑖,𝑗𝑗 is the number of repeated wavelengths 

in 𝑤𝑤𝑖𝑖,𝑗𝑗, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 
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Note that in this context, where unconstrained routing is being done, the number of wavelengths 
in each link does not have a limit, so the value attributed to a given 𝜆𝜆𝑘𝑘 is any natural number (and 
not bounded by 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚, as in Algorithm 1). To determine the number of fibers needed in each link, the 
maximum number of “repeated wavelengths” in that link needs to be determined. A wavelength is 
considered a “repeated wavelength” when its value modulo 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  (the modulo operation referring 
to the remainder of a division) is equal to that of another wavelength also present in that link. For 
instance, if 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  is 75, then wavelengths 1 and 76 are “repeated” because 76 modulo 75 equals 1. 
This implies that both wavelengths would occupy the same channel in a link, hence they are 
“repeated”. This concept is crucial in determining the number of fibers needed for a link, ensuring 
that each “repeated” wavelength has its own fiber. Finding the maximum count of “repeated 
wavelengths” will ensure that there are enough fibers to accommodate all the wavelengths, thus 
assuring that there are no channels with the same wavelength on the same fiber. 

By knowing the length 𝑙𝑙(𝜋𝜋𝑠𝑠,𝑑𝑑) of all the paths belonging to Ρ, it is possible to compute the 
capacity of the optical channel corresponding to those paths using the values of the reach given in 
Table 2 and consequently computing the average channel capacity using (15) and total network 
capacity using (16) with 𝐵𝐵� = 0. To assess the network performance in the present scenario, it is also 
necessary to account for the network cost. For simplification purpose, we assume that the 
transponders cost can be neglected in comparison with fiber cost, which seems to be a reasonable 
assumption for optical backbone network [25]. In this case the network cost is given as 

Λ𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑙𝑙𝑖𝑖,𝑗𝑗
𝑖𝑖,𝑗𝑗

× 𝑛𝑛𝑛𝑛𝑖𝑖,𝑗𝑗 ∙ (18) 

6. Results and Discussion 

To investigate the dependence of network capacity on network parameters, five sets, each 
comprising 200 graphs, were obtained using the modified Waxman model described in Section 3, 
with the number of nodes varying from 20 to 60 in increments of 10. All the graphs were generated 
assuming a bi-dimensional plane with dimension 1000×1000 km and Waxman parameters 𝛼𝛼 = 𝛽𝛽 =
0.4, as well as an average node degree varying randomly from 2 to 4. These sets of random networks 
were used in both routing scenarios described previously, i.e., constrained routing (Section 5) and 
unconstrained routing with fiber assignment (Section 6). 

In the first scenario, the routing was performed considering a full-mesh logical topology 
described by the traffic profile (12), using Algorithm 1 and the shortest-first sorting strategy. The 
study was undertaken for two symbol rate values, 64 Gbaud and 128 Gbaud, considering the optical 
reach values provided in Table 2, and one fiber pair per link, with each fiber being used in a 
communication direction. Furthermore, the number of optical channels per fiber was limited to 75 
for 64 Gbaud and 37 for 128 Gbaud. This limitation arises from the fixed bandwidth of 4800 GHz in 
optical amplifiers, inherently leading to blocking as the number of traffic demands increases. 

The values of the computed total network capacity are depicted in Figure 3 using boxplots. A 
boxplot is a way of illustrating the statistical distribution of a data set and include the median, the 
interquartile range, and both the minimum and the maximum values of the set. The boxplots in 
Figure 3 also show outliers, represented as small circles, to describe data samples, that differ 
significantly from the rest of the data set. 
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(a) (b) 

Figure 3. Total network capacity in the case of constrained routing: (a) 75 channels, 64 Gbaud; (b) 37 
channels, 128 Gbaud. 

It can be seen from Figure 3 that using a symbol rate of 128 Gbaud makes it possible to achieve 
a higher total network capacity in comparison to the 64 Gbaud case, although the extent of the 
improvement tends to decrease as the number of nodes increases. Comparing the median capacity 
values between the sets of generated graphs, transmission at 128 Gbaud results in an improvement 
over the transmission at 64 Gbaud of approximately: 34%, 24%, 19%, 17% and 16%, for the respective 
sets of graphs, listed in ascending order of number of nodes. The average improvement across all sets 
is around 22%. The decrease in performance improvement verified in networks with more nodes can 
be explained by the slight increase in the blocking probability, which, for example, for the case of 60 
nodes, rises from 0.6 to 0.7 as the symbol rates goes from 64 Gbaud to 128 Gbaud, as can be seen in 
Figure 4. The improvement in the networks’ capacity, coupled with the simultaneous reduction in 
the number of wavelengths, which are halved, represents an important advantage in utilizing 128 
Gbaud compared to 64 Gaud. 

