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Abstract

Hyperspectral imaging (HSI) systems often suffer from complex noise degradation during the imaging
process, significantly impacting downstream applications. Deep learning-based methods, though
effective, rely on impractical paired training data, while traditional model-based methods require
manually tuned hyperparameters and lack generalization. To address these issues, we propose
SS³L (Self-supervised Spectral-Spatial Subspace Learning), a novel HSI denoising framework that
requires neither paired data nor manual tuning. Specifically, we introduce a self-supervised spectral-
spatial paradigm that learns noisy features from noisy data rather than paired training data, based
on spatial geometric symmetry and spectral local consistency constraints. To avoid manual hyperpa-
rameter tuning, we propose an adaptive rank subspace representation and a loss function designed
based on the collaborative integration of spectral and spatial losses via noise-aware spectral-spatial
weighting, guided by the estimated noise intensity. These components jointly enable a dynamic
trade-off between detail preservation and noise reduction under varying noise levels. The proposed
SS3L embeds noise-adaptive subspace representations into the dynamic spectral-spatial hybrid loss
constrained network, enabling cross-sensor denoising through prior-informed self-supervision. Ex-
perimental results demonstrate that SS3L effectively removes noise while preserving both structural
fidelity and spectral accuracy under diverse noise conditions. The source code will be available at
https://github.com/yinhuwu/SS3L

Keywords: self-supervised learning; hyperspectral image denoising; hyperspectral imaging; hyperparameter-
free methods

1. Introduction
Hyperspectral images (HSIs) retain rich spectral and spatial information, and have been ex-

tensively explored in various kinds of applications, such as biology, ecology and geoscience [1–3].
However, HSIs are often contaminated by noise, which adversely impacts the performance of down-
stream tasks such as classification, detection, and quantitative analysis, thereby undermining the
accuracy and reliability of HSI-based decision-making. Consequently, numerous HSI denoising
techniques have been proposed to address this challenge [4,5].

HSI denoising methods can be broadly categorized into traditional model-based methods and
deep-learning-based methods. Traditional approaches typically formulate HSI denoising as an ill-
posed inverse problem, which is addressed by incorporating regularization terms based on prior
knowledge to transform it into a well-posed problem. For instance, studies in [1,2,4–6] encoded both
global low-rank and local smoothness priors using the total variation (TV) technique for HSI denoising.
Concurrently, Zhuang et al. exploited the non-local low-rank prior by applying a low-rank constraint
to non-local HSI blocks in [7]. To address sparse noise, some methods modeled these noise types as
sparse components, characterized using distinct paradigms such as the ℓ1 norm in [8], the ℓ2,1 norm in
[9] and Schatten-p norm in [10]. Although knowledge-driven methods effectively capture inherent
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HSI characteristics, they are highly sensitive to parameter settings, including the rank of the low-rank
prior and the number of iterations.

Recent advances in deep learning have demonstrated superior performance in HSI denoising,
particularly through convolutional neural networks (CNNs) and transformer-based methods [11–13].
For example, Chang et al. [11] introduced HSI-DeNet to evaluate the efficacy of CNNs for HSI denois-
ing, while [12] developed a 3D attention network for this task. Similarly, Zhang et al. [13] proposed a
three-dimensional spatial-spectral attention transformer for HSI denoising. Compared to traditional
model-based methods, these supervised approaches learn a nonlinear mapping or function using
paired clean-noisy data, enabling intuitive and rapid inference. However, their performance depends
heavily on the availability and quality of training data, as paired clean-noisy HSI datasets remain
scarce in practice. Additionally, hyperspectral sensors exhibit substantial variations in specifications,
which means models trained on data from one sensor may not generalize well to HSI from other
sensors.

These issues have spurred interest in data-independent approaches, such as self-supervised
learning [14–16] and unsupervised learning [17–19]. A prominent example is Noise2Noise (N2N) [14],
a self-supervised method that learns noise distributions by training on multiple noisy observations of
the same scene. Another approach, Deep Image Prior (DIP) [17], employs a randomly initialized neural
network to generate clean images by mapping a fixed random input (e.g., white noise) to a noise-free
output. However, as an iterative optimization-based method, DIP’s performance is highly sensitive
to handcrafted hyperparameters (e.g., learning rate, early stopping) and the choice of loss function.
Furthermore, adapting the N2N framework to HSI denoising remains challenging. Unlike RGB images
with three spectral channels, HSI contains hundreds of spectral bands, making direct application
of RGB-oriented N2N methods suboptimal for HSI. These limitations hinder the generalizability of
existing data-independent methods when processing remote sensing HSI across diverse scenes and
sensors.

Despite the success of existing HSI denoising methods, two fundamental challenges remain: (1)
supervised deep learning approaches require paired noisy-clean images, which are often unavailable
in remote sensing, and (2) model-based methods are sensitive to hyperparameters and struggle
with diverse noise types. To address these issues, we propose SS3L (Self-supervised Spectral-Spatial
Subspace Learning), a novel dual-constrained framework that integrates self-supervised learning with
subspace representation (SR). By leveraging intrinsic redundant features, we design a spectral-spatial
hybrid loss function that integrates adaptive rank SR (ARSR), thereby constructing an end-to-end self-
supervised framework robust to different noise conditions and various imaging systems. Specifically,
we introduce a noise variance estimator called Spectral-Spatial Hybrid Estimation (SSHE) by exploring
spatial-spectral local self-similarity priors, which quantifies the noise intensity by analyzing adjacent
spectral differences and local variance statistics as the first step of the denoising process. Based on the
spectral-spatial isotropy of noise and the structural consistency prior of natural scenes, we develop
spatial checkerboard downsampling and spectral difference downsampling strategies to construct
complementary spatial and spectral constraints. An adaptive weighting function conditioned on the
noise variance estimated via SSHE is employed to formulate the Adaptive Weighted Spectral-Spatial
Collaborative Loss Function (AWSSCLF), ensuring robustness under varying noise levels. Concurrently,
the ARSR algorithm determines the optimal subspace dimension by dynamically adjusting the latent
rank based on the estimated noise energy. Under the constraints of the proposed AWSSCLF, a
lightweight network is employed to learn the denoising task within the subspace obtained via ARSR,
thereby completing the construction of an end-to-end self-supervised denoising framework.

The main contributions of this article are as follows:

1. We propose SS3L, a spatial-spectral dual-domain self-supervised framework that embeds domain
priors into both model design and optimization via ARSR. By enforcing cross-scale consistency
through spatial and spectral downsampling, the framework achieves effective noise-signal
disentanglement from a single noisy HSI without corresponding clean image supervision.
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2. We design a spectral-spatial hybrid loss function named AWSSCLF with physics constraints:
geometric symmetry and inter-band spectral correlation. Its noise-adaptive weighting mechanism
derived from SSHE automatically prioritizes structural fidelity under low noise and enhances
denoising under high noise, achieving adaptability to different imaging systems.

3. The proposed ARSR guided by singular value energy distribution and noise energy estimation
can dynamically adjust the subspace rank to balance signal fidelity and noise separation, ensuring
robustness at varying noise levels.

The rest of this article is organized as follows. Data-independent deep learning methods and SR
techniques are reviewed in Section II. The proposed method is presented in Section III. Experimental
results are shown in Section IV. Finally, conclusions are drawn in Section V.

2. Related Works
In this section, we analyze three categories of data-independent HSI denoising approaches:

model-based and knowledge-driven approaches, self-supervised learning-based techniques, and
unsupervised learning-based methods.

2.1. Model-Based Methods

Traditional knowledge-driven methods formulate the HSI denoising problem as an ill-posed
inverse problem, subsequently regularizing it into a well-posed formulation via manually designed
terms that enforce prior spectral-spatial constraints.

X̂ = argmin
X

∥Y − X∥2
F +

K

∑
i

λiRi(X) (1)

HSI denoising exploits three core data priors: (1) local/global low-rankness, (2) local smoothness,
and (3) non-local self-similarity across spatial-spectral domains to construct the regularization terms.
The low-rank prior originates from the intrinsic subspace structure of HSI data cubes, where nuclear
norm minimization (e.g., weighted nuclear norm minimization (WNNM) [20], tensor robust principal
component analysis (TRPCA) [21]) and low-rank matrix/tensor decomposition (e.g., low-rank matrix
recovery (LRMR) [1], non-local low-rank tensor decomposition [22]) serve as dominant regularization
strategies. Local smoothness priors enforce spatial consistency by constraining neighboring pixel
variations, typically implemented through TV regularizers such as LRMR-TV [2], local low-rank
spatial-spectral TV (LLRSSTV) [6], and 3D correlation TV (3DCTV) [23]. Non-local self-similarity
priors (NLSSP) leverage redundant spatial patterns, integrated via hybrid frameworks like BM4D
[24], Kronecker basis representation (KBR) [25], and Non-local Meets Global (NG-meets) [3]. Sparse
representation techniques [5,26] and tensor factorization variants [4,7] further complement these
approaches.

However, these optimization-based approaches are highly sensitive to parameter selection, in-
cluding rank of tensor decomposition, patch size, group numbers, regularization weights, iterations
and so on. Furthermore, handcrafted constraint terms struggle to adapt to complex noise profiles and
diverse HSI data distributions. These limitations hinder the generalization of traditional methods
when processing HSIs under various noise conditions.

2.2. Self-Supervised Denoising

Although supervised deep learning methods have demonstrated notable empirical success in
HSI denoising, acquiring large-scale paired noisy-clean training data, especially remote sensing HSIs,
remains challenging. To circumvent this limitation, self-supervised denoising frameworks have been
developed to learn intrinsic image features directly from noisy observations. Pioneering work by
Lehtinen et al. [14] laid the theoretical foundation for training denoising networks without clean
images. Their study shows that, under the assumption of zero-mean and independent noise, a network
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trained to map between two independently corrupted observations of the same region can implicitly
learn to recover the clean image. Formally, given two noisy observations:

Y1 = X + N1, Y2 = X + N2

where N1, N2 are independent noise vectors. Minimizing the expected loss:

arg min
θ

E
[
∥Dθ(Y1)− Y2∥2

2

]
(2)

is theoretically equivalent to supervised training with clean image X:

arg min
θ

E
[
∥Dθ(Y1)− X∥2

2

]
This surprising result enables the N2N framework to train a denoiser Dθ using aligned noisy-noisy

image pairs to estimate the clean image X by minimizing the loss 1
n ∑n

i=1 ∥Dθ(Yi
1)− Yi

2∥.
Based on N2N, Neighbor2Neighbor (Ne2Ne) [16] eliminated the need for aligned pairs by subsam-

pling random neighbors from a single noisy image to generate training pairs. Zero-Shot Noise2Noise
(ZSN2N) [27] proposed a symmetric downsampler based on the random neighbor downsampler
in Ne2Ne for single-image denoising. Meanwhile, methods like Noise2Void (N2V) [28], Noise2Self
(N2S) [29], and Signal2Signal (S2S) [30] employed blind-spot networks (BSNs) to predict target pixels
using surrounding neighborhoods, circumventing N2N’s requirement for two independent noisy
observations.

