

Review

Not peer-reviewed version

Nutritional Epigenomics: Bioactive Dietary Compounds in the Epigenetic Regulation of Osteoarthritis

Karla Mariuxi Villagrán-Andrade , [Carmen Núñez-Carro](#) , [Francisco J. Blanco](#) , [María C de Andrés](#) *

Posted Date: 2 August 2024

doi: [10.20944/preprints202408.0100.v1](https://doi.org/10.20944/preprints202408.0100.v1)

Keywords: nutriepigenomics; osteoarthritis; chondrocyte; cartilage; bioactive compounds; epigenetics

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Nutritional Epigenomics: Bioactive Dietary Compounds in the Epigenetic Regulation of Osteoarthritis

Karla M. Villagrán-Andrade, Carmen Núñez-Carro, Francisco J. Blanco and María C. de Andrés *

Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain

* Correspondence: ma.carmen.de.andres.gonzalez@sergas.es; Tel.: +34-981-176399

Abstract: Nutritional epigenomics is exceptionally important because describes the complex interactions among food compounds and epigenome modifications. A healthy diet can improve the quality of life and, alleviate the progression and symptomatology of many complex diseases such as osteoarthritis (OA). Phytonutrients or bioactive compounds, which are secondary metabolites of plants, can protect against OA by suppressing the expression of inflammatory and catabolic mediators, and modulating epigenetic changes in DNA methylation, histone or chromatin remodelling of key inflammatory genes and noncoding RNAs. The combination of natural epigenetic modulators is crucial because their additive and synergistic effects, safety and therapeutic efficacy, and lower adverse effects than conventional pharmacology in the treatment of OA. In this review, we have summarised the chondroprotective properties of bioactive compounds and nutraceuticals for the management, treatment, or prevention of OA in both human and animal [1] studies. Some of them have been considered as natural epigenetic modulators that can modify the activity of various epigenetic factors and, alter the expression of genes related to inflammation and cartilage destruction. However, this complex pathology with inflammatory mediators has been little studied at the nutriepigenomic level. Further research is needed towards bioactive compounds as epigenetic modulators in OA, likewise, determine their potential value for future clinical applications in OA patients.

Keywords: nutriepigenomics; osteoarthritis; chondrocyte; cartilage; bioactive compounds; epigenetics

1. Osteoarthritis, a Chronic Disease

Osteoarthritis (OA) is one of the most common disabling chronic progressive diseases in middle-aged and elderly people [2] and, it is among the main public health problems worldwide, due to its high prevalence [3]. It is characterised by deterioration of the articular cartilage, alteration of subchondral bone, formation of osteophytes, joint space narrowing, and inflammation of the synovium [4]. Symptoms generally include severe joint pain, stiffness, joint contractures, muscle atrophy, reduced movement, swelling, tenderness, and variable degrees of local inflammation, limb deformity and crepitus [5]. There are many etiological factors for OA, including genetic predisposition, dietary intake, obesity, sex, aging, traumatic joint injury, mechanical stress, metabolic disease, and sedentary lifestyle [6]. It is important to highlight the synergistic effects of pathologies such as cardiovascular disease and obesity coexisting with OA [7,8].

Pharmacological treatments such as paracetamol, nonsteroidal anti-inflammatory drugs, tramadol, and opioids are used to reduce pain and inflammation, but do not prevent, reverse or cure

OA [9]. However, a long-term use of these drugs to relieve OA is associated with substantial gastrointestinal, renal, hepatic, blood, cardiovascular, and cerebrovascular adverse effects [10–12]. In this review, we present the importance of a healthy diet in preventing the development or progression of OA and, summarise chondroprotective properties and beneficial epigenetic modifications of bioactive compounds or nutraceuticals against inflammation and catabolic activity in OA.

2. Epigenetics and Osteoarthritis

Over the last 20 years, the study of epigenetics has expanded (especially in the cancer field). However, studies on the importance of epigenetic mechanisms in OA are only now increasing. Roach and collaborators demonstrated the first evidence of how epigenetic changes, such as DNA methylation, may relate to the pathogenesis of OA and, can be potentially reversible [13].

Epigenetics can be defined as heritable changes in gene expression and/or phenotype that can occur without changes in the primary DNA sequence [14]. The epigenome of each cell is unique and can undergo temporal changes in response to environmental factors such as diet, physical activity, smoking, pollutants and disease status [15]. OA is distinguished by unfavourable dynamic regulation of gene transcription in joint tissues due to environmental disturbances; therefore, epigenetics has developed as a new and important area for OA research [16–18]. Candidate gene and epigenome-wide studies have demonstrated their association with OA development and progression through epigenetic modifications, and these epigenetic mechanisms can change in response to stimuli and, in some cases, pass on to future generations [19–21]. Given the importance of gene expression or silencing, and associated epigenetic modifications, we will briefly mention various epigenetic mechanisms of pro-inflammatory cytokines and metalloproteinases (MMPs) that contribute to cartilage destruction. Three main mechanisms are implicated in epigenetic regulation: (1) DNA methylation changes that covalently alter chromatin structure. In general, DNA hypomethylation enhances gene transcription, and DNA hypermethylation suppresses gene transcription. (2) Post-translational modification of histones that alters chromatin conformation, include methylation of arginine and lysine, acetylation of lysines, phosphorylation of serine and treonine, or sumoylation and ubiquitination of lysine. (3) Non-coding RNAs regulate gene expression but do not translate into proteins (i.e., microRNAs (miRNAs), long non-coding RNAs) acting both at transcriptional, or post-transcriptional levels [22–24].

2.1. DNA Methylation

DNA methylation process is mediated by DNA methyltransferases (DNMTs): DNMT1 (maintenance), DNMT3A and DNMT3B (de novo) and, involves the addition of a methyl group to the 5' position of cytosine, most commonly occurs in CpG dinucleotides, forming 5-methylcytosine. The hypermethylation by DNMTs leads to transcriptional gene silencing and gene inactivation [22,23].

Nakano and collaborators found that DNMT1 and DNMT3A expression was decreased by IL-1 β , while DNMT3A also decreased expression and activity by TNF- α in fibroblast-like synoviocytes [25]. Both DNA methylation and histone modification are involved in the control of TNF- α expression [26]. Hashimoto and collaborators found that the methylation of the -115 CpG site enhances MMP13 promoter activity as opposed to the inhibitory effect of -110 CpG methylation; also, the demethylation of the specific CpG sites at -299 position of the IL1B promoter activity correlates with enhanced IL1B gene expression in human primary chondrocytes [27,28]. Furthermore, Bui and collaborators showed that the -104 CpG site is demethylated in OA cartilage and is accompanied with an elevated MMP13 expression [29]. In articular cartilage, the methylation of cytosines at positions -1,680 and -1,674 blocks COL10A1 expression in chondrocytes, while gene expression is activated during chondrogenesis in cells with partial methylation of these two specific CpG sites [30]. Cheung and collaborators found that DNA demethylation at one or more specific CpG sites in the ADAMTS4 promoter corresponds to increased expression of ADAMTS4 in human OA chondrocytes, which plays a role in aggrecan degradation in OA [31]. In addition, Roach and collaborators showed an

association between loss of DNA methylation of CpG sites in the promoters and abnormal expression of MMP3, MMP9, MMP13, and ADAMTS4 by OA chondrocytes [13]. Besides, the sclerotonin (SOST) mRNA and protein expression levels are increased in OA chondrocytes, suggesting the SOST promoter is hypermethylated in normal chondrocytes and hypomethylated in OA [32]. An interesting study suggests that hip OA is associated with decreased SOX9 gene and protein expression, showing that methylation of SOX9 promoter was increased in OA cartilage [33]. Imagawa and collaborators reported that COL9A1 promoter activity is significantly decreased by DNA hypermethylation, and could be reversed through inhibition of DNA methylation. In addition, abnormal DNA methylation of the CpG sites in the COL9A1 promoter is associated with decreased expression of SOX9 [34]. Moreover, hypomethylation in the IL8 promoter is correlated with higher IL8 gene expression in OA chondrocytes; it was also shown a significant increase in IL8 promoter activity by the transcription factors NF- κ B, AP-1 and C/EBP [35]. de Andrés and collaborators demonstrated the association between an increase of inducible nitric oxide synthase (NOS2) gene expression in OA chondrocytes and, the demethylation of NF- κ B responsive enhancer elements [36]. Furthermore, in OA synovial fibroblasts showed DNA hypomethylation and histone hyperacetylation in the IL6 promoter [37].

2.2. Histone Modifications

Methylation/demethylation and acetylation/deacetylation are the main and recurrent histone changes in OA [38]. Two families of enzymes catalyse the modification of histones: histone methyltransferases (HMTs) and histone demethylases (HDMTs), or acetyltransferases (HATs) and histone deacetylases (HDACs) [39]. The majority of these modifications take place at lysine, arginine and serine residues within the histone tails and, regulate key cellular processes such as transcription, replication and repair [40]. Hyperacetylation of histone tails induces transcriptional activation while hypoacetylation is associated with transcriptional repression [41]. HDAC family members have been associated with OA, and HDAC inhibitors (HDACi) can protect chondrocytes, prevent cartilage damage, and possess therapeutic potential against OA [15,42]. Young and collaborators demonstrated that HDACi decreased the expression and activity of MMPs and ADAMTSs [43]. In addition, histone deacetylase-1 (HDAC1) and HDAC2 levels are elevated in both chondrocytes and synovium from OA patients compared to controls [44,45]. Higashiyama and collaborators demonstrated the increased expression of HDAC7 in human OA cartilage that was correlated with elevated MMP13 gene expression, contributing to cartilage degradation [46]. Class III HDACs (sirtuins) are a class of NAD⁺-dependent histone deacetylases and differ from the class I and II HDACs. Sirtuin 1 (SIRT-1) is a positive regulator of cartilage-specific gene expression in chondrocytes [47]. SIRT-1 activation has the potential to prevent cartilage damage and inhibit its destruction [48,49]. SIRT-1 suppresses protein tyrosine phosphatase 1B (PTP1B) and activates insulin-like growth factor (IGF) receptor pathway, enhancing survival of chondrocytes [50]. Also, decreased expression of COL2A1 mRNA and type II collagen protein correlates with decreased SIRT1 activity [51]. In addition, in OA cartilage, the overexpression of E74-like factor 3 (ELF3) inhibited Sox9/cAMP-response element-binding protein (CREB)-binding protein (CBP)-driven HAT activity and decreased COL2A1 [52]. The disruptor of telomeric silencing 1-like (DOT1L) gene, a HMT, is a protector of cartilage health, thereby is reduced in damaged areas of OA joints; the protective function of DOT1L is attributable to Wnt signalling inhibition [53,54].

2.3. Non-Coding RNA (ncRNAs)

ncRNAs, including small non-coding RNAs (miRNA) and long non-coding RNAs (lncRNAs), have the ability to regulate gene expression at both transcriptional (lncRNAs) and post-transcriptional levels (small and lncRNAs) [55]. lncRNAs are key regulators of gene expression; thus, the overexpression of lncRNA-CIR increased the expression of MMPs, whereas the collagen and aggrecan expression was reduced in OA cartilage [56]. Small ncRNA mainly includes miRNAs, siRNAs and piRNAs. miRNAs have been the most frequently investigated; they are considered an alternative mechanism of post-transcriptional or translational regulation, at post-transcriptional level

binds to complementary mRNA, leading to degradation of mRNA or prevention of its translation into a protein [55,57–59]. Several miRNAs have showed an altered expression in OA and, are involved in various aspects of cartilage homeostasis and OA pathogenesis [60]. Rasheed and collaborators showed that IL-1 β -induced iNOS gene expression is correlated with the down-regulation of miR-26a-5p in human OA chondrocytes [61]. Furthermore, miRNAs such as miR-320, miR-381, miR-9, miR-602, miR-608, miR-127-5p, miR-140, miR-27b, miR-98 and miR-146 have a significant role in the regulation of genes relevant to OA pathogenesis [59]. In another study, the overexpression of miR-27b inhibited IL-1 β -stimulated MMP13 gene and protein expression in human OA chondrocytes [62]. Moreover, the overexpression of miR-558 directly inhibited COX2 mRNA and protein expression [63]. Also, miR-199a levels are inversely correlated with COX2 mRNA and protein levels in IL-1 β -stimulated human chondrocytes [64]. There is a relationship between HDACs and miRNA in OA, thus overexpression of miR-92a-3p suppressed HDAC2 production and increased the level of histone H3 acetylation of the COMP/ACAN/COL2A1 promoter [65]. Overexpression of miR-193b-3p inhibited HDAC3 expression, enhanced histone H3 hyperacetylation and, increased the expression of SOX9, COL2A1, ACAN, and COMP in chondrocytes [66]. Guan and collaborators showed that miR-146a protects against OA, inhibiting inflammatory factors [67]. In addition, a study demonstrated the significant increase in miR-146a expression induced by the HDAC inhibitors in OA-fibroblast-like synoviocytes [68]. Another study demonstrated that miR-146b is downregulated in the chondrogenic differentiation of human stem cells and upregulated in OA [69]. Overexpression of miR193b-5p inhibited HDAC7 expression and, decreased MMP3 and MMP13 expression [70]. Both miR-199a-3p and miR-193b expressions are upregulated with age and, may be involved in chondrocyte senescence by downregulating anabolic factors such as type 2 collagen, aggrecan, and SOX9, therefore may be involved in cartilage degeneration [71]. In addition, increase of TNFA, IL1B and IL6 gene expression was correlated to miR-149 down-regulation, through the inhibition of post-transcriptional control in human OA chondrocytes [72]. miR-140, the most well studied miRNA in OA, plays a protective role in OA development. It is important for chondrogenesis and osteogenesis, and is highly expressed in normal cartilage, but their expression levels are decreased in OA chondrocytes; its overexpression could inhibit inflammation and cartilage degradation [73–77]. A study showed that miR-140 is expressed specifically in cartilage tissues during mouse embryonic development and, siRNA-140 significantly downregulated the accumulation of Hdac4 protein in fibroblast cells [78]. Further, miR-140-3p and its isomiRs: miR-140-3p.1 and miR-140-3p.2 are abundantly expressed in cartilage [79]. Decreased miR-let7e expression has been suggested as a potential predictor of hip OA [57,80]. The increase of miR-145 levels directly represses SOX9 expression, resulting in the inhibition of COL2A1 and ACAN, with increased expression of RUNX2 and MMP13 in human chondrocytes [81].

3. Inflammation and Diet

Inflammation is a complex biological response of the immune system to pathogens, damaged cells, injury, toxic compounds, and infection. This immune system utilises a large number of specialised cells such as lymphocyte, monocytes and macrophages to restore homeostasis [82–84]. Inflammation in OA is an important pathway in its pathogenesis and development [85,86]. Inflammation in OA joints is chronic, low grade, and involves the interplay of the innate immune system and inflammatory mediators [85,87,88]. These include cytokines, chemokines, growth factors, adipokines, prostaglandins, leukotrienes, nitric oxide, and neuropeptides [87,89]. Strikingly, the reduction of this low-grade inflammation is closely linked with a higher adherence to healthier diets such as the Mediterranean diet [90–92].

Diet plays an important role in the development or prevention of many chronic diseases [93,94] and, may regulate chronic inflammation, improving quality of life [95–97]. Thus, dietary composition is able to modulate epigenetic marks like changes in DNA methylation, histone or chromatin remodelling key inflammatory genes and, ncRNAs that may be causal for the development of chronic diseases or, may be beneficial against inflammation; in this way, can block, retard, or reverse pathologic processes [98–102].

A diet with high dietary inflammatory index (DII) score has been associated with severe pain and lower quality of life in patients with knee OA [103,104]. Another study showed that the energy-adjusted DII (E-DII) score was associated with a high risk of knee OA in the Osteoarthritis Initiative (OAI) cohort [105]. The DII showed to predict inflammatory biomarkers [103,106]. Biomarkers of inflammation, especially serum C-reactive protein (CRP), IL-6, TNF- α and MMPs, have been associated with pain and the progression of OA [107–110]. Dyer and collaborators showed that biomarkers of inflammation and cartilage degradation related to OA were lower with higher uptake of Mediterranean diet [111]. In addition, several studies have found that better quality of life was associated with a higher adherence to this diet [112–115]. Veronesse and collaborators, in a large cohort of North Americans from the OAI database, demonstrated that a higher adherence to the Mediterranean diet is associated with better quality of life, which is correlated with less pain, disability, depression, better cognitive performance, and physical functioning [116]. The adherence to Mediterranean diet in these studies was assessed according to the Mediterranean diet score by Panagiotakos [117] based on a food frequency questionnaire [118]. Strikingly, a higher adherence to a Mediterranean diet is associated with lower prevalence of knee OA [119]. A high adherence to this diet increases the antioxidants levels in serum samples with a reduction on oxidative stress biomarkers levels [120,121], such as F2-isoprostane, indicator of oxidative stress in plasma [122]. Moreover, Martín-Núñez and collaborators found a correlation between lower adherence to the Mediterranean diet pattern, and changes in DNA methylation levels and diseases [123].

4. Bioactive Compounds: Health-Protective Benefits

The complex biological activities of plants can promote their abundance in secondary metabolites or bioactive compounds, they are also known as phytonutrients or nutraceuticals. The bioactive compounds are widely known for their unique medicinal properties; they possess antimicrobial [124], anti-inflammatory [125], antiviral [126,127], cardioprotective [128], neuroprotective [129], chemopreventive [130], phytohormone [131], and antioxidant properties [132]. Multiple pathological processes are involved in the pathogenesis of OA, such as inflammation, oxidative stress, apoptosis, autophagy and senescence; hence phytochemical or bioactive compounds have been shown as therapeutic and nutraceutical agents, showing their antiarthritic potential. They mainly exert anti-inflammatory effects through blockade of pro-inflammatory cytokines (IL1- β , IL-6, IL-8, TNF- α), inhibition of NF- κ B pathway, antiapoptotic effects, preventing oxidative damage to proteins and DNA (reduction of both reactive oxygen species and reactive nitrogen species), suppressing the production of prostaglandins and leukotrienes, and decreasing levels of MMPs [133–137].

Bioactive phytochemicals have a wide variety of compounds and are classified as phenolics, alkaloids, organosulfur compounds, terpenes and terpenoids, and each class is divided into further classes. They are present in fruits, vegetables and spices, and can modify metabolic, cellular, molecular, and epigenetic processes [138]. Polyphenols represent the largest and ubiquitous group of natural phytochemicals structures, these compounds are present in fruits, vegetables, cereals, tea, dark chocolate, cocoa powder, coffee, extra virgin oil, and wine [139–141]. The main groups the polyphenols are flavonoids, phenolic acids, and secoiridoids among others. Just flavonoids comprise more than 10,000 natural compounds including anthocyanidins, proanthocyanidins, flavones, flavanones, flavonols, isoflavones and flavan-3-ols [142–145]. In this review a total of 85 bioactive compounds and nutraceuticals with potential anti-OA properties were analysed for the management, treatment, or prevention of OA in both human (Table 1) and animal (Table 2) studies.

Table 1. Bioactive compounds and nutraceuticals for the management, treatment, or prevention of OA in humans.

Bioactive compounds	Sources/classes	Effects of bioactive compounds	Ref.
ALM16	Dried roots of:	Effects in IL-1 β -induced SW1353 chondrocytes:	[146]
Herbal mixture	(<i>Astragalus membranaceus</i>)	Prevented glycosaminoglycan degradation	
Major active compounds:	Isoflavonoids	Inhibited MMP-1, MMP-3 and MMP-13 levels	
(calycosin, calycosin-7-O-β-D-glucopyranoside)	(<i>Lithospermum erythrorhizon</i>)		
lithospermic acid	Phenolic acid		
Anthocyanidins:	(<i>Fragaria ananassa</i>)	Effects in obese patients with knee OA:	[147]
(Cyanidin-3-glucoside, pelargonidin-3-glucoside)	Strawberry (<i>Vaccinium corymbosum</i>)	Alleviated pain and enhanced quality of life	
Flavonols:	(<i>Punica granatum L</i>)	Decreased markers of inflammation and cartilage degradation	
(Quercetin, kaempferol, myricetin)	pomegranate	Decreased IL-6, IL-1 β , and MMP-3 levels in blood samples	[148]
Flavanols:	Approx. 40 Phenolic compounds identified:		
(Epigallocatechin 3-gallate, catechin)	Flavonoids	Effects in knee OA patients:	
Ellagitannins	Tannins	Decreased pain and stiffness and improved gait performance and quality of life	[149]
		Improvement in daily physical activities	
		Effects in OA chondrocytes:	
		Suppressed the IL-1 β -induced activation of	
		RUNX-2, MKK3/6 and p38-MAPK isoforms in	[150]
		chondrocytes derived from OA cartilage	
		Effects in IL-1 β -induced OA chondrocytes:	
		Downregulated <i>MMP1</i> , <i>MMP3</i> , and <i>MMP13</i>	
		mRNA expression	
		Inhibited activation of AP-1 and the DNA binding activity of NF- κ B	

Arctigenin	<i>Arctium lappa</i>	Effects in IL-1 β -induced OA chondrocytes: [151]
(Phenylpropanoid dibenzylbutyrolactone)	Greater burdock Lignan	Decreased ECM degradation Enhanced ECM synthesis and upregulated COL2A1 and ACAN Downregulated MMP-13 and ADAMTS-5 Decreased <i>IL6</i> , <i>NOS2</i> , <i>TNFA</i> and <i>COX2</i> in mRNA and protein expression Inhibition of NF- κ B/PI3K/Akt signalling pathway
Astragalin	Leaf extract of:	Effects in IL-1 β -induced chondrocytes: [152]
(kaempferol 3-glucoside)	<i>Rosa agrestis</i> Flavonoids	Inhibited inflammatory responses Inhibited NO, PGE2, NF- κ B, ERK1/2, JNK, and p38 MAPK production by PPAR- γ activation in a dose-dependent manner
Avocado/Soybean Unsaponifiable ASU	<i>Persea gratissima</i> and <i>Glycine max</i>	Effects in IL-1 β induced OA chondrocytes: [153]
(β-sitosterol, campesterol, and stigmasterol)	mixture of avocado and soybean unsaponifiables (Phytosterols)	Promoted cartilage repair Inhibited IL-6, IL-8, MIP-1 β , MMP-3, NO, and PGE2 production Stimulated TIMP-1, TGF- β 1, and ACAN production
Triterpenes	Triterpene alcohols	Effects in OA subchondral osteoblasts/OA chondrocytes: Promoted regulation of anabolic and catabolic processes Downregulated ALP, OC, and TGF- β 1 levels Prevented inhibition of ECM components (COL2A1 and ACAN mRNA expression) [154]
		Effects in LPS-stimulated monocyte/macrophage-like cell associated with the synovial membrane: [156]
		Showed anti-inflammatory effects Suppressed <i>TNFA</i> , <i>IL1B</i> , <i>COX2</i> , <i>NOS2</i> gene expression Downregulated PGE2 and nitrite production
		Effects in chondrocytes: Attenuate inflammatory response both at gene transcription and protein level

		Reduced G-CSF, RANTES and PGE2 levels induced by LPS Increased 12,13-DiHOME	
Baicalin	(<i>Scutellaria baicalensis</i> <i>Georgi</i>) Mainly extracted from dry root Flavone glycoside (flavonoid)	Effects in IL-1 β -induced OA chondrocytes: [157] Reduced COX2, NOS2, MMP3, MMP13 and ADAMTS5 gene expression via inhibition of NF- κ B activation Inhibited NO and PGE2 production Inhibited the downregulation of ACAN and COL2A1 mRNA	
Berberine	Medicinal herbs: <i>Hydrastis canadensis</i> <i>Berberis aristate</i> <i>Cortex phellodendri</i> <i>Coptis chinensis</i> Isoquinoline- derivative alkaloid	Effects in OA synovial fibroblast: [158] Attenuated CCN2-induced IL-1 β expression, via inhibition of ROS-related ASK1, p38/JNK, NF- κ B signalling pathways	
Butein	<i>Rhus verniciflua</i> stem bark of cashews and the genera Dahlia, Butea, Searsia (Rhus) and Coreopsis are common sources Chalcones (flavonoids)	Effects in IL-1 β -induced OA chondrocytes: [159] Inhibited I κ B- α degradation and NF- κ B p65 activation Downregulated COX2, NOS2, IL6, TNFA, MMP13 gene and protein expression Inhibited MMP1, MMP3, ADAMTS4 and ADAMTS5 mRNA expression Reduced the degradation of COL2A1 and SOX9 mRNA and protein expression Downregulated NO and PGE2 production	
Casticin (Vitexicarpin)	<i>Vitex rotundifolia</i> L Polymethoxyflavonoid	Effects in IL-1 β -induced OA chondrocytes: [160] Prevented inflammation by inhibition of NF- κ B signalling pathway Decreased NO, PGE2, TNF- α , IL-6, MMP- 3, MMP-13, ADAMTS-4 and ADAMTS-5 production Inhibited NOS2 and COX2 mRNA and protein expression Increased ACAN and COL2A1 mRNA expression	
Celastrol	(<i>Tripterygium wilfordii</i> <i>Hook F.</i>) root bark "Thunder of	Effects in IL-1 β -induced OA chondrocytes: [161] Suppressed the activation NF- κ B in human	

	God Vine"	ostearthritic chondrocytes	
	Pentacyclic Triterpenes	Inhibited <i>HSP90B</i> , <i>COX2</i> , <i>NOS2</i> , <i>MMP1</i> , <i>MMP3</i> , <i>MMP13</i> mRNA and protein expression	
		Decreased NO and PGE2 levels	
Cinnamophilin	(<i>Cinnamomum philippinense</i>)	Effects in IL-1 β -stimulated SW1353 chondrocytic cell line: [162]	
	Extracted from the root	Showed chondroprotective properties against collagen matrix breakdown	
	Lignan	Inhibited MMP-1, and MMP-13 activity via inhibition of NF- κ B, JNK, ERK, and p38 MAPK	
		Inhibited I κ B- α degradation, and phosphorylation of IKK- α / β and p65	
		Blocked the activity of c-Jun by inhibition of JNK	
Cryptotanshinone	(<i>Salvia miltiorrhiza Bunge</i>)	Effects in IL-1 β -induced OA chondrocytes: [163]	
	Extracted from the root of the plant	Inhibited inflammation by suppression of nuclear translocation of NF- κ B p65 and MAPK activation	
	Diterpene quinones	Inhibited phosphorylation of I κ B, IKK α / β and I κ B α degradation	
		Suppressed NO, PGE2, IL-6, TNF- α , NOS2, COX-2, MMP-3, MMP-13, and ADAMTS-5 levels	
Curcuminoids:	(<i>Curcuma longa</i>)	Effects in IL-1 β -induced chondrocytes: [164]	
	(<i>Curcuma domestica</i>)	Protected against catabolic effects	
Curcumin	Turmeric rhizome	Inhibited suppression of COL2A1 synthesis	
Demethoxycurcumin,	Diarylheptanoids		
Bisdemethoxycurcumin	(Phenolic compounds)	Inhibited NF- κ B signalling pathway and prevented its translocation to the nucleus	
		Inhibited MMP-3 synthesis	
			[165]
		Effects in IL-1 β -induced chondrocytes: Demonstrated chondroprotective, anti-apoptotic and anti-catabolic properties	
		Inhibited cell degradation	
		Inhibited suppression of COL2A1	
		Increased β 1-integrin receptors synthesis	
		Decreased caspase-3 activation	
		(antiapoptotic effect)	
			[166]
		Effects in chondrocytes:	

Demonstrated anti-inflammatory effects
stimulated by IL-1 and TNF- α
Suppressed NF- κ B activation and
inhibited p65 phosphorylation and nuclear
translocation
Blocked the I κ B α phosphorylation and
degradation [167]
Inhibited IL-1 β -induced Akt
phosphorylation
Inhibited COX-2 and MMP-9 synthesis

Effects in IL-1 β -induced OA
chondrocytes/OA cartilage explants: [168]
Demonstrated anti-inflammatory activity
Suppressed ECM degradation
Inhibited MMP-3, PGE2, NO, IL-6, and IL-
8 production

Effects in knee OA patients:
Showed that *C. domestica* extracts were as
efficacious as ibuprofen [169]
Demonstrated pain reduction and
functional improvement
Showed fewer gastrointestinal adverse
effects than ibuprofen

Effects in knee OA patients: [170]
Enhanced knee functions and reduced
knee pain
Demonstrated the efficacy and safety of
curcumin extract 2,000 mg/day equivalent
to ibuprofen 800 mg/day for 6 weeks
therapy [171]

Effects in knee OA patients:
Showed potential beneficial effects as
adjuvant therapy with diclofenac in knee
OA
Showed additive improvement in
decreasing pain
Reduced inflammation without increasing
the side effects in comparison with
diclofenac alone [172]

