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Abstract: The service conditions of underground coal mine equipment are poor, and it is difficult 
to accurately extract the fault characteristics of rolling bearings. In order to better improve the 
accuracy of fault identification of rolling bearings, a fault detection method based on multiscale 
permutation entropy and SOA-SVM is proposed. First, the whale optimization algorithm is used 
to select the modal analysis number K and the penalty factor α of the variational mode 
decomposition algorithm. Then, the vibration signal of rolling bearings is dissolved according to 
the optimized variational mode decomposition algorithm, and the multi-scale permutation 
entropy of the main intrinsic mode function is calculated. Finally, the feature values of the matrix 
are entered into the SVM algorithm optimized by the seagull optimization algorithm to obtain the 
classification result. The experimental results based on the published rolling bearing datasets of 
Western Reserve University show that the identification success rate of the proposed method can 
reach 98.75%. The fault detection of the rolling bearings can be completed accurately and 
efficiently.

Keywords: whale optimization algorithm; variational mode decomposition; seagull optimization 
algorithm; support vector machine; multi-scale permutation entropy; fault diagnosis

1. Introduction

As a key component of rotating machinery and equipment, the operating
conditions of rolling bearings immediately impact the working characteristics of mining
fans. When there is a problem with a rolling bearing, the damage point is constantly
colliding with other parts that it touches, resulting in shock oscillation and unstable,
nonlinear, multi-frequency data signals [1].Sudden faults such as loose or damaged
rolling bearings will cause uneven bearing capacity, expansion of frictional resistance or
shutdown, leading to faults such as displacement, unbalance, and surge of the mining
fan. The problems caused by rolling bearings account for about 50% of the common
failures of mining fans, and the shutdown time caused by rolling bearings also accounts
for about 45%. Therefore, the accurate identification of faults of rolling bearings is of key
practical significance to the safety and stability of mining fans.

Vibration analysis method is widely used in rolling bearing fault diagnosis because
it reveals the inherent characteristics of bearing fault [2]. Generally speaking, the
reliability analysis method mainly includes three levels: data preprocessing, fault
feature extraction and failure mode classification [3]. Because the evaluation of vibration
signal usually shows characteristics of optimal control and instability, the research in
recent years is mainly concentrated on time-frequency analysis technology [4]. At
present, there are two types of time-frequency analysis technology . The first methods
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do not need to establish the primary parameters before examining the vibration signals.
A very typical example is empirical mode decomposition (EMD) [5]. EMD is a
responsive reliability analysis technology, which can dissolve all complicated data
signals into several characteristic modal analysis function formulas according to the
original vibration. Although several applications have proved the efficiency of EMD in
detecting rolling bearing faults [6], it still has issues with the terminal effect and modal
aliasing. The second methods need to set some main parameters before they are used to
analyze vibration signals, such as wavelet transform (WT). However, this method must
define the wavelet basis function and threshold in advance [7], and the choice of wavelet
basis function has a considerable influence on the final output. Therefore, wavelet
transform does not have adaptive characteristics.

Dragomiretshiy [8] introduced variational mode decomposition as a method for
determining the frequency center and bandwidth of a variational model. Compared
with empirical mode decomposition and wavelet transform, variational mode
decomposition has a rigorous mathematical theoretical foundation, and can separate
vibration signals efficiently and accurately. Although the frequencies of the vibration
signals can be adaptively divided by the VMD method, the attenuation results are still
limited by the choice of the modal number K and the penalty parameter α. Z. Zhang [9]
determined the selection of K value by observing the center frequency of intrinsic mode
function (IMF). Z. Guo [10] selected the appropriate number of decomposition layers by
setting the threshold of multi-scale permutation entropy. With the increasing
applications of intelligent algorithms, researchers tend to combine intelligent algorithms
with parameter optimization of VMD. G. A. Ran [11] introduced grey wolf algorithm
to optimize K. J. Li [12] introduced genetic algorithm to optimize K and α at the same
time. Although it takes a very long time to optimize the parameters of variational mode
decomposition with intelligent algorithm, it has become a research hotspot because it
considers the coupling impact of the two factors on the decomposition effect.

