

## **PHYLOGENETIC ANALYSIS OF GLOBIN LIKE SUPERFAMILY AT MOLECULAR LEVEL**

Himani malhotra & Harmanpreet Kaur Sanghu

*Department of Bioinformatics and Biotechnology, Guru Nanak Girls College, Model Town, Ludhiana, Punjab*

Email: himanimalhotra89@gmail.com, preetharman140394@gmail.com

### **ABSTRACT**

Globin-like superfamily constitutes a superfamily of both extracellular and intracellular proteins that are found in 3 kingdoms of life. Globins are respiratory proteins that usually bind an oxygen molecule .Earlier, phylogenetic study of globin like superfamily was based on morphological character, however, molecular basis of their functional diversity is not completely understood. The present study focuses on the phylogenetic analysis of globin at molecular level. Firstly, proteins of SCOP families of globin like superfamily were retrieved from NCBI and then similar proteins are retrieved from PSI BLAST results and then pfam was used to predict the domains and two domains: Globin and Phycobilisome were analysed. Other analysis predicted the localization in cytoplasm of most of the proteins. The nucleotide sequences of same species for protein analysis were retrieved from NCBI, and phylogenetic analysis of aligned fasta files of proteins and nucleotides by using MEGA at molecular level was performed and analysis shows the difference on taxonomic tree and phylogenetic tree.

**Keywords:** Globin-like superfamily, Phylogenetic analysis, Taxonomic tree

## 1 INTRODUCTION

The proteins belong to globin like superfamily are present in three kingdoms of life. The globin like superfamily belongs to class of all alpha proteins and Fold Globin-like which is having 6 helices, folded leaf and partly open structure. The globin like superfamily has 4 families: Truncated Hemoglobin, Neural globins, Globins, Phycocyanin like phycobilisome proteins. Hemoglobin-like proteins found in eubacteria, cyanobacteria, protozoa, algae and plants, but not in animals or yeast. These proteins have a truncated 2-over-2 rather than the conical 3-over-3 alpha-helical sandwich fold. They lack first helix so, different from other families and 20-40 amino acids shorter than other globins. Neural globins are vertebrate globins present mainly in neural tissues. This also lack first helix but are more similar to other globins than the truncated ones and belongs to class all alpha proteins (*Giangiacome Laura et al 2005*).

Globins are Heme binding proteins. These are rich in alpha helix and surrounded by heme group. The globin fold typically consists of eight alpha helices only. So belongs to class all alpha proteins. As these are respiratory proteins so, bind an oxygen molecule between iron of porphyrin ring and histidine of polypeptide chain(Xie LK *et al* 2016). The main subfamilies of globin family are cytoglobin, myoglobin, leghemoglobin, erythrocruorin. Myoglobin consists of 154 amino acid and contain single chain alpha helical content and also contain the heme prosthetic group. Cytoglobin is hexa-coordinated globin but hemoglobin and myoglobin are penta coordinated globins and is 25% identical to Myoglobin in aspect of amino acid similarity. Leghemoglobin is Oxygen binding heme protein, present in plants for nitrogen fixation and having molecular weight of 15,400 and 16800. Leghemoglobin (Lb) is a myoglobin-like protein of about 16 kDa, which occurs in legume root nodules at very high concentrations. These found in root nodules of plants and are alpha proteins.

Allophycocyanin belongs to phycocyanin like phycobilisome proteins which have oligomers of two different types of globin like subunits containing two extra helices at the N- terminus bind a bilin chromophore. Allophycocyanin have alpha and beta subunits, which has a single non-cyclic tetrapyrrole chromophore called phycocyanin. Functional annotation of Globin-like superfamily is as they contain heme prosthetic group so mainly help in respiration of living organism. Leghemoglobin helps in nitrogen fixation with help of root nodules in plants. Molecular data that are in the form of DNA or protein sequences can provide very useful evolutionary perspectives of existing organisms because, as organisms evolve, the genetic materials accumulate mutations over time causing phenotypic

changes. Phylogenetic analysis of proteins give evolutionary information on the basis of proteins but taxonomical tree is based on the evolution on the basis of morphological characters (Balasubramanian L *et al* 2015).

Here, we carried out an extensive analysis to explain the phylogenetic relationships of proteins and nucleotides and comparing the phylogenetic tree with taxonomical tree. Firstly, we take the families under globin-like superfamily from SCOP and extracted five proteins sequence under globin super family from NCBI and PSI BLAST is done of every protein. Then we got eleven proteins in different species from PSI BLASTresult of each protein and saved their nucleotide sequences also. We made phylogenetic tree of them using software MEGA7 . Then we predicted domains of these 55 proteins of globin superfamily by using Pfam tool. Later, we analyzed the physiochemical properties using Protparam tool. The physiochemical properties analysed are number of amino acids, theoretical Pi, aliphatic index, instability index, molecular weight, GRAVY. Finally PSORT II was used to find out the location of hypothetical proteins for complete functional annotation of proteins of Globin-like superfamily. Here most of the proteins are located in cytoplasm and 1a few are in mitochondria. Then comparisons of the phylogenetic trees are done with taxonomical tree.

## **2 MATERIALS AND METHODS:**

### **2.1 Search for Globin-like family and superfamily in SCOP:**

Open SCOP homepage [www.scop.mrc-lmb.cam.ac.uk](http://www.scop.mrc-lmb.cam.ac.uk). The database is accessible on World Wide Web (WWW) with an entry point to URL <http://parallel.scop.mrc-lmb.cam.ac.uk> magnitude of SCOP. This database provides a detailed and comprehensive description of the structural and evolutionary relationships of the proteins of known structure (Murzin AG *et al*,1995). It also provides for each entry links to co-ordinates, images of the structure, interactive viewers, sequence data and literature references. The classification is on hierarchical levels: the first two levels, family and superfamily, describe near and distant evolutionary relationships; the third, fold, describes geometrical relationships. The key word search finds, for a word entered by the user, matches from both the text of the scop database and the headers of Brookhaven Protein Databank structure files. Search for the Globin in scop database and then click on the Globin-Like superfamily. Result shows the information about families and sub families of Globin-Like superfamily. 5 subfamilies i.e. Truncated Hemoglobin, Myoglobin, Cytoglobin, Leghemoglobin, Allophycocyanin have been identified. The protein fasta sequence for the subfamilies of families of Globin-Like superfamily is retrieved from NCBI.

**2.2 SEARCH FOR SEQUENCES AND RUN PSI-BLAST:** Open NCBI homepage [www.ncbi.nlm.nih.gov](http://www.ncbi.nlm.nih.gov). The national centre for biotechnology information (NCBI) www.ncbi.nlm.nih.gov serves as an international resource for scientific research community providing access to public databases and software tools for analyzing biological data, as well as performing research in computational biology. Genbank coordinates with individual laboratories and other sequence databases such as those of the European molecular biology laboratory (EMBL) and the DNA databank of Japan (Lindberg 2000). Search for the protein sequence of 5 subfamilies searched from SCOP database i.e. Truncated Hemoglobin, Myoglobin, Cytoglobin, Leghemoglobin, Allophycocyanin. Run PSI (Position specific iteration) blast for every protein sequence of each subfamily. Results shows similar protein sequence of different species of each subfamily. Save fasta sequence for 11 proteins of each subfamily. The fasta sequence for 55 proteins are saved as separate fasta file for each each subfamily. Open NCBI homepage [www.ncbi.nlm.nih.gov](http://www.ncbi.nlm.nih.gov). Search for nucleotide sequence for the same species as proteins sequences. Save fasta sequence for 5 species from every subfamily as seprate fasta file for each subfamily.

**2.3 IDENTIFICATION OF DOMAIN:** Open Pfam tool homepage from [www.pfam.xfam.org/](http://www.pfam.xfam.org/) which is a comprehensive collection of protein domains and families, represented as multiple sequence alignments and as profile hidden Markov models. Pfam is a manually curated database. The current release of Pfam contains 9318 protein families. Pfam is available on the web from the consortium members using a new, consistent and improved website design in the UK (<http://pfam.sanger.ac.uk/>), the USA (<http://pfam.janelia.org/>) and Sweden (<http://pfam.sbc.su.se/>), as well as from mirror sites in France (<http://pfam.jouy.inra.fr/>) and South Korea (<http://pfam.ccbb.re.kr/>). Pfam is comprehensive database of conserved protein families. Click on option search by sequence, then paste the protein sequence in given box to find the matching pfam entries. Result of domain search for each sequence will appear.

#### **2.4 PREDICTION OF PHYSIOCHEMICAL PROPERTIES:**

ProtParamtool (<http://web.expasy.org/protparam/>) computes various physico-chemical properties that can be deduced from a protein sequence. ProtParam computes various physico-chemical properties that can be deduced from a protein sequence. (Wilkins MR *et a,1999*)<sup>1</sup> No additional information is required about the protein under consideration. Open the protparam homepage

www.expasy.org/protparam. Paste the protein sequence in given box. The result showed physiochemical properties of protein.

**2.5 PREDICTION OF SUBCELLULAR LOCALIZATION** : Open the homepage of PSORTII [www.psort.hgc.jp/form2.html](http://www.psort.hgc.jp/form2.html). Paste the each protein sequence in search box and Click on submit option. Result page will be displayed. Results predict the protein subcellular localization of each protein sequence of each subfamily.

**2.6.1 PHYLOGENETIC ANALYSIS:** Open offline software of MEGA. Click on file and open saved fasta file of protein sequences. Click on the align option. Save the alignment file as .mas. Click on phylogeny and select option construct neighbor joining tree. Select the saved alignment file and Click on compute. Result shows the phylogenetic tree of query protein. Click on file and open saved fasta file of protein sequences.

**2.6.2** Open offline software of MEGA. Click on file and open saved fasta file of nucleotide sequences. Click on the align option and Save the alignment file as mas. Click on phylogeny and select option construct neighbor joining tree. Select the saved alignment file. Click on compute and Result shows the phylogenetic tree of query nucleotide.

### 3 RESULTS:

Structural Classification of Proteins

Superfamily: Globin-like

*Superfamily*

Lineage:

1. Root: scop
2. Class: All alpha proteins [46456]
3. Fold: Globin-like [46457]  
core: 6 helices; folded leaf, partly opened
4. Superfamily: Globin-like [46458]

*Superfamily*

Families:

1. Truncated hemoglobin [46459] (6)
2. Nerve tissue mini-hemoglobin (neural globin) [74660] (1)
3. Globin [46463] (81)
4. Phyocyanin-like phycobilisome protein [46532] (26)

oligomers of two different types of globin-like subunits containing two extra helices at the N-terminus  
bind a bilin chromophore

Enter search key:  Search

Generated from scop database 1.75 with scopm 1.101 on Wed Jun 3 10:42:06 2009  
Copyright © 1994-2009 The scop authors / scop@mrc-lmb.cam.ac.uk

**FIGURE 1:** Output of SCOP showing the families under the Globin-like superfamily

From SCOP we retrieved the information about the families and subfamilies belongs to Globin-Like superfamily .

NCBI Resources How To

Protein Protein Advanced Search Help

GenPept

**hemoglobin [Clostridium perfringens F262]**

GenBank: EIA16494.1

[Identical Proteins](#) [FASTA](#) [Graphics](#)

LOCUS EIA16494 144 aa linear BCT 14-MAR-2012

DEFINITION hemoglobin [Clostridium perfringens F262].

ACCESSION EIA16494

VERSION EIA16494.1

DBLINK BioProject: PRJNA51969  
BioSample: SAMN00199225  
accession AEF5010600027.1

DBSOURCE .

KEYWORDS .

SOURCE Clostridium perfringens F262

ORGANISM Clostridium perfringens F262

Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae; Clostridium.

REFERENCE 1 (residues 1 to 144)  
AUTHORS Nowell,V.J., Kropinski,A.M., Songer,J.G., MacInnes,J.I., Parreira,V.R. and Prescott,J.F.

TITLE Genome Sequencing and Analysis of a Type A Clostridium perfringens Isolate from a Case of Bovine Clostridial Abomasitis

JOURNAL PLoS ONE 7 (3), E32271 (2012)

PUBMED 22412860

REFERENCE 2 (residues 1 to 144)  
AUTHORS Nowell,V.J., Kropinski,A.M. and Prescott,J.F.

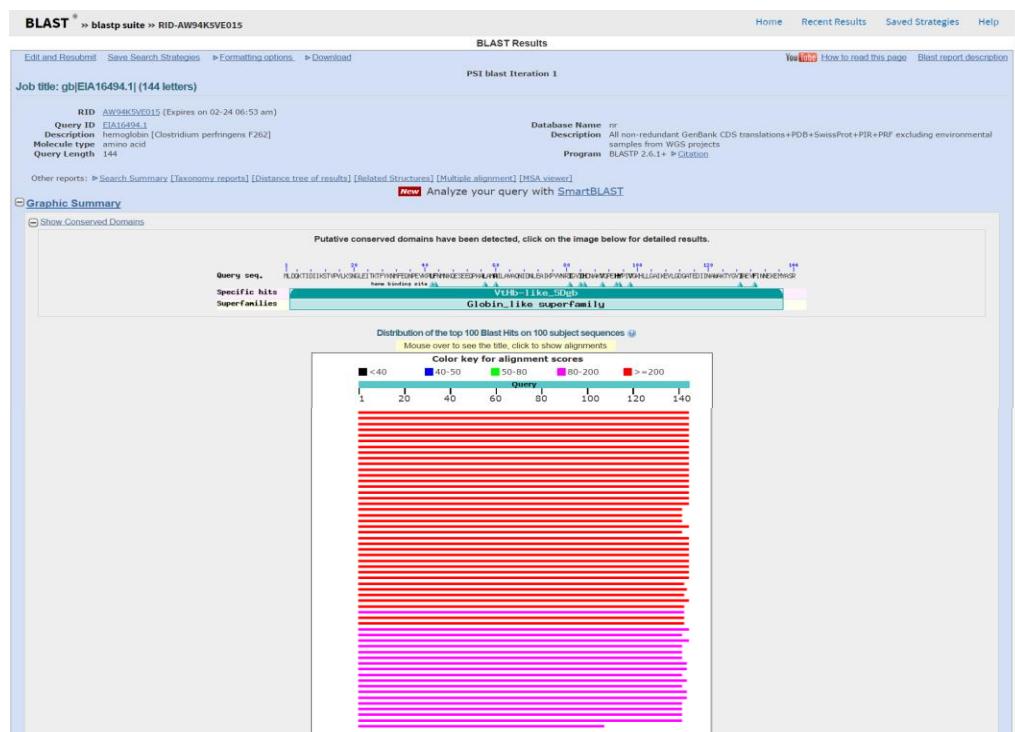
TITLE Direct Submission

JOURNAL Submitted (20-OCT-2011) Department of Pathobiology, University of Guelph, Ontario Veterinary College, 50 Stone Road, Guelph, Ontario N1G 2W1, Canada

REMARK The sequence of the genome of Clostridium perfringens strain F262. Annotation was added by the NCBI Prokaryotic Genomes Automatic Annotation Pipeline Group. Information about the Pipeline can be found here: <http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html>. Please be aware that the annotation is done automatically with little or no

Sign in to NCBI

Send to: Change region shown


Customize view

Analyze this sequence Run BLAST Identify Conserved Domains Highlight Sequence Features Find in this Sequence

Related information

BLink Related Sequences BioProject CDD Search Results Conserved Domains (Concise) Conserved Domains (Full) Domain Relatives Full text in PMC Nucleotide Proteins with Similar Sequences PubMed Related Structures (List)

**FIGURE 2:** Showing the NCBI result of query protein hemoglobin in *Clostridium perfringens*



**FIGURE 3:** output of PSI BLAST showing alignment of query sequence

Here, red indicate almost similar sequences, pink indicates less similar sequence. From here the similar proteins with identity value of similar proteins ranging from 70% to 97% were selected depending upon their e-value .