		Effects in knee OA patients: Proved to be an alternative treatment option in patients with knee OA who are intolerant to the side effects of diclofenac Demonstrated gastroprotective and antiulcer effects, compared with the adverse effects of non-steroidal anti-inflammatory drugs	
		Effects in IL-1 β -induced temporomandibular joint chondrocytes: Showed anti-inflammatory, antioxidant, and cartilage protective effects by activating the NRF2/ARE (HO-1, SOD2, NQO-1, and GCLC) pathway Inhibited NOS2, COX2, IL6, MMP1, MMP3, MMP9, MMP13, ADAMTS4 and ADAMTS5 mRNA and protein levels Increased COL2A1 and ACAN mRNA expression	
Curcumin nanoparticles	Topical treatment	Effects in IL1 β -induced chondrocytes: Enhanced chondroprotective properties against the production of inflammatory and catabolic mediators Reduced IL1B, TNFA, ADAMTS5, MMP1, MMP3, and MMP13 mRNA expression Increased levels of the chondroprotective transcriptional regulator CITED2 gene	[173]
Combination: Curcumin with resveratrol	Resveratrol (<i>trans</i> -3, 4'-trihydroxystilbene)	Effects in IL-1 β -induced chondrocytes: Inhibited inflammatory and catabolic effects and activated β 1-integrin and Erk1/2 Demonstrated synergistic effects in suppressing apoptosis	[174]
Theracurmin	Highly bioavailable form of curcumin (A surface-controlled water-dispersible form of curcumin)	Effects in knee OA patients: Showed high bioavailability and it was 27-fold higher than that of curcumin powdery without adverse effects Effects in knee OA patients:	[175] [176]

		Showed high absorption and enhanced chondroprotective effects Reduce pain and decreased NSAID necessity Demonstrated anti-inflammatory effects Showed efficacy and safety therapeutic (180 mg/day orally for six months)	
RA-11 (Nutraceutical mixture)	<i>Curcuma longa</i> (<i>Withania somnifera</i>), Ashwagandha Terpenoids, flavonoids, tannins, alkaloids (<i>Boswellia serrata</i>) Olibano Boswellic acids (terpenoid) (<i>Zingiber officinale</i>), Ginger Phenolic and terpene compounds	Effects in knee OA patients: Demonstrated greater potency, efficacy, and excellent safety in the treatment of OA knees over 32 weeks-therapy Showed significant reduction in the pain VAS and the modified WOMAC index scores (pain, stiffness, and physical function difficulty) Safety assessments were based on results of the physical examinations, clinical and laboratory tests, and adverse events	[177]
Phytosome complex (Meriva)	Curcuminoid mixture- phosphatidylcholine (soy lecithin, a phospholipid)	Effects in OA patients: Improved oral absorption and bioavailability Reduced all WOMAC scores (pain sensation, joint stiffness, and physical function) after eight months treatment with 200 mg curcumin/d Decreased inflammatory markers sCD40L, IL-1 β , IL-6, sVCAM-1, and ESR Decreased use of NSAIDs/painkillers and gastrointestinal complications Improved emotional functions and quality of life	[178]
		Effects in IL-1 β -induced HCH-c chondrocytes: improved the solubility of curcumin and enhanced chondroprotective effect via anti-inflammatory mechanism in chondrocytes	[179]

		Suppressed MMP1, MMP2, MMP3, MMP9, MMP13, NOS2 and COX2 mRNA expressions	
		Inhibited TNF- α , IL-1 β , IL-6, IL-8 and PGE2 levels	
Mixture:	<i>(Curcuma longa L)</i>	Effects in IL-1 β -induced OA chondrocytes: [180]	
Curcuminoids	Turmeric rhizome	Showed additive and synergistic effects	
Hydrolyzed collagen and	Polyphenols	Demonstrated significantly more efficient	
Epigallocatechin-3-gallate	Hydrolyzed collagen (High levels of glycine and proline, amino acids for the stability and regeneration of cartilage)	to inhibit inflammation and catabolic processes	
	<i>(Camellia sinensis)</i>	Suppressed NF- κ B activation and its translocation to nucleus via inhibition of phosphorylation and degradation of I κ B α and p65 phosphorylation	
	Green tea	Inhibited MMP-3, IL-6, NO production	
	Epigallocatechin-3-gallate (flavanol)		
Combination:	<i>(Curcuma longa)</i>	Effects in LPS and IL-1 β -stimulated chondrocytes: [181]	
Curcumin,	Phenolic compounds		
Flavocoxid: baicalin and catechin	<i>(Scutellaria baicalensis, Baikal skullcap)</i> and	Demonstrated anti-inflammatory activity, safety and did not affect cell viability in chondrocytes	
β-caryophyllene	<i>(Acacia catechu, catechu)</i>	Reduced <i>IL1B</i> mRNA in a dose-dependent manner	
	Baicalin and catechin		
	Flavonoids (<i>Copaifera spp, copaiba</i>) and	Showed strong synergy potential for OA treatment	
	<i>(Cannabis spp, marijuana/hemp)</i>	Reduced the transcription factors <i>NFKB</i> and	
	β -caryophyllene, a bicyclic sesquiterpene)	<i>STAT3</i> mRNA expression	
		Increased <i>COL2A1</i> mRNA expression	
Botanical formulation	<i>(Curcuma longa)</i>	Effects in knee OA patients: [182]	
(Mixodin):	Turmeric	Showed synergic, anti-inflammatory and	
Curcumin,	Phenolic compounds	hypoalgesic effects in chronic knee OA	
Gingerols, and	<i>(Zingiber officinale)</i>	(twice a day for 4 weeks)	
Pyrene	Ginger	Observed as a safe alternative to chemical	
	Gingerols	drugs, with lower adverse effects than	
	Phenolic compounds	Naproxen	
	<i>(Piper nigrum)</i>	Decreased PGE2 levels in blood samples	
	Black pepper	(curcumin 300 mg, gingerols 7.5 mg, and	
	Pyrene (Alkaloid)	piperine 3.75 mg) similar to Naproxen drug (250 mg twice a day)	

Botanical composition	<i>Tamarindus indica</i>	Effects in knee OA patients/serum/urine:	[183]
NXT15906F6:	Tamarind seeds	NXT15906F6 (250 mg) or NXT19185	
ethanol/aqueous extract	Polyphenols	(300 mg) daily for 50-6 days	
of tamarind seed		Decreased inflammatory processes, joint	
(proantocyanidins) and	<i>Curcuma longa</i>	pain and stiffness	
aqueous ethanol extract		Improved musculoskeletal function	
of turmeric	<i>Garcinia mangostana</i>	Inhibited TNF- α , IL-6, MMP-3 and CRP	
(curcuminoids)	fruit rind	levels in serum	
NXT19185:	Polyphenolic	Protected against cartilage erosion	
(combination of	xanthones	Reduced CTX-II (a cartilage degradation	
NXT15906F6 plus an	Flavonoids	marker) in urine sample	
aqueous ethanol extract		Reduced WOMAC, VAS, stair climb test	
of mangosteen (α-		scores	
mangostin, β-		Improved lequesne's functional index, the	
mangostin, and γ-		6-minute walk test and knee flexion range	
mangostin) and		of motion scores	
(epicatechin and			
quercetin)			
Botanical composition	<i>(Terminalia chebula)</i>	Effects in IL-1 β -induced HCHs	[184]
(LI73014F2 2:1:2 ratio):	fruit myrobalan	chondrocytes:	
Gallic acid, chebulagic	Tannins (polyphenols)	Reduced inflammation and apoptosis, via	
acid,		inhibition of the NF- κ B/MAPK signalling	
chebulic acid,		pathway	
chebulinic acid,		Inhibited pro-inflammatory mediators	
gallotannins,		(COX-2, 5-LOX, and metabolic pathways	
ellagitannins		products mPGES-1, PGE2, and LTB-4	
(punicalagin), ellagic	<i>(Curcuma longa)</i>	Decreased IL-1 β , TNF- α , IL-6, MMP-2,	
acid	Polyphenols	MMP-3, MMP-9 and MMP-13 protein	
		levels	
Diferuloylmethane		Provided therapeutic efficacy in OA	
Demethoxycurcumin		management by reducing cartilage	
Bisdemethoxycurcumin,	<i>(Boswellia serrata)</i>	damage	
and	Olibanum		
turmeric acid	Pentacyclic triterpenes		

Boswellic acids:

3-O-acetyl-11-keto- β -boswellic acid, 11-keto- β -boswellic acid, and β -boswellic acid

Delphinidin	Pomegranate, berries, dark grapes, aubergine, tomato, carrot, purple sweet potatoes, red cabbage, and red onion Anthocyanidin (Flavonoid) Delphinidin the most abundant anthocyanidin present in pomegranate fruit extract (<i>Punica granatum</i>)	Effects in IL-1 β -induced OA chondrocytes: Inhibited phosphorylation of I κ B, IKK α/β , NIK, IRAK1 Inhibited COX2 mRNA and protein expression and PGE2 production via suppression of NF- κ B activation Downregulated IKK β mRNA and protein expression	[185]
Ellagic acid	Fruit peel of raspberries, strawberries, cranberries, pomegranate, walnuts, pecans, grapes Dimeric derivative of gallic acid Phenolic compound	Effects in IL-1 β -induced OA chondrocytes: Inhibited inflammation, and ECM loss Upregulated COL2A1 and ACAN Suppressed NF- κ B p65 activation Decreased NO, PGE2, IL-6, TNF- α , ADAMTS-5 and MMP-13 in a dose-dependent manner Inhibited NOS2, and COX2 mRNA and protein expression	[186]
Epigallocatechin-3-O-gallate	<i>Camellia sinensis</i> Green tea Flavan-3-ols or flavanols (Flavonoids)	Effects in IL-1 β -induced chondrocytes: Showed anti- inflammatory and anti-catabolic effects in a dose-dependent manner Inhibited MMP1 and MMP13 mRNA and protein expression Inhibited NF- κ B and AP1 levels Effects in cartilage explants: Inhibited cartilage matrix degradation Downregulated glycosaminoglycans release	[187]
		Effects in IL-1 β -induced OA synovial fibroblasts: Showed efficacy in the control of inflammation Inhibited COX2 mRNA and protein expression	[189]

Suppressed PGE2 and IL-8 production

Effects in IL-1 β -induced OA chondrocytes:
Decreased *NOS2* mRNA and protein
expression and NO production
Inhibited NF- κ B p65 activation and
translocation to the nucleus by [190]
suppressing the degradation of its
inhibitory protein I κ B α in the cytoplasm

Effects in IL-1 β -induced chondrocytes:
Antioxidant properties against cytotoxicity
Inhibited ROS release and accumulation [191]
from both intracellular and extracellular
environments
Inhibited PGE-2, NO, COX-2 and NOS2
production

Effects in IL-1 β -induced OA chondrocytes: [192]
Inhibited catabolic mediators of cartilage
degradation
Inhibited JNK isoforms phosphorylation
and activation
Blocked c-Jun phosphorylation in the
cytoplasm and reduced the DNA binding
activity of AP-1 in the nuclei [193]

Effects in OA chondrocytes:
Suppressed the AGE-induced *TNFA* and
MMP13 mRNA and protein expression
Inhibited AGE-BSA-induced degradation
of I κ B α and nuclear translocation of NF- κ B
p65
Inhibited MAPK and NF- κ B activation

Effects in IL-1 β -stimulated OA
chondrocytes:
Showed anti-inflammatory activity
Inhibited NF- κ B and MAPKs pathway
Inhibited *TRAF6* mRNA and protein
expression
Downregulated *IL6*, *IL8*, *TNFA*, *IL1B*, *IL7*,
GMCSF mRNA and protein expression

		Blocked <i>ENA78</i> , <i>GRO</i> , <i>GROA</i> , <i>MCP1</i> , <i>MIP1B</i> , <i>MIP3A</i> , <i>GCP2</i> , <i>IP10</i> and <i>NAP2</i> chemokines expression	
Fatty acids	Soybean, canola, olive	EPA decreased <i>MMP3</i> and <i>MMP13</i> mRNA	[194]
n-3 PUFAs	oils, flaxseed, walnuts,	EPA reduced chondrocyte apoptosis by	
omega 3	marine phytoplankton	inhibiting oxidative stress-induced	
polyunsaturated	and fish oil	phosphorylation of p38 MAPK and p53	
fatty acids	ALA: α -linolenic acid		
	EPA: eicosapentaenoic		
	DHA:		
	docosahexaenoic		
Genistein	(<i>Glycine max</i>)	Effects in LPS-induced chondrocytes:	[195]
	soybean	Suppressed COX-2 and NO protein levels	
	Isoflavone (flavonoids)	in a dose-dependent manner	
		Reduced IL-1 β and YKL-40 (a marker of	
		cartilage degradation) levels	
		Effects in IL-1 β -induced OA chondrocytes:	
		Reduced inflammation and oxidative	[196]
		stress	
		Decreased MMP-1, MMP-3, MMP-13,	
		MMP-9, NO, COX-2, NOS2	
		Stimulated HO-1 associated with NRF-2	
		pathway activation	
			[197]
		Effects in IL-1 β -induced chondrocytes:	
		Upregulated COL2A1, ACAN and ER α	
		protein expression in a dose-dependent	
		manner	
		Inhibited apoptosis	
		Reduced caspase 3 and TNF- α levels	
Gingerols	<i>Zingiber officinale</i> and	Effects in knee OA patients:	[198]
Shogaols	<i>Alpinia galanga</i>	Demonstrated improvement in WOMAC	
	Phenolic compounds	index and VAS pain profiles (6 weeks	
		treatment 225 mg/twice day)	
		Showed a good safety profile with mostly	
		mild gastrointestinal side effects	
			[199]
		Effects in knee OA patients:	
		Reduced inflammatory markers (1 g/d for	
		3 months)	
		Decreased CRP and NO in serum and	
		improve pain and mobility	

Gingerols and shogaols + isobutylamides and 2-methylbutylamimide	Highly standardised ginger and echinacea extract <i>Zingiber officinale</i> <i>Echinacea angustifolia</i> Roots (Alkylamides: fatty acid amides)	Effects in knee OA patients: Showed anti-inflammatory, synergistic properties during four-week supplementation Reduced chronic pain and improved knee function Showed to be safe without relevant side effects Could be an alternative in subjects of NSAIDs non-responders	[200]
Gingerols	<i>Zingiber officinale</i>	Effects in knee OA patients:	[201]
Shogaols	ginger extract in	Decreased stiffness and the reduction of	
Nanoparticles	nanostructure lipid carrier	pain was significantly greater than compared to topical diclofenac (12 weeks treatment) Improved physical function	
Gingerols, shogaols and Spilanthol (MITIDOL)	<i>Zingiber officinale</i> <i>Acmella oleracea</i> Sphilantol (alkamide) food-grade lecithin formulation of standardized extracts	Effects in knee OA patients: Showed reduction of markers of inflammation (CRP and erythrocyte sedimentation rate) Antioxidant and analgesic properties Improved knee function and free of side effects	[202]
Harpagoside, Harpagide y Procumbide	<i>Harpagophytum procumbens</i> (HP)	Effects in fibroblast-like synoviocytes/synovial membrane/OA patients:	[203]
β-cariofileno, α-humuleno y α-copaeno	devil's claw root HP extract Iridoid glucosides	Showed anti-inflammatory and antinociceptive	
Oleanolic acid, Ursolic acid and 3β-acetyloleanolic acid	Sesquiterpenes Triterpenes Monoterpene	HPE _{H2O} , HPE _{DMSO} increased CB2 mRNA expression and inhibited PI-PLC β 2 isoform expression	
Eugenol	Phenolic glycosides	All the HPE extracts inhibited FAAH mRNA expression and enzymatic activity (HPE _{EtOH100} was the most effective)	[204]
Acteoside and Isoacteoside		Effects in IL-1 β -induced chondrocytes: Suppressed inflammatory cytokines/chemokines Inhibited <i>IL6</i> , and <i>MMP13</i> mRNA expression Suppressed c-FOS/AP-1 transcription factor	[205,206]
			[207]

		Effects in knee and hip OA patients: Showed efficacy and superior safety as therapeutic agent (2610 mg of powdered cryoground powder) compared to diacerhein (100 mg/day) for 4 months Showed lower adverse effects than diacerhein	
		Effects in IL-1 β -induced chondrocytes: Suppressed MMP-1, MMP-3, MMP-9 production via inhibition of inflammatory cytokines TNF- α and IL-1 β synthesis	
Hydroxytyrosol (HT)	<i>Olea europaea L</i> Olive leaf extract Fruits extra virgin oil HT is more abundant in the processed fruit and olive oil Secoiridoid derivative	Effects in knee OA patients: Demonstrated pain inhibition over a 4 weeks/period Decreased pain measurement index (Japanese Orthopaedic Association score) and VAS scores HT was considered effective when reaches the knee joint in an unmetabolised form Showed antioxidant and anti-inflammatory properties	[208]
HT and Verbacoside	Verbacoside: Hydroxycinnamic acid derivative (phenolic compound)	Effects in OA chondrocytes: Showed chondroprotective effects and reduced intracellular ROS generation Suppressed oxidative stress via p38 and JNK signalling pathways HT downregulated ICE /caspase-1 indicating a potential anti-inflammatory effect	[209]
Hydroxytyrosol / Procyanidins (Oleogrape[®]SEED)	(Extract from olive and grape seed): (<i>Olea europaea L</i>) mainly found in olive leaf and oil Phenolic compound (<i>Vitis vinifera</i> , grape) Flavonoids Other sources: pine bark, cocoa, raspberry, vegetables, legumes, nuts	Effects in IL-1 β -Induced chondrocytes: Demonstrated chondroprotective properties Decreased NO, PGE2, and MMP-13 production Reduced NF- κ B p65 signalling pathway Effects of serum enriched with HT/procyanidins metabolites on primary articular chondrocytes stimulated with IL-1 β (<i>ex vivo</i> methodology): Reduced NO, PGE2, and MMP-13 levels	[210]

Icarin	<i>Epimedium sagittatum</i> flavonol glycoside	Effects in OA fibroblast-like synoviocytes: Inhibited inflammatory response, apoptosis, ER stress and ECM degradation Decreased <i>IL1β</i> , <i>MMP14</i> , and <i>GRP78</i> gene and protein expression	[211]
		Effects in IL-1β-induced SW1353 chondrosarcoma cells: Showed chondroprotective properties and inhibited <i>MMP1</i> , <i>MMP3</i> and <i>MMP13</i> gene and protein expression via MAPK pathways	[212]
		Inhibited the phosphorylation of p38, ERK and JNK	[213]
		Effects in IL-1β-induced chondrocytes: Demonstrated chondroprotective and antioxidants functions without cytotoxic effects by activation of <i>NRF2</i> mRNA Inhibited ECM degradation and ROS production Promoted <i>SOD1</i> , <i>SOD2</i> mRNA and GPX activity Decreased <i>MMP3</i> , <i>MMP9</i> , <i>MMP13</i> and <i>ADAMTS4</i> mRNA expression	
Indole tetracyclic alkaloids	<i>Uncaria guianensis</i>	Effects in knee OA patients:	[214]
Oxindole alkaloids	<i>Uncaria tomentosa</i>	Showed antioxidants and anti- inflammatory	
Indole pentacyclic alkaloid	cat's claw	properties	
Glycoindole alkaloids	alkaloids	Alleviated knee pain and promoted benefit to the joints, tolerability and safety at high concentrations	
Quinovic acids	triterpenes heterosides		
Tannins	polyphenols	Reduced the toxic side effects of NSAIDs and had no deleterious effects on blood or liver function or other significant side- effect	
		Improved OA management and treatment	
Isofraxidin	<i>Siberian ginseng</i> and <i>Apium graveolens</i>	Effects in LPS-induced OA chondrocytes: Decreased iNOS, COX-2, NO, PGE2, TNF- α and	[215]

	compound)	IL-6 levels Suppressed ECM degradation Inhibited TLR4/MD-2 complex formation, and NF- κ B signalling pathway	[216]
		Effects in IL-1 β -induced OA chondrocytes: Suppressed inflammatory mediators and ECM degradation through inhibiting NF- κ B pathway Inhibited I κ B- α degradation Blocked NO and PGE2 production Inhibited COX2, NOS2, MMP1, MMP3, MMP13, ADAMTS4 and ADAMTS5 mRNA expression and protein levels Increased ACAN and COL2A1 levels	
Juglanin	<i>Polygonum aviculare</i> <i>Juglans regia</i> L Diarylheptanoid derivative Flavonoids	Effects in IL-1 β -induced OA chondrocytes: Inhibited inflammatory responses through suppressing phosphorylation of NF- κ B p65 Suppressed I κ B α degradation Inhibited NO, PGE2, IL-6, TNF- α , MMP-1, MMP-3, and MMP-13 levels Decreased NOS2, COX2, ADAMTS4 and ADAMTS5 mRNA and protein expression	[217]
Licochalcone A	<i>Glycyrrhiza glabra</i> , liquorice root <i>Glycyrrhiza inflata</i> Flavonoids	Effects in IL-1 β or TNF- α -induced OA chondrocytes: Showed anti-inflammatory properties Inhibited PGE2 and NO production Inhibited MMP-1, MMP-3, and MMP-13 levels Inhibited NOS2 and COX2 mRNA expression Inhibited NF- κ B activation and I κ B α degradation Increased NRF2 and HO1 mRNA and protein expression	[218]
Acetylated ligstroside aglycone: (Chemically acetylated version of ligstroside aglycone)	(<i>Olea europaea</i> L) Extra virgin olive oil Ligstroside aglycone (p-HPEA-Elenolic acid) Secoiridoids	Effects in IL-1 β /Oncostatin M-induced OA chondrocytes/OA cartilage: Reduced NOS2, MMP13 gene and protein expression Enhanced anti-inflammatory activity compared to the natural compound ligstroside	[219]

Inhibited NO levels, proteoglycan loss and cartilage degradation

Myrcene	<i>Eryngium duriae</i> monoterpene	Effects in IL-1 β -induced chondrocytes: Showed anti-inflammatory and anti-catabolic properties in human chondrocytes Inhibited NOS2 mRNA expression and activity, and NF- κ B pathway Reduced <i>MMP1</i> , and <i>MMP13</i> gene expression Decreased phosphorylation of JNK, p38, and ERK1/2 Increased <i>TIMP1</i> and <i>TIMP3</i> mRNA Decreased <i>COL1</i> mRNA and promoted the maintenance of the differentiated chondrocyte phenotype	[220]
Myricetin	<i>Labisia pumila</i> <i>Trigonella foenum</i> <i>graecum L</i> <i>Anacardium</i> and <i>Mangifera</i> species (<i>Anacardiaceae</i>) Grapes, berries, chard spinach, broadbeans, garlic, peppers Flavonol	Effects in IL-1 β stimulated chondrocytes: Inhibited inflammatory mediators and cytokines and exerted no significant cytotoxic effect in a dose dependent manner Inhibited NOS2 and COX2 mRNA and protein Decreased NO and PGE2 production Suppressed TNF- α and IL-6 levels Inhibited ECM degradation and inhibited <i>ADAMTS5</i> and <i>MMP13</i> gene expression Promoted <i>ACAN</i> and <i>COL2A1</i> gene Inhibited NF- κ B p65 nuclear translocation and activation and inhibited I κ B α degradation Increased NRF2 translocate into nuclear and activation and HO-1 expression in cytoplasm against inflammation response via PI3K/Akt	[221]

Olecanthal (decarboxymethyl ligstroside aglycone)	<i>(Olea europaea L)</i> Fruits, leaves, extra virgin oil Secoiridoid derivative (Phenolic compounds)	Effects in LPS-activated OA chondrocytes: Suppressed inflammation and OA progression Blocked MAPKs/NF- κ B pathways Inhibition of NOS2 and NO protein synthesis Inhibited <i>IL6</i> , <i>IL8</i> , <i>COX2</i> , <i>NOS2</i> , <i>MIP1α</i> , <i>TNFA</i> , <i>LCN2</i> , <i>MMP13</i> and <i>ADAMTS5</i> mRNA expression	[222]
Leuropein	<i>(Olea europaea L)</i> olive leaves and seeds, pulp and peel of unripe olives, extra virgin oil Oleuropein is present in high amounts in unprocessed olive fruit Secoiridoid (Phenolic compounds)	Effects in IL-1 β -stimulated OA chondrocytes: Suppressed phosphorylation of NF- κ B p65 and nuclear translocation, I κ B- α degradation, and MAPK activation Inhibited <i>COX2</i> , <i>NOS2</i> , <i>MMP1</i> , <i>MMP13</i> , <i>and</i> <i>ADAMTS5</i> mRNA expression Inhibited degradation of <i>ACAN</i> and <i>COL2A1</i> Inhibited NO and PGE2 production	[223]
		Effects in primary OA chondrocytes (OACs)/ human mesenchymal stem cells /synoviocytes/bone cells: Reduced connexin 43 protein expression, gap junction intercellular communication and <i>TWIST1</i> mRNA and increased <i>COL2A1</i> and <i>ACAN</i> mRNA in OACs Reduced inflammatory and catabolic factors <i>IL1B</i> , <i>IL6</i> , <i>COX2</i> and <i>MMP3</i> mRNA expression and protein levels in OACs Restored chondrocyte phenotype Enhanced osteogenesis and chondrogenesis in hMSCs Improved cartilage and joint regeneration Showed a significant reduction of senescent cells in OACs, synoviocytes and bone cells	[224]

Oleuropein	(<i>Olea europaea L</i> , olive leaves)	Effects in OA chondrocytes: Inhibited IL-6, IL-1 β , and TNF- α and improved COL2A1 levels	[225]
Hydroxytyrosol, Verbascoside, Luteolin, (ZeyEX)	Olive leaf extract Polyphenolic compounds	Inhibited p-JNK/JNK ratio whereas it was unaffected by ibuprofen Inhibited Casp-1/ICE, ROS, lipid hydroperoxide, 4-Hydroxyneonal-protein adduct, advanced glycation (glycoxidation)-end product-protein adduct AGE, 3-Nitrotyrosine 3-NT, GM-CSF, COMP, receptor for advanced glycation end products RAGE and TLR4 levels	
Puerarin	(<i>Radix puerariae</i>) Root of Pueraria Phytoestrogen (Isoflavone)	Effects in IL-1 β -induced OA chondrocytes: Showed antioxidative and anti-inflammatory effects and increased cell proliferation Decreased PGE-2, IL-6 and TNF- α levels Effects in IL-1 β -treated monocytes/macrophage: Reduced IL-6, IL-12 and TNF- α expression Increased TGF- β 1 and IL-10 levels	[226]
Quercetin	(<i>Achyranthes bidentata</i>) Flavonol (flavonoid)	The docking of PIM1-quercetin, CYP1B1-quercetin, and HSPA2-quercetin by <i>Achyranthes bidentata</i> : PIM1, CYP1B1, and HSPA2 were the key targeted proteins of quercetin in the treatment of OA	[227]
Resveratrol	Root extracts of the weed <i>Polygonum cuspidatum</i> <i>Vitis vinifera</i> red grapes, blueberries cranberries, peanuts, Stilbenes (polyphenols)	Effects in IL-1 β -induced SW1353 cell line: Inhibition of TLR4 was related to PI3K/Akt activation PI3K/Akt activation was attenuated after TLR-4 pathway was blocked by TLR-4 inhibitor CLI-095 Resveratrol failed to reduce TLR4 protein expression after PI3K inhibitor LY294002 blocked PI3K/ Akt signalling	[228]
		Effects in knee OA patients: Demonstrated efficacy and safety as an adjuvant with meloxicam during a 90-day period Decreased knee joint pain (dose 500 mg/day) without adverse effects	[229]

Effects in serum: [230]

Decreased biomarkers of inflammation IL-1 β , IL-6, TNF- α , CRP

Effects in IL-1 β -stimulated chondrocytes:

Showed chondroprotective effects

Suppressed the activation of IL-1 β -induced catabolism and apoptosis in human chondrocytes *in vitro*

Blocked the downregulation of cartilage matrix marker COL2A1 and the cell matrix receptor β 1-integrin protein expression [231]

Inhibited caspase-3 activation and cleavage of PARP in a time-dependent manner

Effects in IL-1 β -stimulated chondrocytes:

Protected against catabolic effects

Inhibited membrane-bound IL-1 β and mature IL-1 β protein production

Inhibited p53 accumulation in a dose-dependent manner and induced degradation of p53 by ubiquitin-independent pathway [232]

Inhibited p53-dependent apoptosis

Suppressed ROS, caspase 3 activation, and PARP cleavage

Effects in IL-1 β -stimulated OA

chondrocytes:

Blocked mitochondrial membrane depolarization, maintained mitochondrial function and restored ATP levels

Inhibited apoptosis via inhibition of PGE2 through suppression of COX2 mRNA and protein expression [233]

Reduced (apoptotic markers) cytochrome c release from mitochondria and annexin V

Inhibited DNA fragmentation

Effects IL-1 β -stimulated OA cartilage explants:

Increased proteoglycan synthesis

Decreased MMP-1, MMP-3, MMP-13

	Inhibited PGE2 and leukotriene B ₄ levels	
	Effects in IL-1 β -induced SW1353 cells: Demonstrated anti-inflammatory and anti-ostearthritic properties Inhibited TLR4/NF- κ B and inflammatory responses via inhibition of MyD88-dependent and-independent signalling pathways Decreased IL-6 levels Activated PI3K/Akt pathway and inactivated FoxO1 in a time-dependent manner Inactivated FoxO1 reduced TLR4 expression and inflammation PI3K/Akt and FoxO1 are regulated by TLR4 Established a self-limiting mechanism of inflammation	
Mixture	(Phenolic compounds)	Effects in IL-1 β -induced chondrocytes: [234]
Resveratrol and Curcumin	Anti-inflammatory, anti-apoptotic and anti-cytotoxic synergistic effects Increased anti-apoptotic proteins Bcl-2, Bcl-xL and Traf1 in a time-dependent manner Suppressed NF- κ B activation and nuclear translocation in a time-and concentration-dependent manner Inhibited COX-2, MMP-3, MMP-9, VEGF, caspase-3, and PARP cleavage levels Increased COL2A1 and SOX-9 production Resveratrol blocked I κ B α degradation and curcumin inhibited IKK [174]	
	Effects in IL-1 β or U0126-stimulated chondrocytes: Showed synergistic chondroprotective efficacy and ameliorated inflammatory effects Decreased apoptotic cells and resveratrol potentiated anti-apoptotic effects of curcumin	

		Inhibited caspase-3 activation and degradation of β -1integrins Blocked the downregulation of Erk1/2 in a dose- and time-dependent manner	
Sanguinarine	The roots of: <i>Sanguinaria canadensis</i> Benzophenanthridine alkaloid	Effects in IL-1 β -induced chondrocytes: Inhibited OA progression Inhibited <i>MMP1a</i> , <i>MMP3</i> , <i>MMP13</i> , and <i>ADAMTS5</i> mRNA and protein expression Inhibited NF- κ B and JNK signalling pathways	[235]
Schisantherin A	The fruits of: <i>Schisandra sphenanthera</i> Dibenzocyclooctadiene Lignan	Effects in IL-1 β -induced chondrocytes: Anti-inflammatory and chondroprotective Inhibited NOS2, COX-2, NO, PGE2, and TNF- α , MMP-1, MMP-3, and MMP-13 production Inhibited NF- κ B p65 translocation from cytoplasm to nucleus, and inhibited MAPKs activation and I κ B α degradation in a dose-dependent manner	[236]
Sesamin	<i>Sesamum indicum</i> sesame seed oil lignan	Effects in IL-1 β induced chondrocytes: Inhibited p38 and JNK phosphorylation Decreased <i>MMP1</i> , <i>MMP3</i> and <i>MMP13</i> mRNA and protein expression	[237]
Sulforaphane	<i>Brassica oleracea italica</i> cruciferous vegetables (abundant in broccoli) Isothiocyanate	Effects in IL-1 β - or TNF- α -treated OA chondrocytes/ cartilage explant: Showed anti-inflammatory and immune modulatory effects Induced the phase 2 enzymes activity NQO1 (one of the most potent inducers) Inhibited NF- κ B p65 pathway by down-regulating I κ B- α degradation and IKK- α β and I κ B- α phosphorylation Inhibited COX2, <i>PTGES</i> and <i>NOS2</i> mRNA and protein expression even at low concentrations Inhibited PGE2 and NO production in chondrocytes and explant culture Suppressed proteoglycan and <i>COL2A1</i> degradation in cartilage explant culture	[238] [239]
		Effects in IL-1 or TNF- α -treated OA chondrocytes:	

Sulforaphane was not cytotoxic at up to 20 μ M

Demonstrated anti-inflammatory [240]
mechanism

mediated by NQO1 activity

Inhibited NF- κ B and JNK activation

Inhibited *MMP1*, *MMP3* and *MMP13*
mRNA and protein expression

Effects in C-28/I2 cell line/OA
chondrocytes induced by TNF/CHX,
DENSPM/CHX, H_2O_2 GRO α : showed
cytoprotective effects [241]

Inhibited apoptosis, hypertrophic
differentiation and ECM degradation
Reduced the active/phosphorylated JNK
Inhibition of p38 MAPK phosphorylation
and suppressed caspase 3, caspase 8 and
caspase 9 activation
Increased active/phosphorylated Akt
protein

Effects in IL-1/OSM-induced OA
chondrocytes/ SW-1353 cell line/ synovial
cells:

Inhibited *ADAMTS4*, *ADAMTS5*, *MMP1*, [242]

MMP13, mRNA expression (sulforaphane
acted independently of NRF2) in
chondrocytes and synovial cells

Induced *HMOX1* (an NRF2-regulated
gene) mRNA expression

Inhibited *NOS2*, *IL6*, *IL8* genes

Blocked inflammation and inhibited
cartilage destruction by attenuating NF- κ B
signalling

Inhibited of p38 MAPK isoform

Accumulated sulforaphane-GSH
metabolites

Effects in knee OA patients:

Iothiocyanates were detected in the
synovial fluid and in blood plasma of the

		high glucosinolate group, but not the low glucosinolate group Demonstrated biological impact on the joint tissues Synovial fluid protein profile and common plasma proteins showed significantly different levels of expression in low and high glucosinolate groups Decreased CXCL10 and increased IRX3 in fat tissue in the high glucosinolate group	
Sulforaphane-microsphere system	Sulforaphane-Poly (D, L-lactic-co-glycolic acid (PLGA) microspheres	Effects in LPS-induced OA chondrocytes: Showed chondroprotective properties Inhibited anti-inflammatory markers Inhibited COX2, ADAMTS5 and MMP2 mRNA and protein expression	[243]
Taraxasterol	<i>Taraxacum officinale</i> Pentacyclic-triterpene	Effects in IL-1 β -stimulated chondrocytes: Suppressed inflammatory mediators via inhibition of NF- κ B p65 translocation from cytoplasm to nucleus and I κ B α degradation Inhibited NO, NOS2, PGE2, COX-2, MMP-1, MMP-3, and MMP-13 production in a dose-dependent manner	[244]
Terpenoid compounds (tuberatoide B, loliolide, sargachromenol, sargachromanol D, sargachromanol G, sargaquinoic acid, sargahydroquinoic acid, isoketocharolic acid/IKCA, isonahocol E3, and fucosterol)	<i>Sargassum seaweed</i> (Terpenoids) Polyphenols Fatty acid	Effects in IL-1 β -induced SW1353 cell line: Inhibited oxidative stress and inflammatory responses Suppressed NF- κ B, p38 MAPK, and PI3K/Akt signalling pathways Inhibited IL-1 β -Induced NOS2 and COX2 mRNA and protein expression Decreased NO, PGE2 production Inhibited IL-1 β -induced MMP1, MMP3, and MMP13 mRNA and protein expression	[245]
Phlorotannins			
Eicosapentaenoic acid			
EPA			
Thymoquinone (active metabolite)	<i>Nigella sativa</i> Black cumin oil Monoterpene	Effects in IL-1 β -stimulated OA chondrocytes: Showed chondroprotective and anti-inflammatory effects via inhibition of NF- κ B p65 and MAPKs activation	[246]

		Inhibited $I\kappa B\alpha$ degradation Suppressed COX-2, NOS2, NO, PGE2, MMP-1, MMP-3, and MMP-13 production	
Wogonin	The root extract of: <i>Scutellaria baicalensis</i>	Effects in IL-1 β induced OA chondrocytes: [247] Showed chondroprotective effects	
	Flavone	Inhibited <i>IL6</i> and <i>MMP13</i> mRNA and protein expression in a dose dependent manner Suppressed <i>MMP3</i> , <i>MMP9</i> and <i>ADAMTS4</i> mRNA expression Suppressed oxidative and nitrosative stress by suppressing <i>NOS2</i> gene and protein expression and ROS and reactive nitrogen species Suppressed <i>COX2</i> mRNA and protein expression and PGE2 production Inhibited c-Fos/AP-1 activity Enhanced <i>COL2A1</i> and <i>ACAN</i> gene expression [248]	
		Effects in IL-1 β induced OA cartilage explant: Suppressed glycosaminoglycan release Effects in IL-1 β -induced OA chondrocytes: Suppressed oxidative stress, inflammation and matrix degradation Increased NRF2 activation and activated transcription of NRF2-dependent genes <i>HO1</i> , <i>GCLC</i> , <i>SOD2</i> and <i>NQO1</i> and the upstream kinase ERK1/2 Inhibited <i>MMP13</i> , <i>MMP3</i> , <i>MMP9</i> , <i>ADAMTS4</i> mRNA expression and protein expression Inhibited <i>IL6</i> , <i>COX2</i> and <i>NOS2</i> mRNA and protein expression Inhibited NO and PGE2 production Upregulated <i>COL2A1</i> , and <i>ACAN</i> mRNA and protein expression [249]	
		Effects in IL-1 β -induced cartilage explants: Restored <i>COL2A1</i> and glycosaminoglycan contents in a dose dependent manner	
		Effects in IL-1 β -induced OA chondrocytes:	

	Demonstrated cytoprotective properties Showed genomic DNA binding ability through intercalation mechanism and the intercalation was found between DNA base pairs guanine and cytosine Inhibited genomic DNA fragmentation and ROS generation Provided stability of DNA against chemical denaturation Inhibited DNA denaturation mediated by DMSO Inhibited apoptosis and apoptotic pathways and upregulated anti-apoptotic proteins
--	--

Table 2. Bioactive compounds and nutraceuticals for the management, treatment, or prevention of OA in animals.

Bioactive compounds	Sources/classes	Effects of bioactive compounds	Ref.
ALM16	Dried roots of	Effects in OA cartilage/ OA-induced	[146]
Herbal mixture	(<i>Astragalus membranaceus</i>)	rats:	
Major active compounds: (calycosin, calycosin-7-O-β-D-glucopyranoside)	Isoflavonoids	Showed synergistic or additive chondroprotective properties of each extract	
lithospermic acid	(<i>Lithospermum erythrorhizon</i>)	Demonstrated a potent protective effect on articular cartilage, anti-inflammatory and analgesic actions (dose 200 mg/Kg)	
	phenolic acid	Attenuated histopathological lesions in cartilage, pain symptoms, mechanical allodynia, and thickness of the paw edema	
Amurensin H (Vam3)	<i>Vitis amurensis</i> Dihydroxy-stilbene Oligostilbenoid (resveratrol dimer)	Effects in IL-1 β -stimulated rat chondrocytes: Showed anti-inflammatory and chondroprotective effects Inhibited oxidative stress, mitochondrial damage and ECM degradation (increased glycosaminoglycan and Col2a1 levels) Inhibited Nos2, nitric oxide, Pge2, Cox-2, Il-6, Il-17, Tnf- α , Mmp-9, Mmp-13 levels, Tlr4, Traf-6, Syk and Nf- κ b protein expression in a dose dependent manner	[250]

		Effects in OA cartilage/subchondral bone: decreased OA progression, cartilage fibrillation, cartilage loss, subchondral bone erosion and inflammation	
Arctigenin (Phenylpropanoid dibenzylbutyrolactone)	<i>Arctium lappa</i> Greater burdock Lignan	Effects in OA cartilage Inhibited OA development, attenuated histological damage and showed lower OARSI score Mitigated cartilage erosion, hypcellularity and proteoglycan loss	[152]
Artesunate (Artemisinin)	<i>Artemisia annua</i> Sesquiterpene lactone	Effects in osteoclast/synovium/OA-induced rat: Showed anti-inflammatory activity Inhibited osteoclastogenesis and angiogenesis Downregulated Vegf, Hgf and Angp1 Inhibited Il-6, Il-1 β , Tnf- α , Pge2 activity and JAK/STAT pathway Increased Col2a1, Il-4, Igf-1 and Tgf- β	[251]
		Effects in rat OA cartilage: Inhibited OA development Upregulated Igf-1 and reduced Opn, and c-telopeptides of type II collagen levels	[252]
Avocado/Soybean Unsaponifiables ASU (β-sitosterol, campesterol, and stigmasterol) Triterpenes	<i>Persea gratissima</i> and <i>Glycine max</i> mixture of avocado and soybean unsaponifiables (Phytosterols) Triterpene alcohols	Effects in bovine articular chondrocytes: Showed chondroprotective properties Enhanced <i>Tgfb1</i> , <i>Tgfb2</i> mRNA expression Increased Pai-1 production Induced ECM repair mechanisms	[253]
		Effects in bovine chondrocytes: Showed anti-inflammatory effects Reduced the progression of cartilage damage Inhibited <i>Tnfa</i> , <i>Il1b</i> , <i>Cox2</i> , and <i>Nos2</i> gene expression and downregulated Pge2 and nitrite production in LPS-activated chondrocytes	[159]
			[254]

	Effects in OA cartilage/ synovial membrane/ subchondral bone/OA-induced rat: Showed anti-oxidative and anti-inflammatory properties in MIA-induced OA rat Reduced histopathological damage of synovial membrane, articular cartilage, and subchondral bone with a significant decrease in the Mankin score Decreased Tnf- α and Mmp-13 and increased Col2a1 and Acan synthesis Reduced Nos2 in both OA cartilage and subchondral bone	
Mixture: ASU and Epigallocatechin-3-O-gallate	Effects in IL-1 β and TNF- α -activated equine chondrocytes: This combination potentiated the anti-inflammatory activity Suppressed Cox2 gene expression and Pge2 production, associated with inhibition of Nf- κ b translocation from cytoplasm to the nucleus	[255] [256]
ASU + α-lipoic acid combination	Effects in equine chondrocytes: Demonstrated anti-inflammatory activity in cytokine-activated articular chondrocytes Decreased <i>Tnfa</i> , <i>Il6</i> , <i>Cox2</i> , <i>Il8</i> gene expression and Pge-2 synthesis through Nf- κ b nuclear translocation inhibition	
Combination (ASU +glucosamine	Effects in LPS, IL-1 β or H ₂ O ₂ -activated equine chondrocytes: Showed a potential combination anti-inflammatory and antioxidant in OA management Inhibited Pge-2 production significantly more than ASU alone or α -lipoic acid alone Reduced nuclear translocation/activation of Nf- κ b	[257]
	Effects in canine chondrocytes:	[258]

+chondroitin)		The combination potentiated the anti-inflammatory effect of a low concentration of NSAID in the management of OA
		The inhibitory effect on IL-6, IL-8, and MCP-1 production was significantly more than carprofen in IL-1 β -stimulated chondrocyte microcarrier spinner cultures
		The combination together with a lower dose of carprofen reduced PGE2 production significantly more than either treatment alone
Baicalin	(<i>Scutellaria baicalensis Georgi</i>) Mainly extracted from dry root Flavone glycoside (flavonoid)	Effects in mice OA cartilage/synovium/OA-induced mice: Attenuated OA progression Decreased proteoglycan loss and cartilage degradation and the OARSI scores Ameliorated synovitis
		[157] [259]
		Effects in mouse chondrocytes: Enhanced ECM synthesis by activating the Hif-1 α /Sox-9 pathway and chondrogenic marker expression Increased <i>Col2a</i> and <i>Acan</i> gene expression Inhibited catabolic genes: <i>Adamts5</i> , <i>Mmp9</i> , <i>Mmp13</i> and prolyl hydroxylases
		[260]
		Effects in rat chondrocytes: Inhibited oxidative activity, ROS production and apoptotic cell death of endplate chondrocytes induced by H ₂ O ₂ Upregulated <i>Enos</i> mRNA Reduced malondialdehyde levels, and increased sod Downregulated apoptotic signalling indicators: Parp cleavage, Bax and pro-Casp-3 protein expression
Berberine	Medicinal herbs: <i>Hydrastis canadensis</i>	Effects in IL-1 β -induced rabbit chondrocytes:
		[261]

<i>Berberis aristata</i>	Inhibited <i>Mmp3</i> and <i>Adamts5</i> gene expression in chondrocytes	
<i>Cortex phellodendri</i>	Increased <i>Timp1</i> , <i>Acan</i> and <i>Col2a1</i> gene expression	
<i>Coptis chinensis</i> isoquinoline-derivative alkaloid	Effects in rabbit cartilage explants: Inhibited cartilage degradation Inhibited release of collagen and GAG fragment	[262]
	Effects in IL-1 β -induced rat chondrocytes/ cartilage explants: Showed chondroprotective properties and reduced articular cartilage destruction	
	Inhibited glycosaminoglycan release and no production by high-dose berberine	
	Suppressed <i>Mmp1</i> , <i>Mmp3</i> and <i>Mmp13</i> mRNA and protein expression in a dose-dependent manner and upregulated <i>Timp1</i> mRNA and protein expression in chondrocytes /cartilage explant (100 μ m optimum concentration)	[263]
	Effects in IL-1 β -stimulated rat chondrocytes: Showed the maintenance of chondrocyte survival and promoted matrix production in IL-1 β -stimulated articular chondrocytes	[264]
	Activated Akt/p70S6K/S6 signalling pathway	
	Effects in rat OA cartilage: Protected articular cartilage and reduced matrix degradation	
	Enhanced <i>Col2a1</i> , p-Akt and p-S6 levels	
	Effects in rat chondrocytes: Attenuated SNP-stimulated chondrocyte apoptosis via activating AMPK signalling and inhibition of p38 MAPK activity	[265]

Suppressed SNP-induced Nos2 protein expression

Effects in OA cartilage:

Showed chondroprotective effect

Decreased cartilage degradation, Casp-3, and Bax protein expression

Increased Bcl-2 expression, and enhanced Col2a1 synthesis

[158]

Effects in rat chondrocytes:

Promoted SNP-stimulated chondrocyte proliferation via activation of Wnt/β-catenin pathway

Upregulated *Ccnd1*, *Ctnnb1* and *Myc* gene expression

[266]

Reduced *Gsk3b* and *Mmp7* mRNA expression

Effects in OA cartilage:

Decreased OA progression and cartilage degradation

Reduced Mankin scores

Enhanced *Ctnnb1* and *Pcna* expression

Effects in IL-1β -induced rat OA cartilage:

Prevented cartilage degradation

Inhibited proteoglycan loss

Decreased immunostaining of IL-1β in the superficial and middle zones of cartilage

Effects in rat chondrocytes:

Demonstrated anti-catabolic and anti-inflammatory properties

Inhibited *Nos2*, *Cox2*, *Mmp3*, *Mmp13*,

Tnfa, and *Il6* mRNA and protein expression

Decreased the phosphorylation of MAPK (ERK, JNK, and p38) signalling pathway

Increased Col2a1 protein expression

Butein	<i>Rhus verniciflua</i> stem bark of cashews and the genera Dahlia, Butea, Searsia (Rhus) and Coreopsis are common sources Chalcones (flavonoids)	Effects in rat OA cartilage/synovium/ subchondral bone: Inhibited proteoglycan loss and cartilage fibrillation and degradation Decreased OARSI score Alleviated synovitis Reduced subchondral bone plate thickness	[159]
Celastrol	<i>(Tripterygium wilfordii</i> <i>Hook F.</i>) root bark "Thunder of God Vine" Pentacyclic Triterpenes	Effects in rat chondrocytes/OA articular cartilage (dose-dependent manner): Inhibited inflammatory response and Nf- κ b signalling pathway Ameliorated apoptosis by enhancing autophagy Decreased cleaved Casp-3, p-I κ B α , p- p65 protein expression and <i>Bax</i> , <i>Sqstm1</i> , <i>Il6</i> , <i>Tnfa</i> mRNA and protein expression Increased <i>Bcl2</i> , <i>Ccnd1</i> mRNA and protein expression and Lc3-II levels Attenuated articular cartilage degradation Ameliorated cartilage loss and osteophyte formation	[267]
		Effects in OA cartilage: Attenuated cartilage damage and joint pain Suppressed <i>Sdf1/Cxcr4</i> mRNA pathway Decreased <i>Mmp13</i> and <i>Adamts5</i> mRNA and protein expression Increased <i>Col2a1</i> and <i>Acan</i> mRNA expression	[268]
		Effects in rabbit chondrocytes: Decreased apoptosis via Atf6/Chop pathway Inhibited <i>Bip</i> , <i>Atf6</i> , <i>Chop</i> and <i>Xbp1</i> (endoplasmic reticulum stress, ERs markers) mRNA and protein expression Decreased <i>Casp3</i> and <i>Casp9</i> mRNA and protein expression Effects in rat OA articular cartilage/synovium: Reduced articular	[269]

		cartilage injury, synovial hyperplasia and articular wear in the knee joints	
Celastrol	Celastrol+ Hollow	Effects in rat chondrocytes	[270]
Nanocomplex	mesoporous silica nanoparticles+Chitosan	Inhibited Mmp-3, Mmp-13, Il-1 β , Tnf- α levels and Nf-kb signalling pathway Reduced inflammation Effects in OA cartilage/synovium/subchondral bone/OA-induced rat: Demonstrated high biosolubility and decreased cartilage damage Showed protective effect on cartilage and subchondral bone Reduced knee swelling and synovial inflammation	
Compound K	<i>Panax ginseng</i> roots, fruits, leaves, flower buds Gingenoside (tetracyclic triterpenoid)	Effects in mouse pre-osteoblastic MC3T3-E1 cells: Protected against H ₂ O ₂ -induced cytotoxicity Alleviated inflammatory response Stimulated osteoblastic cell differentiation and mineralization Inhibited ROS and NO levels Increased <i>Alp</i> , <i>Col2a</i> , and <i>Ocn</i> mRNA Decreased <i>Ikκ</i> and <i>Il1b</i> mRNA expression	[271]
Cryptotanshinon	(<i>Salvia miltiorrhiza</i> Bunge) Extracted from the root of the plant Diterpene quinones	Effects in OA cartilage/suchondral bone/OA-induced mice: Decreased cartilage destruction and protected against OA progression Reduced the OARSI scores and subchondral bone plate thickness	[163]

Crocin	Effects in mouse skeletal muscle cell line C2C12: Suppressed IL-6 by downregulation of Jnk level Effects in muscle tissue/OA-induced rats: Reduced joint pain, inflammation, muscular lipid peroxidation and <i>Nrf2</i> mRNA expression Attenuated muscular oxidative stress through inhibiting muscular ROS generation Attenuated muscle dysfunction and decreased muscular IL-6 production Increased citrate synthase activity and <i>Myh9</i> mRNA expression Increased glutathione production and <i>Gpx1</i> mRNA and activity	[272]
	Effects in IL-1 β -induced rabbit chondrocytes: Inhibited <i>Mmp1</i> , <i>Mmp3</i> and <i>Mmp13</i> gene and protein expression Inhibited Nf- κ b pathway and suppressing degradation of I κ B α Effects in rabbit OA cartilage: Suppressed cartilage degradation Reduced <i>Mmp1</i> , <i>Mmp3</i> and <i>Mmp13</i> genes	[273]

Curcuminoids:	(<i>Curcuma longa</i>) (<i>Curcuma domestica</i>)	Effects in IL-1 β -stimulated equine articular cartilage explant: Inhibited cartilage degradation	[274]
Curcumin	Turmeric rhizome	Decreased GAG release at high concentrations	
Demethoxycurcumin,	Diarylheptanoids		
Bisdemethoxycurcumin	(Phenolic compounds)		[275]
		Effects in IL-1 β -stimulated equine cartilage explants: Showed anti-catabolic and anti-inflammatory properties at low concentrations (non-cytotoxic concentrations) Reduced proteoglycans loss	[172]
		Decreased Pge2 and Mmp-3 release	
		Effects in rat temporomandibular joint OA cartilage: Showed anti-inflammatory and chondroprotective properties Reduced cartilage erosion and proteoglycan loss	[276]
		Decreased <i>Nos2</i> , <i>Cox2</i> , <i>Il1b</i> , <i>Mmp9</i> , <i>Mmp13</i> protein levels and increased Nrf2 protein level	
		Effects in IL-1 β -induced rat chondrocytes: Blocked Nf- κ b signalling pathway by suppressing <i>Ikba</i> mRNA phosphorylation and subunit <i>Rela</i> mRNA nuclear translocation	[277]
		Decreased <i>Mmp13</i> mRNA and protein expression and upregulated <i>Col2a1</i> mRNA and protein expression in a time-dependent manner	[278]
		Effects in IL-1 β -induced rat chondrocytes: Suppressed apoptosis marker (Casp-3) through autophagy via Mapk/Erk1/2 activation pathway and increased autophagy markers (Lc3-II, and Beclin-1)	

Effects in rats OA cartilage/ synovial tissues/rat OA-induced knee:
Improved inflammatory lesions by intra-articular injection
Inhibited LPS-induced overexpression of *Tlr4* and its downstream *NfkB* pathway mRNA and protein expression
Decreased inflammatory cytokines LPS-induced *Il-1 β* and *Tnf- α* production in synovial membrane

Curcumin nanoparticles	Topical treatment	Effects in cartilage/OA mice: Slowed OA progression and decreased ECM degradation, cartilage erosion, and aggrecan loss Reduced <i>Mmp-13</i> and <i>Adamts-5</i> levels Reduced pain and improved locomotor behaviour Effects in infrapatellar fat pad: Suppressed <i>Cfd</i> , <i>Lep</i> , <i>Adipoq</i> , adiporegulatory transcription factors /enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma, and <i>Mmp13</i> and <i>Adamts5</i> mRNA Effects in synovium/subchondral bone: Reduced synovitis and subchondral plate thickness	[173]
-------------------------------	-------------------	---	-------

Mixture:	<i>(Curcuma longa L)</i>	Effects in IL-1 β stimulated bovine chondrocytes:	[180]
Curcuminoids	Turmeric		
Hydrolyzed collagen and	Polyphenols	Demonstrated anticatabolic, anti-inflammatory, additive and synergistic properties	
Epigallocatechin-3-gallate	Hydrolyzed collagen (High levels of glycine and proline, amino acids essential for the stability and regeneration of cartilage)	Decreased <i>Il6</i> , <i>Nos2</i> , <i>Cox2</i> , <i>Mmp3</i> , <i>Adamts5</i> and <i>Adamts4</i> gene expression Inhibited NO, Pge2 production	
	<i>(Camellia sinensis)</i> Green tea Epigallocatechin-3-gallate (Flavanol)		
Herbal composition	<i>(Terminalia chebula)</i>	Effects in cartilage/ synovium/OA-induced rats:	[279]
LI73014F2 (2:1:2 ratio):	fruit myrobalan		
Gallic acid, chebulagic acid, chebulic acid, chebulinic acid, gallotannins, ellagitannins (punicalagin), ellagic acid	Tannins (polyphenols)	Decreased pro-inflammatory mediators such as Cox-2, Pge2, Lox5, and Ltb-4 Decreased pro-inflammatory cytokines: Il-1 β , Il-6, and Tnf- α , 89%, 84%, and 38%, respectively	
	<i>(Curcuma longa)</i>	Reduced Mmp-2, Mmp-3, Mmp-13 levels	
Diferuloylmethane	Polyphenols		
Demethoxycurcumin		Alleviated joint pain by suppressing synovial	
Bisdemethoxycurcumin, and turmeric acid		membrane and cartilage degradation (dose 50 mg/Kg/day for three weeks)	
	<i>(Boswellia serrata)</i>		
Boswellic acids:	Olibanum		
3-O-acetyl-11-keto-β-boswellic acid, 11-keto-β-boswellic acid, and β-boswellic acid	Pentacyclic triterpenes		
Ellagic acid	Fruit peel of raspberries, strawberries, cranberries, pomegranate, walnuts, pecans, grapes Dimeric derivative of gallic acid Phenolic compound	Effects in cartilage/ synovium/OA-induced mouse Protected against cartilage degradation Inhibited proteoglycan loss Decreased OARSI score Alleviated synovitis Delayed OA progression	[186]

Emodin	The root and rhizome of <i>Rheum palmatum</i> Anthraquinone derivative (Phenols)	Effects in IL-1 β -induced rat chondrocytes: Decreased <i>Mmp3</i> , <i>Mmp13</i> , <i>Adams4</i> and <i>Adams5</i> mRNA and protein expression by suppression of NF- κ B and Wnt/ β -catenin pathway Increased <i>Acan</i> and <i>Col2a1</i> mRNA and protein expression Effects in cartilage/OA-induced rats Protected against the development and OA progression Reduced cartilage degradation	[280]
		Reduced cartilage degradation Decreased <i>Mmp3</i> , <i>Mmp13</i> and <i>Ctnnb1</i> mRNA	[281]
		Effects in IL-1 β -induced by rat chondrocytes: Reduced cytotoxicity in a dose-dependent manner Inhibited nitric oxide and pge-2 levels and <i>Mmp1</i> and <i>Mmp13</i> mRNA expression Inhibited ERK activation and Wnt/ β -catenin pathway	[282]
		Effects in IL-1 β - induced rat chondrocytes/ cartilage: Alleviated inflammation and reduced <i>Mmp3</i> , <i>Mmp13</i> and <i>Adams4</i> mRNA and protein expression Reduced cartilage matrix degradation Protected knee joint cartilage Effects in serum/OA-induced rat: Inhibited Nos2, no, Cox-2 and Pge2 levels Emodin at 80 mg/Kg is comparable to celecoxib at 2.86 mg/Kg	
Fatty acids n-3 PUFA omega 3 polyunsaturated fatty acids	Soybean, canola, olive oils, flaxseed, walnuts, marine phytoplankton and fish oil ALA: α -linolenic acid EPA: eicosapentaenoic	Effects in equine synoviocyte culture: n-3 PUFA EPA and DHA modulated inflammatory response and reduced <i>Adams4</i> , <i>Mmp1</i> , <i>Mmp13</i> , <i>Il1b</i> , <i>Il6</i> , and <i>Cox2</i> genes, stimulated by recombinant equine (re)IL-1 β	[283]