All of the above self-supervised networks are designed for RGB images and extending a single-
band version of the network directly to the HSI case, band-by-band, often leads to suboptimal per-
formance, which has been presented by the experiment in [26]. There are numerous self-supervised
techniques designed for HSI denoising recently. In [31], Qian et al. extended the work of N2N by
using two neighboring bands of an HSI as the noisy-noisy training pairs. Zhuang et al. [26] proposed
Eigenimage2Eigenimage (E2E) by combining SR [32] with Ne2Ne [16]. E2E learned noise distribution
using paired noisy eigenimages obtained by SR instead of HSI data with full bands to overcome the
constraint of the number of frequency bands. However, E2E remains a self-supervised method and
inherits N2N’s constraints: dependence on curated training data and limited robustness for diverse
HSI datasets.

2.3. Unsupervised Methods

DIP [17], a classic unsupervised-learning denoising method, achieves single-image denoising by
exploiting the inherent inductive bias of randomly initialized neural networks. Specifically, neural
networks prioritize fitting the underlying image structure over noise artifacts when mapping random
input to noisy observations. By optimizing the network to reconstruct the noisy input from random
noise, guided by the following loss function:

arg min
θ
|| fθ(z)− Y||22 (3)

the network captures the clean image’s latent features before overfitting to noise. Early stopping at an
optimal iteration step thus yields a denoised output, circumventing the need for pre-trained models or
paired training data.

Sidorov et al. [19] extended DIP to HSI denoising, while Miao et al. [33] proposed a disentangled
spatial-spectral DIP framework based on HSI decomposition via a linear mixture model. Qiang et al.
[34] introduced a self-supervised denoising method combining spectral low-rankness priors with deep
spatial priors (SLRP-DSP), and Shi et al. [18] developed a double subspace deep prior approach by
integrating sparse representation into the DIP framework.
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Although these DIP-based methods achieve notable results and preserve HSI spatial-spectral de-
tails effectively, they inherit critical limitations. The DIP-based methods are inherently highly sensitive
to iteration counts: insufficient iterations yield suboptimal denoising, while excessive iterations lead to
overfitting to noise. Furthermore, integrating handcrafted prior constraints reintroduces the pitfalls of
traditional methods: sensitivity to hyperparameters in regularization terms.

To address these issues, we propose a HSI denoising framework named SS3L that generalizes
robustly under diverse scenarios, including varying noise levels, noise types, and HSI datasets from
heterogeneous sensors. Unlike existing approaches that rely on network architectures designed
to model noise structure, our framework learns noise distributions by focusing on the inherent
characteristics of both noise and HSI data, thereby decoupling denoising performance from handcrafted
priors or sensor-specific training data.

3. Proposed Method
3.1. Overview of SS3L Framework

In this section, we introduce the proposed SS3L (Self-supervised Spectral-Spatial Subspace Learn-
ing) framework for HSI denoising. As illustrated in Figure 1, SS3L consists of two key components:

• Adaptive Rank Subspace Representation (ARSR): A dynamic rank subspace decomposition is
applied to the noisy HSI, guided by a hybrid spatial-spectral noise estimation strategy. This step
captures the intrinsic low-dimensional structure of the image while suppressing noise.

• Adaptive Weighted Spectral-Spatial Collaborative Loss Function (AWSSCLF): Constructed based
on spatial geometric symmetry and spectral continuity priors, AWSSCLF incorporates a sigmoid-
based adaptive weighting mechanism that dynamically balances the two loss components ac-
cording to the estimated noise level, ensuring robust and effective denoising under diverse
conditions.

The SS3L framework adopts a dual-path training mechanism comprising spatial and spectral
supervision branches. Both branches rely on subspace representations derived through ARSR, which
dynamically selects the latent dimension based on noise intensity. The spatial path leverages checker-
board downsampling to create paired sub-images, which facilitates a regression-consistency loss
design. In parallel, the spectral path performs spectral difference downsampling, with each sub-cube
undergoing ARSR before being processing by the network.

The noise variance, estimated through Spectral-Spatial Hybrid Estimator (SSHE), generates
adaptive coefficient α that balance influence of the spatial and spectral losses. These components
are then integrated into a unified loss function, termed the AWSSCLF, to guide the self-supervised
learning of the network fθ without requiring any clean ground truth.
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Figure 1. Flowchart of the proposed SS3L framework. (a) Training process with dual-path supervision. The
spatial and spectral loss branches are represented by orange and teal arrows, respectively. Each path incorporates
Adaptive Rank Subspace Representation (ARSR) and contributes to the Adaptive Weighted Spatial-Spectral
Collaborative Loss Function (AWSSCLF). (b) Inference stage using the trained denoising network fθ .

In the following subsections, we first formulate the denoising problem and define the math-
ematical notation used throughout the method. Then we detail each component of the proposed
method.

3.2. Problem Formulation

We begin by formulating the HSI denoising problem. In practice, HSIs are often degraded by
a combination of additive Gaussian noise (i.e., sensor and atmosphere effects) and sparse noise (e.g.
stripes, dead pixels, or impulse interference). These corruptions collectively deteriorate both spatial
and spectral fidelity, challenging downstream processing tasks.

The observed noisy HSI Y ∈ RH×W×B is modeled as the sum of a clean image X , additive
Gaussian noise N , and sparse noise S :

Y = X +N + S (4)

where Y ,X ∈ RH×W×B denote the degraded noisy HSI and clean HSI, respectively; N represents the
additive Gaussian noise N(0, σ2) and S indicates the sparse noise.

The SR can represent the hyperspectral vectors based on the high spectral correlation [8]:

X = Z ×3 E (5)

where Z ∈ RH×W×r denotes the eigenimages of the SR, in which r ≪ B is the dimension of the
subspace and hyperparameter of the SR (i.e., rank r) fixed at r = 4 in [26], ×3 indicates the mode-3
product of a tensor X ∈ RI1×I2×I3 with a matrix U ∈ RJ×I3 is denoted as X ×3 U, resulting in a tensor
of size RI1×I2×J . The matrix E ∈ Rr×B consists of the first r spectral eigenvectors extracted from an
orthogonal matrix Ê ∈ RB×B satisfying ÊTÊ = I, in which E = Ê[1 : r, :] and I is the identity matrix.

The SR of the noisy HSI Y with rank r can be formulated as

(Zy, Ey) = R(Y , r), (6)
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where R(Y , r) denotes the subspace decomposition of Y with rank r, yielding the coefficient tensor Zy

and the basis matrix Ey.

3.3. Adaptive Rank Subspace Representation

The projection of noisy HSIs into a low-dimensional orthogonal subspace enables simultaneous
data dimensionality reduction (enhancing computational efficiency) and structural fidelity preservation
with noise attenuation. However, conventional fixed-rank SR methods are inherently limited by their
static design. These methods impose a binary trade-off: higher ranks retain more high-frequency
details (e.g., textures, edges) but tend to preserve more noise under heavy corruption, whereas lower
ranks tend to over-smooth the data, which suppresses noise effectively but also leads to loss of
semantically important structures. This fundamental rigidity prevents fixed-rank SR from adapting to
varying noise levels across different scenarios.

To break the limitation of fixed-rank decomposition, we propose an adaptive framework called
ARSR, which dynamically adjusts the subspace rank based on localized noise levels. This is achieved by
integrating SSHE, a spectral-spatial hybrid estimation method that quantifies noise variance through
joint analysis of spatial homogeneity and spectral correlation, with singular value thresholding to infer
optimal SR rank. ARSR enables context-aware dimensionality reduction: in clean, detail-rich regions,
it preserves higher ranks (e.g., 12–16), while in noise-dominated areas, it applies more aggressive
truncation (e.g., 3–4), thus resolving the fixed-rank trade-off with adaptive precision.

We first introduce SSHE, followed by the ARSR mechanism.

Noise Estimation via SSHE

To accurately estimate noise levels, we design the SSHE method by combining two complementary
strategies: Adjacent Band Estimation (ADE) and Marchenko-Pastur Variance Estimation (MPVE).

• ADE leverages the strong spectral correlation between neighboring HSI bands. Since signal
components typically vary smoothly between adjacent bands, their differences tend to be small,
while uncorrelated noise remains, or becomes more prominent in the residuals.

• MPVE exploits the statistical behavior of noise in the spatial domain. By unfolding the HSI into a
matrix and analyzing its singular value distribution, which follows the Marchenko-Pastur (MP)
law [35], the noise variance is estimated from the middle singular values.

The formulation of ADE is presented in Eq. (7).

dk = Y:,:,k −Y:,:,k+1, k ∈ {1, 2, . . . , B− 1}

µk = median
(i,j)

(
d(i,j)k

)
MADk = median

(i,j)

∣∣∣d(i,j)k − µk

∣∣∣
σ̂adjacent = 1.4826× 1

B− 1

B−1

∑
k=1

MADk

(7)

in which dk denotes the differential matrix of band images Y:,:,k and Y:,:,k+1, µk represents the median
of dk, MADk (Median Absolute Deviation) quantifies the dispersion of dk. For data that follow a normal
distribution, the standard deviation σ relates to MAD as σ ≈ 1.4826×MAD ( see [36]). Therefore,
multiplying by 1.4826 can convert MAD into the estimation of the standard deviation σ̂adjacent of the
noise in noisy HSI data Y .