Following the dissolution of the vibration data signal into a sequence of IMFs via
VMD, the next task is how to obtain the fault information from the obtained IMF
weights. Richman explicitly proposed sample entropy [13]. Because sample entropy is
less sensitive to data length and noise , it is of general concern. Permutation entropy (PE)
was suggested by Bandt [14] to analyze the plurality of mechanical systems and assess
their conditions. Since PE considers complexity in terms of relatively close proximity, it
is simple and not compromised by noise. However, sample entropy and permutation
entropy estimate complexity only on a single scale, which will produce adverse results
when applied to the analysis of data on multiple time scales. In view of this shortcoming,
Costa [15] developed a method for assessing the complexity of unprocessed time series
at different scales using a multi-scale sample entropy approach. However, the
complexity estimation of the actually measured bearing fault vibration signal by
multi-scale sample entropy is poor, and the processing of long-time series is particularly
time-consuming. To assess the complexity of time-series data, Aziz and ARIF [16]
introduced the multiscale permutation entropy (MPE). In addition, the stability and
robustness of MPE were verified. J. Zheng [17] employed MPE and SVM to identify
rolling bearing defects, proving the superiority of MPE in feature extraction of rolling
bearing faults. Therefore, MPE is selected as a special tool for SVM algorithm in this
paper.

At this stage, the specific methods used for rolling bearing fault classification
include SVM [18], extreme learning machine [19], BP neural network [20], etc. In small
samples, SVM has strong generalization ability and relatively simple structure. The SVM
solid model has two key main parameters C and g, where C is the penalty index, the
tolerance for deviation. If the C value is too large, it is easy to multicollinearity; and if
the C value is too small, it is easy to underfit. If C is too large or too small, it will lead to
poor generalization ability of SVM [21]. g is the main parameter after the RBF function
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formula is evaluated as a kernel function. It categorizes the data after projecting it
explicitly to the interior space with new features. The larger the g value is, the less
applicable space vectors are, and the smaller the g value is, the more applicable space
vectors are. The number of applicable space vectors can compromise the rate of training.
Intelligent optimization algorithm is often used to select C and g of support vector
machine. J. Zheng [22] optimized SVM for rolling bearing defect type detection using the
cuckoo search method, and its overall recognition rate reached 98.03%.

Inspired by previous scientific research, a combined model based on multi-scale
permutation entropy and SOA-SVM is pointed out in this paper. First, the envelope
entropy is adopted as the fitness function of the whale optimization algorithm to obtain
the preset parameter pair of the variational mode decomposition algorithm [K, α]. Then,
the bearing vibration signal is decomposed by using the variational mode
decomposition algorithm optimized the parameters to generate a set of intrinsic mode
functions. The multi-scale permutation entropy of the main intrinsic mode functions is
calculated on the basis of the kurtosis and correlation coefficient to form the feature
vector. Finally, the SOA-SVM method is employed to identify four statuses of rolling
bearing (normal, inner ring fault, outer ring fault and rolling element fault).

2. The Proposed Method

2.1. WOA-VMD
VMD has a high signal attenuation efficiency as a prominent time-frequency

analysis approach.[23]. For the original signal x(t), it can be decomposed into a series of
intrinsic mode functions IMFs uk in automation mode.

x(t) = ∑k  uk (1)
To guarantee the minimum sum of the bandwidth of each center frequency, the

process can be expressed as:

min{uk}{ωk}
∑�   ∂� �(�) +

�
��

∗ ��(�) �−����
2
2 (2)

where {uk} = {u1,...uk} is a series of decomposed intrinsic mode functions, {ωk }={ω1,...ωk} is
the center frequency corresponding to each intrinsic mode function. In order to arrive at
the best solution in equation (2), Lagrange penalty factor L and secondary penalty factor
α are introduced.