	DHA: docosahexaenoic acid	DHA-derived docosanoids such as resolvin D1 and D2, maresin 1 and protectin DX reduced <i>Adamts4</i> , <i>Mmp1</i> , <i>Mmp13</i> , <i>Il6</i> , and <i>Cox2</i> genes	[284]
		Effects in IL-1 β -mediated bovine cartilage explants: EPA and DHA reduced ECM degradation	
		Demonstrated that EPA maintained a reduced expression of <i>Adamt4</i> , <i>Adamts5</i> , <i>Mmp3</i> and <i>Mmp13</i> , and <i>Cox2</i> gene until the end of the 5-day treatment	[285]
		Effects in IL-1 α -induced bovine chondrocytes: n-3 PUFA showed beneficial effect against the inflammation and cartilage degradation	[194]
		EPA was the most effective, followed by DHA and ALA acid. The n-6 PUFA (omega 6), arachidonic acid (AA) had no effect	
		n-3 PUFA reduced <i>Cox2</i> , <i>Adamts4</i> , <i>Adamts5</i> , <i>Mmp3</i> , <i>Mmp13</i> , <i>Il1a</i> , <i>Il1b</i> and <i>Tnfa</i> mRNA	
		Effects in OA cartilage/OA-induced mouse	
		EPA Intra-articular injection treatment decreased matrix degradation and mankin scores	
		Reduced Mmp-13 protein expression	
		Inhibited OA progression	
Geniposide	Extract of the fruit <i>Gardenia jasminoides</i> <i>Ellis</i> , zhizi Iridoid glycoside (monoterpenoids)	Effects in rabbit OA chondrocytes/ synovial fluid /OA-induced rabbit: Showed anti-inflammatory effects by suppressing p38 MAPK signalling pathway Inhibited <i>Il1b</i> , <i>Tnfa</i> , and <i>Mmp13</i> gene expression and protein expression Inhibited oxidative stress	[286]

[287]

Effects in IL-1 β -induced rat chondrocytes:

Inhibited inflammation and apoptosis
Inhibited Bax, Cyto-c, cleaved-Casp3, no, Pge2, Nos2, Cox-2, and Mmp-13 protein expression

Increased Bcl-2 and Col2a1 protein expression

Inhibited Pi3k/Akt/Nf- κ b

phosphorylation signalling pathway

Effects in OA cartilage/OA-induced rat: [288]

Reduced cartilage damage and OARSI scores

Inhibited OA progression

Effects in rat chondrocytes:

Promoted chondrocytes proliferation

Inhibited sodium nitroprusside-induced apoptosis by reduction of NO levels

Genistein

(*Gycine max*)

soybean

Isoflavone (flavonoids)

Effects in OA condyle cartilage/ temporomandibular joint OA-induced rat:

[289]

Observed more therapeutic effects on cartilage repairmen in high dose

Decreased NF- κ B phospho-p65 signalling

Inhibited *Il1b* and *Tnfa* mRNA expression [196]

Effects in IL-1 β -induced OA cartilage/OA-induced rat

Reduced Inflammation and prevented ECM degradation [197]

Decreased OARSI score

Attenuated OA progression

Effects in IL-1 β -induced OA cartilage/OA-induced rat

Reduced cartilage degradation induced Increased collagen II, Acan, and ER α levels Downregulated caspase 3 levels

Effects in synovial fluid:

		Reduced Tnf- α , and IL-1 β levels	
Halofuginone	<i>Dichroa febrifuga</i>	Effects in cartilage/OA-induced rodents: [290]	
	Alkaloid	<p>Decreased proteoglycan loss and calcification of articular cartilage</p> <p>Reduced Col10, Mmp-13 and Adamts-5</p> <p>Increased lubricin, Col2a1, and Acan levels</p> <p>Effects in subchondral bone:</p> <p>Inhibited osteoclastogenesis by decreasing Th17 cells and RANKL expression</p> <p>Inhibited the formation of osteoid islets by suppressing elevated Tgf-β activity</p> <p>Attenuated aberrant angiogenesis</p>	[291]
		<p>Effects in cartilage/OA-induced mice</p> <p>Attenuated cartilage degradation and OA progression</p> <p>Reduced Col10 and Mmp-13 levels</p> <p>Effects in subchondral bone:</p> <p>Improved subchondral bone microarchitecture</p> <p>Reduced abnormal bone resorption</p> <p>Decreased abnormally elevated Tgf-β activity and release from bone mineral matrix and inhibited osteoid islets formation</p> <p>Inhibited aberrant angiogenesis in early-stage OA administered by oral gavage</p>	[292]
		<p>Effects in ATDC5 murine chondrogenic cell line</p> <p>6.25, 12.5 and 25 ng/ml did not affect chondrocytic viability</p> <p>Inhibited Tgf-β1 signalling and downregulated p-Smad2 protein in a dose and time-dependent manner</p> <p>Effects in cartilage/OA-induced murine:</p> <p>Prevented cartilage damage by inhibition of elevated levels of Tgf-β1 signalling</p> <p>Reduced p-Smad2/3 levels</p>	

		Downregulated proteoglycan loss Decreased <i>Col10</i> expression and <i>Mmp-13</i> levels	
Harpagoside, Harpagide y	<i>Harpagophytum procumbens</i> (HP)	Effects in cartilage/OA-induced rabbit: [293]	
Procumbide	devil's claw root extract	Showed chondroitin regeneration	
β-cariofileno, α-humuleno y	Iridoid glucosides	Increased elastic and collagen fibres	
α-copaeno	Sesquiterpenes	Increased <i>Timp2</i> mRNA expression	
Oleanolic acid, ursolic acid and 3β-acetyloleanolic acid	Triterpenes		
Eugenol	Monoterpene		
Acteoside and Isoacteoside	Phenolic glycosides		
Hydroxytyrosol (HT)	<i>Olea europaea L</i> Olive leaf extract Fruits Extra virgin olive oil HT is more abundant in the processed fruit and olive oil Secoiridoid derivative	Effects in cartilage/synovial membrane/OA-induced rat Showed anti-inflammatory activity and prevented articular cartilage and bone destruction induced by kaolin and carrageenan Attenuated synovial membrane and periarticular soft tissue edema and decreased inflammatory infiltration including macrophages and lymphocytes Ameliorated paw swelling	[294]
		Effects in cartilage/synovial cells/STR/ort mice: Inhibited cartilage destruction and suppressed OA progression on knee joint Enhanced <i>Has2</i> mRNA expression and improved high molecular hyaluronan production by synovial cells	[295]
Hydroxytyrosol /Procyanidins (Oleogrape®SEED)	(Extract from olive and grape seed): (<i>Olea europaea L</i>) mainly found in olive leaf and oil Phenolic compound (<i>Vitis vinifera</i> , grape) Flavonoids	Effects in IL-1β-induced OA chondrocytes/OA-induced rabbit: Showed anti-inflammatory and chondroprotective properties Inhibited <i>Nos2</i> , <i>Cox2</i> , <i>Mmp13</i> genes and NO, Pge2 and Mmp-13 production Effects in cartilage: Reduced OARSI score and cartilage degradation Effects in serum:	[296]

	Other sources: pine bark, cocoa, raspberry, vegetables, legumes, nuts	Downregulated NO, Pge2 and Mmp-13 levels Conserved their bioactivity and bioavailable in serum after undergoing digestive process	
Hyperoside	(<i>Hypericum perforatum</i>) fruits and herbs of different plant families (Hypericaceae, Rosaceae, Ericaceae, Campanulaceae, and Labiatae)	Effects in IL-1 β -induced chondrocytes/OA-induced mice: Inhibited inflammation and attenuated ECM degradation Decreased Nos2, Cox-2, Adamts-5, Mmp-3, and Mmp-13 Upregulated collagen II, Acan, and Sox-9	[297]
	Flavonoid glycoside	Suppressed Pi3k/Akt/Nf- κ b and Mapk pathways Attenuated oxidative stress and apoptosis via Nrf2/Bax/Bcl-xL axis Decreased ROS level Enhancing Nrf2/Ho-1 pathway to counteract Nf- κ b activation Effects in cartilage: Inhibited GAG loss and cartilage destruction, and decreased the OARSI scores Increased Nrf2 levels	
Icarin	<i>Epimedium sagittatum</i> flavonol glycoside	Effects in bone mesenchymal stem cells: Icarin promoted chondrogenic differentiation and Acan, Bmp2 and Col2a1 protein expression Effects in rabbit cartilage tissue: Repaired knee cartilage damage and enhanced Col2a1 expression (treatment with icarin plus bone mesenchymal stem cells was even more effective than the effect produced by either treatment alone in a time-dependent manner)	[298] [299]
		Effects in ATDC5 cell line/ rat chondrocyte: Promoted ECM secretion and enhanced <i>Col2a1</i> and <i>Sox9</i> gene expression in a concentration-dependent manner	

Enhanced *Ift88* gene and protein expression and ciliary assembly and promoted Erk phosphorylation
Effects in cartilage/OA-induced rat: Improved histological cartilage phenotype and attenuated cartilage degradation [300]

Effects in TDP-43 chondrocyte lines/synovial tissue/serum/OA induced rat
Inhibited *Tdp43* overexpression induced apoptosis [301]

Attenuated the formation of neovascularization in the synovial tissue in rat OA model
Decreased *Vegf* and *Hif-1 α* in synovial tissue and serum

Effects in IL-1 β -induced rat chondrocytes:
Inhibited chondrocyte apoptosis and inflammatory cytokines production through the suppression of Nf- κ b p65 phosphorylation and Mapk signalling
Upregulated Akt activation
Increased *Ikb α* protein
Induced chondrocyte autophagy
Decreased *Il6* and *Tnfa* gene and protein expression [302]

Effects in (oxygen, glucose and serum deprivation)-induced rabbit bone marrow-derived mesenchymal stem cells:
Inhibited inhibited ERs markers levels and autophagy
Protected against cytotoxicity and apoptosis by inactivation of mapk signalling by three specific siRNAs (*Erk*, *p38* and *Jnk*) pathway

Indole tetracyclic alkaloids	<i>Uncaria guianensis</i>	Effects in LPS-induced murine macrophages (RAW 264.7 cells):	[214]
Oxindole alkaloids	<i>Uncaria tomentosa</i>	Showed antioxidants and anti-inflammatory	
Indole pentacyclic alkaloid	cat's claw		
Glycoindole alkaloids	alkaloids		
Quinovic acids	triterpenes heterosides	properties and showed to be an effective	
Tannins	polyphenols	treatment for OA	
		Inhibited Tnf- α and Pge2 production	
Isofraxidin	<i>Siberian ginseng and Apium graveolens</i>	Effects in OA cartilage/serum/OA-induced mouse:	[215]
	Coumarin (phenolic compound)	Reduced subchondral bone plate thickness and prevented calcification and erosion of cartilage	
		Inhibited inflammatory cytokines in serum	
Licochalcone A	<i>Glycyrrhiza glabra</i> , licorice root	Effects in IL-1 β -induced rat chondrocytes:	[303]
	<i>Glycyrrhiza inflata</i>	Reduced <i>Adamts5</i> , <i>Adamts4</i> , <i>Mmp13</i> and <i>Mmp1</i> mRNA expression	
	Flavonoids	Suppressed the phosphorylation of Ikk α/β and p65 and increased Ikb α expression	
		Inhibited Wnt/ β -catenin signalling pathway	[304]
		Upregulated Col2a1 expression	
		Effects in LPS-induced mouse chondrocyte:	
		Mitigated ECM degradation by enhancing Acan and Col2a1 production	
		Decreased chondrocytes pyroptosis through	
		Nrf2/Ho-1/Nf- κ b pathway	
		Inhibited <i>Nlrp3</i> , <i>Asc</i> , <i>Gsdmd</i> , <i>Casp1</i> , <i>Il18</i> , <i>Il1b</i> mRNA and protein expression	
		Reduced Ikb- α degradation and the translocation of p65 to the nucleus	
		Effects in cartilage/OA-induced mouse:	
		Inhibited cartilage erosion, proteoglycan loss and reduced OARSI score	
		Enhanced Nrf2 and mitigated OA progression	
		Decreased Il-1 β and Il-18 protein expression in air pouch mouse model	

Ligustrazine	<i>Ligusticum chuanxiong</i>	Effects in IL-1 β -exposed rat	[305]
(Tetramethylpyrazine)	<i>Hort</i>	chondrocytes:	
	Rhizoma	Suppressed apoptosis and ER stress-related factors (Grp78 and Chop)	
	Alkaloids	Suppressed <i>Il6</i> , <i>Il1b</i> , <i>Nos2</i> , <i>Cox2</i> , <i>Tnfa</i> , <i>Mmp3</i> , <i>Mmp13</i> , <i>Adamts4</i> and <i>Adamts5</i> mRNA expression	
		Prevented ECM destruction	
		Increased <i>Acan</i> and <i>Col2a1</i> mRNA	
Tetramethylpyrazine-Poly lactic-co-glycolic acid microspheres		Effects in cartilage/synovium/OA-induced rats:	[306]
		Improved efficacy and therapeutic effect by intra-articular injection of microspheres	
		Demonstrated to be histologically safe	
		Protected against cartilage damage	
		Inhibited proteoglycan loss	
		Decreased articular inflammation and reduced joint swelling	
Magnoflorine	<i>Sinomenium acutum</i> alkaloid	Effects in subchondral trabecular bone/ osteoblastic cell line/cartilage/OA-induced guinea pig:	[307]
		Promoted subchondral bone regeneration and prevented OA progression	
		Stimulated osteoblasts proliferation and mineralization	
		Upregulated <i>Lrp5</i> , <i>Ctnnb1</i> , <i>Runx2</i> , <i>Ocn</i> and <i>Erk2</i> mRNA expression and downregulated <i>NfkB</i> (p105) gene in osteoblasts	[308]
		Attenuated cartilage degradation and increased <i>Acan</i> , <i>Bmp7</i> , <i>Sox5</i> , <i>Tgf-β1</i> and chondrogenic cells	
		Effects in cartilage/primary chondroprogenitor cells /synovial fluid/subchondral bone/OA-induced rats:	
		Promoted cartilage regeneration and enhanced <i>Acan</i> , <i>Bmp7</i> , <i>Sox5</i> , <i>Tgf-β1</i> and chondrogenic cells	

		Increased chondrogenesis and chondrogenic signals such as <i>Col2a</i> , <i>Comp</i> , <i>Tnc</i> and <i>Sox9</i> mRNA expression and downregulated <i>Nf-κb</i> (<i>p105</i>) and <i>Erk2</i> gene in chondrogenic cells	
		Decreased pro-inflammatory cytokines Il-17a, Il-12, Tnf- α , Inf- γ and Il-6 and increased anti-inflammatory cytokine Il-10 in synovial fluid	
		Maintained the stabilization of trabecular bone microstructure	
Myricetin	<i>Labisia pumila</i> <i>Trigonella foenum-graecum L</i> Species of <i>Anacardium</i> and <i>Mangifera</i> (<i>Anacardiaceae</i>) Grapes, berries, chard spinach, broadbeans, garlic, peppers Flavonol	Effects in cartilage/OA-induced mice: [221] Inhibited articular cartilage matrix degradation and reduced OARSI score by intragastric administration Inhibited inflammation response and ameliorated OA progression through Pi3k/Akt mediated the increased Nrf2/Ho-1 signalling pathway Inhibition of Pi3k/Akt signalling abolished Nrf2/Ho-1 pathway activation and the suppression of Nf- κ b	
Oleocanthal (decarboxymethyl ligstroside aglycone)	(<i>Olea europaea L</i>) Fruits, leaves, extra virgin oil Secoiridoid derivative (Phenolic compounds)	Effects LPS-induced ATDC-5 murine chondrogenic cell line: [309] Oleocanthal and its derivative 231 reduced Nos2 protein expression and NO production in a dose-dependent manner Decreased p38 protein expression at the highest dose (25 μ M was linked to a cytotoxic effect) Synthetic derivative 231 showed no cytotoxicity even at higher concentrations [310]	
		Effects in LPS-induced murine chondrogenic cell line/murine macrophages: Demonstrated anti-inflammatory effects Inhibited <i>Mip1a</i> and <i>Il6</i> mRNA and protein expression in chondrocytes and macrophage	

		Inhibited nitric oxide production via Nos2 downregulation and decreased Il- 1 β , Tnf- α and Gm-csf levels in macrophages	
Procyanidin	(<i>Vitis vinifera</i>) grape seed extracts (<i>Malus pumila</i> , <i>Malus</i> <i>domestica</i> Borkh. cv. <i>Fuji</i>) Apple Procyanidins (flavonoid)	Effects in H ₂ O ₂ or IL-1 β -treated chondrocytes /cartilage/ synovial tissue/OA-induced mice: Demonstrated antioxidant, anti- apoptotic, and anti-inflammatory effects Enhanced <i>Acan</i> and <i>Col2a1</i> mRNA Suppression of <i>Nos2</i> mRNA expression Prevented heterotopic cartilage formation Reduced inos protein levels in synovial tissues	[311]
		Effects in chondrocytes/OA-induced mice: Inhibited cartilage damage induced by mitochondrial dysfunction of chondrocytes Enhanced mitochondrial biogenesis with upregulation of <i>Pgc1a</i> gene expression Promoted mitochondrial dehydrogenase activity Upregulated <i>Acan</i> gene synthesis and regulated proteoglycan homeostasis Downregulated <i>Mmp3</i> and <i>Mmp13</i> catabolic genes	[312]
Puerarin	(<i>Radix puerariae</i>) Root of Pueraria Phytoestrogen (Isoflavone)	Effects in cartilage/OA-induced mice: Attenuated inflammatory responses Ameliorated cartilage damage and sinovitis Effects in blood monocytes/macrophages: Decreased myeloid-derived C-C chemokine receptor 2+/lymphocyte Ag 6C+ monocytes Reduced <i>Ccl2</i> mRNA	[226]
		Suppressed proinflammatory monocyte recruitment	[313]

Effects cartilage/OA-induced rats
Anti-inflammatory and
chondroprotective
Ameliorated cartilage loss and
upregulated Col2a1 levels
Inhibited Mmp-3, Mmp-13, Adamts-5,
Cox-2
Effects in serum:
Inhibited Il-1 β , Il-6, and Tnf- α levels [314]
Inhibited OA biomarkers: Ctx-II, Ctx-I
and Comp, and stimulated the N-
terminal propeptide of type II collagen
expression and inhibited bone
resorption and promoted bone
formation

Effects on IL-1 β -induced chondrocytes:
Suppressed inflammatory mediators,
apoptosis, and ECM degradation by
inhibiting Nf- κ b
through Nrf2 nucleus expression and
activation
and Ho-1 cytoplasm expression in a
dose-dependent manner
Decreased Bax and Casp-3 [315]
Reduced Nos2, Cox2, Tnfa and Il6 mRNA
and protein expression
Decreased NO and Pge2 production
Decreased Mmp-13 and Adamts-5 levels
Upregulated Acan and Col2a1
Effects on cartilage /OA-induced mice:
Decreased cartilage damage and OARSI
score
Alleviated OA progression and pain
symptoms

Effects on OA and OA-associated
mitochondrial dysfunctions in rats:
Alleviated mechanical hyperalgesia and
cartilage damage
Increased mitochondrial biogenesis

		Attenuated mitochondrial dysfunctions in OA rats
		AMPK inhibitor Compound C abolished puerarin's effects
Quercetin		
	<i>Achyranthes bidentata</i>	Effects in cartilage/serum/synovial tissue/
	<i>Ageratum conyzoides</i>	
	<i>Chrysanthemum</i>	synovial fluid/OA-induced rabbit:
	<i>psyllium,</i>	Showed comparable effects as celecoxib
	<i>Eleutherococcus</i>	Reduced cartilage damage and OARSI
	<i>senticosus</i>	score
	<i>Juglans regia L</i>	Inhibited Mmp-13, oxidative stress and
	flowers, leaves, and	increased Sod (major active molecule to
	fruits	scavenge free radical) and Timp-1 levels
	broccoli, onions,	[316]
	apples, berry crops,	
	grapes, dark cherries,	Effects in IL-1 β -induced chondrocytes:
	and green vegetables	Showed anti-inflammatory, anti-
	Flavonol (flavonoid)	apoptotic and immunomodulatory
		effects
		Inhibited the degradation of cartilage
		matrix, <i>Col2a1</i> and <i>Acan</i> mRNA and
		protein expression
		Inhibited Akt activation and <i>Iκbα</i>
		degradation
		Inhibited Nf- κ b p65 phosphorylation and
		translocation into the nucleus
		Decreased Pge2, NO, and <i>Mmp13</i> , <i>Nos2</i>
		and
		<i>Cox2</i> mRNA expression and protein
		levels
		Decreased <i>Adamts4</i> mRNA expression
		Decreased apoptosis by inhibiting Casp-
	3	[318]
		Restored mitochondrial membrane
		potential
		Effects in synovial macrophage/OA-
		induced rat:
		Induced M2 polarization of
		macrophages and promoted pro-
		chondrogenic cytokines for cartilage
		repair and attenuated OA progression
		Effects in OA-induced rats:

		Showed anti-inflammatory effects and reduced toe volume and joint diameter Alleviated OA symptoms in a dose-dependent manner Effects in serum: Inhibited IL-1 β and TNF- α production Effects in joint tissues: Improved cartilage structure Suppressed Tlr4 and Nf- κ b pathway	
Quercetin Nanoparticle gel	Flavonol	Effects in blood serum/OA-induced rat Quercetin-loaded nanoparticle gel and <i>A. conyzoides</i> L. extract gel reduced IL-1 β , Mmp-9, Mmp-13 and, Adamts-5 levels Effects in knee joint: Prevented OA progression, and proteoglycan degradation	[319]
Compound: Quercetin with palmitoylethanolamide (PEA- Q)	Flavonol with fatty acid amide	Effects in cartilage/OA-induced rat Reduced histological cartilage damage induced by sodium monooiodoacetate injection Decreased hyperalgesia, infiltration of inflammatory cells and reduced myeloperoxidase induced by carrageenan Improved locomotor function Effects in serum: Reduced IL-1 β , TNF- α , Mmp-1, Mmp-3 and Mmp-9, and nerve growth factor levels associated with nociceptive and neuropathic pain Showed similar or even greater effects than compared to oral meloxicam	[320]
Resveratrol	Root extracts of the weed <i>Polygonum cuspidatum</i> <i>Vitis vinifera</i> red grapes, blueberries cranberries, peanuts, Stilbenes (polyphenols)	Effects in cartilage/OA-induced mice Reduced articular cartilage damage and Mankin and OARSI scores Decreased pro-inflammatory cytokines levels by inhibiting Tlr4/Nf- κ b signalling via downregulation of Myd88-dependent and -independent signalling pathway Activation of PI3k/Akt pathway	[228]
		Effects in cartilage/OA-induced rabbit	[321]

Exhibited cartilage protective effect in a dose-dependent manner of 10–50 µMol/Kg

Reduced matrix proteoglycan content loss

Inhibited chondrocyte apoptosis *in vivo*

Effects in synovial fluid: [322]

Reduced NO production

Effects in cartilage/OA-induced rabbits:

Protected against cartilage destruction by intra-articular injection (10 µMol/Kg resveratrol once a day for two weeks)

Decreased cartilage lesions such as fibrillation, fissures and reduced matrix proteoglycan content loss

Effects in synovium:

Statistically scores of synovial inflammation did not show difference [323] between control rabbits receiving dimethylsulphoxide (DMSO) only and resveratrol in DMSO groups

Effects in joint tissues/OA-induced rats

Inhibited Tnf- α , IL-1 β , IL-6, IL-18, Casp-3 and Casp-9 activity [324]

Suppressed Nf- κ b and Nos2 protein expression

Activated Ho-1/Nrf-2 signalling

Effects in cartilage/OA-induced C57BL/6J mice fed a high-fat diet:

Inhibited cartilage lesion and suppressed chondrocyte apoptosis on obesity-related OA

Decreased body weight in obese mice and inhibited OA development by reducing biomechanical overloading and inflammatory factors (doses of 22.5 mg/Kg and 45 mg/Kg) by oral gavage

Reduced the degradation of Col2a1

Effects in serum:

		Reduced triglyceride and cholesterol levels in serum but none these reductions were statistically significant Decreased levels of Ctx-II (45 mg/Kg doses)	
Rutin (quercetin-3-O-rutinoside)	Abundantly found in: <i>Ruta graveolens</i> , rue	Effects in cartilage/blood samples/synovium/ OA-induced guinea pig:	[325]
Oleuropein	Passionflower		
Rutin/Curcumin	Buckwheat Apple Flavonol	Decreased OA progression, reduced cartilage degradation and protected against inflammatory and catabolic processes Rutin decreased OA biomarkers: Coll2-1, Coll2-1NO2, and args neoepitope aggrecan fragments levels in serum Oleuropein decreased osteophyte formation in cartilage, decreased synovial histological score and decreased Pge2 and Coll2-1NO2 levels in serum Rutin/curcumin mixture decreased Coll2-1, Fib3-1 and Fib3-2 in serum	
Sanguinarine	The roots of: <i>Sanguinaria canadensis</i> Benzophenanthridine alkaloid	Effects in IL-1 β -induced cartilage explants: Inhibited OA progression and protected against cartilage degradation Inhibited Mmp-1a, Mmp-3, Mmp-13, and Adamts-5 positive cells Effects in cartilage/OA-induced mice: Improved cartilage surface in a dose-dependent manner and decreased OARSI score Inhibited <i>Mmp1a</i> , <i>Mmp3</i> , <i>Mmp13</i> , and <i>Adamts5</i> mRNA expression and positive cells	[235]
Sclareol	<i>Salvia sclarea</i> Diterpene	Effects in IL-1 β -induced chondrocytes: Chondroprotective properties and showed no adverse effects on cell viability with concentrations of 1, 5, and 10 μ g/mL Inhibited <i>Mmp1</i> , <i>Mmp3</i> , <i>Mmp13</i> , <i>Cox2</i> and <i>Nos2</i> gene and protein expression	[326]

		Suppressed Mmp1, Cox2 and Nos2 protein level	
		Inhibited NO and Pge2 production	
		Upregulated <i>Timp1</i> gene and protein expression	
		Effects in cartilage/ OA-induced rabbit:	
		Decreased <i>Mmp1</i> , <i>Mmp3</i> , <i>Mmp13</i> , <i>Cox2</i> and <i>Nos2</i> and increased <i>Timp1</i> gene expression	
		Ameliorated cartilage degradation by intra-articular injection and reduced Mankin score	
Sesamin	<i>Sesamum indicum</i> sesame seed oil lignan	Effects in porcine cartilage explants: Inhibited degradation of proteoglycan cultures treated with IL-1 β Inhibition of IL-1 β /OSM-induced collagen degradation and hydroxyproline release Effects in cartilage/papain-induced OA rat Inhibited cartilage degradation and OA progression Increased proteoglycans and Col2a1 deposition in a dose-dependent manner	[237]
Shikonin	Dried roots of: <i>Lithospermum erythrorhizon</i> Naphthoquinone (phenols)	Effects in blood samples/OA tissue /OA-induced rat Inhibited inflammation and inhibited IL-1 β , Tnf- α and Nos2 in blood Suppressed Nf- κ b pathway protein expression Decreased Cox-2 protein expression and Casp-3 activity Upregulated phosphorylated Akt protein level	[327] [328]
		Effects in IL-1 β -induced rabbit chondrocytes: Anti-inflammatory and chondro-protective properties Inhibited <i>Mmp1</i> , <i>Mmp3</i> and <i>Mmp13</i> gene and protein expression Increased <i>timp1</i> gene and protein expression	

		Suppressed Nf- κ b p65 activation Suppressed I κ b α degradation Effects in cartilage/OA-induced rabbit: [329] Decreased cartilage damage by intraarticular injection treatment Suppressed <i>Mmp1</i> , <i>Mmp3</i> and <i>Mmp13</i> gene Enhanced <i>Timp1</i> gene expression
		Effects in IL-1 β -induced rat chondrocytes: Reduced the cytotoxicity induced by IL-1 β Inhibited chondrocyte apoptosis by enhancing Pi3k/Akt signalling pathway Suppressed Casp-3 activation and reduced cytochrome c release Increased Bcl-2 and decreased Bax expression Inhibited <i>Mmp13</i> mRNA and protein expression Increased <i>Timp1</i> mRNA and protein expression
Sinomenine	<i>Sinomenium acutum</i> Alkaloids	Effects in IL-1 β -treated rabbit cartilage explants: [330] Showed chondroprotective effects Inhibited proteoglycan degradation Suppressed <i>Mmp3</i> gene and protein expression Upregulated <i>Timp1</i> mRNA and protein expression in a dose-dependent manner Effects in IL-1 β -induced chondrocytes: Decreased DNA fragmentation Inhibited Casp-3 activity and apoptotic chondrocytes in a dose-dependent manner [331]
		Effects in IL-1 β -induced mice chondrocytes: Inhibited inflammatory response and ECM degradation in a dose-dependent manner