MPVE is designed by exploring the statistical regularity of the singular values of a random matrix.
Specifically, we unfold the HSI tensor Y ∈ RH×W×B along the spectral mode into a matrix Y ∈ Rm×n,
where m = H ×W is the number of spatial pixels and n = B is the number of spectral bands.
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The matrix is centered and normalized by its Frobenius norm, followed by singular value decom-
position (SVD) as:

Yn =
Y− Ȳ
∥Y− Ȳ∥F

, SVD: Yn = UΣVT

where Σ = diag(s1, s2, . . . , sr) contains the singular values in descending order.
The empirical noise power is estimated from the bulk of the singular values by removing extreme

outliers. Specifically, we compute:

σ̃2 = Mean
({

s2
i | i ∈ [5%, 95%]

})
(8)

which captures the energy level predominantly associated with noise. This estimate is then corrected
using the expectation of the MP distribution [35], yielding the final noise variance estimation as:

σ̂2
mp =

σ̃2

1 + c
, c =

m
n

(9)

where c is the matrix aspect ratio, and the MP expectation 1 + c accounts for finite-sample bias in
random matrices.

By combining ADE (spectral-domain analysis) and MPVE (spatial-domain analysis), SSHE pro-
vides robust and accurate estimation of the noise variance σ̂2 under various HSI conditions.

σ̂ = β ∗ σ̂adjacent + (1− β) ∗ σ̂mp (10)

where the weight β reflects the relative reliability of ADE and MPVE. The estimated noise variance σ̂2

can be used to guide the following steps.
Notably, the noise estimation process does not require exact numerical accuracy. Instead, it serves

to provide a coarse but meaningful estimation of the noise trend, which is sufficient to guide the
subsequent self-supervised denoising module. This design enhances the robustness of our framework
and reduces the dependence on dataset-specific tuning.

3.4. MP-based Variance Estimation (MPVE)

MPVE is designed by exploring the statistical regularity of the singular values of a random matrix.
Specifically, we unfold the HSI tensor Y ∈ RH×W×B along the spectral mode into a matrix Y ∈ Rm×n,
where m = H ×W represents the number of spatial pixels and n = B is the number of spectral bands.

Under the assumption of additive white Gaussian noise (AWGN), each row of Y corresponds
to an independent spectral sample contaminated by noise, allowing Y to be modeled as a random
matrix with i.i.d. entries in its noise-dominated part. According to the Marchenko–Pastur (MP) law
[35], the empirical spectral distribution of the sample covariance matrix Y⊤Y/m converges to the MP
distribution:

ρ(x) =
1

2πσ2cx

√
(x+ − x)(x− x−), x ∈ [x−, x+]

where c = m/n is the aspect ratio and x± = σ2(1±
√

c)2.
In practice, we normalize the matrix by its Frobenius norm:

Yn =
Y− Ȳ
∥Y− Ȳ∥F

, SVD: Yn = UΣVT

where Σ = diag(s1, s2, . . . , sr) contains singular values in descending order.
The empirical noise power is estimated from the bulk of the spectrum by excluding extreme

outliers:
σ̃2 = Mean

({
s2

i | i ∈ [5%, 95%]
})

(11)
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This estimate is further corrected by the MP expectation to account for the aspect ratio:

σ̂2
mp =

σ̃2

1 + c
(12)

By combining ADE (spectral-domain analysis) and MPVE (spatial-domain analysis), SSHE
achieves a robust and accurate estimation of the noise variance σ̂2 under various HSI conditions.

Adaptive Rank Selection Guided by Noise Statistics

The optimal SR rank is adaptively determined by the estimated variance σ̂2. This adaptive
mechanism simultaneously accounts for the statistical characteristics of normal distributions and the
energy-dominated physical meaning of singular values.

Specifically, we determine the number of components to retain based on the magnitude of singular
values obtained from SVD relative to the estimated noise variance and matrix aspect ratio. The selection
criterion is given by:

s2
i > σ̂2 · n · (1 +

√
c)2 > s2

i+1 (13)

where s2
i , s2

i+1 represent the i-th and i + 1-th singular values, σ̂2 is the estimated noise variance, n
denotes the column dimension of the reshaped HSI matrix (the band numbers B), and c = m/n is
the matrix aspect ratio, with m = H ×W representing the total number of spatial pixels. The index
i corresponding to the last singular value that satisfies this inequality is selected as the optimal SR
rank. The threshold σ̂2 · n · (1 +

√
c)2 is grounded in the MP distribution [35], which describes the

asymptotic singular value distribution of random Gaussian matrices. It establishes a theoretical upper
bound on noise-induced singular values. Singular values exceeding this threshold are considered to
carry meaningful signal information, whereas smaller ones are dominated by noise.

In the context of SVD, singular values quantify the energy of different components in the data.
Therefore, distinguishing signal from noise becomes a matter of identifying where this energy drops
below the noise-dominated boundary. The proposed criterion effectively leverages both the statistical
behavior of random matrices and the physical significance of singular values, enabling a noise level
aware adaptive rank selection mechanism. Notably, this approach is adaptive to matrix dimensionality
and avoids reliance on empirically tuned thresholds, thereby preserving signal structures while
suppressing noise-induced artifacts.

It is worth noting that SSHE is primarily designed for dense Gaussian-like noise, which typically
dominates the total noise energy in hyperspectral imagery. The estimated noise variance serves as
a coarse but meaningful reference for subsequent self-supervised denoising, rather than as an exact
measure, and sparse noise components (e.g., stripes, impulse noise) are handled in later stages of our
framework (e.g., AWSSCLF, ARSR). In practical remote sensing scenarios, such sparse noise usually
affects only a small fraction of pixels or bands and exhibits much lower total energy, making the
current variance-based approach a valid approximation for modeling the dominant noise components.
Nevertheless, in extreme and rare cases where noise consists purely of sparse, non-Gaussian patterns,
the Gaussian-based estimation in Eq. (7) may be less effective, and integrating robust statistical
estimators or sparse modeling techniques could further enhance flexibility.

3.5. Adaptive Weighted Spatial-Spectral Collaborative Loss Function

To achieve robust denoising under diverse noise conditions, we further introduce an adaptive
weighting mechanism. This mechanism dynamically balances the contributions of spatial and spectral
constraints based on the estimated noise characteristics, ensuring optimal performance without requir-
ing manual hyperparameter tuning. In the following sections, we detail the spatial downsampling
strategy and spatial loss formulation, followed by the spectral downsampling and spectral loss, before
finally discussing how their adaptive combination leads to an effective spatio-spectral denoising
framework.
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3.5.1. Spatial Loss Function

Building upon the N2N learning paradigm shown in Eq. (2), we adopt symmetric downsampling
to generate multiple noisy observations from a single input sample for unsupervised noise distribution
learning. Unlike conventional random neighborhood downsampling in Ne2Ne [16] and E2E [26],
which introduces spatially uneven degradation, the checkerboard-patterned symmetric downsampling
decomposes the original HSI into two geometrically balanced sub-images, preserving structural
information while maintaining consistent i.i.d. noise among pixels.

The spatial downsampler, denoted as Dspa(·) operates on eigenimages Zy ∈ RH×W×r derived
from ARSR. As illustrated in Figure 2: Dspa(·) employs checkerboard-patterned decimation to generate
two spatially complementary sub-images Dspa,1(Zy), Dspa, 2 (Zy) ∈ RH/2×W/2×r. To improve the
computational efficiency of spatial downsampling, we implement two 2D convolutional layers with
customized kernels: K1 = [0.5, 0; 0, 0.5] and K2 = [0, 0.5; 0.5, 0] with stride 2 in order to implement the
proposed spatial downsampling by convolutional operations.

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

A11+A22

2

A13+A24

2

A31+A42

2

A33+A44

2

A12+A21

2

A32+A41

2

A14+A23

2

A43+A34

2

1K

2K

Figure 2. The spatial downsampler decomposes an HSI into two HSIs of half the spatial resolution by averaging
diagonal pixels of 2× 2 non-overlapping patches band by band. In the above example the input is a 4× 4 image,
and the output is two 2× 2 images.

It is worth emphasizing that the proposed checkerboard sampling differs fundamentally from the
random neighborhood subsampling adopted in [14]. In [14], within each 2× 2 block, two adjacent
pixels are randomly selected and assigned to g1(y) and g2(y), resulting in a stochastic and spatially
varying sampling pattern. By contrast, the proposed method employs a deterministic and symmetric
checkerboard allocation, where pixels are consistently assigned to g1(y) and g2(y) across the entire
image. This symmetry ensures uniform spatial frequency coverage and eliminates randomness, thereby
improving the stability and reproducibility of self-supervised training.

Based on the spatial downsampler Dspa, the spatial loss function is defined as

Lspa
θ = Lres.

θ + Lcons.
θ , (14)

where Lres.
θ denotes the regression loss and Lcons.

θ denotes the consistency loss.
A residual learning strategy is employed, in which the network fθ is trained to predict the noise

component rather than the clean HSI itself. The clean HSI is subsequently recovered by subtracting the
estimated noise from the noisy observation:

X̂ = Y − fθ(Zy)×3 Ey. (15)

The regression and consistency terms are formulated as

Lres.
θ = 1

2

2

∑
i=1

∥∥Dspa,i(Y)− X̂spa,3−i
∥∥2

2, (16)

Lcons.
θ = 1

2

2

∑
i=1

∥∥Dspa,i(X̂ )− X̂spa,i
∥∥2

2, (17)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2025 doi:10.20944/preprints202508.2040.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.2040.v1
http://creativecommons.org/licenses/by/4.0/


11 of 26

where
X̂spa,i = Dspa,i(Y)− fθ(Dspa,i(Zy))×3 Ey (18)

represents the estimation of the clean downsampled HSI Dspa,i(X ) from its noisy counterpart
Dspa,i(Zy). Here, Dspa,i(·) denotes the downsampling operator with kernel ki.

The regression loss (16) enforces fidelity between the downsampled noisy observations and their
denoised counterparts, thereby encouraging accurate residual prediction across multiple views. The
consistency loss (17) serves as a regularization term by encouraging approximate commutativity
between the network and the downsampling operator:

fθ(Dspa,i(Zy)) ≈ Dspa,i( fθ(Zy)). (19)

Such approximate commutativity is sufficient to stabilize training, preserve multi-scale spatial struc-
tures, and provide meaningful supervision signals in the self-supervised setting, ultimately improving
the robustness and performance of hyperspectral image denoising.