� �� , �� , � = �∑�   ∂� �(�) +
�

�� ∗ ��(�) �−����
2
2 + �(�)− ∑�  ��(�) 22

+ �(�), �(�)− ∑�  ��(�)
(3)

The combination of decomposition levels K and penalty factor α has a significant
impact on the decomposition result of the variational mode decomposition method [24].
Over decomposition and erroneous components will result if the K value is too high;
under decomposition will result if the K value is too low. The bandwidth surrounding
each center frequency will be too narrow if the value is too high. The bandwidth
surrounding each center frequency will be too wide if the value is too low. Improper
parameter selection will lead to the difficulty of subsequent feature extraction, which
will affect the final accuracy of fault recognition. Therefore, reasonable parameter setting
is very important to get satisfactory decomposition results.

WOA was explicitly proposed by Mirjalili [25] based on scientific research on the
hunting behavior of whales. WOA is selected because this method has the advantages of
fast improvement speed, strong global convergence and a few parameters. The specific
steps of the WOA optimization are as follows:

(1) Initialization of parameters such as whale individual population, location and
iteration times. The i-th individual location is :
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Xi = r ⋅ (ub − lb) + lb (4)
where r is a random number within the range of [0,1]. Xi is in the range of [lb,ub]. lb is
the minimum value of the parameter boundary and ub is the maximum value of the
parameter boundary.

(2) When p < 0.5 and | A | < 1, shrink and surround according to the best search
agent, as shown in equation (5):

X�� (i + 1) = X�� ∗(i) − A�� ⋅ D��

D�� = C�� ⋅ X�� ∗(i) − X�� (i)
A�� = 2a�� ⋅ r�� 1 − a��
C�� = 2 ⋅ r�� 2
a�� = 2 − 2 i/imax

(5)

wherer�� 1 、r�� 2 and p are random numbers, and the value range is [0,1]. i is the current
number of iterations; imax is the maximum number of iterations.

When p < 0.5 and | A | ≥ 1, a random search agent is selected to iterate and update
the expression (6). X�� rand is the whale position vector selected randomly.

X�� (i + 1) = X�� rand − A�� ⋅ D��

D�� = C�� ⋅ X�� rand − X�� (i)
A�� = 2a�� ⋅ r�� 1 − a��
C�� = 2 ⋅ r�� 2
a�� = 2 − 2 i/imax

(6)

When p ≥ 0.5, the spiral contraction method is adopted for iteration, as shown in
formula (7):

X�� (i + 1) = D�� ′ ⋅ ebm ⋅ cos (2πm) + X�� ∗(i)
D�� ′ = X�� ∗(i) − X�� (i)

(7)

where D�� ′ is the distance between simulated whales and prey; b is the defined helix
constant; m is a random number between (-1,1).

(3) Check if the termination requirements have been satisfied or if the maximum
number of repetitions has been reached. If not, return to step (2). If yes, output the best
search agent.

Using whale optimization algorithm, it is also necessary to select the appropriate
fitness function[26]. In this paper, the envelope entropy proposed by Tang Guiji [27] is
used as the fitness function, and its expression is as follows:

Qj = a(j)/∑j=1
N  a(j)

Ee =− ∑j=1
N  Qjlg Qj

(8)

where Qj is a sequence of probability distribution processed by the envelope signal;
a(j) is the envelope signal got by Hilbert Demodulation of the original signal[28]; Ee is
envelope entropy which can quantitatively measure the sparsity of vibration signals
[29].