		Decreased Mmp-3, Mmp-13 and Adamts-5 levels Upregulated Col2a1 and Acan synthesis Inhibited NO, Pge2, Nos2, Cox-2, Il-6 and Tnf- α protein level Protected against OA progression by activation of Nrf2/Ho-1 signalling pathway and inhibition of p-Nf- κ b p65 nuclear translocation and activation and inhibited I κ b α degradation Effects in cartilage/OA-induced mouse: Reduced OARSI scores and inhibited cartilage degradation	
Sulforaphane	<i>Brassica oleracea italica</i> cruciferous vegetables (abundant in broccoli) Isothiocyanate	Effects in IL-1/OSM-induced bovine nasal cartilage explant/OA induced murine Showed chondroprotective effects Inhibited GAG and hydroxyproline release Inhibited cartilage destruction	[241]
SFX-01®, a stable synthetic form of sulforaphane	Synthetic sulforaphane-alpha-cyclodextrin inclusion complex	Effects in STR/Ort OA mice: Lead to greater symmetry in gait Improved bone microarchitecture Reduced osteoclast number and bone resorption Enhanced trabecular bone mass in the metaphyseal compartment Enhanced cortical bone mass Decreased Ctx-I protein levels in serum Increased procollagen type I NH2-terminal propeptide protein level in serum	[332]
Sulforaphane-microsphere system	Sulforaphane-Poly (D, L-lactic-co-glycolic) acid (PLGA) microspheres	Effects in cartilage/OA-induced rat: Decreased cartilage degradation and OA progression by intra-articular injection system Decreased fibrillation, proteoglycans loss and OARSI score Reduced synovial inflammation	[243]
Terpenoid compounds (tuberatolide B, loliolide, Polyphenols	<i>Sargassum</i> seaweed (Terpenoids) Polyphenols	Effects in IL-1 β -induced rat chondrocytes Demonstrated antioxidant activity	[245]

sargachromenol, sargachromanol D, sargachromanol G, sargaquinoic acid, sargahydroquinoic acid, isoketochabrolic acid/IKCA, isonahocol E3 and fucosterol	Fatty acid	Inhibited <i>Nos2</i> and <i>Cox2</i> mRNA and protein expression Decreased NO, Pge2 production
Phlorotannins		
Eicosapentaenoic acid EPA		
Triterperne concentrates (<i>lupeol</i> , α - <i>amyrin</i> , β - <i>amyrin</i> , β - <i>butyrospermol</i>)	<i>Vitellaria paradoxa</i> nut triterpenoids	Effects in plasma/knee cartilage/OA-induced obese rat: Reduced oxidative stress and suppressed proinflammatory cytokines Enhanced enzymatic antioxidant activities Reduced total cholesterol and increased high-density lipoprotein-cholesterol in blood plasma sample Decreased Tnf- α , IL-1 β , and IL-6 levels Reduced malondialdehyde (lipid peroxidation) level and NO release in plasma Attenuated cartilage damage and suppressed OA development Reduced knee swelling, weight-bearing and pain
Wogonin	The root extract of: <i>Scutellaria baicalensis</i> Flavone	Effects in IL-1 β -induced rabbit chondrocytes: Showed chondroprotective effects Inhibited <i>Mmp3</i> , <i>Mmp1</i> , <i>Mmp13</i> , and <i>Adams4</i> and restored <i>Col2a1</i> gene expression Inhibited Mmp3 protein synthesis and its caseinolytic activity Effects in IL-1 β -induced cartilage/OA-induced rats: Inhibited Mmp3 production via intraarticular injection into the knee joint (dose 50 or 100 μ M)
		Effects in cartilage/ OA-induced mice

Demonstrated efficacy and safety as a transdermal cream treatment
Inhibited OA progression
Reduced OARSI and Mankin scores
Increased running wheel activity and decreased pain perception
Decreased biomarkers associated with cartilage degradation
Inhibited Tgf- β 1, Htra1, Mmp-13 and Nf- κ b protein expression

5. Nutritional Epigenomics: Bioactive Compounds in Dietary Balance and Health

Nutritional epigenomics is exceptionally important because hold great potential in the prevention, suppression and therapy of a wide variety of diseases by altering various epigenetic modifications. This novel field involves the lifelong remodelling of our epigenomes, even during cellular differentiation in embryonic and foetal development, by nutritional factors and, describes how the bioactive molecules can influence and modify gene expression at the transcriptional level [336–339]. For example, DNA methylation depends on the methyl group donors and cofactors found in foods, thus dietary excess or deficiencies in a critical and sensitive period like embryogenesis can alter methylation process, gene expression and therefore the metabolism and physiology of the individual, programming pathologic processes during a lifetime [340,341]. Jirtle and Skinner observed that hypermethylating dietary compounds could reduce the effect of environmental toxicants that cause DNA hypomethylation [342]. An interesting study in *Apis mellifera*, about the different honeybee phenotype, demonstrated that silencing *Dnmt3* gene expression decreased methylation in dynactin p62 gene in larval heads, which lead to an increase of queens and reduction of workers; these epigenetic changes in DNA methylation depended on whether they are fed royal jelly or beebread [343].

Wolff and collaborators showed one of the first evidences that maternal nutrition can impact the epigenome and phenotype of the offspring of dams fed with folate-supplemented diets, the nutrition affected agouti gene expression in *A^{vy/a}* mice and caused a wide variation in coat colour ranging from yellow (unmethylated) to light brown (methylated). Pseudoagouti *A^{vy/a}* brown mice were lean, healthy, and longer lived than their yellow phenotype siblings (larger, obese, hyperinsulinemic, more susceptible to cancer) [344]. Furthermore, in macaques that were fed a high fat diet during pregnancy (predisposing offspring to metabolic syndrome), foetal offspring had increased H3 acetylation and decreased *Hdac1* gene expression in the liver compared to macaques fed with a low-fat diet [345]. An experimental study in Agouti *A^{vy/a}* mice fed with genistein (a soy polyphenol), which acts during early embryonic development, showed that genistein-induced hypermethylation persisted into adulthood, by altering epigenome, decreased ectopic agouti expression, and protecting offspring from obesity, diabetes, and cancer across multiple generations [346]. In addition, experimental data have shown that maternal consumption of dietary polyphenols such as resveratrol during preconception, gestation and lactation ameliorated metabolic programming. Resveratrol reduced renal oxidative stress, activated nutrient-sensing signals, modulated gut microbiota, and prevented associated high-fructose intake induced programmed hypertension in the rat offspring [347].

The four primary targets for epigenetic therapy are DNMTs, HDACs, HATs and miRNA; thereby, numerous bioactive compounds such as sulforaphane, tea polyphenols, ellagic acid, genistein, curcumin, hydroxytyrosol, resveratrol, organosulfur compound, oleanolic acid, and alkaloids have been studied as potent agents for regulating epigenetic mechanisms [102,339,348]. Bioactive compounds can influence epigenetic processes through different mechanisms that interfere with the 1-carbon metabolism and affect S-adenosyl methionine (SAM) levels being able to modulate

DNA and histone methylation [349]. Many polyphenols, such as quercetin, fisetin, and myricetin, inhibit DNMT by decreasing SAM and increasing S-adenosyl-L-homocysteine (SAH) and homocysteine levels [350].

Global DNA hypomethylation has been associated with hypermethylation and inactivation of specific genes [351], thus hypermethylation of cytidine by DNMTs usually results in transcriptional gene silencing and gene inactivation including tumour suppressor genes, while promoters of transcriptionally active genes typically remain hypomethylated [352]. Genes such as O⁶-methylguanine methyltransferase, retinoic acid receptor β (RAR β), the tumour suppressor p16^{INK4a}, and the DNA repair gene human mutL homologue 1 (hMLH1) were shown to be frequently inactivated by hypermethylation and, polyphenols such as epigallocatechin-3-gallate and genistein from soybean demonstrated to be strong DNMT inhibitors, leading to demethylation and reactivation of methylation-silenced genes [353]. DNMTs do not act alone, also recruit HDACs to synergistically repress gene transcription [354].

The combination of bioactive compounds acting as DNMT inhibitors, together with phytochemicals that can alter histone modifications, and those that can influence miRNAs expression in OA, are all of them potentially more synergistic and significant approaches as therapeutical strategies to prevent and treat various diseases, including cancer [355,356]. In this context of nutriepigenomics, we have particularly analysed the epigenetic mechanisms related to 11 bioactive compounds focusing on prevention or treatment in OA in both human (Table 3) and animal (Table 4) studies.

Table 3. Bioactive compounds as epigenetic modulators for the management, treatment, or prevention of OA in humans.

Bioactive compounds	Sources/classes	Effects of bioactive compounds	Ref.
Baicalin	(<i>Scutellaria baicalensis</i> Georgi) Mainly extracted from dry root Flavone glycoside (Flavonoid)	lncRNA HOTAIR was highly expressed in OA chondrocytes. Baicalin exerted therapeutic effects by inhibiting the expression of lncRNA HOTAIR, decreasing the protein levels of p-PI3K and p-AKT, and increasing the protein levels of PTEN, APN, and ADIPOR1. Effects in IL-1 β -induced OA chondrocytes: Protected against ECM degradation and apoptosis Restored autophagy activity by the upregulation of miR-766-3p Suppressed the expressions of BAX and cleaved-caspase-3 Promoted BCL-2 protein expression and increased GAG content	[357] [358] [359]
		Effects in IL-1 β -induced OA chondrocytes: Protected against inflammatory injury Deactivated NF- κ B signalling pathway by down-regulation of miR-126 on IL-1 β -stimulated cells	

		Downregulated IL-6, IL-8 and TNF- α (pro-inflammatory factors) and decreased cell apoptosis	
Cryptotanshinone	(<i>Salvia miltiorrhiza</i> Bunge)	Effects in chondrocytes: Regulated miRNAs expression	[360]
	Extracted from the root of the plant	Increased miR-106a-5p and <i>PAX5</i> expression miR-106a-5p was positively associated with <i>PAX5</i> and negatively correlated with <i>GLIS3</i> expression	
	Diterpene quinones	Effects on tissues: Protected cartilage against developing OA through regulation of <i>PAX5</i> /miR-106a-5p/ <i>GLIS3</i>	
Epigallocatechin-3-gallate	<i>Camellia sinensis</i> Green tea	Effects in OA patients' cartilage tissues and IL-1 β stimulated chondrocytes: Increases viability (20 and 50 μ M) and decreases miR-29b-3p, MMP-12 and IL-6 levels in IL-1 β stimulated chondrocytes MiR-29b-3p mimics reversed the effects above 50 μ M EGCG PTEN overexpression abrogated the effects of miR-29b-3p mimics	[361]
	Flavan-3-ols (flavanols)	Effects in IL-1 β -induced OA chondrocytes: Inhibited inflammatory response via modulation of miRNAs expressions Inhibited <i>ADAMTS5</i> gene expression via up-regulation of miR-140-3p Decreased let-7e-5p, miR-103a-3p, miR-151a-5p, miR-195-5p, miR-222-3p, miR-23a-3p, miR-23b-3p, miR-26a-5p, miR-27a-3p, miR-29b-3p, miR-3195, miR-3651, miR-4281, miR-4459, miR-4516, miR-762, and miR-125b-5p Upregulated let-7 family (let-7a-5p, let-7b-5p, let-7c, let-7d-5p, let-7f-5p, let-7i-5p), miR-140-3p, miR-193a-3p, miR-199a-3p, miR-27b-3p, miR-29a-3p, miR-320b, miR-34a-5p, miR-3960, miR-4284, miR-4454, miR-497-5p, miR-5100, and miR-100-5p	[362]
		Effects in OA chondrocytes:	[363]

		Showed ability to inhibit inflammatory response via modulation of miRNAs expressions
		Inhibited COX2 gene expression and PGE2 production via up-regulation of miR-199a-3p expression
Fisetin		
	Persimmons, mangoes, grapes, apples, peaches, strawberries, peaches, onions, tomatoes, and cucumbers	Effects in IL-1 β -induced OA chondrocytes: [364] Showed anti-inflammatory effects through activating SIRT-1 Inhibited the degradation of SOX9, ACAN and COL2A1 mRNA and protein expression Decreased NO, PGE2, IL-6, TNF- α production Inhibited NOS2, COX2, MMP3, MMP13 and ADAMTS5 expression at the mRNA and protein levels
	Flavonol	
Hydroxytyrosol (HT)	<i>Olea europaea L</i> fruits and leaves extra virgin olive oil Secoiridoid derivative	Effects in C-28/I2 and primary OA chondrocytes: [365] Showed chondroprotective and antioxidant effects Protected from DNA damage and cell death induced by oxidative stress Increased P62 mRNA transcription and autophagy activation by SIRT1 pathways [366]
		Effects in OA chondrocytes: Reduced oxidative stress and DNA damage Prevented the increase in cell death and caspases activation Decreased expression of pro-inflammatory genes (COX2, NOS2) and of genes driving chondrocyte terminal differentiation (RUNX2, MMP13 and VEGF) Increased SIRT1 mRNA expression in GROa- stimulated micromasses [367]
		Effects in C-28/I2 and OA chondrocytes: Protected against oxidative stress and modulated through epigenetic mechanism Reduced miR-9 levels (involved in oxidative stress and influence OA-related gene expression) by enhancing SIRT-1 [368] Reduced MMP13, VEGF and RUNX2 genes

		Effects in C-28/I2 chondrocytes: miR-9 promoters were demethylated by <i>SIRT1</i> silencing miR-9 promoters 1q22 (MIR9-1), 5q14.3 (MIR9-2), and 15q26.1 (MIR9-3) were hypomethylated in cells treated with H ₂ O ₂ and hypermethylated in cells treated with HT alone or together with H ₂ O ₂ in oxidative stress conditions
Oleanolic acid	<i>Ligustrum lucidum</i> extracted from fructus pentacyclic triterpenoid	SIRT3 anti-inflammatory effect underlying in [369] oleanolic acid- (OLA-) prevented interleukin-1 β - (IL-1 β -) induced FLS dysfunction was evaluated <i>in vitro</i> SIRT3 activation by OLA inhibited synovial inflammation by suppressing the NF- κ B signal pathway in FLS [370]
Quercetin	(<i>Achyranthes bidentata</i>) (<i>Ageratum conyzoides</i>) flowers, leaves, and fruits of plants such as <i>Chrysanthemum psyllium</i> , <i>Eleutherococcus senticosus</i> , <i>Juglans regia L</i> onions, apples, broccoli, berry crops, grapes, dark cherries, and green vegetables Flavonol (Flavonoid)	Effects in IL-1 β -induced chondrocytes: Alleviated chondrocytes growth inhibition and the cell membrane and DNA damage Protective effects by activating miR-148-3p-mediated FGF2 Showed antiapoptotic effect by inhibition of FGF2 Role of BMSC-derived exosomes in quercetin-mediated progression of OA both <i>in vitro</i> and <i>in vivo</i> (OA patients) IL-1 β notably upregulated MMP13 and ADAMT5 and reduced the expression of COL2A1 in chondrocytes, which were rescued by conditioned medium of Quercetin-treated BMSCs Exosomes derived from Quercetin-treated BMSCs inhibited OA progression through the upregulation of miR-124-3p [371]

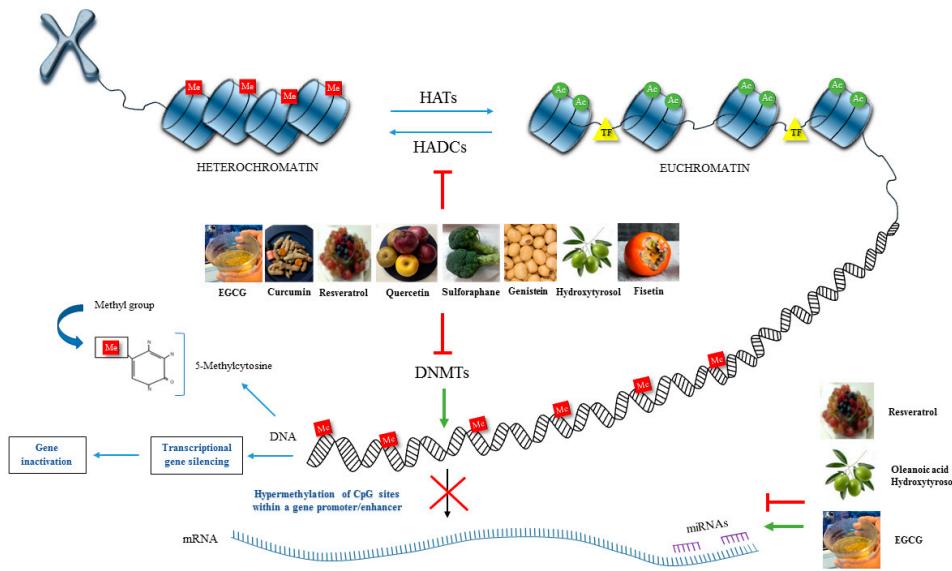
Resveratrol	Root extracts of the weed: <i>Polygonum cuspidatum</i> <i>Vitis vinifera</i> red grapes, blueberries cranberries, peanuts Stilbenes (polyphenols)	For the <i>in vitro</i> studies, RES increased the expression of SIRT1 and phosphorylation of FoxO1 in IL-1 β -treated chondrocytes, promoted the expression of cholesterol efflux factor liver X receptor alpha (LXR α), and inhibited the expression of cholesterol synthesis-associated factor sterol-regulatory element binding proteins 2 (SREBP2). This reduced IL-1 β -induced chondrocytes cholesterol accumulation <i>In vivo</i> experiments showed that RES can alleviate cholesterol build-up and pathological changes in OA cartilage RES regulates cholesterol build-up in osteoarthritic articular cartilage via the SIRT1/FoxO1 pathway, thereby improving the progression of OA	[372]
		Totally, 1016 differentially expressed lncRNAs were identified (493 downregulated) between control and resveratrol-treated chondrocytes This study for the first time detected the differential expressed lncRNAs involved in resveratrol-treated chondrocytes via employing bioinformatics methods	[374]
		Effects in OA chondrocytes: Increased <i>SIRT1</i> mRNA and protein expression SIRT-1 regulated apoptosis and ECM degradation via the WNT/ β -catenin signalling pathway Decreased BAX, proCASP-3 and proCASP-9, MMP-1, MMP-3, MMP-13, WNT3A, WNT5A, WNT7A, and CTNNB1 protein expression	[49]
		Effects in IL-1 β -induced chondrocytes Prevented OA progression by increased of SIRT1 and silencing NF- κ B p65 and HIF-2 α Decreased NOS2, MMP13 and restored COL2A1 and ACAN gene expression	[375]
		Effects in OA osteoblasts/subchondral bone tissue:	

Reduced ALP activity at a high dose
Upregulated SIRT-1 activity and reduced the expression of leptin
Increased the mineralization
Increased the phosphorylation of ERK1/2 and WNT/β-catenin signalling

Table 4. Bioactive compounds as epigenetic modulators for the management, treatment, or prevention of OA in animals.

Bioactive compounds	Sources/classes	Effects of bioactive compounds	Ref.
Cryptotanshinone	(<i>Salvia miltiorrhiza</i> Bunge) Extracted from the root of the plant Diterpene quinones	Effects in OA mouse model: Affects chondrocyte apoptosis by regulating miR-574-5p expression and, then interfering with YAF2 Regulates miR-574-5p promoter methylation	[376]
Curcuminoids: Curcumin Demethoxycurcumin, Bisdemethoxycurcumin	(<i>Curcuma longa</i>) (<i>Curcuma domestica</i>) Turmeric rhizome Diarylheptanoids (Phenolic compounds)	Effects in KOA rat model: Protective effect against quadriceps femoris atrophy and improves KOA Reduction of ROS-induced autophagy via the SIRT3-SOD2 pathway Effects in TBHP-treated rat chondrocytes: Protected from oxidative stress-induced apoptosis Suppressed ER stress biomarkers (Perk-Eif2a-Atf4-Chop) pathway via activation of the mRNA and <i>Sirt1</i> protein expression Increased <i>Col2a1</i> and <i>Bcl2</i> gene expression and downregulated cleaved-Casp-3 and cleaved-Parp (proapoptotic proteins) levels Effects in cartilage/OA-induced rat: Demonstrated therapeutic efficacy (treatment: 50 mg/Kg and 150 mg/Kg once daily for 8 weeks by intraperitoneal injection) Attenuated knee joint degradation and inhibited OA progression Reduced cleaved-Casp-3 and Chop levels Activated <i>Sirt1</i> expression and decreased chondrocyte apoptosis and ER stress Ameliorated chondrocytes and proteoglycans loss	[377] [378]

		Decreased OARSI score in a dose-dependent [379] manner
		Effects in IL-1 β -induced primary chondrocytes/ OA-induced mice: Attenuated OA progression and decreased apoptosis by exosomes derived from curcumin-treated mesenchymal stem cells Upregulated miR-143 and miR-124 expression by reducing the DNA methylation of their promoters Inhibited <i>NfkB</i> , <i>Rock1</i> and <i>Tlr9</i> mRNA and protein expression
Fisetin	Persimmons, mangoes, grapes, apples, peaches, strawberries, peaches, onions, tomatoes, and cucumbers Flavonol	Effects on DMM rats and IL-1 β -treated [380] chondrocytes: FST can activate SIRT6 The alleviative effects of FST against inflammation, ECM degradation, apoptosis, and senescence in IL-1 β -stimulated chondrocytes were also confirmed FST attenuates injury-induced aging-related phenotype changes in chondrocytes through the targeting of SIRT6 [364]
Hydroxytyrosol (HT)	<i>Olea europaea L</i> fruits and leaves extra virgin oil Secoiridoid derivative	Effects in cartilage/subchondral bone/synovium/ OA-induced mice models Exhibited less cartilage destruction and attenuated OA progression Decreased OARSI score Reduced subchondral bone plate thickness Alleviated synovitis [381]
Quercetin	(<i>Achyranthes bidentata</i>) (<i>Ageratum conyzoides</i>) flowers, leaves, and fruits of plants such as <i>Chrysanthemum psyllium</i> ,	Inhibited the expression of IL-1 β -induced [382] MMP-3, MMP13, iNOS and COX-2, and promoted COL type II expression <i>in vitro</i> In an OA rat model induced by ACLT, QUE treatment improved articular cartilage damage, reduced joint pain, and normalized abnormal


	<i>Eleutherococcus senticosus</i> , <i>Juglans regia L</i> onions, apples, broccoli, berry crops, grapes, dark cherries, and green vegetables	subchondral bone remodelling. QUE also reduced serum IL-1 β , TNF- α , MMP3, CTX-II, and COMP, thereby slowing the progression of OA
	Flavonol (Flavonoid)	Exerts its protective effect on chondrocytes by activating the SIRT1/Nrf-2/HO-1 and inhibiting chondrocyte ferroptosis [383]
		Effects in chondrocytes/ OA-induced rat: chondroprotective and antioxidant properties Inhibited oxidative and endoplasmic reticulum stress, and chondrocyte apoptosis by activating Sirt-1 and Ampk signalling pathway Downregulated Chop, Grp78, P-perk, P-ire1 α , Atf6 (ERstress biomarkers) and, cleaved-Casp-3 and cleaved-Parp (apoptosis biomarkers) levels Upregulated Bcl-2 protein expression levels Attenuated cartilage degradation of knee joint (dose: intraperitoneal injection of 50 mg/Kg - 100 mg/Kg once daily for 12 weeks) [384]
		Effects in rat OA chondrocytes: Upregulated Ampk/Sirt-1 signalling pathway Effects on cartilage/blood/OA-induced rat: Inhibited inflammation, mitochondrial dysfunction and ROS (100 mg/Kg oral treatment/daily, 7 days) Increased ATP, GSH and GPx levels Inhibited nitrite, Mmp-3 and Mmp-13 levels in blood samples
Resveratrol	Root extracts of the weed: <i>Polygonum cuspidatum</i> <i>Vitis vinifera</i> red grapes, blueberries, cranberries, peanuts Stilbenes (polyphenols)	Results showed that RES regulates the ECM metabolism, autophagy, and apoptosis of OA chondrocytes through the SIRT1/FOXO1 pathway to ameliorate IL-1 β -induced chondrocyte injury [385] Effects in OA cartilage/ OA-induced mice: Prevented OA cartilage destruction and improved cartilage structure (dose: 100 μ g) by intraarticular injection Increased Sirt-1 expression and reduced Nf- κ b p65 and Hif-2 α [49]

		Reduced subchondral bone plate thickness and prevented calcified cartilage damage Decreased Nos2 and Mmp-13 and inhibited Col2a1 degradation and proteoglycans loss [386]
		Effects in chondrocytes/cartilage/OA-induced mice: Promoted chondroprotective effects by intra-articular injection chondrocyte and increased the growth rate of chondrocyte Decreased Il-6, Mmp-13 and Casp-3 protein expression levels Increased miR-9 expression levels Decreased <i>Malat1</i> and <i>NfkB1</i> gene and protein expression <i>Malat1</i> and <i>NfkB1</i> were identified as potential target genes of miR-9 [387]
		Effects in IL-1 β -induced rat chondrocytes: Exerted anti-inflammatory properties and inhibited Nf- κ b pathway by activating Sirt-1 Suppressed Nos2 expression and NO production Decreased DNA-binding activity of p65 by upregulation of Sirt-1 Inhibited Lys310-acetylated p65 accumulation in the nucleus
Saikosaponin D	<i>Radix bupleuri</i> Triterpene saponin	In <i>in vivo</i> experiments, SSD ameliorated cartilage histopathological damage, decreased inflammatory factor content and promoted autophagy in OA mice Also, miR-199-3p expression was downregulated and TCF4 expression was upregulated in cartilage tissues of OA mice In <i>in vitro</i> experiments, SSD inhibited the inflammatory response and promoted autophagy in OA chondrocytes. Downregulation of miR-199-3p attenuated the effect of SSD on OA chondrocytes. [388]
Sinomenine	<i>Sinomenium acutum</i> Alkaloids	Effects on cartilage/ OA mice: Inhibited articular cartilage damage by increase of miR-223-3p expression via [389]

		inactivation of the Nlrp3 inflammasome signalling. Nlrp3 was a direct target of miR-223-3p
		Blocked inflammatory response (Tnf- α , IL-1 β , IL-6, and IL-18)
		Effects in chondrocytes:
		Overexpression of miR-223-3p inhibited IL-1 β -induced apoptosis and inhibited IL-1 β and IL-18 levels
TXC compound:	Dried roots of:	Effects in knee OA cartilage/subchondral [390]
Paeoniflorin	(<i>Paeonia lactiflora</i> Pall,	bone/OA-induced rats:
Ferulic acid	<i>Morinda officinalis</i>	Showed therapeutic effects in cartilage protection and subchondral bone remodelling
Isofraxidin	<i>Ligusticum wallichii</i>	Downregulated <i>Mmp9</i> , <i>Adamts5</i> , <i>Col5a1</i> , <i>Col1a1</i> , <i>Mmp3</i> , <i>Mmp13</i> , and <i>Postn</i> gene and protein expression
Rosmarinic acid	<i>Sarcandra glabra</i>) Monoterpene glycosides Hydroxycinnamic acid Coumarin Hydroxycinnamic acid	Effects in LPS-exposed rat chondrocytes: Decreased IL-1 β , IL-6, Tnf- α , Mmp-9 and p38 MAPK pathway in LPS-exposed chondrocytes Increased miR-27b, miR-140, and miR-92a-3p and decreased miR-34a expression Suppressed <i>Adamts4</i> , <i>Adamts5</i> , <i>Mmp3</i> , and <i>Mmp13</i> mRNA and protein expression

6. Conclusions

In this review, we analysed the importance of bioactive compounds as epigenetic modulators in the prevention and treatment of OA. The reduction of inflammation, catabolic and oxidative activity is essential in OA treatment. Bioactive compounds or nutraceuticals can directly protect and repair DNA damage, modulating signalling pathways and genes implicated in OA pathogenesis or modifying intra- and extracellular activities. Bioactive compounds are potentially capable of reversing the phenotype of OA chondrocytes. Moreover, the combination of bioactive compounds that act as DNMT inhibitors together with HDAC inhibitors, HAT inhibitors or activators and, miRNA regulators, all of them are potential approaches more synergistic and significant to prevent and treat OA (Figure 1).

Figure 1. Schematic representation of the impact of bioactive compounds on the main epigenetic mechanisms happening in OA. Several nutraceuticals have been considered as natural epigenetic modulators that can modify the activity of various epigenetic factors (DNA methylation, HATs, HDACs and miRNA) and, altering the expression of genes related to inflammation and cartilage destruction, being potentially able to reverse the phenotype of OA chondrocytes.

Several mixtures have also demonstrated the additive and synergistic potential of bioactive compounds; these mixtures enhanced their chondroprotective properties via anti-inflammatory mechanisms, and reducing oxidative stress. Bioactive compounds are also effective in reducing pain and decreasing the need for NSAIDs, with fewer adverse effects that provide safety and therapeutic efficacy in OA treatment. In addition, new formulations of bioactive compounds have been developed for example with nanoparticles; these phytonutraceuticals possess higher absorption and bioavailability and, could serve as a therapeutic strategy in the prevention and treatment of OA. However, the potential of bioactive compounds as epigenetic regulators in OA has been little studied; further research is needed towards this promising area of research. For this reason, the proposal nutriepigenomic arises and focusses on the ability of numerous bioactive compounds as an alternative to prevent or treat OA.