**TABLE 1:** Showing the results of PSI BLAST of protein Hemoglobin in *clostridium perfringes*

| PROTEIN                                                                                | e-<br>VALUE | IDENTITY | ACCESSION NO.  |
|----------------------------------------------------------------------------------------|-------------|----------|----------------|
| Bacitracin resistance protein<br>BacA [ <i>Romboutsia timonensis</i> ]                 | 3e-69       | 72%      | WP_071121120   |
| Bacitracin resistance protein<br>BacA [ <i>Intestinibacter bartlettii</i> ]            | 5e-69       | 73%      | WP_071121120.1 |
| Hemoglobin [ <i>Clostridium chauvoei</i> ]                                             | 4e-67       | 70%      | WP_021876824.1 |
| Bacitracin resistance protein<br>BacA [ <i>Lachnospiraceae bacterium mt14</i> ]        | 1e-64       | 67%      | WP_053982519.1 |
| Bacitracin resistance protein<br>BacA [ <i>Candidatus Arthromitus sp. SFB-turkey</i> ] | 4e-65       | 68%      | WP_066760512.1 |
| Bacitracin resistance protein<br>BacA [ <i>Fusobacterium mortiferum</i> ]              | 2e-58       | 59%      | WP005886941    |
| Bacitracin resistance protein<br>BacA [ <i>Terrisporobacter othiniensis</i> ]          | 2e-66       | 70%      | WP_039679269.1 |
| Hemoglobin [ <i>Vitreoscilla stercoraria</i> ]                                         | 2e-65       | 67%      | WP_019959060.1 |
| Soluble cytochrome O<br>[uncultured Clostridium sp.]                                   | 5e-68       | 70%      | SCH00953       |
| Bacterial hemoglobin<br>[ <i>Clostridium perfringens SM101</i> ]                       | 3e-97       | 97%      | ABG86855.1     |
| Nitric oxide dioxygenase<br>[ <i>Psychrobacillus psychrodurans</i> ]                   | 2e-51       | 61%      | SFM87783.1     |

The table shows that the proteins having e- value between 1e-64 to 5e- 65 were selected having identity between 61 % to 73 %.

NCBI Resources How To

Protein Protein Advanced

GenPept →

**myoglobin [Homo sapiens]**

NCBI Reference Sequence: NP\_976312.1

Identical Proteins FASTA Graphics

Go to: ▾

LOCUS NP\_976312 154 aa linear PRI 06-OCT-2016

DEFINITION myoglobin [Homo sapiens].

ACCESSION NP\_976312

VERSION NP\_976312.1

DBSOURCE REFSEQ: accession NM\_203378.1

KEYWORDS RefSeq.

SOURCE Homo sapiens (human)

ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo.

REFERENCE 1 (residues 1 to 154)

AUTHORS Bicker A, Brahmmer AH, Meller S, Kristiansen G, Gorr TA and Hankeln T.

TITLE The Distinct Gene Regulatory Network of Myoglobin in Prostate and Breast Cancer

JOURNAL PLoS ONE 10 (11), e0142662 (2015)

PUBLMED 26559958

REMARK GeneRIF: analysis of myoglobin gene regulatory networks in breast and prostate cancer

Publication Status: Online-Only

REFERENCE 2 (residues 1 to 154)

AUTHORS Yang Q, Liu S, Tan S, Shao C, Huang J and Xiang J.

TITLE [Preparation and application of monoclonal antibody against human myoglobin]

JOURNAL Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 31 (8), 1115-1119 (2015)

PUBLMED 26271987

REMARK GeneRIF: Data show that with the myoglobin (MYO) monoclonal antibody of high specificity and affinity. a one-step sandwich

Send to: ▾ Change region shown

Customize view

Analyze this sequence

Run BLAST

Identify Conserved Domains

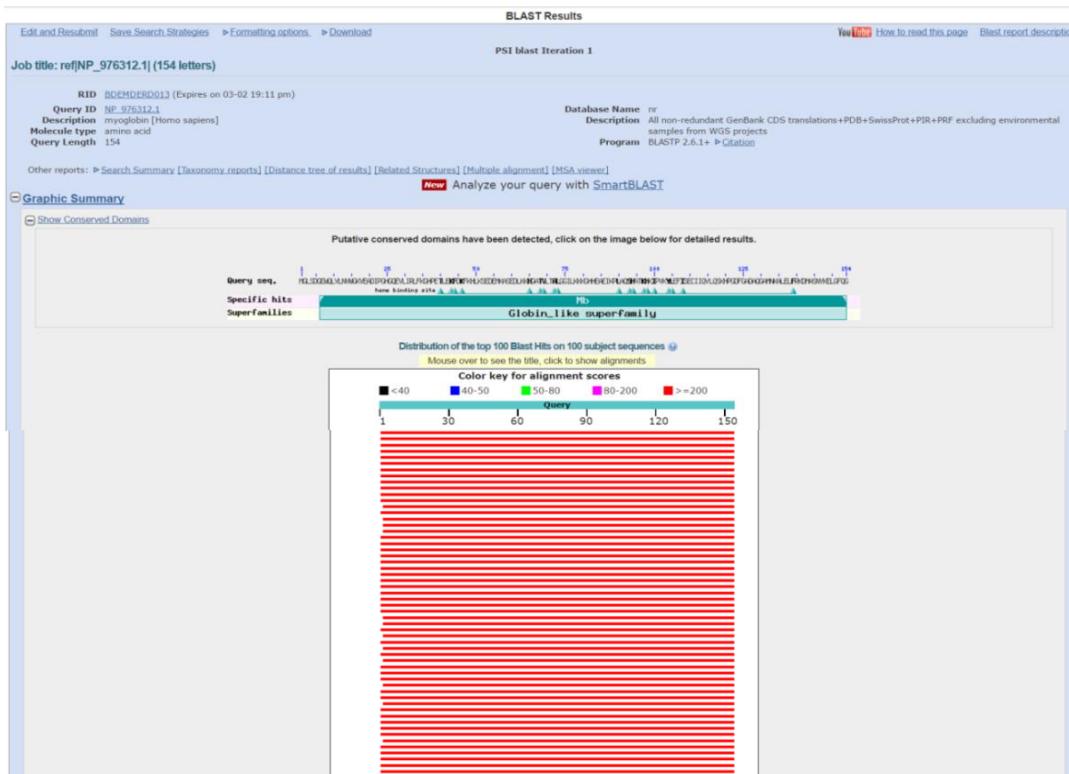
Highlight Sequence Features

Find in this Sequence

Protein 3D Structure

Crystal Structure Of Human Myoglobin Mutant K45R PDB: 3RGK Source: Homo sapiens Method: X-Ray Diffraction Resolution: 1.65 Å

Articles about the MB gene


Electroanalysis of myoglobin based on electropolymerized [DOI: Biochem Biophys. 2016]

Myoglobin A79G polymorphism association with exercise-induced skeletal [DOI: Genet Mol Res. 2016]

A novel electrochemical aptasensor based on Y-shape structure of du [DOI: Biosens Bioelectron. 2016]

See all...

**FIGURE 4:** Showing NCBI homepage for query Myoglobin in *Homo sapiens*



**FIGURE 5 :** Output of PSI BLAST showing alignment of query sequence where, red indicate totally similar sequences.

**TABLE 2:** Showing the results of PSI BLAST of protein Myoglobin in *Homo sapiens*

| PROTEIN                                                         | E-VALUE | IDENTITY | ACCESSION NO.  |
|-----------------------------------------------------------------|---------|----------|----------------|
| Myoglobin( <i>Sus scrofa</i> )pig                               | 1e-100  | 94%      | NP_999401.1    |
| Myoglobin( <i>Ursus maritimus</i> ) polar bear                  | 4e-99   | 92%      | NP_001288305.1 |
| Myoglobin( <i>Castor canadensis</i> ) American beaver           | 8e-97   | 90%      | XP_020029521.1 |
| Myoglobin( <i>Ochotona ladacensis</i> ) Ladak Pika              | 5e-96   | 90%      | AFN89860.1     |
| Myoglobin( <i>Eospalax baileyi</i> ) Zokar                      | 1e-95   | 88%      | AFN89857.1     |
| Myoglobin( <i>Ochotona erythrotis</i> ) Chinese red pika        | 2e-95   | 89%      | AFX00022.1     |
| Myoglobin( <i>Scapanus orarius</i> ) Coast mole                 | 3e-95   | 90%      | AGM75749.1     |
| Myoglobin( <i>Monodon monoceros</i> ) Narwhal                   | 4e-95   | 88%      | AGM7575.1      |
| Myoglobin( <i>Callorhinus ursinus</i> ) Northern Fur Seal       | 7e-95   | 88%      | AGM7576.1      |
| Myoglobin( <i>Hexa protodon liberensis</i> ) pygmy hippopotamus | 4e-94   | 90%      | AGM75737.1     |
| Myoglobin( <i>Dugogdugon</i> ) Sea cow                          | 7e-95   | 87%      | AGM75766.1     |

The table shows that the proteins having e- value between 1e-95 to 7e- 95 were selected having identity between 94 % to 87% for further analysis.

NCBI Resources How To

Sign in to NCBI

Protein Protein Advanced

GenPept

Send to: Change region shown

Customize view

Analyze this sequence

Run BLAST

Identify Conserved Domains

Highlight Sequence Features

Find in this Sequence

Reference sequence information

RefSeq protein

See the reference protein sequence for leghemoglobin C2 (NP\_001235248.1).

More about the gene LOC100527379

LOC100527379 gene

Also Known As: GLYMA\_20G191200

Related Information

BLink

Related Sequences

CDD Search Results

Conserved Domains (Concise)

Conserved Domains (Full)

**leghemoglobin [Glycine max]**

GenBank: AAA33980.1

Identical Proteins FASTA Graphics

Go to:

LOCUS AAA33980 145 aa linear PLN 27-APR-1993

DEFINITION leghemoglobin [Glycine max].

ACCESSION AAA33980

VERSION AAA33980.1

DBSOURCE locus SOYILBC2 accession J01301.1

KEYWORDS .

SOURCE Glycine max (soybean)

ORGANISM Glycine max

Eukaryota; Viridiplantae; Streptophyta; Embryophytta; Tracheophyta; Spermatophytina; Magnoliophyta; eudicots; rosids; fabids; Fabaceae; Papilionoideae; Phaseolales; Glycine Soja.

REFERENCE 1 (residues 1 to 145)

AUTHORS Wiborg, O., Hyldig-Nielsen, J.J., Jansen, E.O., Paludan, R. and Marcker, K.A.

TITLE The nucleotide sequences of two leghemoglobin genes from soybean

JOURNAL Nucleic Acids Res. 10 (11), 3487-3494 (1982)

PUBMED 6285303

COMMENT Method: conceptual translation.

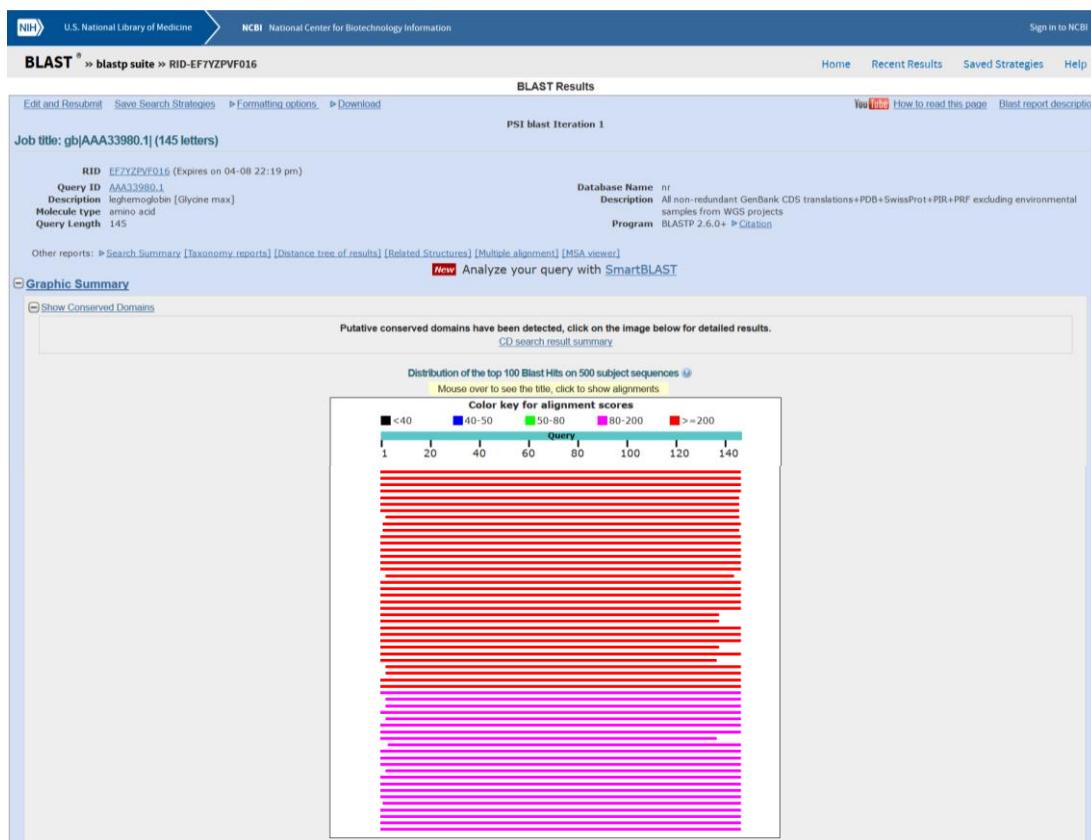
FEATURES location/Qualifiers

source 1..145

/organism="Glycine max"

/db\_xref="taxon:3847"

Protein 1..145


/name="leghemoglobin"

Region 4..144

/region\_name="class1-2\_nsHbs\_lbs"

/note="Class1 nonsymbiotic hemoglobins (nsHbs), class II

**FIGURE 6:** Showing NCBI page for query Leghemoglobin in *Glycine max*



**FIGURE 7:** Output of PSI BLAST showing alignment of query sequence where, red indicate totally similar sequences, pink indicates almost similar sequence.