When the signal contains a large number of interference components, the fault
impact and modulation phenomenon caused by the fault will be hidden in the signal,
resulting in the weakening of the sparsity of the signal, and the envelope entropy value
is large at this time. The sparsity of the signal is high and the envelope entropy value is
low when it contains clear fault impact and modulation events. The envelope entropy is
used as the fitness function for the parameter optimization of VMD, and its minimum is
taken as the search goal of the algorithm to complete the optimization of relevant
parameters.
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Figure 1. Flowchart of IWOA optimizing VMD parameters.
The process of optimizing VMD parameters with WOA is shown in Figure 1. First,

initialize the whale group position vector [K, α]. The fitness function is the envelope
entropy, and each whale's fitness is evaluated. Then, by judging the size of the
convergence factor, the iterative formula is selected for iterative update until the
termination conditions are met, and the optimal VMD parameters are output. The upper
boundary of the whale group position is set to [10, 3000]; The lower boundary is set to
[3, 300]. The convergence criterion is 10 and the population number is set at 20.

2.2. Multiscale Permutation Entropy and Its Parameter Setting
The related concepts of multi-scale permutation entropy are shown in reference [30],

and its theory is described as follows:
The original time series with length n is coarsened to obtain a new time series:

yj
(s) =

1
s

∑i=(j−1)s+1
js  xi, j = 1,2, ⋯, [N/s] (9)

where s is the scale factor, s = 1, 2,...; [N/s] indicates rounding. Each scale sequence's time
reconstruction of each scale sequence yj

(s) are as follows:

Yl
(s) = yl

(s), y
l+τ

(s) , ⋯, y
l+(m−1)τ
(s) (10)

The reconstructed sequences are placed in order if their values are same. A collection of
symbol sequences can be produced for every scale sequence, where r = 1, 2, 3,..., R and
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R ≤ m!. One of the permutations is the symbol sequence S(r) , and the chance of
each symbol sequence occurring is determined (r = 1, 2,..., R). Information entropy is
used to define the permutation entropy of various symbol sequences.

Hp(m) =− ∑r=1
R  Prln Pr (11)

When Pr= 1/m!, the maximum value is reached. For convenience, normalization is
usually performed.

Hp = Hp(m)/ln (m! ) (12)
Four parameters must be established before MPE can be used: time series length N,

encapsulation dimension m, scale factor s, and time delay τ . Because m is the number
that specifies the maximum number of permutations m!, Permutation entropy depends
largely on the choice of encapsulation dimension m. In addition, the length of time series
N should be more than 5 * m factorial [31] to obtain reliable statistics. Bandt [14] pointed
out that this method is suitable for the case where the encapsulation dimension is 3≤m≤
7. The approach will not function if the encapsulation dimension m is too small since
there are too few different states. When the encapsulation dimension m is too large, on
the other hand, it will be too time-consuming. Typically, the encapsulation dimension m
is chosen based on balancing information content impairment and measurement
complexity. m is set to 5 in this article. We put τ = 1 here since the time delay τ has no
significant impact on the outcome. Calculation efficiency is jeopardized when N is too
high. The criterion of N ≥ 5m! cannot be met if N is too small . Taking this control into
account,the data length of 2048 points is sufficient to get a stable permutation entropy.
Therefore, N is set to 2048. The scale factor s is set to 15 to obtain permutation entropy of
each scales. Finally, we put τ = 1 here since the time delay τ has no significant impact on
the outcome.

3.3. SOA-SVM
Support Vector Machine (SVM) was proposed in the early 1990s. It is based on the

statistical learning theory's VC measure idea and the structural risk reduction principle.
It can balance the amount of computation and the ability of computation on the basis of
limited sample information. Its superior data classification and recognition ability makes
it very effective in rolling bearing fault diagnosis . The population classification in the
case of linear separability is shown in Figure 2. It can be seen from the figure that two
different types of samples are divided by the optimal hyperplane H, and the purpose of
SVM classifier is to find the hyperplane.