Author Contributions: Conceptualisation, K.M.V.-A. and M.C.d.A.; methodology, K.M.V.-A. and C.N.-C.; investigation, K.M.V.-A. and C.N.-C.; resources, F.J.B.; writing—original draft preparation, K.M.V.-A.; writing—review and editing, K.M.V.-A., C.N.-C., F.J.B. and M.C.d.A.; supervision, M.C.d.A.; project administration, M.C.d.A.; funding acquisition, M.C.d.A. All authors have read and agreed to the published version of the manuscript.

Funding: This study has been funded by Instituto de Salud Carlos III (ISCIII) through the project "PI19/01213" and co-funded by the European Union, and grants IN607D2022/12 and IN607A 2021/7 from Xunta de Galicia, Axencia Galega de Innovación GAIN.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Buckwalter, J.A.; Martin, J.A. Osteoarthritis. *Adv Drug Deliv Rev* **2006**, *58*, 150-167, doi:10.1016/j.addr.2006.01.006.
2. Brooks, P.M. Impact of osteoarthritis on individuals and society: how much disability? Social consequences and health economic implications. *Curr Opin Rheumatol* **2002**, *14*, 573-577, doi:10.1097/00002281-200209000-00017.

3. Pereira, D.; Peleteiro, B.; Araújo, J.; Branco, J.; Santos, R.A.; Ramos, E. The effect of osteoarthritis definition on prevalence and incidence estimates: a systematic review. *Osteoarthritis Cartilage* **2011**, *19*, 1270-1285, doi:10.1016/j.joca.2011.08.009.
4. Malemud, C.J. Biologic basis of osteoarthritis: state of the evidence. *Curr Opin Rheumatol* **2015**, *27*, 289-294, doi:10.1097/BOR.0000000000000162.
5. Dieppe, P.A.; Lohmander, L.S. Pathogenesis and management of pain in osteoarthritis. *Lancet* **2005**, *365*, 965-973, doi:10.1016/S0140-6736(05)71086-2.
6. Mobasher, A.; Fonseca, J.E.; Gualillo, O.; Henrotin, Y.; Largo, R.; Herrero-Beaumont, G.; Rocha, F.A.C. Editorial: Inflammation and Biomarkers in Osteoarthritis. *Front Med (Lausanne)* **2021**, *8*, 727700, doi:10.3389/fmed.2021.727700.
7. Kanthawang, T.; Bodden, J.; Joseph, G.B.; Lane, N.E.; Nevitt, M.; McCulloch, C.E.; Link, T.M. Obese and overweight individuals have greater knee synovial inflammation and associated structural and cartilage compositional degeneration: data from the osteoarthritis initiative. *Skeletal Radiol* **2021**, *50*, 217-229, doi:10.1007/s00256-020-03550-5.
8. Fernandes, G.S.; Valdes, A.M. Cardiovascular disease and osteoarthritis: common pathways and patient outcomes. *Eur J Clin Invest* **2015**, *45*, 405-414, doi:10.1111/eci.12413.
9. Zhang, W.; Ouyang, H.; Dass, C.R.; Xu, J. Current research on pharmacologic and regenerative therapies for osteoarthritis. *Bone Res* **2016**, *4*, 15040, doi:10.1038/boneres.2015.40.
10. Patrignani, P.; Tacconelli, S.; Bruno, A.; Sostres, C.; Lanas, A. Managing the adverse effects of nonsteroidal anti-inflammatory drugs. *Expert Rev Clin Pharmacol* **2011**, *4*, 605-621, doi:10.1586/ecp.11.36.
11. Cheng, D.S.; Visco, C.J. Pharmaceutical therapy for osteoarthritis. *PM R* **2012**, *4*, S82-88, doi:10.1016/j.pmrj.2012.02.009.
12. O'Neil, C.K.; Hanlon, J.T.; Marcum, Z.A. Adverse effects of analgesics commonly used by older adults with osteoarthritis: focus on non-opioid and opioid analgesics. *Am J Geriatr Pharmacother* **2012**, *10*, 331-342, doi:10.1016/j.amjopharm.2012.09.004.
13. Roach, H.I.; Yamada, N.; Cheung, K.S.; Tilley, S.; Clarke, N.M.; Oreffo, R.O.; Kokubun, S.; Bronner, F. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. *Arthritis Rheum* **2005**, *52*, 3110-3124, doi:10.1002/art.21300.
14. Bird, A. Perceptions of epigenetics. *Nature* **2007**, *447*, 396-398, doi:10.1038/nature05913.
15. Khan, N.M.; Haqqi, T.M. Epigenetics in osteoarthritis: Potential of HDAC inhibitors as therapeutics. *Pharmacol Res* **2018**, *128*, 73-79, doi:10.1016/j.phrs.2017.08.007.
16. Ramos, Y.F.; Meulenbelt, I. The role of epigenetics in osteoarthritis: current perspective. *Curr Opin Rheumatol* **2017**, *29*, 119-129, doi:10.1097/BOR.0000000000000355.
17. Im, G.I.; Choi, Y.J. Epigenetics in osteoarthritis and its implication for future therapeutics. *Expert Opin Biol Ther* **2013**, *13*, 713-721, doi:10.1517/14712598.2013.764410.
18. Shen, J.; Abu-Amer, Y.; O'Keefe, R.J.; McAlinden, A. Inflammation and epigenetic regulation in osteoarthritis. *Connect Tissue Res* **2017**, *58*, 49-63, doi:10.1080/03008207.2016.1208655.
19. Rogers, E.L.; Reynard, L.N.; Loughlin, J. The role of inflammation-related genes in osteoarthritis. *Osteoarthritis Cartilage* **2015**, *23*, 1933-1938, doi:10.1016/j.joca.2015.01.003.
20. Simon, T.C.; Jeffries, M.A. The Epigenomic Landscape in Osteoarthritis. *Curr Rheumatol Rep* **2017**, *19*, 30, doi:10.1007/s11926-017-0661-9.
21. van Meurs, J.B. Osteoarthritis year in review 2016: genetics, genomics and epigenetics. *Osteoarthritis Cartilage* **2017**, *25*, 181-189, doi:10.1016/j.joca.2016.11.011.
22. Barter, M.J.; Bui, C.; Young, D.A. Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs. *Osteoarthritis Cartilage* **2012**, *20*, 339-349, doi:10.1016/j.joca.2011.12.012.
23. Chatterjee, A.; Eccles, M.R. DNA methylation and epigenomics: new technologies and emerging concepts. *Genome Biol* **2015**, *16*, 103, doi:10.1186/s13059-015-0674-5.
24. Zhang, M.; Wang, J. Epigenetics and Osteoarthritis. *Genes Dis* **2015**, *2*, 69-75, doi:10.1016/j.gendis.2014.12.005.
25. Nakano, K.; Boyle, D.L.; Firestein, G.S. Regulation of DNA methylation in rheumatoid arthritis synoviocytes. *J Immunol* **2013**, *190*, 1297-1303, doi:10.4049/jimmunol.1202572.
26. Sullivan, K.E.; Reddy, A.B.; Dietzmann, K.; Suriano, A.R.; Koceda, V.P.; Stewart, M.; Bhatia, M. Epigenetic regulation of tumor necrosis factor alpha. *Mol Cell Biol* **2007**, *27*, 5147-5160, doi:10.1128/MCB.02429-06.

27. Hashimoto, K.; Otero, M.; Imagawa, K.; de Andrés, M.C.; Coico, J.M.; Roach, H.I.; Oreffo, R.O.C.; Marcu, K.B.; Goldring, M.B. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1 β (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. *J Biol Chem* **2013**, *288*, 10061-10072, doi:10.1074/jbc.M112.421156.
28. Hashimoto, K.; Oreffo, R.O.; Gibson, M.B.; Goldring, M.B.; Roach, H.I. DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. *Arthritis Rheum* **2009**, *60*, 3303-3313, doi:10.1002/art.24882.
29. Bui, C.; Barter, M.J.; Scott, J.L.; Xu, Y.; Galler, M.; Reynard, L.N.; Rowan, A.D.; Young, D.A. cAMP response element-binding (CREB) recruitment following a specific CpG demethylation leads to the elevated expression of the matrix metalloproteinase 13 in human articular chondrocytes and osteoarthritis. *FASEB J* **2012**, *26*, 3000-3011, doi:10.1096/fj.12-206367.
30. Zimmermann, P.; Boeuf, S.; Dickhut, A.; Boehmer, S.; Olek, S.; Richter, W. Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter. *Arthritis Rheum* **2008**, *58*, 2743-2753, doi:10.1002/art.23736.
31. Cheung, K.S.; Hashimoto, K.; Yamada, N.; Roach, H.I. Expression of ADAMTS-4 by chondrocytes in the surface zone of human osteoarthritic cartilage is regulated by epigenetic DNA de-methylation. *Rheumatol Int* **2009**, *29*, 525-534, doi:10.1007/s00296-008-0744-z.
32. Papathanasiou, I.; Kostopoulou, F.; Malizos, K.N.; Tsezou, A. DNA methylation regulates sclerostin (SOST) expression in osteoarthritic chondrocytes by bone morphogenetic protein 2 (BMP-2) induced changes in Smads binding affinity to the CpG region of SOST promoter. *Arthritis Res Ther* **2015**, *17*, 160, doi:10.1186/s13075-015-0674-6.
33. Kim, K.I.; Park, Y.S.; Im, G.I. Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage. *J Bone Miner Res* **2013**, *28*, 1050-1060, doi:10.1002/jbmr.1843.
34. Imagawa, K.; de Andrés, M.C.; Hashimoto, K.; Itoi, E.; Otero, M.; Roach, H.I.; Goldring, M.B.; Oreffo, R.O. Association of reduced type IX collagen gene expression in human osteoarthritic chondrocytes with epigenetic silencing by DNA hypermethylation. *Arthritis Rheumatol* **2014**, *66*, 3040-3051, doi:10.1002/art.38774.
35. Takahashi, A.; de Andrés, M.C.; Hashimoto, K.; Itoi, E.; Oreffo, R.O. Epigenetic regulation of interleukin-8, an inflammatory chemokine, in osteoarthritis. *Osteoarthritis Cartilage* **2015**, *23*, 1946-1954, doi:10.1016/j.joca.2015.02.168.
36. de Andrés, M.C.; Imagawa, K.; Hashimoto, K.; Gonzalez, A.; Roach, H.I.; Goldring, M.B.; Oreffo, R.O. Loss of methylation in CpG sites in the NF- κ B enhancer elements of inducible nitric oxide synthase is responsible for gene induction in human articular chondrocytes. *Arthritis Rheum* **2013**, *65*, 732-742, doi:10.1002/art.37806.
37. Yang, F.; Zhou, S.; Wang, C.; Huang, Y.; Li, H.; Wang, Y.; Zhu, Z.; Tang, J.; Yan, M. Epigenetic modifications of interleukin-6 in synovial fibroblasts from osteoarthritis patients. *Sci Rep* **2017**, *7*, 43592, doi:10.1038/srep43592.
38. Kim, H.; Kang, D.; Cho, Y.; Kim, J.H. Epigenetic Regulation of Chondrocyte Catabolism and Anabolism in Osteoarthritis. *Mol Cells* **2015**, *38*, 677-684, doi:10.14348/molcells.2015.0200.
39. Choudhuri, S.; Cui, Y.; Klaassen, C.D. Molecular targets of epigenetic regulation and effectors of environmental influences. *Toxicol Appl Pharmacol* **2010**, *245*, 378-393, doi:10.1016/j.taap.2010.03.022.
40. Kouzarides, T. Chromatin modifications and their function. *Cell* **2007**, *128*, 693-705, doi:10.1016/j.cell.2007.02.005.
41. de Ruijter, A.J.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): characterization of the classical HDAC family. *Biochem J* **2003**, *370*, 737-749, doi:10.1042/BJ20021321.
42. Zhang, H.; Ji, L.; Yang, Y.; Zhang, X.; Gang, Y.; Bai, L. The Role of HDACs and HDACi in Cartilage and Osteoarthritis. *Front Cell Dev Biol* **2020**, *8*, 560117, doi:10.3389/fcell.2020.560117.
43. Young, D.A.; Lakey, R.L.; Pennington, C.J.; Jones, D.; Kevorkian, L.; Edwards, D.R.; Cawston, T.E.; Clark, I.M. Histone deacetylase inhibitors modulate metalloproteinase gene expression in chondrocytes and block cartilage resorption. *Arthritis Res Ther* **2005**, *7*, R503-512, doi:10.1186/ar1702.
44. Hong, S.; Derfoul, A.; Pereira-Mouries, L.; Hall, D.J. A novel domain in histone deacetylase 1 and 2 mediates repression of cartilage-specific genes in human chondrocytes. *FASEB J* **2009**, *23*, 3539-3552, doi:10.1096/fj.09-133215.
45. Huber, L.C.; Brock, M.; Hemmatazad, H.; Giger, O.T.; Moritz, F.; Trenkmann, M.; Distler, J.H.; Gay, R.E.; Kolling, C.; Moch, H., et al. Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. *Arthritis Rheum* **2007**, *56*, 1087-1093, doi:10.1002/art.22512.

46. Higashiyama, R.; Miyaki, S.; Yamashita, S.; Yoshitaka, T.; Lindman, G.; Ito, Y.; Sasho, T.; Takahashi, K.; Lotz, M.; Asahara, H. Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis. *Mod Rheumatol* **2010**, *20*, 11-17, doi:10.1007/s10165-009-0224-7.
47. Dvir-Ginzberg, M.; Gagarina, V.; Lee, E.J.; Hall, D.J. Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. *J Biol Chem* **2008**, *283*, 36300-36310, doi:10.1074/jbc.M803196200.
48. Dvir-Ginzberg, M.; Mobasher, A.; Kumar, A. The Role of Sirtuins in Cartilage Homeostasis and Osteoarthritis. *Curr Rheumatol Rep* **2016**, *18*, 43, doi:10.1007/s11926-016-0591-y.
49. Li, W.; Cai, L.; Zhang, Y.; Cui, L.; Shen, G. Intra-articular resveratrol injection prevents osteoarthritis progression in a mouse model by activating SIRT1 and thereby silencing HIF-2 α . *J Orthop Res* **2015**, *33*, 1061-1070, doi:10.1002/jor.22859.
50. Gagarina, V.; Gabay, O.; Dvir-Ginzberg, M.; Lee, E.J.; Brady, J.K.; Quon, M.J.; Hall, D.J. SirT1 enhances survival of human osteoarthritic chondrocytes by repressing protein tyrosine phosphatase 1B and activating the insulin-like growth factor receptor pathway. *Arthritis Rheum* **2010**, *62*, 1383-1392, doi:10.1002/art.27369.
51. Oppenheimer, H.; Kumar, A.; Meir, H.; Schwartz, I.; Zini, A.; Haze, A.; Kandel, L.; Mattan, Y.; Liebergall, M.; Dvir-Ginzberg, M. Set7/9 impacts COL2A1 expression through binding and repression of SirT1 histone deacetylation. *J Bone Miner Res* **2014**, *29*, 348-360, doi:10.1002/jbmr.2052.
52. Otero, M.; Peng, H.; Hachem, K.E.; Culley, K.L.; Wondimu, E.B.; Quinn, J.; Asahara, H.; Tsuchimochi, K.; Hashimoto, K.; Goldring, M.B. ELF3 modulates type II collagen gene (COL2A1) transcription in chondrocytes by inhibiting SOX9-CBP/p300-driven histone acetyltransferase activity. *Connect Tissue Res* **2017**, *58*, 15-26, doi:10.1080/03008207.2016.1200566.
53. Monteagudo, S.; Cornelis, F.M.F.; Aznar-Lopez, C.; Yibmantasiri, P.; Guns, L.A.; Carmeliet, P.; Cailotto, F.; Lories, R.J. DOT1L safeguards cartilage homeostasis and protects against osteoarthritis. *Nat Commun* **2017**, *8*, 15889, doi:10.1038/ncomms15889.
54. Castaño Betancourt, M.C.; Cailotto, F.; Kerkhof, H.J.; Cornelis, F.M.; Doherty, S.A.; Hart, D.J.; Hofman, A.; Luyten, F.P.; Maciewicz, R.A.; Mangino, M., et al. Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. *Proc Natl Acad Sci U S A* **2012**, *109*, 8218-8223, doi:10.1073/pnas.1119899109.
55. Peschansky, V.J.; Wahlestedt, C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. *Epigenetics* **2014**, *9*, 3-12, doi:10.4161/epi.27473.
56. Liu, Q.; Zhang, X.; Dai, L.; Hu, X.; Zhu, J.; Li, L.; Zhou, C.; Ao, Y. Long noncoding RNA related to cartilage injury promotes chondrocyte extracellular matrix degradation in osteoarthritis. *Arthritis Rheumatol* **2014**, *66*, 969-978, doi:10.1002/art.38309.
57. Beyer, C.; Zampetaki, A.; Lin, N.Y.; Kleyer, A.; Perricone, C.; Iagnocco, A.; Distler, A.; Langley, S.R.; Gelse, K.; Sesselmann, S., et al. Signature of circulating microRNAs in osteoarthritis. *Ann Rheum Dis* **2015**, *74*, e18, doi:10.1136/annrheumdis-2013-204698.
58. Miyaki, S.; Asahara, H. Macro view of microRNA function in osteoarthritis. *Nat Rev Rheumatol* **2012**, *8*, 543-552, doi:10.1038/nrrheum.2012.128.
59. Sondag, G.R.; Haqqi, T.M. The Role of MicroRNAs and Their Targets in Osteoarthritis. *Curr Rheumatol Rep* **2016**, *18*, 56, doi:10.1007/s11926-016-0604-x.
60. Swingler, T.E.; Niu, L.; Smith, P.; Paddy, P.; Le, L.; Barter, M.J.; Young, D.A.; Clark, I.M. The function of microRNAs in cartilage and osteoarthritis. *Clin Exp Rheumatol* **2019**, *37 Suppl 120*, 40-47.
61. Rasheed, Z.; Al-Shobaili, H.A.; Rasheed, N.; Mahmood, A.; Khan, M.I. MicroRNA-26a-5p regulates the expression of inducible nitric oxide synthase via activation of NF- κ B pathway in human osteoarthritis chondrocytes. *Arch Biochem Biophys* **2016**, *594*, 61-67, doi:10.1016/j.abb.2016.02.003.
62. Akhtar, N.; Rasheed, Z.; Ramamurthy, S.; Anbazhagan, A.N.; Voss, F.R.; Haqqi, T.M. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. *Arthritis Rheum* **2010**, *62*, 1361-1371, doi:10.1002/art.27329.
63. Park, S.J.; Cheon, E.J.; Kim, H.A. MicroRNA-558 regulates the expression of cyclooxygenase-2 and IL-1 β -induced catabolic effects in human articular chondrocytes. *Osteoarthritis Cartilage* **2013**, *21*, 981-989, doi:10.1016/j.joca.2013.04.012.
64. Akhtar, N.; Haqqi, T.M. MicroRNA-199a* regulates the expression of cyclooxygenase-2 in human chondrocytes. *Ann Rheum Dis* **2012**, *71*, 1073-1080, doi:10.1136/annrheumdis-2011-200519.

65. Mao, G.; Zhang, Z.; Huang, Z.; Chen, W.; Huang, G.; Meng, F.; Kang, Y. MicroRNA-92a-3p regulates the expression of cartilage-specific genes by directly targeting histone deacetylase 2 in chondrogenesis and degradation. *Osteoarthritis Cartilage* **2017**, *25*, 521-532, doi:10.1016/j.joca.2016.11.006.
66. Meng, F.; Li, Z.; Zhang, Z.; Yang, Z.; Kang, Y.; Zhao, X.; Long, D.; Hu, S.; Gu, M.; He, S., et al. MicroRNA-193b-3p regulates chondrogenesis and chondrocyte metabolism by targeting HDAC3. *Theranostics* **2018**, *8*, 2862-2883, doi:10.7150/thno.23547.
67. Guan, Y.J.; Li, J.; Yang, X.; Du, S.; Ding, J.; Gao, Y.; Zhang, Y.; Yang, K.; Chen, Q. Evidence that miR-146a attenuates aging- and trauma-induced osteoarthritis by inhibiting Notch1, IL-6, and IL-1 mediated catabolism. *Aging Cell* **2018**, *17*, e12752, doi:10.1111/acel.12752.
68. Wang, J.H.; Shih, K.S.; Wu, Y.W.; Wang, A.W.; Yang, C.R. Histone deacetylase inhibitors increase microRNA-146a expression and enhance negative regulation of interleukin-1 β signaling in osteoarthritis fibroblast-like synoviocytes. *Osteoarthritis Cartilage* **2013**, *21*, 1987-1996, doi:10.1016/j.joca.2013.09.008.
69. Budd, E.; de Andrés, M.C.; Sanchez-Elsner, T.; Oreffo, R.O.C. MiR-146b is down-regulated during the chondrogenic differentiation of human bone marrow derived skeletal stem cells and up-regulated in osteoarthritis. *Sci Rep* **2017**, *7*, 46704, doi:10.1038/srep46704.
70. Zhang, C.; Zhang, Z.; Chang, Z.; Mao, G.; Hu, S.; Zeng, A.; Fu, M. miR-193b-5p regulates chondrocytes metabolism by directly targeting histone deacetylase 7 in interleukin-1 β -induced osteoarthritis. *J Cell Biochem* **2019**, *120*, 12775-12784, doi:10.1002/jcb.28545.
71. Ukai, T.; Sato, M.; Akutsu, H.; Umezawa, A.; Mochida, J. MicroRNA-199a-3p, microRNA-193b, and microRNA-320c are correlated to aging and regulate human cartilage metabolism. *J Orthop Res* **2012**, *30*, 1915-1922, doi:10.1002/jor.22157.
72. Santini, P.; Politi, L.; Vedova, P.D.; Scandurra, R.; Scotto d'Abusco, A. The inflammatory circuitry of miR-149 as a pathological mechanism in osteoarthritis. *Rheumatol Int* **2014**, *34*, 711-716, doi:10.1007/s00296-013-2754-8.
73. Miyaki, S.; Nakasa, T.; Otsuki, S.; Grogan, S.P.; Higashiyama, R.; Inoue, A.; Kato, Y.; Sato, T.; Lotz, M.K.; Asahara, H. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. *Arthritis Rheum* **2009**, *60*, 2723-2730, doi:10.1002/art.24745.
74. Araldi, E.; Schipani, E. MicroRNA-140 and the silencing of osteoarthritis. *Genes Dev* **2010**, *24*, 1075-1080, doi:10.1101/gad.193930.
75. Si, H.B.; Yang, T.M.; Li, L.; Tian, M.; Zhou, L.; Li, D.P.; Huang, Q.; Kang, P.D.; Yang, J.; Zhou, Z.K., et al. miR-140 Attenuates the Progression of Early-Stage Osteoarthritis by Retarding Chondrocyte Senescence. *Mol Ther Nucleic Acids* **2020**, *19*, 15-30, doi:10.1016/j.mtn.2019.10.032.
76. Zhang, Y.; Lin, J.; Zhou, X.; Chen, X.; Chen, A.C.; Pi, B.; Pan, G.; Pei, M.; Yang, H.; Liu, T., et al. Melatonin Prevents Osteoarthritis-Induced Cartilage Degradation via Targeting MicroRNA-140. *Oxid Med Cell Longev* **2019**, *2019*, 9705929, doi:10.1155/2019/9705929.
77. Karlsen, T.A.; de Souza, G.A.; Ødegaard, B.; Engebretsen, L.; Brinchmann, J.E. microRNA-140 Inhibits Inflammation and Stimulates Chondrogenesis in a Model of Interleukin 1 β -induced Osteoarthritis. *Mol Ther Nucleic Acids* **2016**, *5*, e373, doi:10.1038/mtna.2016.64.
78. Tuddenham, L.; Wheeler, G.; Ntounia-Fousara, S.; Waters, J.; Hajhosseini, M.K.; Clark, I.; Dalmay, T. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. *FEBS Lett* **2006**, *580*, 4214-4217, doi:10.1016/j.febslet.2006.06.080.
79. Woods, S.; Charlton, S.; Cheung, K.; Hao, Y.; Soul, J.; Reynard, L.N.; Crowe, N.; Swingler, T.E.; Skelton, A.J.; Piró, K.A., et al. microRNA-seq of cartilage reveals an overabundance of miR-140-3p which contains functional isomiRs. *RNA* **2020**, *26*, 1575-1588, doi:10.1261/rna.075176.120.
80. Feng, L.; Feng, C.; Wang, C.X.; Xu, D.Y.; Chen, J.J.; Huang, J.F.; Tan, P.L.; Shen, J.M. Circulating microRNA let-7e is decreased in knee osteoarthritis, accompanied by elevated apoptosis and reduced autophagy. *Int J Mol Med* **2020**, *45*, 1464-1476, doi:10.3892/ijmm.2020.4534.
81. Martinez-Sanchez, A.; Dudek, K.A.; Murphy, C.L. Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145). *J Biol Chem* **2012**, *287*, 916-924, doi:10.1074/jbc.M111.302430.
82. Buckley, C.D.; Gilroy, D.W.; Serhan, C.N.; Stockinger, B.; Tak, P.P. The resolution of inflammation. *Nat Rev Immunol* **2013**, *13*, 59-66, doi:10.1038/nri3362.
83. Sonnenberg, G.F.; Artis, D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. *Nat Med* **2015**, *21*, 698-708, doi:10.1038/nm.3892.

84. Medzhitov, R. Inflammation 2010: new adventures of an old flame. *Cell* **2010**, *140*, 771-776, doi:10.1016/j.cell.2010.03.006.
85. Goldring, M.B.; Otero, M. Inflammation in osteoarthritis. *Curr Opin Rheumatol* **2011**, *23*, 471-478, doi:10.1097/BOR.0b013e328349c2b1.
86. Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). *Osteoarthritis Cartilage* **2013**, *21*, 16-21, doi:10.1016/j.joca.2012.11.012.
87. Robinson, W.H.; Lepus, C.M.; Wang, Q.; Raghu, H.; Mao, R.; Lindstrom, T.M.; Sokolove, J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. *Nat Rev Rheumatol* **2016**, *12*, 580-592, doi:10.1038/nrrheum.2016.136.
88. Pelletier, J.P.; Martel-Pelletier, J.; Abramson, S.B. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. *Arthritis Rheum* **2001**, *44*, 1237-1247, doi:10.1002/1529-0131(200106)44:6<1237::AID-ART214>3.0.CO;2-F.
89. Goldring, M.B.; Otero, M.; Tsuchimochi, K.; Ijiri, K.; Li, Y. Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. *Ann Rheum Dis* **2008**, *67 Suppl 3*, iii75-82, doi:10.1136/ard.2008.098764.
90. Park, K.H.; Zaichenko, L.; Peter, P.; Davis, C.R.; Crowell, J.A.; Mantzoros, C.S. Diet quality is associated with circulating C-reactive protein but not irisin levels in humans. *Metabolism* **2014**, *63*, 233-241, doi:10.1016/j.metabol.2013.10.011.
91. Sureda, A.; Bibiloni, M.D.M.; Julibert, A.; Bouzas, C.; Argelich, E.; Llompart, I.; Pons, A.; Tur, J.A. Adherence to the Mediterranean Diet and Inflammatory Markers. *Nutrients* **2018**, *10*, doi:10.3390/nu10010062.
92. Giugliano, D.; Ceriello, A.; Esposito, K. The effects of diet on inflammation: emphasis on the metabolic syndrome. *J Am Coll Cardiol* **2006**, *48*, 677-685, doi:10.1016/j.jacc.2006.03.052.
93. Romagnolo, D.F.; Selmin, O.I. Mediterranean Diet and Prevention of Chronic Diseases. *Nutr Today* **2017**, *52*, 208-222, doi:10.1097/NT.0000000000000228.
94. Schulze, M.B.; Martínez-González, M.A.; Fung, T.T.; Lichtenstein, A.H.; Forouhi, N.G. Food based dietary patterns and chronic disease prevention. *BMJ* **2018**, *361*, k2396, doi:10.1136/bmj.k2396.
95. Casas, R.; Sacanella, E.; Estruch, R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. *Endocr Metab Immune Disord Drug Targets* **2014**, *14*, 245-254, doi:10.2174/1871530314666140922153350.
96. Poli, A.; Agostoni, C.; Graffigna, G.; Bosio, C.; Donini, L.M.; Marangoni, F. The complex relationship between diet, quality of life and life expectancy: a narrative review of potential determinants based on data from Italy. *Eat Weight Disord* **2019**, *24*, 411-419, doi:10.1007/s40519-018-0582-2.
97. Nowakowski, A.C.; Graves, K.Y.; Sumerau, J.E. Mediation analysis of relationships between chronic inflammation and quality of life in older adults. *Health Qual Life Outcomes* **2016**, *14*, 46, doi:10.1186/s12955-016-0452-4.
98. McKay, J.A.; Mathers, J.C. Diet induced epigenetic changes and their implications for health. *Acta Physiol (Oxf)* **2011**, *202*, 103-118, doi:10.1111/j.1748-1716.2011.02278.x.
99. Milagro, F.I.; Mansego, M.L.; De Miguel, C.; Martínez, J.A. Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. *Mol Aspects Med* **2013**, *34*, 782-812, doi:10.1016/j.mam.2012.06.010.
100. Davis, C.D.; Uthus, E.O. DNA methylation, cancer susceptibility, and nutrient interactions. *Exp Biol Med (Maywood)* **2004**, *229*, 988-995.
101. Widiker, S.; Karst, S.; Wagenner, A.; Brockmann, G.A. High-fat diet leads to a decreased methylation of the Mc4r gene in the obese BFMI and the lean B6 mouse lines. *J Appl Genet* **2010**, *51*, 193-197, doi:10.1007/BF03195727.
102. Szarc vel Szic, K.; Declerck, K.; Vidaković, M.; Vanden Berghe, W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? *Clin Epigenetics* **2015**, *7*, 33, doi:10.1186/s13148-015-0068-2.
103. Toopchizadeh, V.; Dolatkhah, N.; Aghamohammadi, D.; Rasouli, M.; Hashemian, M. Dietary inflammatory index is associated with pain intensity and some components of quality of life in patients with knee osteoarthritis. *BMC Res Notes* **2020**, *13*, 448, doi:10.1186/s13104-020-05277-x.
104. Veronese, N.; Shivappa, N.; Stubbs, B.; Smith, T.; Hébert, J.R.; Cooper, C.; Guglielmi, G.; Reginster, J.Y.; Rizzoli, R.; Maggi, S. The relationship between the dietary inflammatory index and prevalence of radiographic symptomatic osteoarthritis: data from the Osteoarthritis Initiative. *Eur J Nutr* **2019**, *58*, 253-260, doi:10.1007/s00394-017-1589-6.