**TABLE 3:** Showing results of PSI BLAST of protein Leghemoglobin in *Glycine max*

| PROTEIN                                                                  | e-VALUE | IDENTITY | ACCESSION NO.  |
|--------------------------------------------------------------------------|---------|----------|----------------|
| Leghemoglobin C2( <i>Glycine max</i> )Soyabean                           | 2e-77   | 79%      | NP001235248.1  |
| Leghemoglobin( <i>Sesbania rostara</i> )<br>semi-aquatic leguminous tree | 1e-62   | 70%      | ABC40722.1     |
| Leghemoglobin Lb120-1 ( <i>Medicago truncatula</i> )Barrelclover         | 9e-61   | 71%      | XP003588689.1  |
| Leghemoglobin( <i>Lotus japonicus</i> )Birdsfoot trefoil                 | 4e-57   | 65%      | BAE46737.1     |
| Leghemoglobin( <i>Astragalus sinicus</i> )Milkvetch                      | 4e-57   | 64%      | ABB13622.1     |
| Leghemoglobin K ( <i>Vicia faba</i> )<br>Broadbean                       | 4e-56   | 67%      | CAA90869.1     |
| Non symbiotic Hemoglobin 2 ( <i>Gossypium arboreum</i> )<br>Asian cotton | 2e-43   | 41%      | KHG23471.1     |
| Hemoglobin 2 ( <i>zea mays</i> )<br>Corn                                 | 2e-31   | 48%      | NP_001105819.1 |
| Non symbiotic Hemoglobin( <i>Quercus petraea</i> )<br>Oak tree           | 2e-28   | 46%      | ABO93466.1     |
| Hemoglobin hb1 ( <i>Triticum aestivum</i> )<br>Wheat                     | 3e-24   | 41%      | AAN85432.1     |

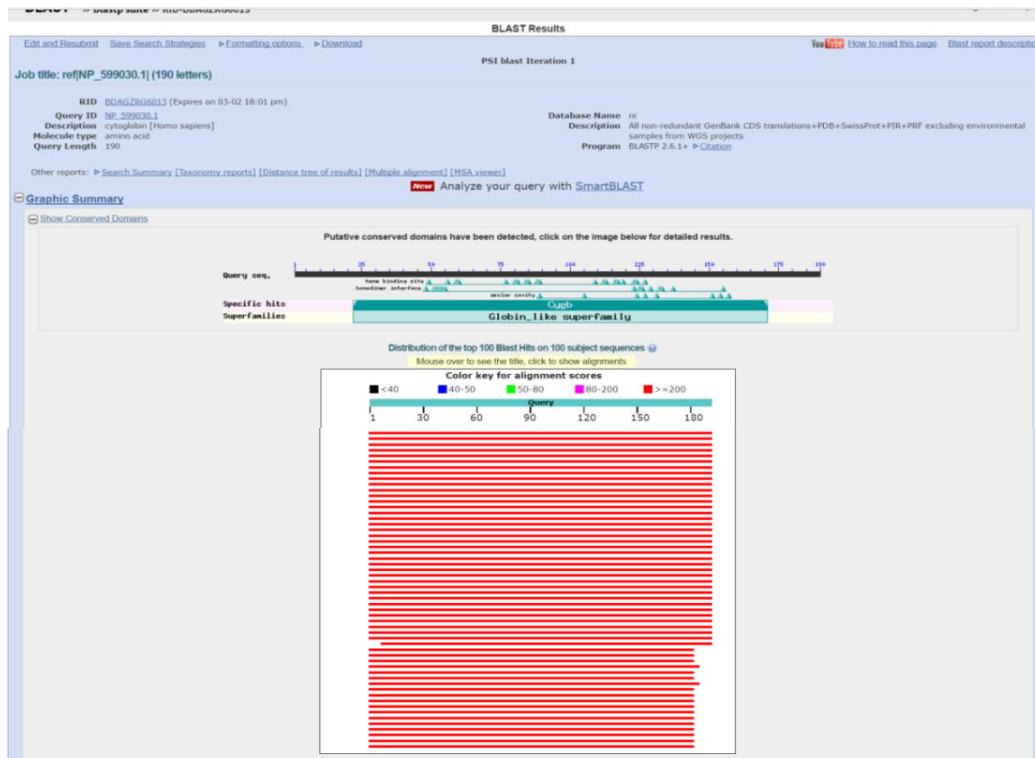
The table shows that the proteins having e- value between 1e-62 to 9e- 61 were selected having identity between 41% to 79%.

## Results showing the query sequence family Leghemoglobin were retrieved in FASTA format from NCBI after PSI BLAST.11 proteins were retrieved from each family

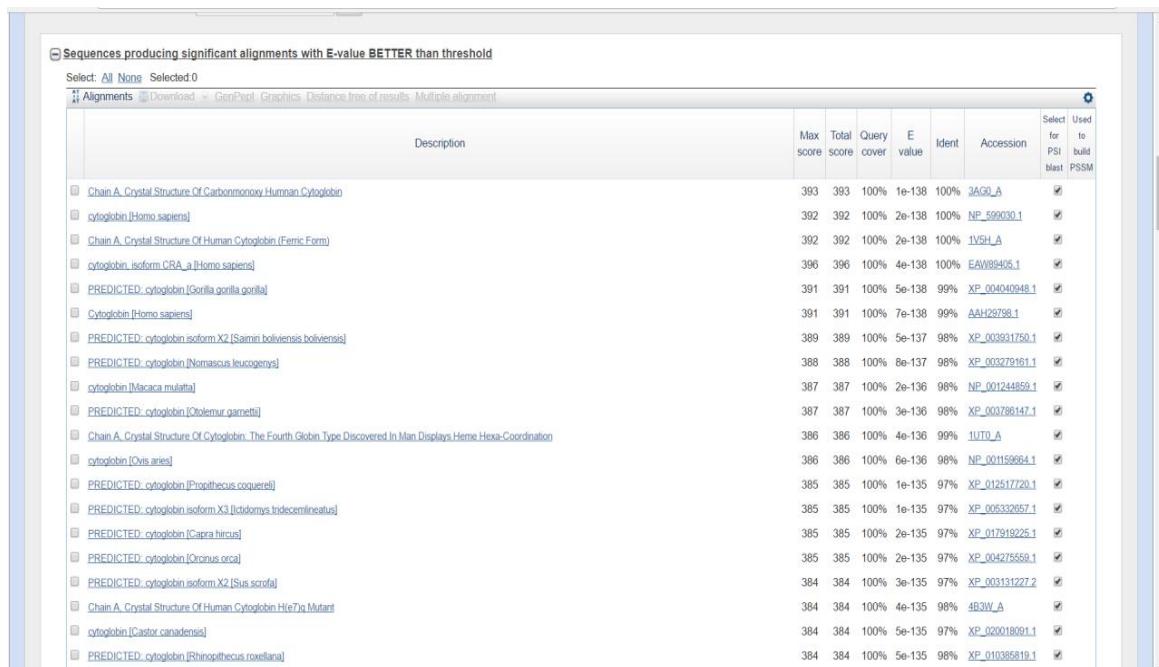
### 3. LEGHEMOGLOBIN (*Glycine max*)

**cytoglobin [Homo sapiens]**  
NCBI Reference Sequence: NP\_599030.1

**Identical Proteins** [FASTA](#) [Graphics](#)


**LOCUS** NP\_599030 190 aa **linear** PRI 25-JUL-2015  
**DEFINITION** cytoglobin [Homo sapiens].  
**ACCESSION** NP\_599030  
**VERSION** NP\_599030.1  
**DBSOURCE** REFSSEQ: accession NM\_134268.4  
**KEYWORDS** RefSeq.  
**SOURCE** Homo sapiens (human)  
**ORGANISM** Homo sapiens  
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo.  
**REFERENCE** 1 (residues 1 to 190)  
**AUTHORS** Beckerson P, Reeder B3 and Wilson MT.  
**TITLE** Coupling of disulfide bond and distal histidine dissociation in human ferrous cytoglobin regulates ligand binding  
**JOURNAL** FEBS Lett. 589 (4), 507-512 (2015)  
**PUBMED** 25601563  
**REMARK** GeneRIF: The cysteine redox state of the monomer controls histidine dissociation rate constants and hence extrinsic ligand binding in human cytoglobin.  
**REFERENCE** 2 (residues 1 to 190)  
**AUTHORS** Beckerson P, Wilson MT, Svistunenko DA and Reeder B3.  
**TITLE** Cytoglobin ligand binding regulation by changing haem-co-ordination in response to intramolecular disulfide bond formation and lipid interaction  
**JOURNAL** Biochem. J. 465 (1), 127-137 (2015)  
**PUBMED** 25327890  
**REMARK** GeneRIF: The monomeric cytoglobin protein with an internal disulfide bond between the two cysteine residues Cys38 and Cys83, interacts with lipids to induce a change in haem co-ordination.  
**REFERENCE** 3 (residues 1 to 190)

**Analyze this sequence**  
[Run BLAST](#)  
[Identify Conserved Domains](#)  
[Highlight Sequence Features](#)  
[Find in this Sequence](#)


**Protein 3D Structure**  
 Crystal Structure Of Human Cytoglobin H(67)q Mutant PDB: 4B3W Source: Homo sapiens Method: X-Ray Diffraction Resolution: 2.8 Å  
[See all 9 structures...](#)

**Articles about the CYGB gene**  
[Peroxidase activation of cytoglobin by anionic phospholipids. Mec](#) [Biochim Biophys Acta. 2016]  
[Cytoglobin as a Biomarker in Cancer. Potential Perspective for Diagnosis](#) [Biomed Res Int. 2015]  
[Coupling of disulfide bond and distal histidine dissociation in human ferrous c](#) [FEBS Lett. 2015]

**FIGURE 25:** Showing the NCBI result of query protein Cytoglobin in *Homo sapiens*



**FIGURE 26:** Output of PSI BLAST showing alignment of query sequence where, red indicate totally similar sequences



**FIGURE 27:** Output of PSI BLAST shows similar protein in different species of query protein Cytoglobin in *Homo sapiens*

**TABLE 4:** Showing the results of PSI BLAST of protein Cytoglobin in *Homo sapiens*

| Protein                                                        | e-value | Identity | Accession no.  |
|----------------------------------------------------------------|---------|----------|----------------|
| Cytoglobin( <i>Ovis aries</i> )<br><i>Sheep</i>                | 6e-136  | 98%      | NP_001159664.1 |
| Cytoglobin( <i>Bos Taurus</i> )<br><i>Cow</i>                  | 5e-135  | 97%      | NP_001193649.1 |
| Cytoglobin( <i>Bos grunniens</i> )<br><i>Yak</i>               | 1e-133  | 96%      | AHB86985.1     |
| Cytoglobin( <i>Phodopus sungorus</i> )<br><i>Hamster</i>       | 3e-122  | 95%      | 3AX11509.1     |
| Cytoglobin( <i>Mus musculus</i> )<br><i>House mouse</i>        | 5e-122  | 95%      | NP_089482.1    |
| Cytoglobin( <i>Nannospalax judali</i> )<br><i>Mole rat</i>     | 4e-120  | 96%      | CAL91964.1     |
| Cytoglobin( <i>Rattus norvegicus</i> )<br><i>Brown rat</i>     | 4e-120  | 94%      | NP_570100.1    |
| Cytoglobin( <i>Nannosplax galli</i> )<br><i>Blind mole rat</i> | 5e-119  | 95%      | CAL91963.1     |

|                                                                 |        |     |                |
|-----------------------------------------------------------------|--------|-----|----------------|
| Cytoglobin( <i>Canis lupus familiaris</i> )Dog                  | 3e-117 | 95% | NP_001071055.1 |
| Cytoglobin( <i>Pteropus alecto</i> )<br><i>Black flying fox</i> | 6e-112 | 97% | ELK12333.1     |
| Cytoglobin( <i>Macaca mulatta</i> )<br><i>Hen</i>               | 2e-136 | 98% | NP001244859.1  |

The table shows that the proteins having e- value between 1e-133 to 6e- 136 were selected having identity value between similar proteins is 94% to 98%.

### Results showing the query sequence of cytoglobin were retrieved in FASTA format from NCBI after PSI BLAST.11 proteins were retrieved from each family

#### 4. CYTOGLOBIN (*Homo sapiens*)

NCBI Resources How To

Protein Protein leghemoglobin in glycine max Advanced

GenPept ▾

Send to: ▾ Change region shown

Customize view

Allophycocyanin [Anabaena sp. WA102]

NCBI Reference Sequence: WP\_053540849

Identical Proteins FASTA Graphics

Go to: ▾

Locus WP\_053540849 161 aa linear BCT 02-SEP-2015

Definition allophycocyanin [Anabaena sp. WA102].

Accession WP\_053540849

Version WP\_053540849.1

Keywords RefSeq.

Source Anabaena sp. WA102

Organism Anabaena sp. WA102

Bacteria; Cyanobacteria; Nostocales; Nostocaceae; Anabaena.

Comment RefSeq: This record represents a single, non-redundant, protein sequence which may be annotated on many different RefSeq genomes from the same, or different, species.

Completeness: full length.