  

  
(a) (b) 

Figure 4. Average number of traffic demands and average blocking probability as a function of the 
number of nodes (average across each set). (a) 75 channels, 64 Gbaud; (b) 37 channels, 128 Gbaud. 

The previous analysis deals with the constrained routing of traffic demands due to the limited 
number of optical channels per link. As can be seen, this leads to blocking, which increases with the 
size of the network, as shown in Figure 4. This figure depicts both the number of blocked traffic 
demands and the blocking probability, which is obtained by dividing the number of blocked traffic 
demands by 𝑁𝑁 × (𝑁𝑁 − 1). To address the blocking problem, one can enhance the link capacity by 
adding more optical fibers, following the strategy outlined in Algorithm 2. As a result, the network 
achieves an unconstrained total capacity, determined only by the load of the traffic demands, without 
any imposed constraint. This capacity is shown in Figure 5 also using boxplots. 
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(a) (b) 

Figure 5. Total network capacity in the case of unconstrained routing: (a) 64 Gbaud; (b) 128 Gbaud. 

The first conclusion we can draw from this figure is that the total capacity increases 
approximately in a quadratic manner with the number of nodes (~𝑁𝑁2). Another noteworthy aspect 
is the huge capacities achieved in this scenario, which corresponds to about 2.5 Pbit/s for 60 node 
networks and a symbol rate of 64 Gbaud (see Figure 5a). It can also be referred that the total network 
capacity median values for a 30-node network (~ 660 Tbit/s) are similar to the values reported in [14] 
(Figure 9) for the 30-node CONUS topology generated using the Erdős-Rényi model. As expected, 
Figure 5b shows a twofold increase in the total capacity, when the symbol rate is set at 128 Gbaud. 

According to what is expected, the significant increase in capacity comes at the cost of a 
substantial rise in network cost, which translates into the increase of the optical fiber length to be 
deployed. Figure 6 shows the total fiber cost, expressed in terms of the total fiber length, as a function 
of the number of nodes. This figure shows a law of variation of the cost as a function of the number 
of nodes similar to the one of the capacity referred above. A prominent conclusion we can draw from 
Figure 6 is that when the symbol rate increases from 64 Gbaud to 128 Gbaud, the total fiber cost 
increases by about 51%, while the total network capacity value doubles, as seen previously. 

  
(a) (b) 

Figure 6. Total fiber length (average across each set). (a) 64 Gbaud; (b) 128 Gbaud. 

7. Conclusions 

In this paper the problem of assessing the impact of topological and physical impairments on 
the capacity of optical backbone networks was investigated. 

The capacity was defined using Shannon’s theory, and the impact of the physical layer was 
studied using the optical reach, which was computed, considering both linear and non-linear noise 
terms, for two values of the symbol rate: 64 Gbaud and 128 Gbaud. To explore the influence of 
topological characteristics we used a modified Waxman model to generate random networks that 
mimic real optical backbone networks, ensuring an edge connectivity greater than or equal to 2. 
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The paper also proposed a constrained routing and wavelength assignment algorithm to deal 
with the fact that the number of optical channels/wavelengths per link is limited, which inevitably 
results in traffic blocking as the number of demands increases. Given that traffic blocking is not 
acceptable in optical backbone networks, we also devised a strategy to overcome it by adding more 
optical fibers per link, albeit at the expense of increasing the network cost. 

The total network capacity was evaluated for a set of generated random networks considering a 
full-mesh logical topology. The results showed that although the capacity increases with the number 
of nodes, the rate of increase tends to diminish due to the rising of the blocking ratio. By moving from 
a symbol rate of 64 Gbaud to 128 Gbaud one observes an improvement in median total capacity of 
about 34% for 𝑁𝑁 = 20 and 16% for 𝑁𝑁 = 60. The reduction in improvement is also explained by the 
rising of blocking ratio. With proper fiber assignment one can see a substantial increase in the total 
capacity. For a network with 𝑁𝑁 = 60, median values of about 2.5 Pbit/s can be achieved for a symbol 
rate of 64 Gbaud, and about 5 Pbit/s for a symbol rate of 128 Gbaud. Remarkably, this duplication in 
the total network capacity is achieved by an increase in the total fiber length of only about 51%. 
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