Figure 2. Optimal hyperplane diagram.
Let the two types of sample sets in the graph be x1, y1 , x2, y2 , …, xn, yn ; n is the

number of samples and xi is the ith input value of the sample feature space. In the
linearly separable state, the optimal hyperplane solved by the support vector classifier
can be transformed into the following constraint problem:
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minφ(ω) =
1
2

∥ ω∥2

s.t. yi ω ⋅ xi + m ⩾1, i = 1,2, ⋯, l
(13)

where ω is the normal vector of the hyperplane; m is the offset; ω ⋅ xi + m =0 is the
hyperplane to be solved.

If the nature of the sample is linearly inseparable, the support vector machine will
map the sample from the current space to the high-dimensional space Λ using nonlinear
mapping Ψ. In this way, the problem of linear inseparability can be transformed into
linear separability. Therefore, the optimal hyperplane can be obtained on the
high-dimensional space Λ, but the kernel function k(xi , xj) must meet the positive
definite matrix condition, that is:

k xi, xj = Ψ xi ⋅ Ψ xj (14)
By selecting the appropriate kernel function k(xi,xj), the nonlinear samples can be

linearized and classified. After the relaxation variable ξi is introduced , the expression
of the original classification hyperplane is:

minφ(ω) =
1
2

∥ ω∥2 + c ∑i=1
n  ξi

yi ω ⋅ Ψ xi + b ⩾1 − ξi, i = 1,2, ⋯, n
(15)

where C is the penalty factor. After introducing the Laplace multiplication operator, the
optimal classification hyperplane problem is transformed into a dual quadratic
programming problem. At the same time, it is substituted into the inner product
transformation of the kernel function, and formula (15) becomes:

maxL(α) = ∑i=1
l  αi −

1
2

∑i
l  ∑j

l  αiαjyiyj k xi, xj

s.t. 0⩽αi⩽C, ∑i=1
l  αiyi = 0,αi⩾0

(16)

The final classification hyperplane can be expressed as:
f(x) = sgn  ∑i=1

n  αi
∗yik xi ∗ x + a∗ (17)

The parameter setting of support vector machine algorithm affects its learning and
generalization ability, so how to select the optimal parameters has great research value.
When k(xi , xj) is the radial basis function, The debugging of penalty factor C and kernel
width g is the major focus of SVM parameter adjustment.

Gaurav Dhiman [32] introduced Seagull optimization algorithm (SOA) as a new
swarm intelligence optimization technique in 2018. The algorithm mainly simulates the
migration behavior and attack behavior of seagull groups in nature. Migration refers to
the movement of seagulls from one position to another while seagulls should meet three
conditions: avoiding collision, direction of the best position direction and approaching
the best position[33].

(1)Avoid collision. In order to prevent the occurrence of a collision between adjacent
seagulls, add a new variable a. The formula is :

c(t) = A × p(t) (18)
where c(t) represents the new position of seagulls after collision avoidance; t indicates
the current number of iterations; p(t) indicates the initial position of the seagull; A
represents the motion behavior of seagulls in a given search space. The calculation
formula of A is :

A = f − t × f/nmax (19)
where the value of A is adjusted by f linearly, and it decreases linearly from f to 0; nmax
is the maximum number of iterations.

(2)Direction of the best position . On the premise of not colliding with other
individuals, seagulls will move in the direction of the best position. The formula is :

m(t) = B ×[Zbest (t) − p(t) (20)
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where m(t) indicates the direction of the best position of the seagull; B is mainly
responsible for balancing global search and local search. In order to obtain an
appropriate balance number, the calculation formula of B is :

B = 2 × A × A × rd (21)
where �d is a random number between [0, 1].

(3)Approaching the best position. The seagull will soar in the route of the best
position to achieve a new one after landing in a safe location away from other seagulls.

d(t) = ∣c(t) + m(t)| (22)
where d(t) indicates the new position where the seagull meets three conditions.