Features Location/Qualifiers

Source 1..161 /organism="Anabaena sp. WA102" /db\_xref="TAXON:1647413"

Protein 1..161 /products="allophycocyanin" /calculated\_mol\_wt=17708

Region 2..160 /region\_name="APC\_alpha" /note="Allophycocyanin alpha subunit of the phycobilisome core" /db\_xref="CDD:271280" /order(2,4..5,8..9,11..12,15..18,23,26..27,29..30,33..34,36..37,41,44,47,86,89..90,94,97..98,107) /site runas="arbar"

Site nalvtics.com...

Analyze this sequence

Run BLAST

Identify Conserved Domains

Highlight Sequence Features

Find in this Sequence

Related information

BLink

Related Sequences

BioProject

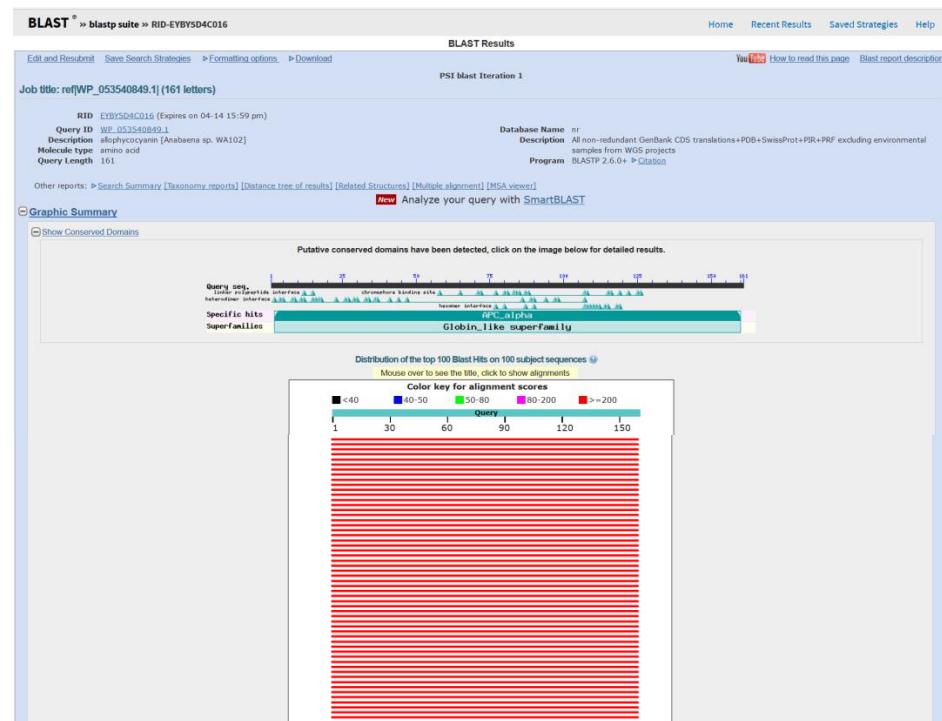
CDD Search Results

Conserved Domains (Concise)

Conserved Domains (Full)

Domain Relatives

Genome


Genomic records

Nucleotide

Proteins with Similar Sequences

Species level organisms

**FIGURE 28 :**Showing the NCBI result of query protein Allophycocyanin *Anabena sp.*



**FIGURE 29:** Output of PSI BLAST showing alignment of query sequence where, red indicate totally similar sequences

| Sequences producing significant alignments with E-value BETTER than threshold                                                                                                                                                          |                                                                       |           |             |             |         |                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------|-------------|-------------|---------|---------------------------------------------------------|
| <input type="checkbox"/> Alignments <input type="checkbox"/> Download <input type="checkbox"/> GenPept <input type="checkbox"/> Graphics <input type="checkbox"/> Distance tree of results <input type="checkbox"/> Multiple alignment |                                                                       |           |             |             |         |                                                         |
|                                                                                                                                                                                                                                        | Description                                                           | Max score | Total score | Query cover | E value | Ident                                                   |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin [Anabaena sp. wa102]                                  | 329       | 329         | 100%        | 2e-114  | 100% WP_053540849.1 <input checked="" type="checkbox"/> |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin [Aphanizomenon flos-aquae]                            | 328       | 328         | 100%        | 9e-114  | 99% WP_027403112.1 <input checked="" type="checkbox"/>  |
| <input type="checkbox"/>                                                                                                                                                                                                               | phycobilisome protein [Anabaena sp. 90]                               | 325       | 325         | 100%        | 7e-113  | 98% WP_016093049.1 <input checked="" type="checkbox"/>  |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin [Anabaena sp. CRK533]                                 | 323       | 323         | 100%        | 6e-112  | 98% OBC38491.1 <input checked="" type="checkbox"/>      |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin [Dolichospermum circinale]                            | 322       | 322         | 100%        | 2e-111  | 98% WP_028082722.1 <input checked="" type="checkbox"/>  |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin [Anabaena sp. WA113]                                  | 318       | 318         | 100%        | 5e-110  | 98% OBC23579.1 <input checked="" type="checkbox"/>      |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin [Aphanizomenon flos-aquae L13]                        | 317       | 317         | 100%        | 1e-109  | 95% OBC23204.1 <input checked="" type="checkbox"/>      |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin subunit alpha [Anabaena sp. PCC 7108]                 | 313       | 313         | 100%        | 6e-108  | 94% WP_016951445.1 <input checked="" type="checkbox"/>  |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin [Trichormus sp. NM-2-1]                               | 313       | 313         | 100%        | 8e-108  | 94% WP_071190841.1 <input checked="" type="checkbox"/>  |
| <input type="checkbox"/>                                                                                                                                                                                                               | phycocyanin [Anabaena cylindrica]                                     | 306       | 306         | 100%        | 2e-105  | 92% WP_015217485.1 <input checked="" type="checkbox"/>  |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin alpha-B subunit apoprotein [Cylindrospermum stagnale] | 306       | 306         | 100%        | 3e-105  | 91% WP_015205654.1 <input checked="" type="checkbox"/>  |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin alpha-B chain [Trichormus sp. PCC 7001]               | 306       | 306         | 100%        | 4e-105  | 89% WP_045868388.1 <input checked="" type="checkbox"/>  |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin subunit alpha [Nostoc punctiforme]                    | 304       | 304         | 100%        | 2e-104  | 91% WP_012407637.1 <input checked="" type="checkbox"/>  |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin subunit alpha [Nodularia spumigena]                   | 304       | 304         | 100%        | 2e-104  | 89% WP_000194019.1 <input checked="" type="checkbox"/>  |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin alpha-B subunit apoprotein [Cylindrospermum PCC 7507] | 303       | 303         | 100%        | 4e-104  | 89% WP_015130995.1 <input checked="" type="checkbox"/>  |
| <input type="checkbox"/>                                                                                                                                                                                                               | MULTISPECIES: allophycocyanin subunit alpha [Cylindrospermopsis]      | 303       | 303         | 100%        | 4e-104  | 89% WP_009277680.1 <input checked="" type="checkbox"/>  |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin alpha-B subunit apoprotein [Nostoc sp. PCC 7107]      | 303       | 303         | 100%        | 7e-104  | 90% WP_015113750.1 <input checked="" type="checkbox"/>  |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin subunit alpha [Trichormus azollae]                    | 303       | 303         | 100%        | 8e-104  | 93% WP_013192234.1 <input checked="" type="checkbox"/>  |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin [Nostoc calcicola]                                    | 302       | 302         | 100%        | 9e-104  | 89% WP_073640412.1 <input checked="" type="checkbox"/>  |
| <input type="checkbox"/>                                                                                                                                                                                                               | allophycocyanin [Trichormus sp. 1]                                    | 300       | 300         | 100%        | 4e-103  | 90% WP_009277680.1 <input checked="" type="checkbox"/>  |

**FIGURE 30 :** Output of PSI BLAST shows similar proteins in different species of query protein Allophycocyanin *Anabaena* sp.

**TABLE 5:** Showing PSI BLAST results of protein Allophycocyanin

| PROTEIN                                                         | e-VALUE | IDENTITY | ACCESSION NO. |
|-----------------------------------------------------------------|---------|----------|---------------|
| <i>Allophycocyanin Subunit alpha (Geitlerima sp. pcc 7105)</i>  | 5e-73   | 62%      | WP017663120.1 |
| <i>Allophycocyanin (Leptolybya sp. Jsc-1)</i>                   | 5e-72   | 58%      | WP036003913   |
| <i>Allophycocyanin B (Thermosynechoccus elongates)</i>          | 3e-70   | 58%      | WP0115739.1   |
| <i>Allophycocyanin subunit alpha (Microcystis aeruginosa)</i>   | 5e-70   | 63%      | WP002738559.1 |
| <i>Allophycocyanin subunit alpha (Spirulin subsalsa)</i>        | 5e-76   | 61%      | WP017303467.1 |
| <i>Allophycocyanin subunit B(Synechocystis sp. Pcc 6803)</i>    | 3e-69   | 54%      | YP009313632.1 |
| <i>Allophycocyanin gamma subunit (Helminthodadia australis)</i> | 5e-62   | 54%      | YP009313632.1 |
| <i>Allophycocyanin subunit alpha (Galdieria sulphuraria)</i>    | 5e-50   | 47%      | YP009051103.1 |
| <i>Allophycocyanin B(Gloebacter violaceus)</i>                  | 2e-48   | 49%      | WP011141181.1 |

The table shows that the proteins having e- value between 2e-48 to 5e- 76 were selected having identity value between similar proteins 67% to 97%.

**Results showing the query sequence family Leghemoglobin were retrieved in FASTA format from NCBI after PSI BLAST.11 proteins were retrieved from each family**

**5.ALLOPHYCOCYANIN (*Anabena sp.*)**

**TABLE 6:** Showing prediction of domains of 11 Truncated hemoglobin proteins in different species by using tool Pfam

| PROTEIN                                                                                | DOMAIN | e-VALUE | START | END |
|----------------------------------------------------------------------------------------|--------|---------|-------|-----|
| Bacitracin resistance protein BacA<br>[ <i>Romboutsia timonensis</i> ]                 | Globin | 7e-15   | 6     | 103 |
| Bacitracin resistance protein BacA<br>[ <i>Intestinibacter bartlettii</i> ]            | Globin | 1.1e-13 | 6     | 103 |
| Hemoglobin [ <i>Clostridium chauvoei</i> ]                                             | Globin | 2.3e-14 | 6     | 103 |
| Bacitracin resistance protein BacA<br>[ <i>Lachnospiraceae bacterium mt14</i> ]        | Globin | 1.2e-15 | 6     | 103 |
| Bacitracin resistance protein BacA<br>[ <i>Candidatus Arthromitus sp. SFB-turkey</i> ] | Globin | 2.1e-12 | 7     | 103 |
| Bacitracin resistance protein BacA<br>[ <i>Fusobacterium mortiferum</i> ]              | Globin | 2.1e-12 | 6     | 103 |
| Bacitracin resistance protein BacA<br>[ <i>Terrisporobacter othiniensis</i> ]          | Globin | 8e-14   | 6     | 103 |
| Hemoglobin [ <i>Vitreoscilla stercoraria</i> ]                                         | Globin | 5e-14   | 6     | 103 |
| Soluble cytochrome O [uncultured<br>Clostridium sp.]                                   | Globin | 1.4e-13 | 6     | 103 |
| Bacterial hemoglobin [ <i>Clostridium perfringens SM101</i> ]                          | Globin | 3.4e-14 | 6     | 103 |
| Nitric oxide dioxygenase<br>[ <i>Psychrobacillus psychrodurans</i> ]                   | Globin | 1.6e-11 | 6     | 103 |

The results shows that the conserved domain in truncated hemoglobin is globin and having e value between 1.1e-13 to 8e-14. and start and end point of region lies between 6-103

**TABLE 7:** Showing prediction of domains of 11 proteins of Myoglobin in different species by using tool Pfam

| PROTEIN                                                          | DOMAIN | E-VALUE | START | END |
|------------------------------------------------------------------|--------|---------|-------|-----|
| Myoglobin( <i>Sus scrofa</i> )<br>Pig                            | Globin | 2.8e-21 | 7     | 113 |
| Myoglobin( <i>Ursus maritimus</i> )<br>Polar bear                | Globin | 5.7e-22 | 7     | 113 |
| Myoglobin( <i>Castor canadensis</i> )<br>American beaver         | Globin | 3e-21   | 7     | 113 |
| Myoglobin( <i>Ochotona ladacensis</i> )<br>Ladak pika            | Globin | 2.1e-23 | 7     | 113 |
| Myoglobin( <i>Eospalax baileyi</i> )<br>Zokar                    | Globin | 1.5e-23 | 7     | 113 |
| Myoglobin( <i>Ochotona erythrotis</i> )<br>Chinese red pika      | Globin | 8.9e-24 | 7     | 113 |
| Myoglobin( <i>Scapanus orarius</i> )<br>Coast mole               | Globin | 4.8e-21 | 7     | 113 |
| Myoglobin( <i>Monodon monoceros</i> )<br>Narwal                  | Globin | 7e-21   | 7     | 113 |
| Myoglobin( <i>Callorhinus ursinus</i> )<br>Northen fur seal      | Globin | 7.9e-22 | 7     | 113 |
| Myoglobin( <i>Hexa protodon liberensis</i> )<br>Pygmy hippotamus | Globin | 1.5e-19 | 7     | 113 |
| Myoglobin( <i>Dugogdugon</i> )<br>Sea cow                        | Globin | 3.6e-20 | 7     | 113 |

The results shows that the conserved domain in myoglobin is globin and having e value between 1.5e-23 to 8e-24. and start and end point of region lies between 7-113