3.5.2. Spectral Loss Function

Given the rich spectral information in HSIs and their inherent smoothness prior, we propose
spectral downsampling to effectively exploit this prior and construct a spectral loss function based
on the spectral downsampler. This approach not only enhances the spectral consistency but also
complements the spatial loss function which is designed to enhance spatial consistency constraints.

While spatial downsampling operates on geometric structures, spectral downsampling targets
inter-band correlations: split the HSI into two sub-cubes along the spectral axis, odd and even indexes,
and a neighborhood-based smoothing is applied within each sub-cube by averaging adjacent spectral
bands. As shown in Figure 3, this process decomposes a 6-band HSI into two 2-band sub-cubes, where
the averaged bands inherit material-specific signatures.

B6B5B4B3B2B1

(B3+B5)

2

(B1+B3)

2

(B4+B6)

2

(B2+B4)

2

evenK

oddK

Figure 3. The spectral downsampler decomposes an HSI into two HSIs with half the spectral bands by separating
odd and even bands. In the above example the input is a HSI with 6 bands, and the output is two HSIs with 2
bands.

Formally, the spectral downsampler Dspe(·) takes an input HSI Y ∈ RH×W×B, producing two
spectrally subsampled HSIs Dspe,1(Y) and Dspe,2(Y) ∈ RH×W×(B/2−1). If B is odd, the last band is
duplicated to ensure equal dimensionality. We applied two 1D Conv with kernels Kodd = [0.5, 0, 0.5, 0]
and Keven = [0, 0.5, 0, 0.5] to accelerate the down sampling process.

The spectral loss function is theoretically similar to the spatial loss function, but the implemen-
tation is quite different. While the spatial loss directly applies spatial downsampling operators to
eigenimages Zy and feeds the reduced-resolution outputs into the network fθ(Zy), this approach is
fundamentally incompatible with spectral-domain processing. Even when employing 3D convolu-
tional layers to address channel dimensionality constraints, it remains infeasible to reconstruct the
denoised results with processed sub-eigenimages fθ(Dspe,i(Zy)) ∈ RH×W×(r/2−1) with the eigenmatrix
Ey ∈ Rr×B due to structural mismatches introduced spectral downsampling.
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To resolve this, as illustrated in the lower part of Figure 1 (a), our method employs ARSR on
spectrally downsampled HSIs Dspe,i(Y). This decomposition produces representative eigenimages
ZDspe,i(Y), Ey,i = R(Dspe,i(Y)) which are then processed by the network fθ to yield denoised subsam-

pled data X̂spe,i. By embedding spectral downsampling into the spatial loss function, we formalize the
spectral loss paradigm in Eq. (20):

Lspe
θ = Lres.

θ + Lcons.
θ (20)

Lres.
θ =

1
2
(

2

∑
i=1
∥Dspe,i(Y)− X̂spe,3−i∥2

2 (21)

Lcons.
θ =

1
2
(

2

∑
i=1
∥Dspe,i(X̂ )− X̂spe,i∥2

2) (22)

where, Dspe,i(·), (i = 1, 2) denote the spectrally sub-samples; X̂spe,i = Dspe,i(Y)− fθ(ZDspe,i(Y))×3 Ey,i

represent the denoising results corresponding to Dspe,i(Y).

3.5.3. Collaboration of Spatial and Spectral Losses

A fixed-weight combination of spatial and spectral losses fails to capture the scenario-specific
priority each constraint requires in real-world denoising tasks. For instance, spatial priors dominate in
high-noise regimes to recover structural coherence, while spectral priors excel at low-noise levels by
preserving material-specific signatures. To enable robustness to different scenarios, we formulate the
spectral-spatial collaborative loss function as:

Lθ = αLspe
θ + (1− α)Lspa

θ (23)

where, α controls the balance between the two loss terms, Lspa
θ indicates the spatial loss in Eq. (14) and

Lspe
θ refers the spectral loss in Eq. (20).

To simultaneously leverage the advantages of both the spatial loss function in high noise scenario
and spectral constraint under low noise condition, we propose a noise adaptive weighting function Eq.
(24) with the estimated noise level σ̂ from Eq. (10):

α = g(σ̂) =
1

1 + exp{k(σ̂− σ̃)} (24)

where α dynamically adjusts the influence of spectral and spatial losses based on the estimated noise
level σ̂; k is a parameter that can adjust the curvature of the function curve; σ̃ denotes the threshold that
is generated by ensuring that the signal-to-noise ratio is closest to 10 dB. To distinguish between high
and low noise levels, we use SNR = 10 dB as a threshold. This level of noise significantly affects high-
frequency information (e.g., texture, edge details), making noise suppression and detail preservation a
challenging trade-off. The proposed AWSSCLF not only enhances robustness against diverse noise
levels but also eliminates the need for manually tuned hyperparameters, ensuring robust performance.

3.6. End to End Self-Supervised Denoising

With the subspace projection and hybrid loss functions in place, we now describe the end-to-end
self-supervised learning procedure. The full workflow of the proposed SS3L framework is summarized
in Algorithm 1 and shown in Figure 1.
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Algorithm 1 Self-Supervised HSI Denoising with ARSR and AWSSCLF
Input: Noisy HSI Y

1: TRAIN fθ(·)
2: SSHE: σ̂← {via Eq. (10), SSHE}
3: Select rank: r ← {via Eq. (13)}
4: Compute weight: α← {via Eq. (24)}
5: ARSR: E,Zy ← {via Eq. (6)}
6: for k = 1 to T do
7: Generate spatial sub-images: Dspa,i ← Dspa(Zy)
8: Generate spectral sub-images: Dspe,i ← Dspe(Zy)

9: Compute spatial loss: Lspa
θ ← Eq. (14)

10: Compute spectral loss: Lspe
θ ← Eq. (20)

11: AWSSCLF: Lθ ← αLspe
θ + (1− α)Lspa

θ {via Eq. (23)}
12: Update parameters: θ ← {Adam optimizer}
13: end for
14: return r, θ

15:
16: PREDICT Y
17: Subspace transform: Ey,Zy ← {via Eq. (6)}
18: Noise prediction: N̂ ← fθ(Zy)×3 E
19: Reconstruction: X̂ ← Y − N̂
20: return CLIP(X̂ , 0, 1)

The Network fθ used in this work is a lightweight network consisting of three 2D convolutional
layers and two LeakyReLU layers. During training, we first apply ARSR to reduce the dimensionality
of noisy HSI while preserving its intrinsic structure. The resulting eigenimages serve as the basis for
designing spatial and spectral loss functions aimed at enhancing consistency. The spatial loss follows a
downsampling-based strategy to enforce spatial consistency, while the spectral loss ensures fidelity
along the spectral dimension. These loss functions are computed independently but combined through
a noise-aware adaptive weighting scheme. The integrated loss function, AWSSCLF, is used to constrain
a lightweight network fθ within a self-supervised learning framework, as shown in Figure 1 (a). The
network is trained via gradient descent to optimize θ. Once trained, it is applied to the original noisy
observation to estimate the denoised image, as illustrated in Figure 1 (b): X̂ = Y − fθ(Zy)×3 Ey.

4. Experiments
4.1. Experimental Setup
4.1.1. Datasets and Evaluation Metrics

We evaluate the proposed method on six HSI datasets under two experimental settings: simulated
noise removal and real noise removal. All datasets are preprocessed by removing low-SNR bands, such
as those affected by water vapor absorption, to ensure consistent and fair evaluation. For large-scale
datasets, spatial patches of size 256× 256× B are extracted for training and evaluation.

For simulated noise removal, experiments are conducted on the Washington DC Mall (WDCM)
dataset, the Kennedy Space Center (KSC) dataset, the GF-5 dataset [37], and the AVIRIS dataset [37].
Specifically, WDCM consists of a single HSI of size 1280× 307× 191, acquired by the AVIRIS sensor,
with 191 bands retained after low-SNR band removal. KSC consists of a single HSI of size 512× 614×
176, also acquired by AVIRIS. The GF-5 dataset provides hyperspectral data of size 512× 512× 330,
acquired by the AHSI sensor, with the number of bands reduced to 305 after removing low-SNR
bands affected by atmospheric absorption. The AVIRIS dataset contains hyperspectral data of size
512× 512× 224, also collected using the AVIRIS sensor.

For real noise removal, experiments are conducted on the GF-5 and AVIRIS datasets (the same
as in the simulated setting), as well as on the Indian Pines and Botswana datasets. The Indian Pines
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dataset consists of hyperspectral data of size 145× 145× 200, acquired by AVIRIS, while the Botswana
dataset contains a HSI of size 1476× 256× 145, acquired by the EO-1 Hyperion sensor.

To quantitatively assess the denoising performance, we adopt three commonly used evaluation
metrics: mean of Peak Signal-to-Noise Ratio (mPSNR), mean of Structural Similarity Index (mSSIM),
and mean of Spectral Angle Mapper (mSAM).

4.1.2. Implementation Details

Throughout all experiments across different HSI datasets and noise conditions, we set β in Eq.
(10) to 0.7 and k in Eq. (24) to 0.8.

Experiments of all methods were implemented in Python with PyTorch=1.13.1 on Ubuntu 22.04.5,
using an Nvidia GeForce RTX 3090 GPU with 24GB memory. Model training was conducted on the
same GPU, with 3000 training iterations. The Adam optimizer was used with parameters (0.9, 0.999)
and a learning rate of 0.001.

It should be noted that certain traditional HSI denoising methods, such as NG-Meet, LRTF-
DFR, LRMR, and FastHy, often require dataset-specific hyperparameter tuning to achieve optimal
performance. In our experiments, we adopted the default hyperparameters provided by the original
authors across all datasets without any manual adjustment. While this may lead to suboptimal
performance for some methods in specific scenes, our proposed SS3L framework does not require any
hyperparameter tuning, which demonstrates its robustness and stability across diverse datasets. The
source code includes implementations of these methods. This design ensures a fair and reproducible
comparison.