During migration, seagulls can constantly change the angle and speed of attack.
With the help of gravity and wings, they can maintain a certain height in the air. When
seagulls attack their prey, they move spirally in the air, and their motion behavior is
represented by a, b and c components respectively. The formulas of motion behavior are
as follows:

a = r ×  θ (23)

b = r × sin θ (24)

c = r × cos θ (25)
r = u × eθv (26)

where r is the spiral radius in the movement of seagulls; u and v are the correlation
constants of spiral shape; θ Represents the angle, which is a random number between
[0,2π]; The formula of seagull's attack behavior obtained from the movement behavior
is :

p(t) = d(t) × a × b × c + Zbest (t) (27)
where �best (�) indicates the best seagull position. The steps of optimizing support vector
machine with seagull algorithm are as follows:

(1) Initialize the population parameters of seagull optimization algorithm, the
number of iterations, and the value range of C and g.

(2) Determine the fitness function of seagull optimization algorithm, and evaluate
the adaptability of seagull individuals on the basis of the value of fitness function.
According to the principle of seagull optimization algorithm, find the optimal fitness
value and the optimal position obtained by seagull.

(3) According to the best individual position of seagull, the optimal values of
parameters C and g are obtained.

(4) The optimal parameters C and g are assigned to the support vector machine for
training, and the optimized support vector machine classification model is obtained.

(5) Input the test samples, then the optimized SVM classification model will output
the predicted labels of the test samples and compare the predicted labels with the actual
labels to obtain the classification accuracy.

3. Experiment and Results

3.1. Experimental System
For analysis, select Case Western Reserve University (CWRU) rolling bearing data

information. The selected data material is the mechanical vibration data signal of the
SKF6205 rolling bearing on the motor drive side. Rolling bearing bore, outside and
turning body are wire by EDM 0.007 diameter. The push motor is rated at 1797 rpm. The
sampling rate is 12kHz. Figure 3 depicts the structure of the test service platform. When
a roller bearing is damaged, the roller bearing can come into contact with failure
locations, causing significant shock vibrations. The cycle time for the flip body to touch
the common fault location varies by common fault type. Figure 4 shows the frequency
domain waveforms of the vibration data signals for the four rolling bearing cases.
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There are four different sorts of flaws that are investigated. Each type of fault is
represented by 50 data groups, 30 of which are training samples in a known state and
the remaining 20 are diagnostic test samples. Each batch of vibration data has a sample
length of 2048. The sample data set is shown in Table 1.

Table 1. Description of bearing dataset.

Figure 4. The time domain waveforms of vibration signals under four bearing states.

Figure 3. Data set experiment platform of CWRU.

3.2. Results and Discussion
The vibration signal is decomposed using the enhanced VMD method. Taking the

outer ring defect as an example, the whale algorithm is utilized to improve the
parameters of the VMD algorithm. Figure 5 shows the minimal envelope entropy
fluctuation as the number of generations in the WOA optimization process grows. The
minimum envelope entropy in the fourth iteration is 3.6576 As seen in the figure. The
optimization procedure is complete when the number of iterations hits 10, and the
optimization parameters [K,α] is [10,1469]. The best parameters in Table 2 are used to set
the VMD algorithm parameters. Then the optimized VMD algorithm is used to

Type Fault Size/mm Category Label

Normal —— 1
Inner Race Fault 0.1778 2
Outer Race Fault 0.1778 3

Rolling Element fault 0.1778 4
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decompose the vibration signals of different damage positions and degrees of rolling
bearing.

In the VMD approach, the measurement index is a crucial factor that decides if the
decomposition result is satisfactory. In mechanical fault identification, kurtosis is an
important index of vibration signal analysis. Kurtosis is a numerical statistic that depicts
the features of random variables' distribution. It is a dimensionless parameter. Because
kurtosis has nothing to do with factors such as bearing rotation speed, size and
mechanical load, and is very sensitive to impact signal, it is particularly suitable to study
surface damage faults [34].