**TABLE 8:** Showing prediction of domains of 11 proteins of Leghemoglobin in different species by using tool Pfam

| PROTEIN                                                                  | DOMAIN | e-VALUE | START | END |
|--------------------------------------------------------------------------|--------|---------|-------|-----|
| Leghemoglobin C2( <i>Glycine max</i> )Soybean                            | Globin | 3.2e-13 | 8     | 111 |
| Leghemoglobin( <i>Sesbania rostara</i> )<br>Semi aquatic leguminous tree | Globin | 3.7e-17 | 8     | 114 |
| Leghemoglobin Lb120-1( <i>Medicago truncatula</i> )<br>Barrel clover     | Globin | 1.6e-16 | 7     | 111 |
| Leghemoglobin( <i>Lotus japonicus</i> )<br>Birds foot trefoil            | Globin | 1.2e-15 | 7     | 111 |
| Leghemoglobin( <i>Astragalus sinicus</i> )Milkvetch                      | Globin | 2e-18   | 7     | 113 |
| Leghemoglobin K ( <i>Vicia faba</i> )<br>Broadbean                       | Globin | 9.9e-16 | 7     | 111 |
| Non symbiotic Hemoglobin 2 ( <i>Gossypium arboreum</i> )<br>Asian cotton | Globin | 1.3e-19 | 7     | 116 |
| Hemoglobin 2 ( <i>zea mays</i> )<br>Corn                                 | Globin | 1e-19   | 7     | 117 |
| Non symbiotic<br>Hemoglobin( <i>Quercus petraea</i> )<br>Oak tree        | Globin | 9.8e-18 | 14    | 123 |
| Hemoglobin hb1 ( <i>Triticum aestivum</i> )Wheat                         | Globin | 1e-16   | 14    | 123 |
| Leghemoglobin ( <i>Cajarnus cajan</i> )Wheat                             | Globin | 1.4e-12 | 8     | 111 |

The results shows that the conserved domain in leghemoglobin is globin and having e value between 1e-19 to 9.8e-18 and start and end point of region lies between 8-123

**TABLE 9:** Showing prediction of domains of 11 proteins of Cytoglobin in different species by using tool Pfam

| PROTEIN                                                   | DOMAIN | e-VALUE | START | END |
|-----------------------------------------------------------|--------|---------|-------|-----|
| Cytoglobin( <i>Ovis aries</i> )<br>Sheep                  | Globin | 4.7e-25 | 23    | 132 |
| Cytoglobin( <i>Bos Taurus</i> )<br>Cow                    | Globin | 6.3e-25 | 23    | 132 |
| Cytoglobin( <i>Bos grunniens</i> )Hamster                 | Globin | 7.6e-24 | 23    | 132 |
| Cytoglobin( <i>Phodopus sungorus</i> )Mouse               | Globin | 7.9e-25 | 23    | 132 |
| Cytoglobin( <i>Mus musculus</i> )Mole rat                 | Globin | 1.6e-24 | 23    | 132 |
| Cytoglobin( <i>Nannospalax judali</i> )<br>Blind mole rat | Globin | 7.1e-25 | 23    | 132 |
| Cytoglobin( <i>Rattus norvegicus</i> )Brown rat           | Globin | 4.8e-25 | 23    | 132 |
| Cytoglobin( <i>Nannosplax galli</i> )Blind mole rat       | Globin | 8.6e-24 | 23    | 132 |
| Cytoglobin( <i>Canis lupus Familiaris</i> )Dog            | Globin | 2.5e-25 | 23    | 132 |
| Cytoglobin( <i>Pteropus alecto</i> )Black flying fox      | Globin | 6.6e-25 | 23    | 132 |
| Cytoglobin( <i>Macaca mulatta</i> )Hen                    | Globin | 5.2e-25 | 23    | 132 |

The results shows that the conserved domain in cytoglobin is globin and having e value between 1.6e-24 to 8.6e-24. and start and end point of region lies between 23-132

**TABLE 10:** Showing prediction of domains of 11 proteins of Allophycocyanin in different species by using tool Pfam

| PROTEIN                                                         | DOMAIN        | E-VALUE | START | END |
|-----------------------------------------------------------------|---------------|---------|-------|-----|
| <i>Allophycocyanin Subunit alpha (Geitlerima sp. pcc 7105)</i>  | Phycobilisome | 1.3e-55 | 6     | 160 |
| <i>Allophycocyanin (Leptolybya sp. Jsc-1)</i>                   | Phycobilisome | 6e-61   | 6     | 160 |
| <i>Allophycocyanin B (Thermosynechoccus elongates)</i>          | Phycobilisome | 8.8e-63 | 6     | 160 |
| <i>Allophycocyanin subunit alpha (Microcystis aeruginosa)</i>   | Phycobilisome | 3.4e-61 | 16    | 170 |
| <i>Allophycocyanin subunit alpha (Spirulin subsalsa)</i>        | Phycobilisome | 6.7e-60 | 6     | 160 |
| <i>Allophycocyanin subunit B(Synechocystis sp. Pcc 6803)</i>    | Phycobilisome | 2.5e-61 | 6     | 160 |
| <i>Allophycocyanin gamma subunit (Helminthodadia australis)</i> | Phycobilisome | 1.2e-59 | 6     | 160 |
| <i>Allophycocyanin subunit alpha (Galdieria sulphuraria)</i>    | Phycobilisome | 5.2e-54 | 6     | 160 |
| <i>Allophycocyanin B(Gloebacter violaceus)</i>                  | Phycobilisome | 3e-58   | 6     | 160 |
| <i>Allophycocyanin subunit alpha (Mastigocladopsis repens)</i>  | Phycobilisome | 1.7e-59 | 6     | 160 |
| <i>Allophycocyanin alpha B chain (Cyanobium sp. )</i>           | Phycobilisome | 7.9e-52 | 6     | 160 |

The results shows that the conserved domain in allophycocyanin is Phycobilisome and having e-value between 1.2e-13 to 8.8e-63 and start and end point of region lies between 6-160.

## PHYSIOCHEMICAL PROPERTIES USING PROTPARAM TOOL

**TABLE 11:** Showing physiochemical properties of Truncated hemoglobin by Protparam 1

| PROTEIN                                                                                | NO.<br>OF<br>A.A | MOL.<br>WEIGHT | pI   | AI     | II    | GRAVY  |
|----------------------------------------------------------------------------------------|------------------|----------------|------|--------|-------|--------|
| Bacitracin resistance protein BacA<br>[ <i>Romboutsia timonensis</i> ]                 | 155              | 17481.32       | 5.38 | 101.87 | 38.75 | -0.161 |
| Bacitracin resistance protein BacA<br>[ <i>Intestinibacter bartlettii</i> ]            | 155              | 17409.17       | 5.23 | 105.68 | 28.74 | -0.094 |
| Hemoglobin<br>[ <i>Clostridium chauvoei</i> ]                                          | 145              | 16243.89       | 6.31 | 103.66 | 25.01 | 0.158  |
| Bacitracin resistance protein BacA<br>[ <i>Lachnospiraceae bacterium mt14</i> ]        | 145              | 15883.38       | 5.31 | 107.66 | 34.13 | -0.054 |
| Bacitracin resistance protein BacA<br>[ <i>Candidatus Arthromitus sp. SFB-turkey</i> ] | 144              | 15963.63       | 5.41 | 108.33 | 24.85 | -0.059 |
| Bacitracin resistance protein BacA<br>[ <i>Fusobacterium mortiferum</i> ]              | 146              | 16060.63       | 5.43 | 105.62 | 31.68 | -0.044 |
| Bacitracin resistance protein BacA<br>[ <i>Terrisporobacter othiniensis</i> ]          | 155              | 17535.44       | 5.59 | 107.55 | 33.21 | -0.109 |
| Hemoglobin<br>[ <i>Vitreoscillastercoraria</i> ]                                       | 146              | 15774.34       | 5.27 | 113.01 | 39.34 | 0.234  |
| Soluble cytochrome O<br>[uncultured <i>Clostridium</i> sp.]                            | 155              | 17525.37       | 5.40 | 103.74 | 34.59 | -0.115 |

|                                                                                |     |          |      |        |       |        |
|--------------------------------------------------------------------------------|-----|----------|------|--------|-------|--------|
| Bacterial hemoglobin<br>[ <i>Clostridium perfringens</i><br><i>SM101</i> ]     | 144 | 16250.82 | 5.63 | 100.21 | 39.59 | -0.228 |
| Nitric oxide dioxygenase<br>[ <i>Psychrobacillus</i><br><i>psychrodurans</i> ] | 395 | 43425.46 | 5.18 | 41.37  | 39.17 | -0.082 |

**TABLE 12:** Showing physiochemical properties of Myoglobin by Protparam tool

| PROTEIN                                                           | NO.<br>OF<br>A.A | MOL.<br>WEIGHT | pI   | AI    | II    | GRAVY  |
|-------------------------------------------------------------------|------------------|----------------|------|-------|-------|--------|
| Myoglobin( <i>Sus scrofa</i> )<br>Pig                             | 154              | 17084.61       | 6.76 | 84.94 | 20.50 | -0.444 |
| Myoglobin( <i>Ursus maritimus</i> )<br>Polar bear                 | 154              | 17176.78       | 7.96 | 88.12 | 13.15 | -0.487 |
| Myoglobin( <i>Castor canadensis</i> )<br>American beaver          | 154              | 17168.64       | 8.66 | 90.00 | 19.34 | -0.400 |
| Myoglobin( <i>Ochotona ladacensis</i> )Ladak pika                 | 154              | 17104.64       | 7.11 | 84.94 | 16.41 | -0.486 |
| Myoglobin( <i>Eospalax baileyi</i> )Ladak Pika                    | 154              | 17104.63       | 7.07 | 87.47 | 12.68 | -0.489 |
| Myoglobin( <i>Ochotona erythrotis</i> )Zokar                      | 154              | 17081.61       | 7.07 | 84.29 | 16.96 | -0.486 |
| Myoglobin( <i>Scapanus orarius</i> )Chinese red pika              | 154              | 16993.54       | 7.94 | 86.17 | 18.09 | -0.409 |
| Myoglobin( <i>Monodon monoceros</i> )Narwal                       | 154              | 17201.85       | 8.72 | 89.42 | 15.30 | -0.436 |
| Myoglobin( <i>Callorhinus ursinus</i> )Northen fur seal           | 154              | 17338.04       | 8.98 | 88.12 | 19.48 | -0.514 |
| Myoglobin( <i>Hexaprotodon liberensis</i> )<br>Pygmy hippopotamus | 154              | 17231.80       | 6.80 | 87.47 | 18.44 | -0.457 |

|                                           |     |          |      |       |       |        |
|-------------------------------------------|-----|----------|------|-------|-------|--------|
| Myoglobin( <i>Dugogdugon</i> )<br>Sea cow | 154 | 17191.92 | 7.17 | 90.00 | 24.84 | -0.336 |
|-------------------------------------------|-----|----------|------|-------|-------|--------|

**TABLE 13:**Showing physiochemical properties of Leghemoglobin by Protparam tool

| PROTEIN                                                                  | NO.<br>OF<br>A.A | MOL.<br>WEIGHT | pI   | AI    | II    | GRAVY  |
|--------------------------------------------------------------------------|------------------|----------------|------|-------|-------|--------|
| Leghemoglobin C2( <i>Glycine max</i> )Soybean                            | 145              | 15494.64       | 5.38 | 21.87 | 9.66  | 0.043  |
| Leghemoglobin( <i>Sesbania rostara</i> )<br>Semi aquatic leguminous tree | 149              | 16031.29       | 5.66 | 18.41 | 92.35 | 0.006  |
| Leghemoglobin Lb120-1( <i>Medicago truncatula</i> )<br>Barrelclover      | 146              | 15752.16       | 6.29 | 34.97 | 92.88 | 0.037  |
| Leghemoglobin( <i>Lotus japonicus</i> )<br>Birds foot trefoil            | 146              | 15390.62       | 6.40 | 27.26 | 91.10 | 0.115  |
| Leghemoglobin( <i>Astragalus sinicus</i> )<br>MMilkvetch                 | 148              | 15853.11       | 6.06 | 32.27 | 93.65 | 0.052  |
| Leghemoglobin K ( <i>Vicia faba</i> )Broadbean                           | 146              | 15851.34       | 5.32 | 33.24 | 98.22 | 0.085  |
| Non symbiotic Hemoglobin 2 ( <i>Gossypium arboreum</i> )<br>Asian cotton | 159              | 18084.71       | 5.57 | 33.59 | 82.90 | -0.426 |
| Hemoglobin 2 ( <i>zea mays</i> )<br>Corn                                 | 191              | 20646.32       | 5.02 | 38.17 | 74.40 | -0.239 |
| Non symbiotic Hemoglobin( <i>Quercus petraea</i> )Oak tree               | 161              | 17913.81       | 8.57 | 30.39 | 85.34 | -0.130 |
| Hemoglobin hb1 ( <i>Triticum aestivum</i> )Wheat                         | 162              | 18144.13       | 8.67 | 29.68 | 85.62 | -0.138 |
| Leghemoglobin ( <i>Cajanus cajan</i> )Pigeon pea                         | 146              | 15652.81       | 6.29 | 21.33 | 90.34 | -0.055 |

**TABLE 14:** Showing physiochemical properties of cytoglobin by Protparam tool

| PROTEIN                                               | NO. OF A.A | MOL. WEIGHT | pI   | AI    | II    | GRAVY  |
|-------------------------------------------------------|------------|-------------|------|-------|-------|--------|
| Cytoglobin( <i>Ovis aries</i> ) Sheep                 | 190        | 21416.61    | 6.32 | 84.16 | 48.43 | -0.273 |
| Cytoglobin( <i>Bos Taurus</i> ) Cow                   | 190        | 21459.63    | 6.32 | 83.63 | 48.43 | -0.301 |
| Cytoglobin( <i>Bos grunnies</i> ) Yak                 | 190        | 21399.60    | 6.32 | 83.63 | 48.83 | -0.281 |
| Cytoglobin( <i>Phodopus sungorus</i> ) Hamster        | 190        | 21474.61    | 6.60 | 81.56 | 42.38 | -0.301 |
| Cytoglobin( <i>Mus musculus</i> ) House mouse         | 190        | 21465.66    | 6.32 | 83.63 | 46.03 | -0.282 |
| Cytoglobin( <i>Nannospalax judali</i> ) Mole rat      | 190        | 21533.67    | 6.10 | 83.11 | 45.83 | -0.330 |
| Cytoglobin( <i>Rattus norvegicus</i> ) Brown rat      | 190        | 21496.71    | 6.31 | 85.16 | 43.36 | -0.314 |
| Cytoglobin( <i>Nannosplax galli</i> ) Blind mole rat  | 190        | 21579.79    | 6.98 | 83.11 | 47.55 | -0.342 |
| Cytoglobin( <i>Canis lupus familiaris</i> ) Dog       | 183        | 20704.78    | 7.02 | 85.25 | 51.24 | -0.261 |
| Cytoglobin( <i>Pteropus alecto</i> ) Black flying cat | 180        | 20588.72    | 6.98 | 85.60 | 43.36 | -0.314 |
| Cytoglobin( <i>Macaca mulatta</i> ) Hen               | 190        | 21415.58    | 6.32 | 83.63 | 46.68 | -0.288 |