4.1.3. Comparison Methods

To evaluate the performance of the proposed method, we compared it with eight state-of-the-art
methods. These include traditional approaches such as low-rank matrix recovery (LRMR) [1], non-local
and global prior-based methods (NG-meet) [3], and tensor decomposition-based methods like LRTF-
DFR [4] and L1HyMixDe [8]. Additionally, we considered a hybrid approach that combines traditional
methods and Plug-and-Play deep regularization term (FastHy) [5]. The deep learning methods include
the supervised methods: HSID-CNN [38] and QRNN3D [39], as well as the self-supervised method:
Ne2Ne [16].

For HSID-CNN and QRNN3D, since our method operates in a self-supervised paradigm, we
directly applied the pre-trained models provided by the original authors, instead of retraining them
on our dataset, for a fair comparison. This approach was necessary since our experimental setup
only involves six HSI datasets which are insufficient to meet the data requirements for training these
supervised networks.

Methods HSID-CNN and QRNN3D take 32-band and 31-band HSIs as input, respectively. The
HSI datasets used in this work are divided into patches with size 256× 256× 32 with a step size of
128× 128× 16 to be fed into these two networks. The results of these two methods are reconstructed
via the resulting patches. The Ne2Ne was designed for RGB images. A single-band version was
retrained on these HSI dataset and applied to the corresponding HSI datasets.

4.2. Simulated Noise Removal

To assess denoising performance, simulated noisy HSIs were generated by introducing zero-mean
additive Gaussian noise to the data which had been normalized to the range [0, 1]. Each spectral band
was independently corrupted with Gaussian noise N(0, σ2), simulating band-specific sensor noise.

To comprehensively evaluate robustness for varying noise intensities, we constructed a fine-
grained simulated noisy HSIs dataset consisting of 20 noise levels, with standard deviations σ ∈{

5
255 , 10

255 , . . . , 100
255

}
with the scaled standard deviation σscaled = σ× 255 ranging from 5 to 100). This

approach provides a thorough assessment of the performance under diverse noise conditions and
imaging scenarios.
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We define five representative test scenarios (Cases 1-5), which capture key points for the noise in-
tensity and cover both Gaussian and sparse noise situations. These serve as benchmarks for subsequent
qualitative and quantitative analyses.

• Cases 1-4 : Gaussian noise with scaled noise levels of 5, 25, 50, and 100 was added to simulate
various corruption intensities.

• Case 5: To evaluate robustness against sparse structural noise, stripe artifacts were introduced by
injecting 200 randomly located 1-pixel-wide vertical stripes into 25% of randomly selected bands,
superimposed on the data already corrupted with Gaussian noise at level 50.

4.2.1. Quantitative Comparison

The experimental results for mPSNR, mSSIM, and mSAM across 20 noise levels applied to the
WDCM, KSC, GF-5, and AVIRIS datasets are presented in Figure 4. The proposed method achieves
superior performance with varying noise levels on the WDCM, GF-5, and KSC datasets.

(a) WDCM (b) KSC (c) GF-5 (d) AVIRIS

Figure 4. Comparison of mPSNR, mSSIM and mSAM metrics for four HSI datasets (WDCM, KSC, GF-5, AVIRIS)
under different noise levels (σscaled = σ× 255).

Traditional methods relying on simple priors (e.g., LRMR) underperform for diverse noise
conditions. Composite prior-guided approaches such as L1HyMixDe and LRTF-DFR show limited
effectiveness: L1HyMixDe achieves competitive results on WDCM and KSC under low noise, while
LRTF-DFR performs moderately on WDCM with medium noise. Both degrade significantly in other
scenarios.

NG-Meet, which integrates non-local and local priors, underperforms in low-noise regimes but
excels under high noise. Notably, its PSNR increases with noise intensity, contrasting with the decline
observed in other methods. FastHy, using deep networks as explicit regularizers via a plug-and-
play framework, matches our method’s performance on WDCM and KSC but lags on GF-5 (1–3 dB
gaps at noise levels 5–60). Supervised deep learning methods (QRNN3D, HSID-CNN) exhibit severe
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degradation without test-data fine-tuning, revealing training-data dependency. The self-supervised
Ne2Ne method, though designed for RGB images, surpasses LRMR on multiple datasets. The AVIRIS
dataset’s inherent noise in bands [107–116] and [152–171] leads to marginally lower metrics for our
method compared to simulate noisy references. LRTF-DFR shows instability under non-uniform noise,
with unstable performance fluctuations at different intensities.

Spectral recovery performance is further validated in Figures 5 and 6, which compare recon-
structed spectral curves in Case 2 and Case 5. Most comparison methods exhibit spectral shifting or
distortion (Figure 5), while only our approach achieves optimal alignment with real curves (Figure 6).
The proposed method gets the best match to real spectral trends and performs well in maintaining
spectral fidelity.

(a) Noisy (b) LRMR (c) NG-Meet (d) LRTF-DFR (e) L1HyMixDe

(f) FastHy (g) HSID-CNN (h) QRNN3D (i) Ne2Ne (j) Proposed

Figure 5. Recovered spectral curves at (127,77) in KSC Case 2 for all comparison methods.

(a) Noisy (b) LRMR (c) NG-Meet (d) LRTF-DFR (e) L1HyMixDe

(f) FastHy (g) HSID-CNN (h) QRNN3D (i) Ne2Ne (j) Proposed

Figure 6. Recovered spectral curves at (10,122) in AVIRIS Case 5 for all comparison methods.

Tables 1 and 2 demonstrate the efficacy of our proposed SS3L , which learns intrinsic data
structures directly from feature images rather than relying on manually designed regularization for
denoising. While our method underperforms the advanced plug-and-play framework FastHy on the
AVIRIS dataset in Cases 1 and 2, it achieves superior mPSNR values compared to most low-rank prior,
local smoothness prior, and supervised learning-based approaches. Case 5, which combines Gaussian
noise (level 50) and stripe artifacts, non-local self-similarity methods fail to balance noise removal
with structural preservation. Low-rank-prior methods (L1HyMixDe, LRTF-DFR) excel only under
low-noise conditions.
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Table 1. Quantitative comparison of all competing methods on the WDCM and KSC datasets. The best results are
highlighted in bold

Noisy LRMR NG-
Meet

LRTF-
DFR L1HyMixDeFastHy HSID-

CNN Ne2Ne QRNN3D Proposed

WDCM

Case1
mPSNR 34.1996 33.1411 23.7342 34.6905 38.5335 39.6494 16.283 27.1649 23.9383 39.9849
mSSIM 0.9599 0.9547 0.8409 0.9763 0.9671 0.9578 0.4504 0.8958 0.7878 0.9890
mSAM 6.7662 7.0999 12.3115 6.1528 4.7864 5.4596 19.8969 13.7181 8.6997 4.1058

Case2
mPSNR 20.8422 24.884 25.6972 32.1896 31.5029 32.5567 17.0672 26.458 23.2875 32.6666
mSSIM 0.588 0.842 0.8543 0.9655 0.8109 0.9237 0.4921 0.8656 0.7368 0.939
mSAM 23.0836 12.6977 13.8343 7.1798 14.0855 8.0753 17.1872 14.9373 11.6199 9.3564

Case3
mPSNR 15.47 21.12 24.8601 28.9012 25.5963 29.4901 11.2258 24.0474 21.3145 29.4878
mSSIM 0.33 0.723 0.8388 0.9370 0.6985 0.8917 0.3262 0.7934 0.6498 0.9184
mSAM 33.4264 17.8537 15.0978 8.713 18.0449 10.3574 26.1666 16.7844 14.7021 11.624

Case4
mPSNR 10.6074 18.9332 25.2726 22.7469 19.6676 24.9552 14.943 18.1661 17.1019 26.621
mSSIM 0.1441 0.6143 0.8553 0.821 0.5744 0.8554 0.4075 0.6139 0.4917 0.8595
mSAM 43.5543 20.9286 12.7925 14.5153 21.012 11.1705 21.9956 20.2879 19.3081 13.2

Case5
mPSNR 15.3399 16.3694 18.6678 23.9983 24.6554 28.231 17.0409 20.1656 20.5653 28.9276
mSSIM 0.3263 0.5678 0.6655 0.8479 0.7183 0.8639 0.4658 0.6749 0.6348 0.9075
mSAM 35.0802 23.6427 16.5209 14.3223 18.2969 15.236 19.2434 20.2184 17.2316 11.4248

KSC

Case1
mPSNR 34.2412 37.5316 24.9481 36.9613 44.3794 43.7204 16.9099 33.2468 23.2345 42.7613
mSSIM 0.9329 0.972 0.8409 0.9749 0.9866 0.9878 0.4704 0.9602 0.8398 0.9909
mSAM 13.6064 6.507 12.6775 6.7717 3.8436 3.8184 17.0041 8.1344 6.9231 5.0374

Case2
mPSNR 21.4743 26.1399 26.6868 35.3979 31.3154 34.1601 16.7363 30.71 22.7779 34.5499
mSSIM 0.4508 0.7924 0.8491 0.9582 0.7784 0.9412 0.5544 0.9114 0.7852 0.9372
mSAM 33.6641 14.2737 14.5205 8.6318 11.9604 7.8977 16.338 12.0228 11.5781 10.1316

Case3
mPSNR 16.023 19.9621 27.1994 31.6466 23.8516 32.2211 7.9278 24.8568 19.9464 30.0528
mSSIM 0.1887 0.5838 0.8286 0.9185 0.5954 0.8178 0.3016 0.7292 0.6069 0.9124
mSAM 42.5897 21.2702 17.5872 12.2009 15.8523 11.6845 25.2886 15.306 15.9779 11.4229

Case4
mPSNR 10.8328 18.609 27.6856 25.6783 18.315 27.0152 13.2095 17.3612 14.9885 29.3451
mSSIM 0.06 0.4901 0.8503 0.8241 0.3877 0.7329 0.3617 0.4313 0.36 0.8716
mSAM 49.6137 24.4529 13.2766 16.3273 20.0643 13.9542 19.7802 19.4100 20.7138 10.2948

Case5
mPSNR 16.026 16.0693 19.0167 7.3999 25.3434 30.5901 16.3794 19.9243 19.2514 28.1101
mSSIM 0.1945 0.4125 0.6323 0.3666 0.573 0.8818 0.4714 0.5315 0.6123 0.8503
mSAM 43.1404 26.2597 18.1872 24.954 17.4208 12.58 17.8447 20.1234 17.7609 19.4106
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Table 2. Quantitative comparison of all competing methods on the GF-5 and AVIRIS dataset. The best results are
highlighted in bold