105. Liu, Q.; Hebert, J.R.; Shivappa, N.; Guo, J.; Tao, K.; Zeng, C.; Lei, G.; Lin, J.; Zhang, Y. Inflammatory potential of diet and risk of incident knee osteoarthritis: a prospective cohort study. *Arthritis Res Ther* **2020**, *22*, 209, doi:10.1186/s13075-020-02302-z.
106. Cavicchia, P.P.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Hébert, J.R. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. *J Nutr* **2009**, *139*, 2365-2372, doi:10.3945/jn.109.114025.
107. Perruccio, A.V.; Chandran, V.; Power, J.D.; Kapoor, M.; Mahomed, N.N.; Gandhi, R. Systemic inflammation and painful joint burden in osteoarthritis: a matter of sex? *Osteoarthritis Cartilage* **2017**, *25*, 53-59, doi:10.1016/j.joca.2016.08.001.
108. Larsson, S.; Englund, M.; Struglics, A.; Lohmander, L.S. Interleukin-6 and tumor necrosis factor alpha in synovial fluid are associated with progression of radiographic knee osteoarthritis in subjects with previous meniscectomy. *Osteoarthritis Cartilage* **2015**, *23*, 1906-1914, doi:10.1016/j.joca.2015.05.035.
109. Jin, X.; Beguerie, J.R.; Zhang, W.; Blizzard, L.; Otahal, P.; Jones, G.; Ding, C. Circulating C reactive protein in osteoarthritis: a systematic review and meta-analysis. *Ann Rheum Dis* **2015**, *74*, 703-710, doi:10.1136/annrheumdis-2013-204494.
110. Pelletier, J.P.; Raynauld, J.P.; Caron, J.; Mineau, F.; Abram, F.; Dorais, M.; Haraoui, B.; Choquette, D.; Martel-Pelletier, J. Decrease in serum level of matrix metalloproteinases is predictive of the disease-modifying effect of osteoarthritis drugs assessed by quantitative MRI in patients with knee osteoarthritis. *Ann Rheum Dis* **2010**, *69*, 2095-2101, doi:10.1136/ard.2009.122002.
111. Dyer, J.; Davison, G.; Marcora, S.M.; Mauger, A.R. Effect of a Mediterranean Type Diet on Inflammatory and Cartilage Degradation Biomarkers in Patients with Osteoarthritis. *J Nutr Health Aging* **2017**, *21*, 562-566, doi:10.1007/s12603-016-0806-y.
112. Henríquez Sánchez, P.; Ruano, C.; de Irala, J.; Ruiz-Canela, M.; Martínez-González, M.A.; Sánchez-Villegas, A. Adherence to the Mediterranean diet and quality of life in the SUN Project. *Eur J Clin Nutr* **2012**, *66*, 360-368, doi:10.1038/ejcn.2011.146.
113. Bonaccio, M.; Di Castelnuovo, A.; Bonanni, A.; Costanzo, S.; De Lucia, F.; Pounis, G.; Zito, F.; Donati, M.B.; de Gaetano, G.; Iacoviello, L., et al. Adherence to a Mediterranean diet is associated with a better health-related quality of life: a possible role of high dietary antioxidant content. *BMJ Open* **2013**, *3*, doi:10.1136/bmjopen-2013-003003.
114. May, A.M.; Struijk, E.A.; Fransen, H.P.; Onland-Moret, N.C.; de Wit, G.A.; Boer, J.M.; van der Schouw, Y.T.; Hoekstra, J.; Bueno-de-Mesquita, H.B.; Peeters, P.H., et al. The impact of a healthy lifestyle on Disability-Adjusted Life Years: a prospective cohort study. *BMC Med* **2015**, *13*, 39, doi:10.1186/s12916-015-0287-6.
115. Pérez-Tasigchana, R.F.; León-Muñoz, L.M.; López-García, E.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Mediterranean Diet and Health-Related Quality of Life in Two Cohorts of Community-Dwelling Older Adults. *PLoS One* **2016**, *11*, e0151596, doi:10.1371/journal.pone.0151596.
116. Veronese, N.; Stubbs, B.; Noale, M.; Solmi, M.; Luchini, C.; Maggi, S. Adherence to the Mediterranean diet is associated with better quality of life: data from the Osteoarthritis Initiative. *Am J Clin Nutr* **2016**, *104*, 1403-1409, doi:10.3945/ajcn.116.136390.
117. Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: a Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. *Nutr Metab Cardiovasc Dis* **2006**, *16*, 559-568, doi:10.1016/j.numecd.2005.08.006.
118. Block, G.; Hartman, A.M.; Naughton, D. A reduced dietary questionnaire: development and validation. *Epidemiology* **1990**, *1*, 58-64, doi:10.1097/00001648-199001000-00013.
119. Veronese, N.; Stubbs, B.; Noale, M.; Solmi, M.; Luchini, C.; Smith, T.O.; Cooper, C.; Guglielmi, G.; Reginster, J.Y.; Rizzoli, R., et al. Adherence to a Mediterranean diet is associated with lower prevalence of osteoarthritis: Data from the osteoarthritis initiative. *Clin Nutr* **2017**, *36*, 1609-1614, doi:10.1016/j.clnu.2016.09.035.
120. Pitsavos, C.; Panagiotakos, D.B.; Tzima, N.; Chrysohoou, C.; Economou, M.; Zampelas, A.; Stefanadis, C. Adherence to the Mediterranean diet is associated with total antioxidant capacity in healthy adults: the ATTICA study. *Am J Clin Nutr* **2005**, *82*, 694-699, doi:10.1093/ajcn.82.3.694.
121. Chatzianagnostou, K.; Del Turco, S.; Pingitore, A.; Sabatino, L.; Vassalle, C. The Mediterranean Lifestyle as a Non-Pharmacological and Natural Antioxidant for Healthy Aging. *Antioxidants (Basel)* **2015**, *4*, 719-736, doi:10.3390/antiox4040719.

122. Sánchez-Moreno, C.; Cano, M.P.; de Ancos, B.; Plaza, L.; Olmedilla, B.; Granado, F.; Martín, A. Mediterranean vegetable soup consumption increases plasma vitamin C and decreases F2-isoprostanes, prostaglandin E2 and monocyte chemotactic protein-1 in healthy humans. *J Nutr Biochem* **2006**, *17*, 183-189, doi:10.1016/j.jnutbio.2005.07.001.

123. Martín-Núñez, G.M.; Cabrera-Mulero, R.; Rubio-Martín, E.; Rojo-Martínez, G.; Olveira, G.; Valdés, S.; Soriguer, F.; Castaño, L.; Morcillo, S. Methylation levels of the SCD1 gene promoter and LINE-1 repeat region are associated with weight change: an intervention study. *Mol Nutr Food Res* **2014**, *58*, 1528-1536, doi:10.1002/mnfr.201400079.

124. Putnik, P.; Gabrić, D.; Roohinejad, S.; Barba, F.J.; Granato, D.; Mallikarjunan, K.; Lorenzo, J.M.; Bursać Kovačević, D. An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. *Food Chem* **2019**, *276*, 680-691, doi:10.1016/j.foodchem.2018.10.068.

125. Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? *Oxid Med Cell Longev* **2016**, *2016*, 7432797, doi:10.1155/2016/7432797.

126. Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Narciso, V.; Tenore, G.C.; Novellino, E. Resveratrol as a Novel Anti-Herpes Simplex Virus Nutraceutical Agent: An Overview. *Viruses* **2018**, *10*, doi:10.3390/v10090473.

127. Annunziata, G.; Sanduzzi Zamparelli, M.; Santoro, C.; Ciampaglia, R.; Stornaiuolo, M.; Tenore, G.C.; Sanduzzi, A.; Novellino, E. May Polyphenols Have a Role Against Coronavirus Infection? An Overview of. *Front Med (Lausanne)* **2020**, *7*, 240, doi:10.3389/fmed.2020.00240.

128. Giglio, R.V.; Patti, A.M.; Cicero, A.F.G.; Lippi, G.; Rizzo, M.; Toth, P.P.; Banach, M. Polyphenols: Potential Use in the Prevention and Treatment of Cardiovascular Diseases. *Curr Pharm Des* **2018**, *24*, 239-258, doi:10.2174/1381612824666180130112652.

129. Rossi, L.; Mazzitelli, S.; Arciello, M.; Capo, C.R.; Rötilio, G. Benefits from dietary polyphenols for brain aging and Alzheimer's disease. *Neurochem Res* **2008**, *33*, 2390-2400, doi:10.1007/s11064-008-9696-7.

130. Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. *Nat Rev Cancer* **2003**, *3*, 768-780, doi:10.1038/nrc1189.

131. Toda, T.; Sugioka, Y.; Koike, T. Soybean isoflavone can protect against osteoarthritis in ovariectomized rats. *J Food Sci Technol* **2020**, *57*, 3409-3414, doi:10.1007/s13197-020-04374-w.

132. Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. *Molecules* **2015**, *20*, 21138-21156, doi:10.3390/molecules201219753.

133. Sukhikh, S.; Noskova, S.; Ivanova, S.; Ulrikh, E.; Izgaryshev, A.; Babich, O. Chondroprotection and Molecular Mechanism of Action of Phytonutraceuticals on Osteoarthritis. *Molecules* **2021**, *26*, doi:10.3390/molecules26082391.

134. Leong, D.J.; Choudhury, M.; Hirsh, D.M.; Hardin, J.A.; Cobelli, N.J.; Sun, H.B. Nutraceuticals: potential for chondroprotection and molecular targeting of osteoarthritis. *Int J Mol Sci* **2013**, *14*, 23063-23085, doi:10.3390/ijms141123063.

135. Chin, K.Y.; Pang, K.L. Therapeutic Effects of Olive and Its Derivatives on Osteoarthritis: From Bench to Bedside. *Nutrients* **2017**, *9*, doi:10.3390/nu9101060.

136. D'Adamo, S.; Cetrullo, S.; Panichi, V.; Mariani, E.; Flamigni, F.; Borzì, R.M. Nutraceutical Activity in Osteoarthritis Biology: A Focus on the Nutrigenomic Role. *Cells* **2020**, *9*, doi:10.3390/cells9051232.

137. Li, X.Z.; Zhang, S.N. Recent advance in treatment of osteoarthritis by bioactive components from herbal medicine. *Chin Med* **2020**, *15*, 80, doi:10.1186/s13020-020-00363-5.

138. Silva, L.B.A.R.; Pinheiro-Castro, N.; Novaes, G.M.; Pascoal, G.F.L.; Ong, T.P. Bioactive food compounds, epigenetics and chronic disease prevention: Focus on early-life interventions with polyphenols. *Food Res Int* **2019**, *125*, 108646, doi:10.1016/j.foodres.2019.108646.

139. Crascì, L.; Lauro, M.R.; Puglisi, G.; Panico, A. Natural antioxidant polyphenols on inflammation management: Anti-glycation activity vs metalloproteinases inhibition. *Crit Rev Food Sci Nutr* **2018**, *58*, 893-904, doi:10.1080/10408398.2016.1229657.

140. Kinger, M.; Kumar, S.; Kumar, V. Some Important Dietary Polyphenolic Compounds: An Anti-inflammatory and Immunoregulatory Perspective. *Mini Rev Med Chem* **2018**, *18*, 1270-1282, doi:10.2174/1389557517666170208143410.

141. Han, X.; Shen, T.; Lou, H. Dietary Polyphenols and Their Biological Significance. *Int. J. Mol. Sci.*, 2007; Vol. 8, pp 950-988.

142. Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. *Oxid Med Cell Longev* **2009**, *2*, 270-278, doi:10.4161/oxim.2.5.9498.

143. Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. *Phytother Res* **2019**, *33*, 2221-2243, doi:10.1002/ptr.6419.

144. D'Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources and bioavailability. *Ann Ist Super Sanita* **2007**, *43*, 348-361.

145. Del Bo', C.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; Kroon, P., et al. Systematic Review on Polyphenol Intake and Health Outcomes: Is there Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern? *Nutrients* **2019**, *11*, doi:10.3390/nu11061355.

146. Choi, D.J.; Choi, S.I.; Choi, B.R.; Lee, Y.S.; Lee, D.Y.; Kim, G.S. Cartilage protective and anti-analgesic effects of ALM16 on monosodium iodoacetate induced osteoarthritis in rats. *BMC Complement Altern Med* **2019**, *19*, 325, doi:10.1186/s12906-019-2746-7.

147. Schell, J.; Scofield, R.H.; Barrett, J.R.; Kurien, B.T.; Betts, N.; Lyons, T.J.; Zhao, Y.D.; Basu, A. Strawberries Improve Pain and Inflammation in Obese Adults with Radiographic Evidence of Knee Osteoarthritis. *Nutrients* **2017**, *9*, doi:10.3390/nu9090949.

148. Du, C.; Smith, A.; Avalos, M.; South, S.; Crabtree, K.; Wang, W.; Kwon, Y.H.; Vijayagopal, P.; Juma, S. Blueberries Improve Pain, Gait Performance, and Inflammation in Individuals with Symptomatic Knee Osteoarthritis. *Nutrients* **2019**, *11*, doi:10.3390/nu11020290.

149. Rasheed, Z.; Akhtar, N.; Haqqi, T.M. Pomegranate extract inhibits the interleukin-1 β -induced activation of MKK-3, p38 α -MAPK and transcription factor RUNX-2 in human osteoarthritis chondrocytes. *Arthritis Res Ther* **2010**, *12*, R195, doi:10.1186/ar3166.

150. Ahmed, S.; Wang, N.; Hafeez, B.B.; Cheruvu, V.K.; Haqqi, T.M. Punica granatum L. extract inhibits IL-1 β -induced expression of matrix metalloproteinases by inhibiting the activation of MAP kinases and NF- κ B in human chondrocytes in vitro. *J Nutr* **2005**, *135*, 2096-2102, doi:10.1093/jn/135.9.2096.

151. Tang, S.; Zhou, W.; Zhong, X.; Xu, J.; Huang, H.; Zheng, X.; Zhang, J.; Yang, S.; Shang, P.; Tang, Q., et al. Arctigenin prevents the progression of osteoarthritis by targeting PI3K/Akt/NF- κ B axis: In vitro and in vivo studies. *J Cell Mol Med* **2020**, *24*, 4183-4193, doi:10.1111/jcmm.15079.

152. Ma, Z.; Piao, T.; Wang, Y.; Liu, J. Astragalin inhibits IL-1 β -induced inflammatory mediators production in human osteoarthritis chondrocyte by inhibiting NF- κ B and MAPK activation. *Int Immunopharmacol* **2015**, *25*, 83-87, doi:10.1016/j.intimp.2015.01.018.

153. Henrotin, Y.E.; Sanchez, C.; Deberg, M.A.; Piccardi, N.; Guillou, G.B.; Msika, P.; Reginster, J.Y. Avocado/soybean unsaponifiables increase aggrecan synthesis and reduce catabolic and proinflammatory mediator production by human osteoarthritic chondrocytes. *J Rheumatol* **2003**, *30*, 1825-1834.

154. Henrotin, Y.E.; Deberg, M.A.; Crielaard, J.M.; Piccardi, N.; Msika, P.; Sanchez, C. Avocado/soybean unsaponifiables prevent the inhibitory effect of osteoarthritic subchondral osteoblasts on aggrecan and type II collagen synthesis by chondrocytes. *J Rheumatol* **2006**, *33*, 1668-1678.

155. Au, R.Y.; Al-Talib, T.K.; Au, A.Y.; Phan, P.V.; Frondoza, C.G. Avocado soybean unsaponifiables (ASU) suppress TNF-alpha, IL-1 β , COX-2, iNOS gene expression, and prostaglandin E2 and nitric oxide production in articular chondrocytes and monocyte/macrophages. *Osteoarthritis Cartilage* **2007**, *15*, 1249-1255, doi:10.1016/j.joca.2007.07.009.

156. Goudarzi, R.; Taylor, J.F.; Yazdi, P.G.; Pedersen, B.A. Effects of Arthrocen, an avocado/soy unsaponifiables agent, on inflammatory mediators and gene expression in human chondrocytes. *FEBS Open Bio* **2017**, *7*, 187-194, doi:10.1002/2211-5463.12176.

157. Chen, C.; Zhang, C.; Cai, L.; Xie, H.; Hu, W.; Wang, T.; Lu, D.; Chen, H. Baicalin suppresses IL-1 β -induced expression of inflammatory cytokines via blocking NF- κ B in human osteoarthritis chondrocytes and shows protective effect in mice osteoarthritis models. *Int Immunopharmacol* **2017**, *52*, 218-226, doi:10.1016/j.intimp.2017.09.017.

158. Liu, S.C.; Lee, H.P.; Hung, C.Y.; Tsai, C.H.; Li, T.M.; Tang, C.H. Berberine attenuates CCN2-induced IL-1 β expression and prevents cartilage degradation in a rat model of osteoarthritis. *Toxicol Appl Pharmacol* **2015**, *289*, 20-29, doi:10.1016/j.taap.2015.08.020.

159. Zheng, W.; Zhang, H.; Jin, Y.; Wang, Q.; Chen, L.; Feng, Z.; Chen, H.; Wu, Y. Butein inhibits IL-1 β -induced inflammatory response in human osteoarthritis chondrocytes and slows the progression of osteoarthritis in mice. *Int Immunopharmacol* **2017**, *42*, 1-10, doi:10.1016/j.intimp.2016.11.009.
160. Mu, Y.; Hao, W.; Li, S. Casticin protects against IL-1 β -induced inflammation in human osteoarthritis chondrocytes. *Eur J Pharmacol* **2019**, *842*, 314-320, doi:10.1016/j.ejphar.2018.10.051.
161. Ding, Q.H.; Cheng, Y.; Chen, W.P.; Zhong, H.M.; Wang, X.H. Celastrol, an inhibitor of heat shock protein 90 β potently suppresses the expression of matrix metalloproteinases, inducible nitric oxide synthase and cyclooxygenase-2 in primary human osteoarthritic chondrocytes. *Eur J Pharmacol* **2013**, *708*, 1-7, doi:10.1016/j.ejphar.2013.01.057.
162. Lu, Y.C.; Hsiao, G.; Lin, K.H.; Hsieh, M.S.; Jayakumar, T.; Wu, T.S.; Sheu, J.R. Cinnamophilin isolated from Cinnamomum philippinense protects against collagen degradation in human chondrocytes. *Phytother Res* **2013**, *27*, 892-899, doi:10.1002/ptr.4812.
163. Feng, Z.; Zheng, W.; Li, X.; Lin, J.; Xie, C.; Li, H.; Cheng, L.; Wu, A.; Ni, W. Cryptotanshinone protects against IL-1 β -induced inflammation in human osteoarthritis chondrocytes and ameliorates the progression of osteoarthritis in mice. *Int Immunopharmacol* **2017**, *50*, 161-167, doi:10.1016/j.intimp.2017.06.017.
164. Schulze-Tanzil, G.; Mobasher, A.; Sendzik, J.; John, T.; Shakibaei, M. Effects of curcumin (diferuloylmethane) on nuclear factor kappaB signaling in interleukin-1beta-stimulated chondrocytes. *Ann N Y Acad Sci* **2004**, *1030*, 578-586, doi:10.1196/annals.1329.067.
165. Shakibaei, M.; Schulze-Tanzil, G.; John, T.; Mobasher, A. Curcumin protects human chondrocytes from IL-1 β -induced inhibition of collagen type II and beta1-integrin expression and activation of caspase-3: an immunomorphological study. *Ann Anat* **2005**, *187*, 487-497, doi:10.1016/j.anat.2005.06.007.
166. Shakibaei, M.; John, T.; Schulze-Tanzil, G.; Lehmann, I.; Mobasher, A. Suppression of NF-kappaB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. *Biochem Pharmacol* **2007**, *73*, 1434-1445, doi:10.1016/j.bcp.2007.01.005.
167. Mathy-Hartert, M.; Jacquemond-Collet, I.; Priem, F.; Sanchez, C.; Lambert, C.; Henrotin, Y. Curcumin inhibits pro-inflammatory mediators and metalloproteinase-3 production by chondrocytes. *Inflamm Res* **2009**, *58*, 899-908, doi:10.1007/s00011-009-0063-1.
168. Kuptniratsaikul, V.; Dajpratham, P.; Taecharpornkul, W.; Buntragulpoontawee, M.; Lukkanapichonchut, P.; Chootip, C.; Saengsuwan, J.; Tantayakom, K.; Laongpech, S. Efficacy and safety of Curcuma domestica extracts compared with ibuprofen in patients with knee osteoarthritis: a multicenter study. *Clin Interv Aging* **2014**, *9*, 451-458, doi:10.2147/CIA.S58535.
169. Kuptniratsaikul, V.; Thanakhumtorn, S.; Chinswangwatanakul, P.; Wattanamongkonsil, L.; Thamlikitkul, V. Efficacy and safety of Curcuma domestica extracts in patients with knee osteoarthritis. *J Altern Complement Med* **2009**, *15*, 891-897, doi:10.1089/acm.2008.0186.
170. Pinsornsak, P.; Niempoog, S. The efficacy of Curcuma Longa L. extract as an adjuvant therapy in primary knee osteoarthritis: a randomized control trial. *J Med Assoc Thai* **2012**, *95 Suppl 1*, S51-58.
171. Shep, D.; Khanwelkar, C.; Gade, P.; Karad, S. Safety and efficacy of curcumin versus diclofenac in knee osteoarthritis: a randomized open-label parallel-arm study. *Trials* **2019**, *20*, 214, doi:10.1186/s13063-019-3327-2.
172. Jiang, C.; Luo, P.; Li, X.; Liu, P.; Li, Y.; Xu, J. Nrf2/ARE is a key pathway for curcumin-mediated protection of TMJ chondrocytes from oxidative stress and inflammation. *Cell Stress Chaperones* **2020**, *25*, 395-406, doi:10.1007/s12192-020-01079-z.
173. Zhang, Z.; Leong, D.J.; Xu, L.; He, Z.; Wang, A.; Navati, M.; Kim, S.J.; Hirsh, D.M.; Hardin, J.A.; Cobelli, N.J., et al. Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. *Arthritis Res Ther* **2016**, *18*, 128, doi:10.1186/s13075-016-1025-y.
174. Shakibaei, M.; Mobasher, A.; Buhrmann, C. Curcumin synergizes with resveratrol to stimulate the MAPK signaling pathway in human articular chondrocytes in vitro. *Genes Nutr* **2011**, *6*, 171-179, doi:10.1007/s12263-010-0179-5.
175. Nakagawa, Y.; Mukai, S.; Yamada, S.; Matsuoka, M.; Tarumi, E.; Hashimoto, T.; Tamura, C.; Imaizumi, A.; Nishihira, J.; Nakamura, T. Short-term effects of highly-bioavailable curcumin for treating knee osteoarthritis: a randomized, double-blind, placebo-controlled prospective study. *J Orthop Sci* **2014**, *19*, 933-939, doi:10.1007/s00776-014-0633-0.

176. Nakagawa, Y.; Mukai, S.; Yamada, S.; Murata, S.; Yabumoto, H.; Maeda, T.; Akamatsu, S. The Efficacy and Safety of Highly-Bioavailable Curcumin for Treating Knee Osteoarthritis: A 6-Month Open-Labeled Prospective Study. *Clin Med Insights Arthritis Musculoskelet Disord* **2020**, *13*, 1179544120948471, doi:10.1177/1179544120948471.

177. Chopra, A.; Lavin, P.; Patwardhan, B.; Chitre, D. A 32-week randomized, placebo-controlled clinical evaluation of RA-11, an Ayurvedic drug, on osteoarthritis of the knees. *J Clin Rheumatol* **2004**, *10*, 236-245, doi:10.1097/01.rhu.0000138087.47382.6d.

178. Belcaro, G.; Cesarone, M.R.; Dugall, M.; Pellegrini, L.; Ledda, A.; Grossi, M.G.; Togni, S.; Appendino, G. Efficacy and safety of Meriva®, a curcumin-phosphatidylcholine complex, during extended administration in osteoarthritis patients. *Altern Med Rev* **2010**, *15*, 337-344.

179. Kim, L.; Kim, J.Y. Chondroprotective effect of curcumin and lecithin complex in human chondrocytes stimulated by IL-1 β via an anti-inflammatory mechanism. *Food Sci Biotechnol* **2019**, *28*, 547-553, doi:10.1007/s10068-018-0470-6.

180. Comblain, F.; Sanchez, C.; Lesponne, I.; Balligand, M.; Serisier, S.; Henrotin, Y. Curcuminoids extract, hydrolyzed collagen and green tea extract synergically inhibit inflammatory and catabolic mediator's synthesis by normal bovine and osteoarthritic human chondrocytes in monolayer. *PLoS One* **2015**, *10*, e0121654, doi:10.1371/journal.pone.0121654.

181. D'Ascola, A.; Irrera, N.; Ettari, R.; Bitto, A.; Pallio, G.; Mannino, F.; Atteritano, M.; Campo, G.M.; Minutoli, L.; Arcoraci, V., et al. Exploiting Curcumin Synergy With Natural Products Using Quantitative Analysis of Dose-Effect Relationships in an Experimental. *Front Pharmacol* **2019**, *10*, 1347, doi:10.3389/fphar.2019.01347.

182. Heidari-Beni, M.; Moravejolahkami, A.R.; Gorgian, P.; Askari, G.; Tarrahi, M.J.; Bahreini-Esfahani, N. Herbal formulation "turmeric extract, black pepper, and ginger" versus Naproxen for chronic knee osteoarthritis: A randomized, double-blind, controlled clinical trial. *Phytother Res* **2020**, *34*, 2067-2073, doi:10.1002/ptr.6671.

183. Kare, S.K.; Vinay, V.; Maresz, K.; Prisk, V.; Vik, H. Seed Extract-Based Botanical Compositions Alleviate Knee Pain and Improve Joint Function in Mild-to-Moderate Osteoarthritis: A Randomized, Double-Blind, Placebo-Controlled Clinical Study. *Evid Based Complement Alternat Med* **2022**, *2022*, 2226139, doi:10.1155/2022/2226139.

184. Kim, H.L.; Lee, H.J.; Lee, D.R.; Choi, B.K.; Yang, S.H. Anti-osteoarthritic Effects of an Herbal Composition L173014F2 on Interleukin-1 β -induced Primary Human Articular Chondrocytes. *Molecules* **2020**, *25*, doi:10.3390/molecules25092033.

185. Haseeb, A.; Chen, D.; Haqqi, T.M. Delphinidin inhibits IL-1 β -induced activation of NF- κ B by modulating the phosphorylation of IRAK-1(Ser376) in human articular chondrocytes. *Rheumatology (Oxford)* **2013**, *52*, 998-1008, doi:10.1093/rheumatology/kes363.

186. Lin, Z.; Lin, C.; Fu, C.; Lu, H.; Jin, H.; Chen, Q.; Pan, J. The protective effect of Ellagic acid (EA) in osteoarthritis: An in vitro and in vivo study. *Biomed Pharmacother* **2020**, *125*, 109845, doi:10.1016/j.bioph.2020.109845.

187. Ahmed, S.; Wang, N.; Lalonde, M.; Goldberg, V.M.; Haqqi, T.M. Green tea polyphenol epigallocatechin-3-gallate (EGCG) differentially inhibits interleukin-1 beta-induced expression of matrix metalloproteinase-1 and -13 in human chondrocytes. *J Pharmacol Exp Ther* **2004**, *308*, 767-773, doi:10.1124/jpet.103.059220.

188. Huang, G.S.; Tseng, C.Y.; Lee, C.H.; Su, S.L.; Lee, H.S. Effects of (-)-epigallocatechin-3-gallate on cyclooxygenase 2, PGE(2), and IL-8 expression induced by IL-1 β in human synovial fibroblasts. *Rheumatol Int* **2010**, *30*, 1197-1203, doi:10.1007/s00296-009-1128-8.