**TABLE 15:** Showing physiochemical properties of Allophycocyanin by Protparam tool

| PROTEIN                                                          | NO. OF A.A | MOL. WEIGHT | pI   | AI    | II    | GRAVY  |
|------------------------------------------------------------------|------------|-------------|------|-------|-------|--------|
| Allophycocyanin Subunit alpha ( <i>Geitlerima sp. pcc 7105</i> ) | 164        | 18149.84    | 5.51 | 87.96 | 44.64 | -0.269 |

|                                                                                |     |          |      |        |       |        |
|--------------------------------------------------------------------------------|-----|----------|------|--------|-------|--------|
| Allophycocyanin<br>( <i>Leptolybya</i> sp. <i>Jsc-1</i> )                      | 161 | 18142.79 | 5.17 | 93.35  | 46.03 | -0.211 |
| Allophycocyanin B<br>( <i>Thermosynechoccus</i><br><i>elongates</i> )          | 171 | 17911.61 | 5.29 | 87.89  | 42.08 | -0.262 |
| Allophycocyanin subunit<br>alpha ( <i>Microcystis</i><br><i>aeruginosa</i> )   | 161 | 19228.0  | 4.97 | 91.49  | 37.68 | -0.294 |
| Allophycocyanin subunit<br>alpha ( <i>Spirulin subsalsa</i> )                  | 161 | 18011.67 | 6.33 | 99.38  | 36.18 | -0.126 |
| Allophycocyanin<br>subunit B( <i>Synechocystis</i><br>sp. <i>Pcc 6803</i> )    | 161 | 17904.65 | 5.30 | 91.49  | 29.00 | -0.253 |
| Allophycocyanin gamma<br>subunit ( <i>Helminthodadia</i><br><i>australis</i> ) | 161 | 17923.45 | 5.44 | 110.93 | 43.34 | -0.047 |
| Allophycocyanin subunit<br>alpha<br>( <i>Galdierisulphuraria</i> )             | 161 | 18109.12 | 7.70 | 96.34  | 40.84 | -0.050 |
| Allophycocyanin<br>B( <i>Gloebacter violaceus</i> )                            | 161 | 17380.75 | 4.90 | 99.38  | 37.94 | -0.105 |
| Allophycocyanin subunit<br>alpha ( <i>Mastigocladopsis</i><br><i>repens</i> )  | 161 | 17548.01 | 4.88 | 95.69  | 31.36 | -0.068 |
| Allophycocyanin alpha B<br>chain ( <i>Cyanobium</i> sp. )                      | 161 | 18632.84 | 5.30 | 89.21  | 31.69 | -0.180 |

Results shows physiochemical parameters of 55 proteins of globin-like superfamily. server provides directly calculated values of pi/MW(isoelectric point, molecular weight),percentage of amino acid, instability index (II) aliphatic index (AI) and GRAVY(Grand average of hydrophobicity).Instability index give information about stability of one protein in test tube. A protein whose instability index is smaller than 40 is predicted as stable and above 40 is unstable.so, according to above result 13 proteins all proteins of cytoglobin subfamily and 2 proteins of allophycyanin are unstable.GRAVY value of protein is sum of hydropathy of all amino acids divided by no. of residues in

sequence. So in above results Myoglobin(*Callorhinus ursinus*) is most hydrophobic. AI constitute the aliphatic index refers to a relative volume occupied by aliphatic side chains(alanine, valine, leucine and isoleucine).Increased AI results into hydrophobic interactions and thus may be regarded as a positive factor for increase of thermostability of globular proteins.Hemoglobin [*Vitreoscilla stercoraria*]has highest value.

**TABLE 16:** Prediction of location of proteins of truncated hemoglobin by using PSORT II tool.protein sites are predicted as cytoplasmic and mitochondrial.

| PROTEIN                                                                                | ACCESSION NO.  | LOCATION      |
|----------------------------------------------------------------------------------------|----------------|---------------|
| Bacitracin resistance protein<br>BacA [ <i>Romboutsia timonensis</i> ]                 | WP_071121120   | Cytoplasmic   |
| Bacitracin resistance protein<br>BacA [ <i>Intestinibacter bartlettii</i> ]            | WP_071121120.1 | Cytoplasmic   |
| Hemoglobin [ <i>Clostridium chauvoei</i> ]                                             | WP_021876824.1 | Cytoplasmic   |
| Bacitracin resistance protein<br>BacA [ <i>Lachnospiraceae bacterium mt14</i> ]        | WP_053982519.1 | Cytoplasmic   |
| Bacitracin resistance protein<br>BacA [ <i>Candidatus Arthromitus sp. SFB-turkey</i> ] | WP_066760512.1 | Cytoplasmic   |
| Bacitracin resistance protein<br>BacA [ <i>Fusobacterium mortiferum</i> ]              | WP005886941    | Cytoplasmic   |
| Bacitracin resistance protein<br>BacA [ <i>Terrisporobacter othiniensis</i> ]          | WP_039679269.1 | Mitochondrial |
| Hemoglobin [ <i>Vitreoscilla stercoraria</i> ]                                         | WP_019959060.1 | Cytoplasmic   |
| Soluble cytochrome O<br>[uncultured <i>Clostridium</i> sp.]                            | SCH00953       | Cytoplasmic   |
| Bacterial hemoglobin [ <i>Clostridium</i> ]                                            | ABG86855.1     | Cytoplasmic   |

|                                                                      |            |             |
|----------------------------------------------------------------------|------------|-------------|
| <i>perfringens SM101]</i>                                            |            |             |
| Nitric oxide dioxygenase<br>[ <i>Psychrobacillus psychrodurans</i> ] | SFM87783.1 | Cytoplasmic |

**TABLE 17:** Prediction of location of proteins of Myoglobin by using PSORT II tool

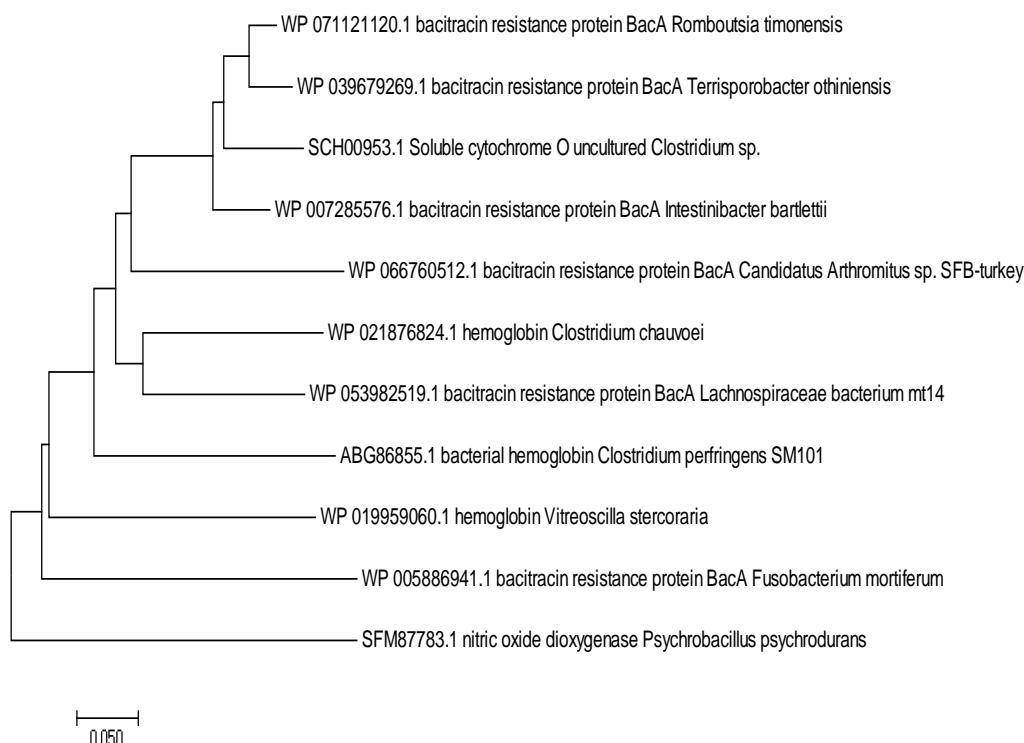
| PROTEIN                                                          | ACCESSION NO.  | LOCATION  |
|------------------------------------------------------------------|----------------|-----------|
| Myoglobin( <i>Sus scrofa</i> )<br>Pig                            | NP_999401.1    | Cytoplasm |
| Myoglobin( <i>Ursus maritimus</i> )<br>Polar bear                | NP_001288305.1 | Cytoplasm |
| Myoglobin( <i>Castor canadensis</i> )<br>American beaver         | XP_020029521.1 | Cytoplasm |
| Myoglobin( <i>Ochotona ladacensis</i> )<br>Ladak pika            | AFN89860.1     | Cytoplasm |
| Myoglobin( <i>Eospalax baileyi</i> )<br>Zokar                    | AFN89857.1     | Cytoplasm |
| Myoglobin( <i>Ochotona erythrotis</i> )<br>Chinese red pika      | AFX00022.1     | Cytoplasm |
| Myoglobin( <i>Scapanus orarius</i> )Coast mole                   | AGM75749.1     | Cytoplasm |
| Myoglobin( <i>Monodon monoceros</i> )Narwal                      | AGM7575.1      | Cytoplasm |
| Myoglobin( <i>Callorhinus ursinus</i> )Northen fur seal          | AGM7576.1      | Cytoplasm |
| Myoglobin( <i>Hexa protodon liberensis</i> )<br>Pygmy hippotamus | AGM75737.1     | Cytoplasm |
| Myoglobin( <i>Dugogdugon</i> )<br>Sea cow                        | AGM75766.1     | Cytoplasm |

**TABLE 18:** Prediction of location of proteins of Leghemoglobin by using PSORT II tool. protein sites are predicted as cytoplasmic.

| PROTEIN                                                                  | ACCESSION NO.  | LOCATION     |
|--------------------------------------------------------------------------|----------------|--------------|
| Leghemoglobin C2(Glycine <i>max</i> Soybean)                             | NP001235248.1  | Cytoplasmic  |
| Leghemoglobin( <i>Sesbania rostara</i> )<br>Semiaquatic leguminous tree  | ABC40722.1     | Cytoplasmic  |
| Leghemoglobin Lb120-1( <i>Medicago truncatula</i> )Barrelclover          | XP003588689.1  | Cytoplasmic  |
| Leghemoglobin( <i>Lotus japonicus</i> )Birds foot trefoil                | BAE46737.1     | Cytoplasmic  |
| Leghemoglobin( <i>Astragalus sinicus</i> )Milkvetch                      | ABB13622.1     | Cytoplasmic  |
| Leghemoglobin K ( <i>Vicia faba</i> )Broadbean                           | CAA90869.1     | Cytoplasmic  |
| Non symbiotic Hemoglobin 2 ( <i>Gossypium arboreum</i> )<br>Asian cotton | KHG23471.1     | Cytoplasmic  |
| Hemoglobin 2 ( <i>zea mays</i> )<br>Corn                                 | NP_001105819.1 | Cytoplasmic  |
| Non symbiotic Hemoglobin( <i>Quercus petraea</i> )Oak tree               | ABO93466.1     | Cytoskeletal |
| Hemoglobin hb1 ( <i>Triticum aestivum</i> )Wheat                         | AAN85432.1     | Cytoplasmic  |
| Leghemoglobin ( <i>Cajarnus cajan</i> )Pigeon pea                        | XP_020222796.1 | Cytoplasmic  |

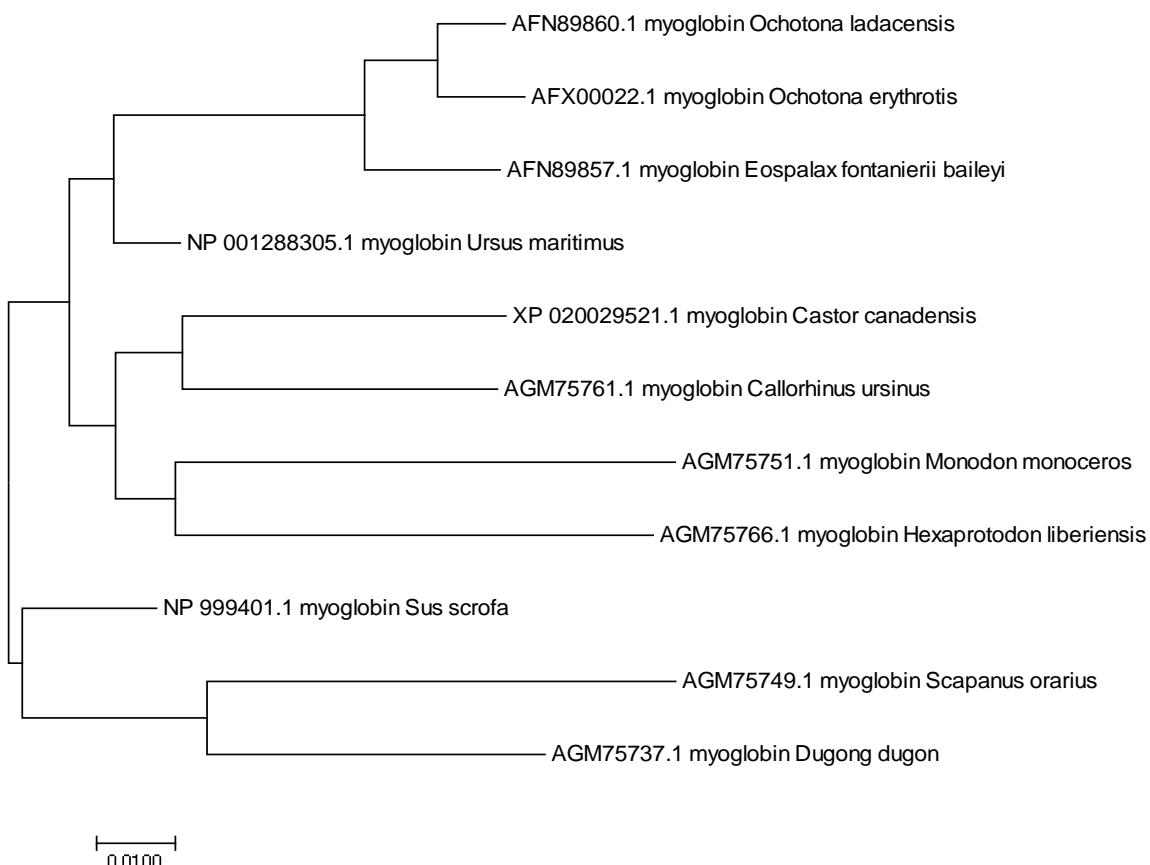
**TABLE 19:** Prediction of location of proteins of Cytoglobin by using PSORT II tool  
protein sites are predicted as cytoplasm and mitochondria.