Noisy LRMR NG-
Meet

LRTF-
DFR L1HyMixDeFastHy HSID-

CNN Ne2Ne QRNN3D Proposed

GF-5

Case 1
mPSNR 34.0356 35.6213 27.664 37.3411 40.794 38.876 19.8188 33.4585 26.2845 41.0434
mSSIM 0.9517 0.9735 0.827 0.9782 0.9376 0.9789 0.7178 0.9698 0.8401 0.9911
mSAM 4.2508 3.6731 6.603 3.7652 2.7712 2.7818 7.0966 5.6999 4.2816 2.3931

Case 2
mPSNR 20.3603 26.2751 27.6737 33.1085 33.2365 32.6084 20.1893 30.742 25.2399 33.194
mSSIM 0.4774 0.8738 0.8313 0.9689 0.935 0.9412 0.6989 0.9379 0.7939 0.9653
mSAM 19.5057 9.0891 6.8497 4.2081 4.8742 3.7523 7.7504 6.6756 6.3891 4.8609

Case 3
mPSNR 14.9915 23.6229 27.1764 28.0645 26.763 30.5307 12.7354 27.1525 22.907 29.6561
mSSIM 0.2149 0.7844 0.8259 0.9278 0.8095 0.9221 0.4424 0.8523 0.6931 0.9367
mSAM 31.9724 11.9945 7.1674 6.9239 9.7997 4.5226 17.2469 8.8428 9.677 6.8598

Case 4
mPSNR 10.3989 21.5883 26.5495 19.3692 21.161 28.4796 16.5103 20.7051 17.7749 28.9979
mSSIM 0.0812 0.6731 0.8232 0.7256 0.6551 0.8748 0.5383 0.6371 0.508 0.8943
mSAM 42.3827 14.1486 8.5733 12.0822 12.7367 5.7872 11.9243 12.517 13.8649 5.7200

Case 5
mPSNR 15.1019 19.8502 24.0653 8.5861 26.2542 30.238 20.1356 22.8616 22.1065 30.267
mSSIM 0.2214 0.6449 0.7414 0.4416 0.8503 0.8937 0.6682 0.7383 0.685 0.939
mSAM 33.2 16.2035 10.0386 17.3323 10.2113 9.9385 10.3601 12.5154 12.011 6.3875

AVIRIS

Case 1
mPSNR 34.11 27.89 23.88 31.98 35.04 34.00 22.21 28.30 25.96 32.21
mSSIM 0.9571 0.8846 0.7772 0.9005 0.889 0.9072 0.6831 0.8681 0.8084 0.9136
mSAM 3.0022 11.5702 13.8491 10.8137 7.6813 7.1497 9.6349 10.5819 7.3689 9.2551

Case 2
mPSNR 20.28 24.90 24.13 29.74 28.87 29.69 22.03 26.55 24.78 28.80
mSSIM 0.5183 0.7999 0.7789 0.8876 0.8428 0.886 0.679 0.8397 0.7659 0.8835
mSAM 14.4262 13.9368 13.9948 11.599 8.2749 7.4654 9.5846 10.8997 8.1789 10.9115

Case 3
mPSNR 14.63 22.56 24.01 26.34 24.84 26.51 16.07 24.22 22.77 26.56
mSSIM 0.2495 0.7344 0.7809 0.8417 0.7354 0.8450 0.5191 0.7639 0.67 0.8451
mSAM 25.587 14.5767 15.4063 12.9843 9.9279 8.3396 14.3058 11.7078 10.0134 13.7923

Case 4
mPSNR 10.15 20.89 24.03 19.63 20.30 24.57 19.13 20.90 19.79 25.40
mSSIM 0.102 0.6199 0.7795 0.7203 0.5683 0.8085 0.5531 0.5949 0.4991 0.7961
mSAM 36.8718 15.1042 14.3703 16.6476 12.2839 8.9728 12.1489 13.6188 13.3766 14.15

Case 5
mPSNR 14.3825 20.338 21.4547 24.1274 24.0457 26.543 21.0976 21.8417 22.2976 26.5042
mSSIM 0.2551 0.6256 0.726 0.815 0.7237 0.808 0.6369 0.6732 0.6565 0.8423
mSAM 27.5759 15.7701 17.0557 15.2223 12.4099 13.5277 11.8106 13.0086 13.2682 13.6372

4.2.2. Qualitative Comparison

Visual results for Band 100 in Cases 2 and 4 on the WDCM and KSC datasets are shown in Figures
7 and 8, respectively. The L1HyMixDe method performs well in Case 2 but deteriorates significantly
under high-noise conditions (Case 4).

(a) Clean (b) Noisy(c) LRMR(d) NG-
Meet

(e) LRTF (f) L1Hy (g)
FastHy

(h) D-
CNN

(i)
QRNN3D

(j) Ne2Ne(k) Pro-
posed

Figure 7. Band 100 results of the simulated noise removal experiments on the WDCM dataset for Case 1-4 (from
top to bottom).
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(a) Clean (b) Noisy(c) LRMR(d) NG-
Meet

(e) LRTF (f) L1Hy (g)
FastHy

(h) D-
CNN

(i)
QRNN3D

(j) Ne2Ne(k) Pro-
posed

Figure 8. Denoising results at band 100 of the KSC dataset for simulated cases 1–4 (from top to bottom).

To simulate real-world conditions, we evaluated denoising performance on Gaussian-stripe mixed
noise (Case 5). Noise was injected into 25% of randomly selected bands, resulting in visualized bands
111 (WDCM), 107 (KSC), 102 (GF-5), and 110 (AVIRIS). Notably, band 110 in AVIRIS belongs to the
bands with real stripe noise (107–116), reflecting inherent low-SNR artifacts caused by atmospheric
absorption.

As shown in Figure 9, most methods that are competitive under Gaussian noise fail to address
mixed noise effectively: NG-Meet removes high-frequency noise but erases critical image details;
LRTF-DFR fails to converge on KSC and GF-5 datasets; LRMR eliminates inherent AVIRIS tilted stripes
but introduces artificial vertical stripes into denoised results; FastHy achieves competitive results on
WDCM, KSC, and GF-5 but residual stripes remain when processing the AVIRIS dataset

(a) Clean (b) Noisy(c) LRMR(d) NG-
Meet

(e) LRTF (f) L1Hy (g)
FastHy

(h) D-
CNN

(i)
QRNN3D

(j) Ne2Ne(k) Pro-
posed

Figure 9. The denoising results of WDCM, KSC, GF-5 and AVIRIS under Case 5 (from the first row to the fourth
row). The Images displayed by different methods belong to different bands: band 111 of WDCM, 107 of KSC, 102
of GF-5 and 110 of AVIRIS.

It should be noted that these traditional methods, including NG-Meet, LRTF-DFR, LRMR, and
FastHy, rely on manually tuned hyperparameters for optimal performance. In our experiments,
we used the default parameters provided by the authors for all datasets, without dataset-specific
adjustment. As a result, some methods may exhibit suboptimal performance in certain scenes. NG-
Meet removes high-frequency noise but erases critical image details; LRTF-DFR fails to converge
on KSC and GF-5 datasets; LRMR eliminates inherent AVIRIS tilted stripes but introduces artificial
vertical stripes into denoised results; FastHy achieves competitive results on WDCM, KSC, and GF-5
but residual stripes remain when processing the AVIRIS dataset. In contrast, our SS3L framework,
which requires no hyperparameter tuning, consistently delivers stable and reliable denoising results
across all datasets, highlighting its practical advantage and robustness.
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4.3. Real HSI Denoising Experiments

To further verify the adaptability of our proposed method on real noise scenes, we executed
denoising experiments on four real-world HSI datasets Indian-pines, Botswana, AVIRIS and GF-5.

Each dataset represents distinct noise scenarios: Indian Pines: Gaussian noise with impulse
artifacts (first band); Botswana: Low intensity Gaussian noise (final bands); AVIRIS: Medium intensity
Gaussian noise (final bands); GF-5: Mixed Gaussian-stripe noise (final bands). Given the lack of ground
truth, we take the band at a distance of 5 from the degraded band as the reference noise free sample.

As shown in Figure 10, all methods achieved satisfactory performance on low-to-medium noise
(Botswana, AVIRIS), except supervised deep learning approaches, which perform ineffectively due
to training data dependency. NG-Meet’s non-local priors suppressed noise but eroded fine details.
L1HyMixDe removed noise completely but introduced luminance distortion. Methods relying on
low-rank priors (LRMR, LRTF-DFR) struggled with sparse noise (e.g., stripes, salt-and-pepper), while
NG-Meet eliminated such artifacts at the cost of over-smoothing. Ne2Ne excelled spatially but
compromised spectral fidelity, as shown in prior simulations. Our method outperforms all comparison
methods, effectively removing complex noise (atmospheric interference, stripes, dead pixels) while
preserving structural and spectral integrity for all datasets.

(a) Refer-
ence

(b) Noisy(c) LRMR(d) NG-
meet

(e) LRTF (f) L1Hy (g)
FastHy

(h) D-
CNN

(i)
QRNN3D

(j) Ne2Ne(k) Pro-
posed

Figure 10. The result of denoising experiment on 224th band of AVIRIS data and 330th band of GF-5 data.

The simulated and real noise removal experiments validate the superiority of our proposed
method, which outperforms existing methods in both quantitative metrics and visual quality. By
integrating ARSR into AWSSCLF, our method automatically removes complex noise from a single
HSI input while maintaining robustness under varying noise strengths and across different imaging
sensors (AVIRIS, Hyperion, AHSI), without requiring hyperparameter tuning.

4.4. Ablation Study

To analyze how each component in the proposed framework contributes to the denoising perfor-
mance, we conducted an ablation study on WDCM dataset with different noise levels.