The main IMFs after vibration signal decomposition are selected according to
kurtosis. According to table 3, it can be seen that the kurtosis value when modes n = 3, 9
and 10 are always the larger of the ten modes when different outer ring fault samples are
analyzed and calculated; By analyzing the kurtosis values of different modal
components in the inner ring fault with the same method, it can be known that the
kurtosis values of the corresponding modal components in this state when n = 3, 6 and
10 are the larger three; When n = 3, 4 and 10, the kurtosis value of the corresponding
modal component is the larger in the rolling element fault. However, through the
analysis of bearing signals under normal conditions, the results shown in Table 6 are
obtained, and the kurtosis value of each intrinsic mode function has no obvious law. The
reason for this result may be that the definition of kurtosis criterion makes the vibration
data in normal state not suitable for kurtosis criterion analysis. According to the
correlation coefficient [35] between each intrinsic mode function and the original signal,
the modal component n equal to 1, 2 and 4 are selected as the main intrinsic mode
function in normal state for subsequent analysis.

(a) (b)

(c) (d)
Figure 5. Optimized VMD curve with IWOA.
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Table 2. Optimization parameters obtained by using the IWOA.

Table 3.Kurtosis value of each mode of outer ring fault.

Imf1 Imf2 Imf3 Imf4 Imf5 Imf6 Imf7 Imf8 Imf9 Imf10

3.110 3.699 4.460 2.159 3.583 2.249 2.695 2.687 4.751 5.099

2.975 2.649 4.488 2.281 3.570 2.358 2.897 2.915 5.241 5.067

3.177 2.410 4.561 2.205 3.620 2.374 2.763 2.740 5.163 5.429

Table 4.Kurtosis value of each mode of inner ring fault.

Imf1 Imf2 Imf3 Imf4 Imf5 Imf6 Imf7 Imf8 Imf9 Imf10

2.859 2.128 3.565 2.534 2.951 3.150 2.997 2.109 3.106 3.625

2.972 2.020 3.545 2.480 2.782 3.138 2.573 1.930 2.712 3.218

2.699 2.017 3.417 2.475 2.920 3.149 2.619 2.335 2.452 3.500

Table 5. Kurtosis value of each mode of rolling element fault.

Imf1 Imf2 Imf3 Imf4 Imf5 Imf6 Imf7 Imf8 Imf9 Imf10

2.493 2.676 3.403 2.990 2.654 2.363 2.714 2.482 2.699 3.018

2.885 2.867 3.324 3.400 3.324 2.974 2.630 2.723 2.941 3.340

2.450 2.891 3.367 3.013 2.992 2.925 3.032 2.514 2.689 3.333

Table 6.Kurtosis value of each mode of normal.

Imf1 Imf2 Imf3 Imf4 Imf5 Imf6

2.825 3.110 1.545 2.559 3.956 3.014

2.970 3.261 1.583 2.706 2.946 2.854

2.329 3.030 1.600 2.996 2.911 3.316

Table 7. Correlation coefficient of each mode of normal.

Imf1 Imf2 Imf3 Imf4 Imf5 Imf6

0.649 0.644 0.304 0.382 0.090 0.048

0.631 0.658 0.300 0.383 0.097 0.049

0.632 0.654 0.289 0.384 0.092 0.047

The MPE of three main intrinsic mode functions in four states is calculated
respectively. According to the results shown in Figure 6, when s = 1,2, the permutation
entropy calculated by rolling element fault and inner ring fault is very close; When s = 3,
the permutation entropy calculated by inner ring fault and outer ring fault is very close.
If the feature vector is constructed based on these, it may cause the disorder of later state
classification. Considering the average distance and minimum distance of the entropy of
imf1 multi-scale arrangement in four states, the value of the optimal scale factor s of
imf1 is chosen to be 7. Using the same method, the optimal scale factor s of imf2 is 9 and
the optimal scale factor s of imf3 is 4.

Normal Inner race Outer race Rolling element

K 6 10 10 10
α 1108 1219 1469 2000
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Figure 6. MPE of imf1.

Figure 7. MPE of imf2.

Figure 8. MPE of imf3.