| PROTEIN                                              | ACCESSION NO.  | LOCATION     |
|------------------------------------------------------|----------------|--------------|
| Cytoglobin( <i>Ovies aries</i> )<br>Sheep            | NP_001159664.1 | Cytoplasm    |
| Cytoglobin( <i>Bos Taurus</i> )<br>Cow               | NP_001193649.1 | Cytoplasm    |
| Cytoglobin( <i>Bos grunnies</i> )<br>Yak             | AHB86985.1     | Cytoplasm    |
| Cytoglobin( <i>Phodopus sungorus</i> )Hamstere       | 3AX11509.1     | Cytoplasm    |
| Cytoglobin( <i>Mus musculus</i> )<br>House mouse     | NP_089482.1    | Cytoplasm    |
| Cytoglobin( <i>Nannospalax judali</i> )Mole rat      | CAL91964.1     | Cytoplasm    |
| Cytoglobin( <i>Rattus norvegicus</i> )Brown rat      | NP_570100.1    | Mitochondria |
| Cytoglobin( <i>Nannosplax galli</i> )Blind mole rat  | CAL91963.1     | Cytoplasm    |
| Cytoglobin( <i>Canis lupus familiaris</i> )Dog       | NP_001071055.1 | Cytoplasm    |
| Cytoglobin( <i>Pteropus alecto</i> )Black flying fox | ELK12333.1     | Cytoplasm    |
| Cytoglobin( <i>Macaca mulatta</i> )Hen               | NP001244859.1  | Cytoplasm    |


**TABLE 20:** Prediction of location of proteins of Allophycocyanin by using PSORT II  
tool.protein sites are predicted as cytoplasm and mitochondria.

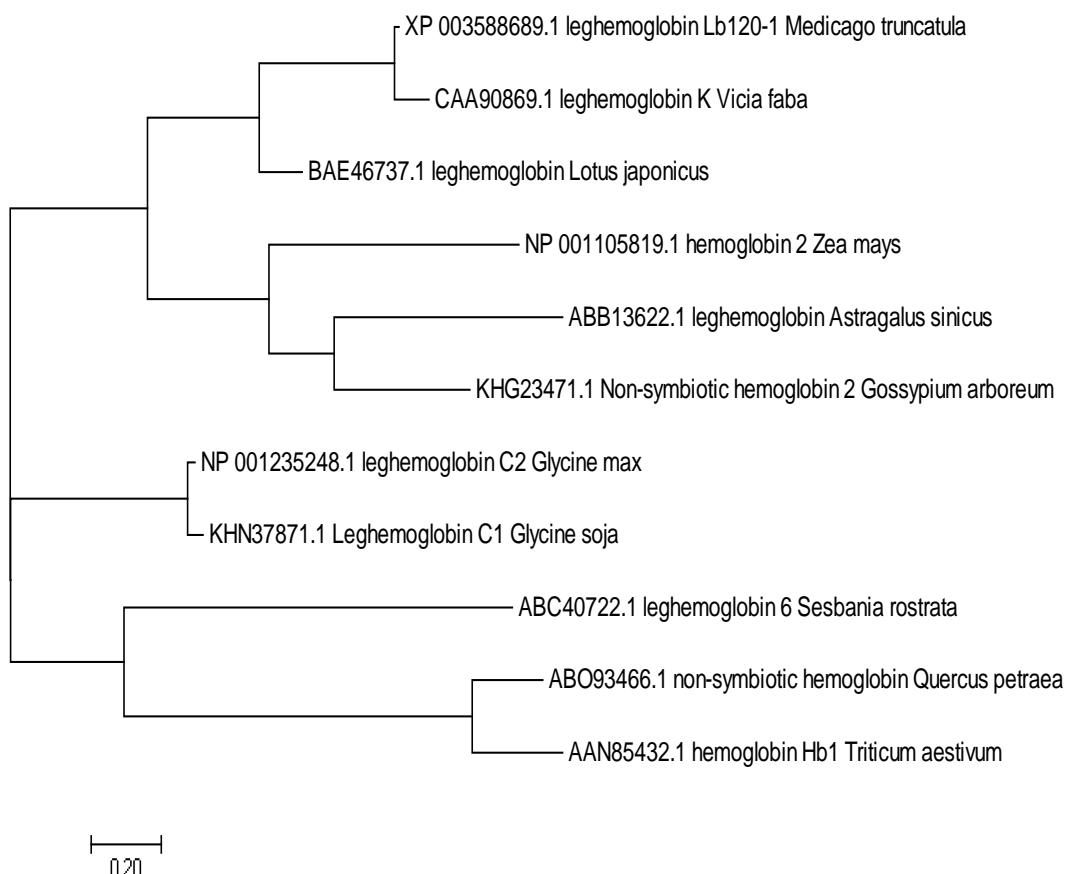
| PROTEIN                                                        | ACCESSION NO. | LOCATION  |
|----------------------------------------------------------------|---------------|-----------|
| <i>Allophycocyanin Subunit alpha (Geitlerima sp. pcc 7105)</i> | WP017663120.1 | Cytoplasm |

|                                                                                |               |           |
|--------------------------------------------------------------------------------|---------------|-----------|
| Allophycocyanin<br>( <i>Leptolybya</i> sp. <i>Jsc-1</i> )                      | WP036003913   | Cytoplasm |
| Allophycocyanin B<br>( <i>Thermosynechoccus</i><br><i>elongatus</i> )          | WP0115739.1   | Cytoplasm |
| Allophycocyanin subunit<br>alpha ( <i>Microcystis</i><br><i>aeruginosa</i> )   | WP002738559.1 | Cytoplasm |
| Allophycocyanin subunit<br>alpha ( <i>Spirulin</i> <i>subsalsa</i> )           | WP017303467.1 | Cytoplasm |
| Allophycocyanin subunit<br>B( <i>Synechocystis</i> sp. <i>Pcc</i><br>6803)     | YP009313632.1 | Cytoplasm |
| Allophycocyanin gamma<br>subunit ( <i>Helminthodadia</i><br><i>australis</i> ) | YP009313632.1 | Cytoplasm |
| Allophycocyanin subunit<br>alpha ( <i>Galdieria</i><br><i>sulphuraria</i> )    | YP009051103.1 | Cytoplasm |
| Allophycocyanin<br>B( <i>Gloebacter</i> <i>violaceus</i> )                     | WP011141181.1 | Cytoplasm |
| Allophycocyanin subunit<br>alpha ( <i>Mastigocladopsis</i><br><i>repens</i> )  | WP017317206.1 | Cytoplasm |
| Allophycocyanin alpha B<br>chain ( <i>Cyanobium</i> sp. )                      | SB0422901     | Cytoplasm |


## PHYLOGENETIC TREES OF QUERY PROTEINS

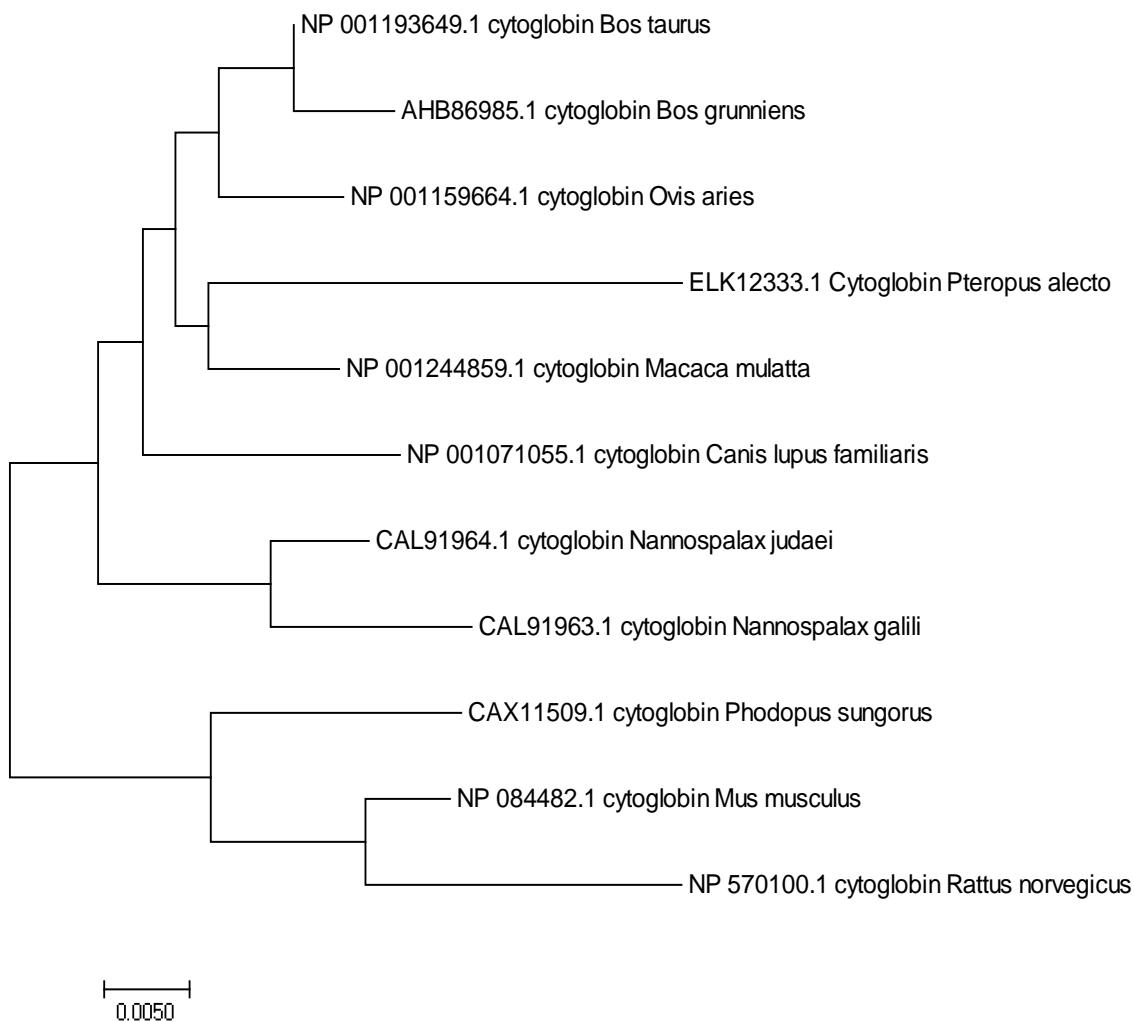
### 1. Truncated hemoglobin




**FIGURE 32:** Comparative analysis of globin proteins among various species were performed by Neighbour Joining method in MEGA 7 to know evolutionary history of Truncated hemoglobin protein among various species. The analysis involved 11 amino acid sequences. Here, *Romboutsia timonensis* and *Terrisporobacter othniensis* are closely related but *Vitreoscilla stercoraria* is distantly related.

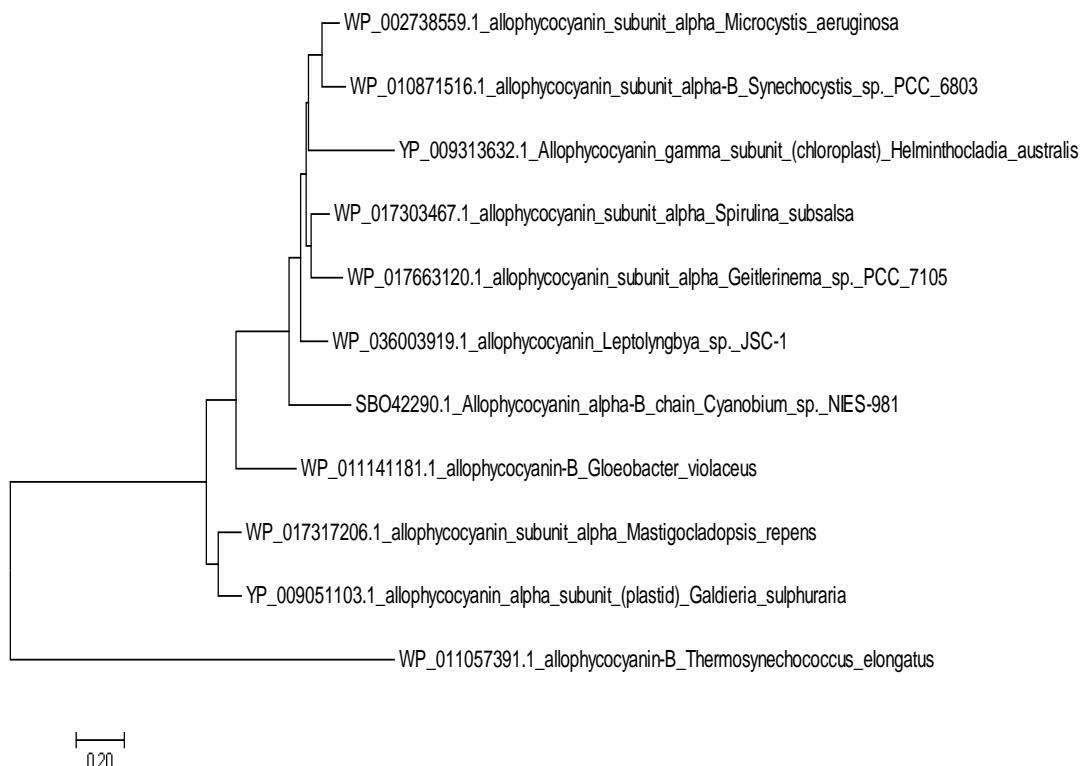
## 2.MYOGLOBIN




**FIGURE 33:** Comparative analysis of globin proteins among various species were performed by Neighbour Joining method in MEGA 7 to know evolutionary history of Myoglobin protein among various species. The analysis involved 11 amino acid sequences. Here, *Castor Canadensis* and *callorhinus ursinus* are closely related.