4.4.1. Effectiveness of ARSR and AWSSCLF

To verify the effectiveness of the proposed ARSR and AWSSCLF strategy, we conducted an
ablation study with the following four cases as shown in Table 3 For reference, we also report the
mPSNR computed between the noisy HSI and the ground truth, to better assess the effectiveness
of the compared strategies. As shown in Figure 11 (a), the method without SR exhibits the poorest
performance, leading to significant information loss in low-noise conditions. The method with a
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fixed low-rank (r = 4) SR performs poorly under noise level below 20 (σ < 0.08), whereas the fixed
high-rank (r = 16) SR variant performs poorly in medium- and high-noise conditions: noise level
higher than 40 (σ > 0.16). In contrast, our proposed ARSR, which dynamically adjusts the rank for SR
based on estimated noise variance, consistently outperforms all fixed-rank variants under different
noise levels.

Table 3. Ablation study: Component activation status

Configuration *
ARSR AWSSCLF

SR DynRank Spatial Spectral AdaptW

Subspace Representation Studies

NoSR × × ✓ ✓ ✓

Fixed rank-4 SR ✓ × ✓ ✓ ✓

Fixed rank-16 SR ✓ × ✓ ✓ ✓

ARSR ✓ ✓ ✓ ✓ ✓

Loss Function Studies

Only spatial loss ✓ ✓ ✓ × ×
Only spectral loss ✓ ✓ × ✓ ×
SSCLF ✓ ✓ ✓ ✓ ×
AWSSCLF ✓ ✓ ✓ ✓ ✓

* Legend: SR = Subspace Representation, DynRank = Dynamic Rank, AdaptW = Adaptive Weighted. ✓: enabled, ×: disabled.

(a) ARSR (b) AWSSCLF

Figure 11. Ablation study on ARSR and AWSSCLF.

The experimental results in Figure 11 (b) show that under different noise intensities, the spatial
loss function and the spectral loss function are complementary. In low-noise scenarios (σ ≤ 0.1, noise
level lower than 25), relying on spatial loss function results in a 3-5 dB mPSNR reduction, while
spectral loss maintains optimal reconstruction quality. This trend significantly reverses when noise
level increases (σ > 0.16, noise level greater than 40): the performance decay rate of spectral loss
function is larger than that of spatial loss, with the latter demonstrating superior noise robustness. The
fixed-weight (α=0.5) spatial-spectral hybrid loss, although theoretically balanced, exhibits a maximum
deviation of 3.8 dB under varying noise levels. In contrast, our AWSSCLF, achieves consistently
optimal performance under all noise levels (0.02 ≤ σ ≤ 0.39).
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4.4.2. Effectiveness of Network Structure

To evaluate the impact of the network architecture within the proposed framework, we conducted
ablation experiments on the WDCM dataset by replacing the network fθ while keeping the other
components unchanged. Specifically, the compared network structures include:

• Proposed lightweight 2D Conv network (3 Conv layers + 2 LeakyReLU layers);
• 3D Conv network;
• ResNet-based network (HSI-DeNet [11]);
• U-Net structure (QRNN3D [39]).

The experimental results shown in Figure 12 reveal that under low noise conditions: noise level
in [5,10] (σ ≤ 0.05), the 3D Conv network achieves approximately 2 dB PSNR advantage through
spectral feature aggregation, and the performance differences of the other methods is less than 0.8
dB. As noise intensity increases: noise level greater than 20 (σ > 0.08), the differences of method
performance becomes significant: HSIDeNet deteriorates to 20 dB at noise level 100 (σ = 0.39); U-Net
and the 3D model maintain 25 dB via spatial-spectral feature fusion; our 2D network sustains optimal
performance under noise level in [20,100] (0.08 ≤ σ ≤ 0.39).

Figure 12. Ablation study on network structure.

4.5. Performance Evaluation of the Proposed Noise Estimator

We evaluate the performance of the three proposed noise estimator: ADE, MPVE and SSHE.
Figure 13 shows the noise estimation results of LAE, ADE, and SSHE under noise levels in [5,

100]. By dynamically balancing spatial and spectral information (with β = 0.7), SSHE achieves the
closest approximation to the real noise variance, significantly outperforming both ADE and MPVE.

Figure 13. The noise level estimation results of LAE, ADE and proposed SSHE, compared with the corresponding
ground truth noise levels.
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5. Conclusions
In this work, we proposed SS3L , which addresses two fundamental challenges in HSI denoising:

(1) the paired-data dependency of supervised deep learning, and (2) the hyperparameter sensitivity
of conventional model-based methods, by employing three key techniques. First, we introduce
geometric symmetry and spectral local consistency priors via spatial checkerboard downsampling and
spectral difference downsampling, enabling noise–signal disentanglement from a single noisy HSI
without clean reference data. Second, we develop the Spectral–Spatial Hybrid Estimation (SSHE) to
quantify noise intensity, guiding the Adaptive Weighted Spectral–Spatial Collaborative Loss Function
(AWSSCLF) that dynamically balances structural fidelity and denoising strength under varying noise
levels. Third, the Adaptive Rank Subspace Representation (ARSR), driven by singular value energy
distribution and noise energy estimation, determines the optimal subspace rank without heuristic
selection, embedding adaptive subspace representations into the self-supervised network. These
components jointly construct a dual-domain, physics-informed self-supervised framework that learns
cross-sensor invariant features without requiring paired data or manual hyperparameter tuning,
thus achieving robustness across diverse imaging systems. Extensive experiments validate SS3L’s
superiority in removing mixed noise types (e.g., Gaussian, stripe, impulse) and generalizing to unseen
scenes, achieving competitive performance both in quantitative metrics and visual quality. The current
limitations stem from fixed spectral regularization weights and single-scene optimization paradigm.
Future work will explore integrating Deep Image Prior (DIP) inductive bias and non-local priors into
this self-supervised framework to further enhance generalization across diverse scenarios.
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The following abbreviations are used in this manuscript:

HSI Hyperspectral Image
RS Remote Sensing
SNR Signal-to-Noise Ratio
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity Index Measure
MPSNR Mean Peak Signal-to-Noise Ratio
MSSIM Mean Structural Similarity Index Measure
ARSR Adaptive Reduced Subspace Representation
AWSSCLF Adaptive Weight Spatial-Spectral Collaborative Loss Function
N2N Noise2Noise
DIP Deep Image Prior
PCA Principal Component Analysis
SVD Singular Value Decomposition
CNN Convolutional Neural Network

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2025 doi:10.20944/preprints202508.2040.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.2040.v1
http://creativecommons.org/licenses/by/4.0/


24 of 26

References
1. Zhang, H.; He, W.; Zhang, L.; Shen, H.; Yuan, Q. Hyperspectral Image Restoration Using Low-Rank Matrix

Recovery. IEEE Transactions on Geoscience and Remote Sensing 2014, 52, 4729–4743. https://doi.org/10.1109/
TGRS.2013.2284280.

2. He, W.; Zhang, H.; Zhang, L.; Shen, H. Total-Variation-Regularized Low-Rank Matrix Factorization for
Hyperspectral Image Restoration. IEEE Transactions on Geoscience and Remote Sensing 2016, 54, 178–188.
https://doi.org/10.1109/TGRS.2015.2452812.

3. He, W.; Yao, Q.; Li, C.; Yokoya, N.; Zhao, Q.; Zhang, H.; Zhang, L. Non-Local Meets Global: An Iterative
Paradigm for Hyperspectral Image Restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2089–2107.
https://doi.org/10.1109/TPAMI.2020.3027563.

4. Zheng, Y.B.; Huang, T.Z.; Zhao, X.L.; Chen, Y.; He, W. Double-Factor-Regularized Low-Rank Tensor
Factorization for Mixed Noise Removal in Hyperspectral Image. IEEE Transactions on Geoscience and Remote
Sensing 2020, 58, 8450–8464. https://doi.org/10.1109/TGRS.2020.2987954.

5. Zhuang, L.; Ng, M.K. FastHyMix: Fast and Parameter-Free Hyperspectral Image Mixed Noise Removal.
IEEE Transactions on Neural Networks and Learning Systems 2023, 34, 4702–4716. https://doi.org/10.1109/
TNNLS.2021.3112577.

6. He, W.; Zhang, H.; Shen, H.; Zhang, L. Hyperspectral Image Denoising Using Local Low-Rank Matrix
Recovery and Global Spatial–Spectral Total Variation. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 2018, 11, 713–729. https://doi.org/10.1109/JSTARS.2018.2800701.

7. Zhuang, L.; Fu, X.; Ng, M.K.; Bioucas-Dias, J.M. Hyperspectral Image Denoising Based on Global and
Nonlocal Low-Rank Factorizations. IEEE Transactions on Geoscience and Remote Sensing 2021, 59, 10438–10454.
https://doi.org/10.1109/TGRS.2020.3046038.

8. Zhuang, L.; Ng, M.K. Hyperspectral Mixed Noise Removal By ℓ1-Norm-Based Subspace Representation.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2020, 13, 1143–1157. https:
//doi.org/10.1109/JSTARS.2020.2979801.

9. Chen, Y.; Huang, T.Z.; Zhao, X.L. Destriping of Multispectral Remote Sensing Image Using Low-Rank
Tensor Decomposition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2018,
11, 4950–4967. https://doi.org/10.1109/JSTARS.2018.2877722.

10. Zhang, H.; Qian, J.; Zhang, B.; Yang, J.; Gong, C.; Wei, Y. Low-Rank Matrix Recovery via Modified Schatten- p
Norm Minimization With Convergence Guarantees. IEEE Transactions on Image Processing 2020, 29, 3132–3142.
https://doi.org/10.1109/TIP.2019.2957925.

11. Chang, Y.; Yan, L.; Fang, H.; Zhong, S.; Liao, W. HSI-DeNet: Hyperspectral Image Restoration via
Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing 2019, 57, 667–682.
https://doi.org/10.1109/TGRS.2018.2859203.

12. Shi, Q.; Tang, X.; Yang, T.; Liu, R.; Zhang, L. Hyperspectral Image Denoising Using a 3-D Attention
Denoising Network. IEEE Transactions on Geoscience and Remote Sensing 2021, 59, 10348–10363. https:
//doi.org/10.1109/TGRS.2020.3045273.

13. Zhang, Q.; Dong, Y.; Zheng, Y.; Yu, H.; Song, M.; Zhang, L.; Yuan, Q. Three-Dimension Spatial–Spectral
Attention Transformer for Hyperspectral Image Denoising. IEEE Transactions on Geoscience and Remote
Sensing 2024, 62, 1–13. https://doi.org/10.1109/TGRS.2024.3458174.

14. Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2Noise: Learning
Image Restoration without Clean Data. In Proceedings of the Proceedings of the 35th International
Conference on Machine Learning; Dy, J.; Krause, A., Eds. PMLR, 10–15 Jul 2018, Vol. 80, Proceedings of
Machine Learning Research, pp. 2965–2974.

15. Zhu, H.; Ye, M.; Qiu, Y.; Qian, Y. Self-Supervised Learning Hyperspectral Image Denoiser with Separated
Spectral-Spatial Feature Extraction. In Proceedings of the IGARSS 2022 - 2022 IEEE International Geoscience
and Remote Sensing Symposium, 2022, pp. 1748–1751. https://doi.org/10.1109/IGARSS46834.2022.9883856.

16. Huang, T.; Li, S.; Jia, X.; Lu, H.; Liu, J. Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy
Images. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021, pp. 14776–14785. https://doi.org/10.1109/CVPR46437.2021.01454.

17. Lempitsky, V.; Vedaldi, A.; Ulyanov, D. Deep Image Prior. In Proceedings of the 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018, pp. 9446–9454. https://doi.org/10.1109/CVPR.2018.0
0984.

18. Shi, K.; Peng, J.; Gao, J.; Luo, Y.; Xu, S. Hyperspectral Image Denoising via Double Subspace Deep Prior. IEEE
Transactions on Geoscience and Remote Sensing 2024, 62, 1–15. https://doi.org/10.1109/TGRS.2024.3457792.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2025 doi:10.20944/preprints202508.2040.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1109/TGRS.2013.2284280
https://doi.org/10.1109/TGRS.2013.2284280
https://doi.org/10.1109/TGRS.2015.2452812
https://doi.org/10.1109/TPAMI.2020.3027563
https://doi.org/10.1109/TGRS.2020.2987954
https://doi.org/10.1109/TNNLS.2021.3112577
https://doi.org/10.1109/TNNLS.2021.3112577
https://doi.org/10.1109/JSTARS.2018.2800701
https://doi.org/10.1109/TGRS.2020.3046038
https://doi.org/10.1109/JSTARS.2020.2979801
https://doi.org/10.1109/JSTARS.2020.2979801
https://doi.org/10.1109/JSTARS.2018.2877722
https://doi.org/10.1109/TIP.2019.2957925
https://doi.org/10.1109/TGRS.2018.2859203
https://doi.org/10.1109/TGRS.2020.3045273
https://doi.org/10.1109/TGRS.2020.3045273
https://doi.org/10.1109/TGRS.2024.3458174
https://doi.org/10.1109/IGARSS46834.2022.9883856
https://doi.org/10.1109/CVPR46437.2021.01454
https://doi.org/10.1109/CVPR.2018.00984
https://doi.org/10.1109/CVPR.2018.00984
https://doi.org/10.1109/TGRS.2024.3457792
https://doi.org/10.20944/preprints202508.2040.v1
http://creativecommons.org/licenses/by/4.0/


25 of 26

19. Sidorov, O.; Hardeberg, J.Y. Deep Hyperspectral Prior: Single-Image Denoising, Inpainting, Super-Resolution.
In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW),
2019, pp. 3844–3851. https://doi.org/10.1109/ICCVW.2019.00477.

20. Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted Nuclear Norm Minimization with Application to Image
Denoising. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014,
pp. 2862–2869. https://doi.org/10.1109/CVPR.2014.366.

21. Lu, C.; Feng, J.; Chen, Y.; Liu, W.; Lin, Z.; Yan, S. Tensor Robust Principal Component Analysis with a
New Tensor Nuclear Norm. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020, 42, 925–938.
https://doi.org/10.1109/TPAMI.2019.2891760.

22. Xue, J.; Zhao, Y.; Liao, W.; Chan, J.C.W. Nonlocal Low-Rank Regularized Tensor Decomposition for
Hyperspectral Image Denoising. IEEE Transactions on Geoscience and Remote Sensing 2019, 57, 5174–5189.
https://doi.org/10.1109/TGRS.2019.2897316.

23. Peng, J.; Wang, Y.; Zhang, H.; Wang, J.; Meng, D. Exact Decomposition of Joint Low Rankness and Local
Smoothness Plus Sparse Matrices. IEEE Transactions on Pattern Analysis and Machine Intelligence 2023,
45, 5766–5781. https://doi.org/10.1109/TPAMI.2022.3204203.

24. Maggioni, M.; Katkovnik, V.; Egiazarian, K.; Foi, A. Nonlocal Transform-Domain Filter for Volumetric
Data Denoising and Reconstruction. IEEE Transactions on Image Processing 2013, 22, 119–133. https:
//doi.org/10.1109/TIP.2012.2210725.

25. Xie, Q.; Zhao, Q.; Meng, D.; Xu, Z. Kronecker-Basis-Representation Based Tensor Sparsity and Its Applica-
tions to Tensor Recovery. IEEE Transactions on Pattern Analysis and Machine Intelligence 2018, 40, 1888–1902.
https://doi.org/10.1109/TPAMI.2017.2734888.

26. Zhuang, L.; Ng, M.K.; Gao, L.; Michalski, J.; Wang, Z. Eigenimage2Eigenimage (E2E): A Self-Supervised
Deep Learning Network for Hyperspectral Image Denoising. IEEE Transactions on Neural Networks and
Learning Systems 2024, 35, 16262–16276. https://doi.org/10.1109/TNNLS.2023.3293328.

27. Mansour, Y.; Heckel, R. Zero-Shot Noise2Noise: Efficient Image Denoising without any Data. In Proceedings
of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 14018–
14027. https://doi.org/10.1109/CVPR52729.2023.01347.

28. Krull, A.; Buchholz, T.O.; Jug, F. Noise2Void - Learning Denoising From Single Noisy Images. In Proceedings
of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2124–2132.
https://doi.org/10.1109/CVPR.2019.00223.

29. Batson, J.; Royer, L. Noise2Self: Blind Denoising by Self-Supervision. In Proceedings of the Proceedings of
the 36th International Conference on Machine Learning (ICML), Long Beach, California, USA, June 2019;
Vol. 97, Proceedings of Machine Learning Research (PMLR), pp. 524–533.

30. Quan, Y.; Chen, M.; Pang, T.; Ji, H. Self2Self With Dropout: Learning Self-Supervised Denoising From Single
Image. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 1887–1895. https://doi.org/10.1109/CVPR42600.2020.00196.

31. Qian, Y.; Zhu, H.; Chen, L.; Zhou, J. Hyperspectral Image Restoration With Self-Supervised Learning: A
Two-Stage Training Approach. IEEE Transactions on Geoscience and Remote Sensing 2022, 60, 1–17. https:
//doi.org/10.1109/TGRS.2021.3137313.

32. Zhuang, L.; Bioucas-Dias, J.M. Fast Hyperspectral Image Denoising and Inpainting Based on Low-Rank and
Sparse Representations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2018,
11, 730–742. https://doi.org/10.1109/JSTARS.2018.2796570.

33. Miao, Y.C.; Zhao, X.L.; Fu, X.; Wang, J.L.; Zheng, Y.B. Hyperspectral Denoising Using Unsupervised
Disentangled Spatiospectral Deep Priors. IEEE Transactions on Geoscience and Remote Sensing 2022, 60, 1–16.
https://doi.org/10.1109/TGRS.2021.3106380.

34. Zhang, Q.; Yuan, Q.; Song, M.; Yu, H.; Zhang, L. Cooperated Spectral Low-Rankness Prior and Deep
Spatial Prior for HSI Unsupervised Denoising. IEEE Transactions on Image Processing 2022, 31, 6356–6368.
https://doi.org/10.1109/TIP.2022.3211471.

35. Marchenko, V.A.; Pastur, L.A. Distribution of eigenvalues for some sets of random matrices. Mathematics of
the USSR-Sbornik 1967, 1, 457–483.

36. Rousseeuw, P.J.; Croux, C. Alternatives to the Median Absolute Deviation. Journal of the American Statistical
Association 1993, 88, 1273–1283.

37. Kang, X.; Fei, Z.; Duan, P.; Li, S. Fog Model-Based Hyperspectral Image Defogging. IEEE Transactions on
Geoscience and Remote Sensing 2022, 60, 1–12. https://doi.org/10.1109/TGRS.2021.3101491.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2025 doi:10.20944/preprints202508.2040.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1109/ICCVW.2019.00477
https://doi.org/10.1109/CVPR.2014.366
https://doi.org/10.1109/TPAMI.2019.2891760
https://doi.org/10.1109/TGRS.2019.2897316
https://doi.org/10.1109/TPAMI.2022.3204203
https://doi.org/10.1109/TIP.2012.2210725
https://doi.org/10.1109/TIP.2012.2210725
https://doi.org/10.1109/TPAMI.2017.2734888
https://doi.org/10.1109/TNNLS.2023.3293328
https://doi.org/10.1109/CVPR52729.2023.01347
https://doi.org/10.1109/CVPR.2019.00223
https://doi.org/10.1109/CVPR42600.2020.00196
https://doi.org/10.1109/TGRS.2021.3137313
https://doi.org/10.1109/TGRS.2021.3137313
https://doi.org/10.1109/JSTARS.2018.2796570
https://doi.org/10.1109/TGRS.2021.3106380
https://doi.org/10.1109/TIP.2022.3211471
https://doi.org/10.1109/TGRS.2021.3101491
https://doi.org/10.20944/preprints202508.2040.v1
http://creativecommons.org/licenses/by/4.0/


26 of 26

38. Yuan, Q.; Zhang, Q.; Li, J.; Shen, H.; Zhang, L. Hyperspectral Image Denoising Employing a Spatial–Spectral
Deep Residual Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing 2019,
57, 1205–1218. https://doi.org/10.1109/TGRS.2018.2865197.

39. Fu, Y.; Liang, Z.; You, S. Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-
Resolution. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2021, 14, 2674–2688.
https://doi.org/10.1109/JSTARS.2021.3057936.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2025 doi:10.20944/preprints202508.2040.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1109/TGRS.2018.2865197
https://doi.org/10.1109/JSTARS.2021.3057936
https://doi.org/10.20944/preprints202508.2040.v1
http://creativecommons.org/licenses/by/4.0/