Using the feature vector construction method proposed in this paper, the
corresponding optimal multi-scale permutation entropy of all samples are calculated to
form the feature vector. There are 50 × 4 × 3 permutation entropy, 50 × 4 feature
vectors. 30 × 4 feature vectors of the training samples are used to train the model of
support vector machine and optimize its parameters. 20×4 feature vectors of test samples
are used as unknowns for the final classification test. Four sets of feature vectors are
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given here, as shown in Table 8. The digital labels 1 ~ 4 in the table represent the normal
state, inner ring fault, outer ring fault and rolling element fault respectively.

Table 8. Feature vectors and labels.

120 feature vectors of training sets similar to table 8 are input into SOA-SVM for
training. As can be seen from Figure 9, after two iterations, the fitness value can reach
100% . The optimum parameters C and g are 35.609 and 1.991, respectively.

The learned detection entity model is used to identify rolling bearing faults. Figure
10 shows the confusion matrix results obtained by applying the WOA-VMD-SOA-SVM
approach in four different common scenarios. There is an incorrectly classified sample,
which identifies the rolling element fault as the inner ring fault, and the detection set 's
ultimate identification accuracy is 98.75%. The findings show that the fault detection
approach can correctly identify common rolling bearing defects in a variety of
conditions.

Figure 9. Convergence curve of the SOA-SVM method.

Figure 10. Confusion matrix of the WOA-VMD-SOA-SVM method.

Feature value 1 Feature value 2 Feature value 3 Label
0.597 0.742 0.482 1
0.682 0.621 0.832 2
0.902 0.834 0.750 3
0.802 0.846 0.811 4
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Figure 11. Confusion matrix of the VMD-SOA-SVM method.

Figure 12. Confusion matrix of the WOA-VMD-PSO-SVM method.
To better verify the effectiveness of the improved VMD optimization algorithm,

WOA-VMD and non-boosted VMD are compared in this paper. The VMD primary
parameter K is set to 8 and α is set to 2000 in this case. Figure 11 shows the results of the
confusion matrix applying VMD-SOA-SVM fault detection way. The accuracy on the
detection set is 95.00%. Figure 12 shows the results of the confusion matrix applying the
WOA-VMD-PSO-SVM fault detection approach. The accuracy on the detection set is
97.50%. According to the comparison of Figures 10 and 11, it can be shown that the
WOA-VMD method's actual effect is stronger than that of the non-improved VMD
method, indicating that the WOA-VMD method can more precisely collect the
information content of common rolling bearings fault characteristics. In addition,
according to the comparison of Figures 10 and 12, it can be shown that the actual effect
of using WOA-VMD-SOA-SVM is better than that of applying WOA-VMD-PSO-SVM,
indicating that SOA is more powerful than PSO.

4. Conclusions
In this article, we mentioned a fault detection method for rolling bearings that

integrated WOA-VMD, multi-scale permutation entropy and SOA-SVM algorithm.
Rolling bearing fault detection and analysis were carried out from the fields of data
processing, fault feature extraction and fault feature recognition.

The key parameters of VMD were obtained using the whale optimization algorithm,
and then the information of fault characteristics was obtained using the improved VMD
method. According to the results, WOA-VMD may reasonably retrieve the fault
information content of rolling bearings. In feature extraction, we found that the scale
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factors s were 7, 9 and 4 respectively in order to obtain the optimal multi-scale
permutation entropy of three imfs. The SOA approach was used to optimize the
parameters of the penalty factor C and the kernel function g in the SVM fault detection
entity model. The results showed that the SOA-SVM method had good classification
characteristics, and the mean diagnosis accuracy can reach 98.75%. Compared with the
results of other methods, it can be seen that this method can reasonably diagnose
different damage types of the rolling bearings.

In the future work, we will focus on building a test service platform for mining fans,
collecting mechanical vibration data signals of rolling bearings, and certifying the
feasibility analysis of applying the methods mentioned in the article to fault detection of
mining fans.
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