### 3.LEGHEMOGLOBIN




**FIGURE 34:** Comparative analysis of globin proteins among various species were performed by Neighbour Joining method in MEGA 7 to know evolutionary history of Leghemoglobin protein among various species. The analysis involved 11 amino acid sequences. Here, *Vicia faba* and *Lotus japonicas* are closely related but *Triticum aestivum* is distantly related.

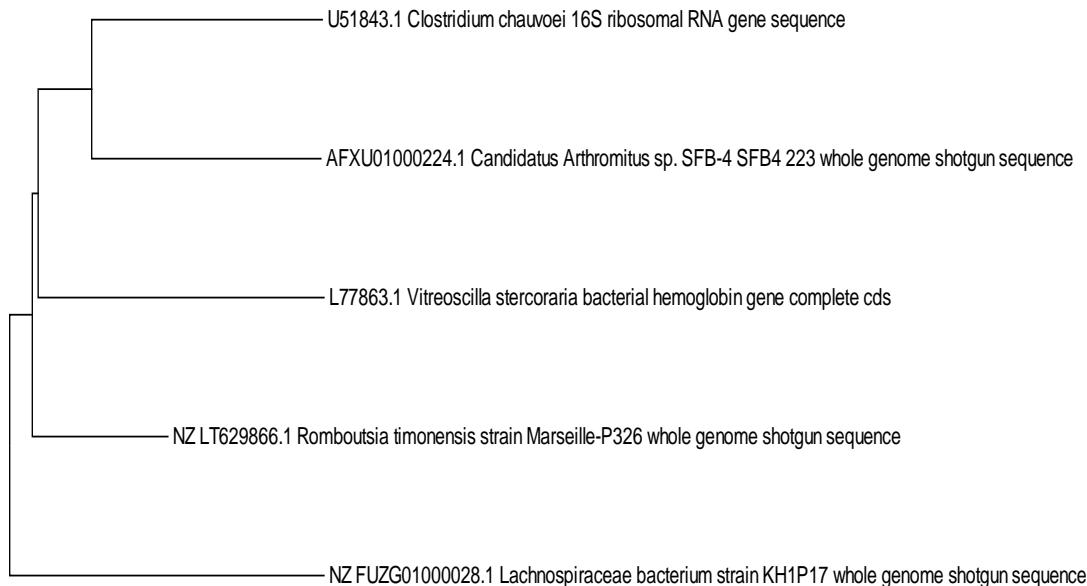
#### 4. CYTOGLOBIN



**FIGURE 35:** Comparative analysis of globin proteins among various species were performed by Neighbour Joining method in MEGA 7 to know evolutionary history of Cytoglobin protein among various species. The analysis involved 11 amino acid sequences. Here *mus Musculus* and *Rattus norvegicus* are closely related.

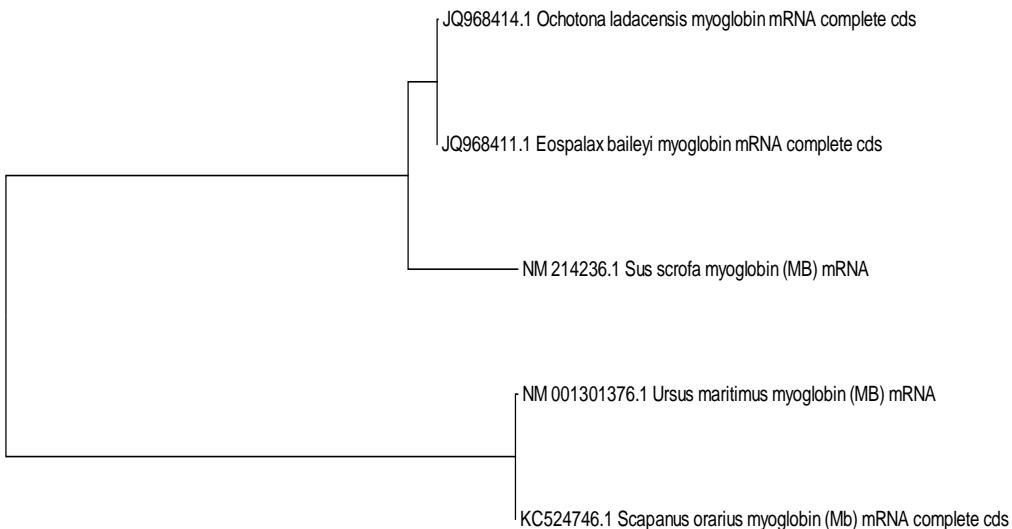
## 5.ALLOPHYCOCYANIN




**FIGURE 36:** Comparative analysis of globin proteins among various species were performed by Neighbour Joining method in MEGA 7 to know evolutionary history of Allophycocyanin protein among various species. The analysis involved 11 amino acid sequences. Here *Spirullina subsalsa* and *Geitlerinema* sp are closely related but *Thermosynechococcus elongates* is distantly related.

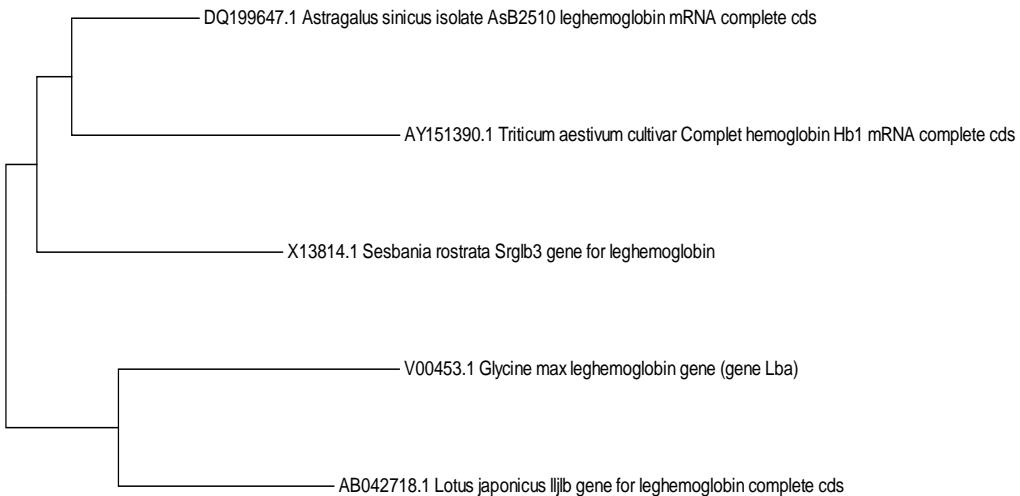
**Results showing the nucleotidequery sequence families of GLOBIN-LIKE SUPERFAMILY retrieved in FASTA format from NCBI of different species.**

**1.Truncated Hemoglobin**


**PHYLOGENETIC TREES OF QUERY NUCLEOTIDE SEQUENCES**

**1. TRUNCATED HEMOGLOBIN**

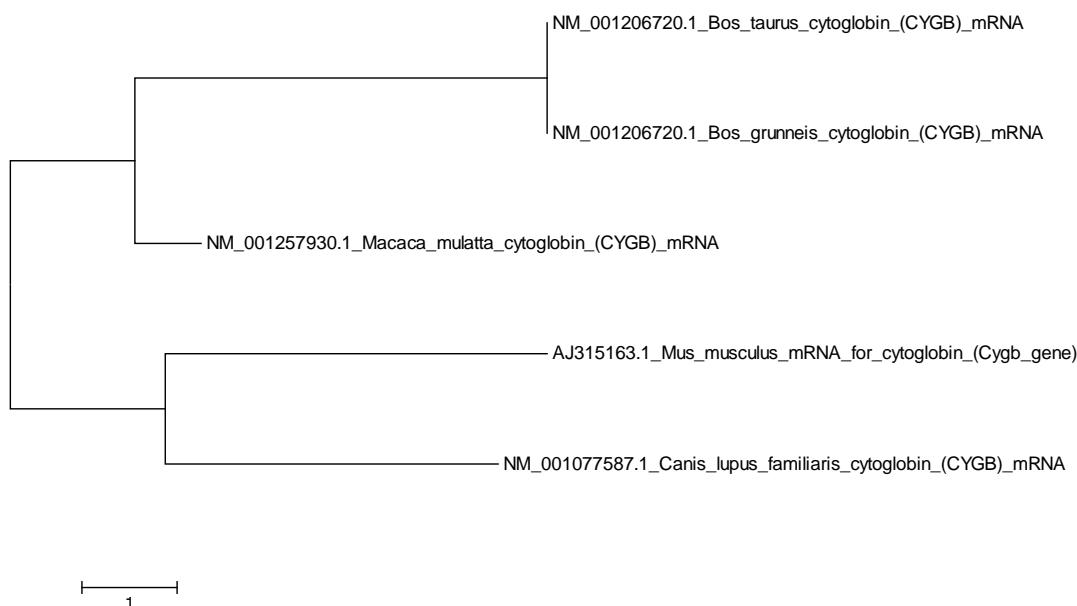



**FIGURE 37 :**Comparitive analysis of globin proteins among various species were performed by Neighbour Joining method in MEGA 7 to know evolutionary history of Truncated hemoglobin nucleotides among various species. The analysis involved five nucleotide sequences. Here *Clostridium chauvoei* and *Candidatus Artromitus* sp are closely related but Lachnospiraceae bacterium strain KH1P17 is distantly related.

## 2. MYOGLOBIN

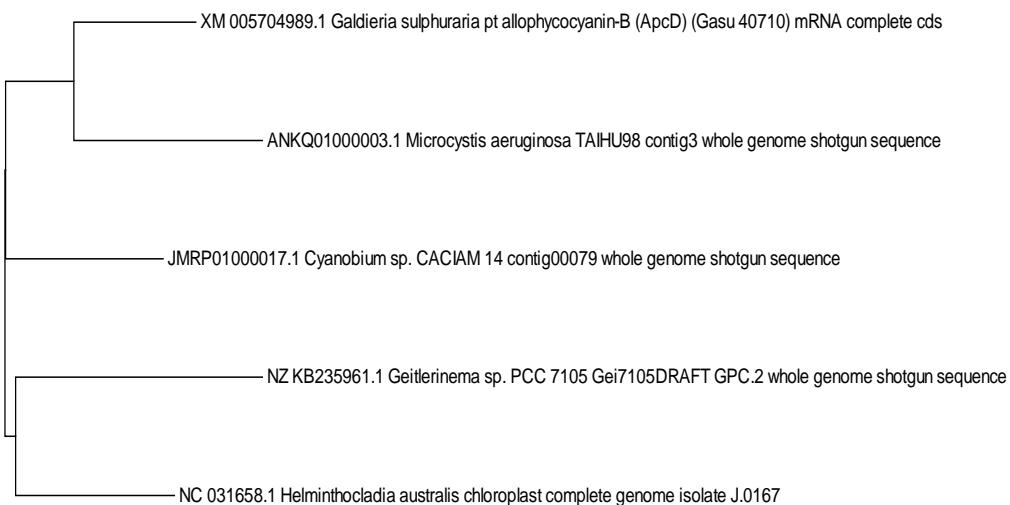


**FIGURE 38:** Comparative analysis of globin proteins among various species were performed by Neighbour Joining method in MEGA 7 to know evolutionary history of Myoglobin nucleotides among various species. The analysis involved five nucleotide sequences. Here, *Ursus maritimus* and *Scapanus orarius* are closely related but *Sus scrofa* is distantly related


## 3. LEGHEMOGLOBIN



**FIGURE39:** Comparative analysis of globin proteins among various species were performed by Neighbour Joining method in MEGA 7 to know evolutionary history of


Leghemoglobin nucleotides among various species. The analysis involved five nucleotide sequences. Here *Glycine max* and *Lotus japonicas* are closely related.

#### 4. CYTOGLOBIN



**FIGURE 40:** Comparative analysis of globin proteins among various species were performed by Neighbour Joining method in MEGA 7 to know evolutionary history of Cytoglobin nucleotides among various species. The analysis involved five nucleotide sequences. Here *Bos Taurus* and *Bos grunneis* are closely related.

## 5. ALLOPHYCOCYANIN



**FIGURE 41:** Comparative analysis of globin proteins among various species were performed by Neighbour Joining method in MEGA 7 to know evolutionary history of Allophycocyanin nucleotides among various species. The analysis involved five nucleotide sequences. Here *Galdieria sulphuraria* and *Microcystis aeruginosa* are closely related but *Geitlerinema* sp. PCC 7105 is distantly related.

**DISCUSSION:**

Protein sequence comparison has become one of the most powerful tools for characterizing the protein sequences(structural and functional prediction) because of enarmaus amount of information that is conserved in the evolutionary process.The globins are a complex family of proteins.In our work we have studied evolutionary history of globins.Our phylogenetic analysis suggest that globins appeared early in history of life and are present in all three kingdoms of life. Although, we have analysed conventional divergence pattern among species in phylogenetic analysis at gene and protein level. The functionality of proteins also varies as depicted by variation in pI values, physiochemical properties. So, phylogenetic analysis at protein level will provide us important insights into the history of changing functions of these proteins.

**ACKNOWLEDGEMENT:**

Thanks to Gurpreet Kaur, Sherry Bhalla and Bhoomika Sharma for their support and guidance.

**REFERENCES:**

1. Balasubramanian L, Mishra M and Srinivasan N (2015) structure based phylogenetic analysis of lipocalin superfamily. *PLoS One*
2. Giangiacome Laura, Ilari Andew, Alberlo baffi, Morea Veronica and Chiancone (2005) The truncated oxygen-avid hemoglobin from *Bacillus subtilis*. *The journal of biological chemistry* **280**:9192-9202
3. Lindberg DA (2000) Internet access to national library of medicine (PDF). *Eff Clin Pract* **3(5)**:256-260
4. Murzin AG, Brenner SE, Hubbard T and Chothia C (1995) Scop:a structural and classification of proteins database for the investigation of sequences and structures. *J mol Biol* **247**:536-40
5. Nakai K (2000) Protein sorting signals and prediction of subcellular location. *Adv Protein Chem* **54**:277-344
6. Wilkins MR, Gasteige E, Bairoch A, Sanchez JC and Williams K (1999) Protein identification and analysis tool in ExPAsy Server. *Methods mol biol* **112**:531-552
7. Xie LK and Yang SH (2016) Brain globins in physiology and pathology. *Med Gas Res* **6**:154-163