189. Singh, R.; Ahmed, S.; Islam, N.; Goldberg, V.M.; Haqqi, T.M. Epigallocatechin-3-gallate inhibits interleukin-1 β -induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: suppression of nuclear factor kappaB activation by degradation of the inhibitor of nuclear factor kappaB. *Arthritis Rheum* **2002**, *46*, 2079-2086, doi:10.1002/art.10443.

190. Ahmed, S.; Rahman, A.; Hasnain, A.; Lalonde, M.; Goldberg, V.M.; Haqqi, T.M. Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1 beta-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. *Free Radic Biol Med* **2002**, *33*, 1097-1105, doi:10.1016/s0891-5849(02)01004-3.

191. Singh, R.; Ahmed, S.; Malemud, C.J.; Goldberg, V.M.; Haqqi, T.M. Epigallocatechin-3-gallate selectively inhibits interleukin-1 β -induced activation of mitogen activated protein kinase subgroup c-Jun N-terminal kinase in human osteoarthritis chondrocytes. *J Orthop Res* **2003**, *21*, 102-109, doi:10.1016/S0736-0266(02)00089-X.

192. Rasheed, Z.; Anbazhagan, A.N.; Akhtar, N.; Ramamurthy, S.; Voss, F.R.; Haqqi, T.M. Green tea polyphenol epigallocatechin-3-gallate inhibits advanced glycation end product-induced expression of tumor necrosis factor-alpha and matrix metalloproteinase-13 in human chondrocytes. *Arthritis Res Ther* **2009**, *11*, R71, doi:10.1186/ar2700.

193. Akhtar, N.; Haqqi, T.M. Epigallocatechin-3-gallate suppresses the global interleukin-1beta-induced inflammatory response in human chondrocytes. *Arthritis Res Ther* **2011**, *13*, R93, doi:10.1186/ar3368.

194. Sakata, S.; Hayashi, S.; Fujishiro, T.; Kawakita, K.; Kanzaki, N.; Hashimoto, S.; Iwasa, K.; Chinzei, N.; Kihara, S.; Haneda, M., et al. Oxidative stress-induced apoptosis and matrix loss of chondrocytes is inhibited by eicosapentaenoic acid. *J Orthop Res* **2015**, *33*, 359-365, doi:10.1002/jor.22767.

195. Hooshmand, S.; Soung, D.Y.; Lucas, E.A.; Madihally, S.V.; Levenson, C.W.; Arjmandi, B.H. Genistein reduces the production of proinflammatory molecules in human chondrocytes. *J Nutr Biochem* **2007**, *18*, 609-614, doi:10.1016/j.jnutbio.2006.11.006.

196. Liu, F.C.; Wang, C.C.; Lu, J.W.; Lee, C.H.; Chen, S.C.; Ho, Y.J.; Peng, Y.J. Chondroprotective Effects of Genistein against Osteoarthritis Induced Joint Inflammation. *Nutrients* **2019**, *11*, doi:10.3390/nu11051180.

197. Zou, Y.; Liu, Q.; Guo, P.; Huang, Y.; Ye, Z.; Hu, J. Anti-chondrocyte apoptosis effect of genistein in treating inflammation-induced osteoarthritis. *Mol Med Rep* **2020**, *22*, 2032-2042, doi:10.3892/mmr.2020.11254.

198. Altman, R.D.; Marcussen, K.C. Effects of a ginger extract on knee pain in patients with osteoarthritis. *Arthritis Rheum* **2001**, *44*, 2531-2538, doi:10.1002/1529-0131(200111)44:11<2531::aid-art433>3.0.co;2-j.

199. Naderi, Z.; Mozaffari-Khosravi, H.; Dehghan, A.; Nadjarzadeh, A.; Huseini, H.F. Effect of ginger powder supplementation on nitric oxide and C-reactive protein in elderly knee osteoarthritis patients: A 12-week double-blind randomized placebo-controlled clinical trial. *J Tradit Complement Med* **2016**, *6*, 199-203, doi:10.1016/j.jtcme.2014.12.007.

200. Rondanelli, M.; Riva, A.; Morazzoni, P.; Allegrini, P.; Faliva, M.A.; Naso, M.; Miccono, A.; Peroni, G.; Degli Agosti, I.; Perna, S. The effect and safety of highly standardized Ginger (*Zingiber officinale*) and Echinacea (*Echinacea angustifolia*) extract supplementation on inflammation and chronic pain in NSAIDs poor responders. A pilot study in subjects with knee arthrosis. *Nat Prod Res* **2017**, *31*, 1309-1313, doi:10.1080/14786419.2016.1236097.

201. Amorndoljai, P.; Taneepanichskul, S.; Niempoog, S.; Nimmannit, U. A Comparative of Ginger Extract in Nanostructure Lipid Carrier (NLC) and 1% Diclofenac Gel for Treatment of Knee Osteoarthritis (OA). *J Med Assoc Thai* **2017**, *100*, 447-456.

202. Rondanelli, M.; Riva, A.; Allegrini, P.; Faliva, M.A.; Naso, M.; Peroni, G.; Nichetti, M.; Gasparri, C.; Spadaccini, D.; Iannello, G., et al. The Use of a New Food-Grade Lecithin Formulation of Highly Standardized Ginger (*J Pain Res* **2020**, *13*, 761-770, doi:10.2147/JPR.S214488.

203. Mariano, A.; Di Sotto, A.; Leopizzi, M.; Garzoli, S.; Di Maio, V.; Gulli, M.; Dalla Vedova, P.; Ammendola, S.; Scotto d'Abusco, A. Antiarthritic Effects of a Root Extract from. *Nutrients* **2020**, *12*, doi:10.3390/nu12092545.

204. Haseeb, A.; Ansari, M.Y.; Haqqi, T.M. Harpagoside suppresses IL-6 expression in primary human osteoarthritis chondrocytes. *J Orthop Res* **2017**, *35*, 311-320, doi:10.1002/jor.23262.

205. Chantre, P.; Cappelaere, A.; Leblan, D.; Guedon, D.; Vanderlander, J.; Fournie, B. Efficacy and tolerance of Harpagophytum procumbens versus diacerhein in treatment of osteoarthritis. *Phytomedicine* **2000**, *7*, 177-183, doi:10.1016/S0944-7113(00)80001-X.

206. Leblan, D.; Chantre, P.; Fournié, B. Harpagophytum procumbens in the treatment of knee and hip osteoarthritis. Four-month results of a prospective, multicenter, double-blind trial versus diacerhein. *Joint Bone Spine* **2000**, *67*, 462-467.

207. Schulze-Tanzil, G.; Hansen, C.; Shakibaei, M. [Effect of a Harpagophytum procumbens DC extract on matrix metalloproteinases in human chondrocytes in vitro]. *Arzneimittelforschung* **2004**, *54*, 213-220, doi:10.1055/s-0031-1296962.

208. Takeda, R.; Koike, T.; Taniguchi, I.; Tanaka, K. Double-blind placebo-controlled trial of hydroxytyrosol of *Olea europaea* on pain in gonarthrosis. *Phytomedicine* **2013**, *20*, 861-864, doi:10.1016/j.phymed.2013.03.021.

209. Elmazoglu, Z.; Colakoglu, M.; Banerjee, S.; Bitik, B.; Aktekin, C.N.; Goker, B.; Karasu, C. AB0090 Verbascoside and hydroxytyrosol downregulate stress-related pathways in human osteoarthritic articular chondrocytes. *Annals of the Rheumatic Diseases*, **2018**; Vol. 77, p 1241.

210. Wauquier, F.; Mevel, E.; Krisa, S.; Richard, T.; Valls, J.; Hornedo-Ortega, R.; Granel, H.; Boutin-Wittrant, L.; Urban, N.; Berger, J., et al. Chondroprotective Properties of Human-Enriched Serum Following Polyphenol Extract Absorption: Results from an Exploratory Clinical Trial. *Nutrients* **2019**, *11*, doi:10.3390/nu11123071.

211. Pan, L.; Zhang, Y.; Chen, N.; Yang, L. Icariin Regulates Cellular Functions and Gene Expression of Osteoarthritis Patient-Derived Human Fibroblast-Like Synoviocytes. *Int J Mol Sci* **2017**, *18*, doi:10.3390/ijms18122656.

212. Zeng, L.; Rong, X.F.; Li, R.H.; Wu, X.Y. Icariin inhibits MMP-1, MMP-3 and MMP-13 expression through MAPK pathways in IL-1 β -stimulated SW1353 chondrosarcoma cells. *Mol Med Rep* **2017**, *15*, 2853-2858, doi:10.3892/mmr.2017.6312.

213. Zuo, S.; Zou, W.; Wu, R.M.; Yang, J.; Fan, J.N.; Zhao, X.K.; Li, H.Y. Icariin Alleviates IL-1 β -Induced Matrix Degradation By Activating The Nrf2/ARE Pathway In Human Chondrocytes. *Drug Des Devel Ther* **2019**, *13*, 3949-3961, doi:10.2147/DDDT.S203094.

214. Piscoya, J.; Rodriguez, Z.; Bustamante, S.A.; Okuhama, N.N.; Miller, M.J.; Sandoval, M. Efficacy and safety of freeze-dried cat's claw in osteoarthritis of the knee: mechanisms of action of the species *Uncaria guianensis*. *Inflamm Res* **2001**, *50*, 442-448, doi:10.1007/PL00000268.

215. Jin, J.; Yu, X.; Hu, Z.; Tang, S.; Zhong, X.; Xu, J.; Shang, P.; Huang, Y.; Liu, H. Isofraxidin targets the TLR4/MD-2 axis to prevent osteoarthritis development. *Food Funct* **2018**, *9*, 5641-5652, doi:10.1039/c8fo01445k.

216. Lin, J.; Li, X.; Qi, W.; Yan, Y.; Chen, K.; Xue, X.; Xu, X.; Feng, Z.; Pan, X. Isofraxidin inhibits interleukin-1 β induced inflammatory response in human osteoarthritis chondrocytes. *Int Immunopharmacol* **2018**, *64*, 238-245, doi:10.1016/j.intimp.2018.09.003.

217. Chen, X.; Zhang, C.; Wang, X.; Huo, S. Juglanin inhibits IL-1 β -induced inflammation in human chondrocytes. *Artif Cells Nanomed Biotechnol* **2019**, *47*, 3614-3620, doi:10.1080/21691401.2019.1657877.

218. Jia, T.; Qiao, J.; Guan, D.; Chen, T. Anti-Inflammatory Effects of Licochalcone A on IL-1 β -Stimulated Human Osteoarthritis Chondrocytes. *Inflammation* **2017**, *40*, 1894-1902, doi:10.1007/s10753-017-0630-5.

219. de Andrés, M.C.; Meiss, M.S.; Sánchez-Hidalgo, M.; González-Benjumea, A.; Fernández-Bolaños, J.G.; Alarcón-de-la-Lastra, C.; Oreffo, R.O. Osteoarthritis treatment with a novel nutraceutical acetylated ligstroside aglycone, a chemically modified extra-virgin olive oil polyphenol. *J Tissue Eng* **2020**, *11*, 2041731420922701, doi:10.1177/2041731420922701.

220. Rufino, A.T.; Ribeiro, M.; Sousa, C.; Judas, F.; Salgueiro, L.; Cavaleiro, C.; Mendes, A.F. Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. *Eur J Pharmacol* **2015**, *750*, 141-150, doi:10.1016/j.ejphar.2015.01.018.

221. Pan, X.; Chen, T.; Zhang, Z.; Chen, X.; Chen, C.; Chen, L.; Wang, X.; Ying, X. Activation of Nrf2/HO-1 signal with Myricetin for attenuating ECM degradation in human chondrocytes and ameliorating the murine osteoarthritis. *Int Immunopharmacol* **2019**, *75*, 105742, doi:10.1016/j.intimp.2019.105742.

222. Scotece, M.; Conde, J.; Abella, V.; López, V.; Francisco, V.; Ruiz, C.; Campos, V.; Lago, F.; Gomez, R.; Pino, J., et al. Oleocanthal Inhibits Catabolic and Inflammatory Mediators in LPS-Activated Human Primary Osteoarthritis (OA) Chondrocytes Through MAPKs/NF- κ B Pathways. *Cell Physiol Biochem* **2018**, *49*, 2414-2426, doi:10.1159/000493840.

223. Feng, Z.; Li, X.; Lin, J.; Zheng, W.; Hu, Z.; Xuan, J.; Ni, W.; Pan, X. Oleuropein inhibits the IL-1 β -induced expression of inflammatory mediators by suppressing the activation of NF- κ B and MAPKs in human osteoarthritis chondrocytes. *Food Funct* **2017**, *8*, 3737-3744, doi:10.1039/c7fo00823f.

224. Varela-Eirín, M.; Carpintero-Fernández, P.; Sánchez-Temprano, A.; Varela-Vázquez, A.; Paíno, C.L.; Casado-Díaz, A.; Continente, A.C.; Mato, V.; Fonseca, E.; Kandouz, M., et al. Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and promotes a pro-regenerative environment in osteoarthritis. *Aging (Albany NY)* **2020**, *12*, 15882-15905, doi:10.18632/aging.103801.

225. Elmazoglu, Z.; Bek, Z.A.; Sarıbaş, G.S.; Özogul, C.; Goker, B.; Bitik, B.; Aktekin, C.N.; Karasu, Ç. TLR4, RAGE, and p-JNK/JNK mediated inflammatory aggression in osteoarthritic human chondrocytes are counteracted by redox-sensitive phenolic olive compounds: Comparison with ibuprofen. *J Tissue Eng Regen Med* **2020**, *14*, 1841-1857, doi:10.1002/term.3138.

226. Peng, L.; Xie, Z.; Pei, J.; Wang, B.; Gao, Y.; Qu, Y. Puerarin alters the function of monocytes/macrophages and exhibits chondroprotection in mice. *Mol Med Rep* **2019**, *19*, 2876-2882, doi:10.3892/mmr.2019.9936.

227. Ma, D.; Yu, T.; Peng, L.; Wang, L.; Liao, Z.; Xu, W. PIM1, CYP1B1, and HSPA2 Targeted by Quercetin Play Important Roles in Osteoarthritis Treatment by. *Evid Based Complement Alternat Med* **2019**, *2019*, 1205942, doi:10.1155/2019/1205942.

228. Xu, X.; Liu, X.; Yang, Y.; He, J.; Gu, H.; Jiang, M.; Huang, Y.; Liu, L. Resveratrol inhibits the development of obesity-related osteoarthritis via the TLR4 and PI3K/Akt signaling pathways. *Connect Tissue Res* **2019**, *60*, 571-582, doi:10.1080/03008207.2019.1601187.

229. Marouf, B.H.; Hussain, S.A.; Ali, Z.S.; Ahmmad, R.S. Resveratrol Supplementation Reduces Pain and Inflammation in Knee Osteoarthritis Patients Treated with Meloxicam: A Randomized Placebo-Controlled Study. *J Med Food* **2018**, doi:10.1089/jmf.2017.4176.

230. Shakibaei, M.; John, T.; Seifar, C.; Mobasher, A. Resveratrol inhibits IL-1 beta-induced stimulation of caspase-3 and cleavage of PARP in human articular chondrocytes in vitro. *Ann N Y Acad Sci* **2007**, 1095, 554-563, doi:10.1196/annals.1397.060.

231. Csaki, C.; Keshishzadeh, N.; Fischer, K.; Shakibaei, M. Regulation of inflammation signalling by resveratrol in human chondrocytes in vitro. *Biochem Pharmacol* **2008**, 75, 677-687, doi:10.1016/j.bcp.2007.09.014.

232. Dave, M.; Attur, M.; Palmer, G.; Al-Mussawir, H.E.; Kennish, L.; Patel, J.; Abramson, S.B. The antioxidant resveratrol protects against chondrocyte apoptosis via effects on mitochondrial polarization and ATP production. *Arthritis Rheum* **2008**, 58, 2786-2797, doi:10.1002/art.23799.

233. Xu, X.; Liu, X.; Yang, Y.; He, J.; Jiang, M.; Huang, Y.; Liu, L.; Gu, H. Resveratrol Exerts Anti-Osteoarthritic Effect by Inhibiting TLR4/NF- κ B Signaling Pathway via the TLR4/Akt/FoxO1 Axis in IL-1 β -Stimulated SW1353 Cells. *Drug Des Devel Ther* **2020**, 14, 2079-2090, doi:10.2147/DDDT.S244059.

234. Csaki, C.; Mobasher, A.; Shakibaei, M. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1 β -induced NF- κ B-mediated inflammation and apoptosis. *Arthritis Res Ther* **2009**, 11, R165, doi:10.1186/ar2850.

235. Ma, Y.; Sun, X.; Huang, K.; Shen, S.; Lin, X.; Xie, Z.; Wang, J.; Fan, S.; Ma, J.; Zhao, X. Sanguinarine protects against osteoarthritis by suppressing the expression of catabolic proteases. *Oncotarget* **2017**, 8, 62900-62913, doi:10.18632/oncotarget.17036.

236. Liao, S.; Zhou, K.; Li, D.; Xie, X.; Jun, F.; Wang, J. Schisantherin A suppresses interleukin-1 β -induced inflammation in human chondrocytes via inhibition of NF- κ B and MAPKs activation. *Eur J Pharmacol* **2016**, 780, 65-70, doi:10.1016/j.ejphar.2016.03.032.

237. Phitak, T.; Pothacharoen, P.; Settakorn, J.; Poompimol, W.; Caterson, B.; Kongtawelert, P. Chondroprotective and anti-inflammatory effects of sesamin. *Phytochemistry* **2012**, 80, 77-88, doi:10.1016/j.phytochem.2012.05.016.

238. Kim, H.A.; Yeo, Y.; Jung, H.A.; Jung, Y.O.; Park, S.J.; Kim, S.J. Phase 2 enzyme inducer sulphoraphane blocks prostaglandin and nitric oxide synthesis in human articular chondrocytes and inhibits cartilage matrix degradation. *Rheumatology (Oxford)* **2012**, 51, 1006-1016, doi:10.1093/rheumatology/ker525.

239. Kim, H.A.; Yeo, Y.; Kim, W.U.; Kim, S. Phase 2 enzyme inducer sulphoraphane blocks matrix metalloproteinase production in articular chondrocytes. *Rheumatology (Oxford)* **2009**, 48, 932-938, doi:10.1093/rheumatology/kep132.

240. Facchini, A.; Stanic, I.; Cetrullo, S.; Borzi, R.M.; Filardo, G.; Flamigni, F. Sulforaphane protects human chondrocytes against cell death induced by various stimuli. *J Cell Physiol* **2011**, 226, 1771-1779, doi:10.1002/jcp.22506.

241. Davidson, R.K.; Jupp, O.; de Ferrars, R.; Kay, C.D.; Culley, K.L.; Norton, R.; Driscoll, C.; Vincent, T.L.; Donell, S.T.; Bao, Y., et al. Sulforaphane represses matrix-degrading proteases and protects cartilage from destruction in vitro and in vivo. *Arthritis Rheum* **2013**, 65, 3130-3140, doi:10.1002/art.38133.

242. Davidson, R.; Gardner, S.; Jupp, O.; Bullough, A.; Butters, S.; Watts, L.; Donell, S.; Traka, M.; Saha, S.; Mithen, R., et al. Isothiocyanates are detected in human synovial fluid following broccoli consumption and can affect the tissues of the knee joint. *Sci Rep* **2017**, 7, 3398, doi:10.1038/s41598-017-03629-5.

243. Ko, J.Y.; Choi, Y.J.; Jeong, G.J.; Im, G.I. Sulforaphane-PLGA microspheres for the intra-articular treatment of osteoarthritis. *Biomaterials* **2013**, 34, 5359-5368, doi:10.1016/j.biomaterials.2013.03.066.

244. Piao, T.; Ma, Z.; Li, X.; Liu, J. Taraxasterol inhibits IL-1 β -induced inflammatory response in human osteoarthritic chondrocytes. *Eur J Pharmacol* **2015**, 756, 38-42, doi:10.1016/j.ejphar.2015.03.012.

245. Park, C.; Jeong, J.W.; Lee, D.S.; Yim, M.J.; Lee, J.M.; Han, M.H.; Kim, S.; Kim, H.S.; Kim, G.Y.; Park, E.K., et al. Extract Attenuates Interleukin-1 β -Induced Oxidative Stress and Inflammatory Response in Chondrocytes by Suppressing the Activation of NF- κ B, p38 MAPK, and PI3K/Akt. *Int J Mol Sci* **2018**, 19, doi:10.3390/ijms19082308.

246. Wang, D.; Qiao, J.; Zhao, X.; Chen, T.; Guan, D. Thymoquinone Inhibits IL-1 β -Induced Inflammation in Human Osteoarthritis Chondrocytes by Suppressing NF- κ B and MAPKs Signaling Pathway. *Inflammation* **2015**, 38, 2235-2241, doi:10.1007/s10753-015-0206-1.

247. Khan, N.M.; Haseeb, A.; Ansari, M.Y.; Haqqi, T.M. A wogonin-rich-fraction of *Scutellaria baicalensis* root extract exerts chondroprotective effects by suppressing IL-1 β -induced activation of AP-1 in human OA chondrocytes. *Sci Rep* **2017**, *7*, 43789, doi:10.1038/srep43789.

248. Khan, N.M.; Haseeb, A.; Ansari, M.Y.; Devarapalli, P.; Haynie, S.; Haqqi, T.M. Wogonin, a plant derived small molecule, exerts potent anti-inflammatory and chondroprotective effects through the activation of ROS/ERK/Nrf2 signaling pathways in human Osteoarthritis chondrocytes. *Free Radic Biol Med* **2017**, *106*, 288-301, doi:10.1016/j.freeradbiomed.2017.02.041.

249. Khan, N.M.; Ahmad, I.; Ansari, M.Y.; Haqqi, T.M. Wogonin, a natural flavonoid, intercalates with genomic DNA and exhibits protective effects in IL-1 β stimulated osteoarthritis chondrocytes. *Chem Biol Interact* **2017**, *274*, 13-23, doi:10.1016/j.cbi.2017.06.025.

250. Ma, P.; Yue, L.; Yang, H.; Fan, Y.; Bai, J.; Li, S.; Yuan, J.; Zhang, Z.; Yao, C.; Lin, M., et al. Chondroprotective and anti-inflammatory effects of amurensin H by regulating TLR4/Syk/NF- κ B signals. *J Cell Mol Med* **2020**, *24*, 1958-1968, doi:10.1111/jcmm.14893.

251. Zhao, C.; Liu, Q.; Wang, K. Artesunate attenuates ACLT-induced osteoarthritis by suppressing osteoclastogenesis and aberrant angiogenesis. *Biomed Pharmacother* **2017**, *96*, 410-416, doi:10.1016/j.bioph.2017.10.018.

252. Bai, Z.; Guo, X.H.; Tang, C.; Yue, S.T.; Shi, L.; Qiang, B. Effects of Artesunate on the Expressions of Insulin-Like Growth Factor-1, Osteopontin and C-Telopeptides of Type II Collagen in a Rat Model of Osteoarthritis. *Pharmacology* **2018**, *101*, 1-8, doi:10.1159/000479160.

253. Boumediene, K.; Felisaz, N.; Bogdanowicz, P.; Galera, P.; Guillou, G.B.; Pujol, J.P. Avocado/soya unsaponifiables enhance the expression of transforming growth factor beta1 and beta2 in cultured articular chondrocytes. *Arthritis Rheum* **1999**, *42*, 148-156, doi:10.1002/1529-0131(199901)42:1<148::AID-ANR18>3.0.CO;2-U.

254. Al-Afify, A.S.A.; El-Akabawy, G.; El-Sherif, N.M.; El-Safty, F.E.A.; El-Habiby, M.M. Avocado soybean unsaponifiables ameliorates cartilage and subchondral bone degeneration in mono-iodoacetate-induced knee osteoarthritis in rats. *Tissue Cell* **2018**, *52*, 108-115, doi:10.1016/j.tice.2018.05.001.

255. Heinecke, L.F.; Grzanna, M.W.; Au, A.Y.; Mochal, C.A.; Rashmir-Raven, A.; Frondoza, C.G. Inhibition of cyclooxygenase-2 expression and prostaglandin E2 production in chondrocytes by avocado soybean unsaponifiables and epigallocatechin gallate. *Osteoarthritis Cartilage* **2010**, *18*, 220-227, doi:10.1016/j.joca.2009.08.015.

256. Ownby, S.L.; Fortuno, L.V.; Au, A.Y.; Grzanna, M.W.; Rashmir-Raven, A.M.; Frondoza, C.G. Expression of pro-inflammatory mediators is inhibited by an avocado/soybean unsaponifiables and epigallocatechin gallate combination. *J Inflamm (Lond)* **2014**, *11*, 8, doi:10.1186/1476-9255-11-8.

257. Frondoza, C.G.; Fortuno, L.V.; Grzanna, M.W.; Ownby, S.L.; Au, A.Y.; Rashmir-Raven, A.M. α -Lipoic Acid Potentiates the Anti-Inflammatory Activity of Avocado/Soybean Unsaponifiables in Chondrocyte Cultures. *Cartilage* **2018**, *9*, 304-312, doi:10.1177/1947603516686146.

258. Grzanna, M.W.; Secor, E.J.; Fortuno, L.V.; Au, A.Y.; Frondoza, C.G. Anti-Inflammatory Effect of Carprofen Is Enhanced by Avocado/Soybean Unsaponifiables, Glucosamine and Chondroitin Sulfate Combination in Chondrocyte Microcarrier Spinner Culture. *Cartilage* **2020**, *11*, 108-116, doi:10.1177/1947603518783495.

259. Wang, P.; Zhu, P.; Liu, R.; Meng, Q.; Li, S. Baicalin promotes extracellular matrix synthesis in chondrocytes via the activation of hypoxia-inducible factor-1 α . *Exp Ther Med* **2020**, *20*, 226, doi:10.3892/etm.2020.9356.

260. Pan, Y.; Chen, D.; Lu, Q.; Liu, L.; Li, X.; Li, Z. Baicalin prevents the apoptosis of endplate chondrocytes by inhibiting the oxidative stress induced by H₂O₂. *Mol Med Rep* **2017**, *16*, 2985-2991, doi:10.3892/mmr.2017.6904.

261. Moon, P.D.; Jeong, H.S.; Chun, C.S.; Kim, H.M. Baekjeolyusin-tang and its active component berberine block the release of collagen and proteoglycan from IL-1 β -stimulated rabbit cartilage and down-regulate matrix metalloproteinases in rabbit chondrocytes. *Phytother Res* **2011**, *25*, 844-850, doi:10.1002/ptr.3353.

262. Hu, P.F.; Chen, W.P.; Tang, J.L.; Bao, J.P.; Wu, L.D. Protective effects of berberine in an experimental rat osteoarthritis model. *Phytother Res* **2011**, *25*, 878-885, doi:10.1002/ptr.3359.

263. Zhao, H.; Zhang, T.; Xia, C.; Shi, L.; Wang, S.; Zheng, X.; Hu, T.; Zhang, B. Berberine ameliorates cartilage degeneration in interleukin-1 β -stimulated rat chondrocytes and in a rat model of osteoarthritis via Akt signalling. *J Cell Mol Med* **2014**, *18*, 283-292, doi:10.1111/jcmm.12186.

264. Zhou, Y.; Liu, S.Q.; Yu, L.; He, B.; Wu, S.H.; Zhao, Q.; Xia, S.Q.; Mei, H.J. Berberine prevents nitric oxide-induced rat chondrocyte apoptosis and cartilage degeneration in a rat osteoarthritis model via AMPK and p38 MAPK signaling. *Apoptosis* **2015**, *20*, 1187-1199, doi:10.1007/s10495-015-1152-y.

265. Zhou, Y.; Tao, H.; Li, Y.; Deng, M.; He, B.; Xia, S.; Zhang, C.; Liu, S. Berberine promotes proliferation of sodium nitroprusside-stimulated rat chondrocytes and osteoarthritic rat cartilage via Wnt/β-catenin pathway. *Eur J Pharmacol* **2016**, *789*, 109-118, doi:10.1016/j.ejphar.2016.07.027.

266. Li, X.; He, P.; Hou, Y.; Chen, S.; Xiao, Z.; Zhan, J.; Luo, D.; Gu, M.; Lin, D. Berberine inhibits the interleukin-1 beta-induced inflammatory response via MAPK downregulation in rat articular chondrocytes. *Drug Dev Res* **2019**, *80*, 637-645, doi:10.1002/ddr.21541.

267. Feng, K.; Chen, H.; Xu, C. Chondro-protective effects of celastrol on osteoarthritis through autophagy activation and NF-κB signaling pathway inhibition. *Inflamm Res* **2020**, *69*, 385-400, doi:10.1007/s00011-020-01327-z.

268. Wang, W.; Ha, C.; Lin, T.; Wang, D.; Wang, Y.; Gong, M. Celastrol attenuates pain and cartilage damage via SDF-1/CXCR4 signalling pathway in osteoarthritis rats. *J Pharm Pharmacol* **2018**, *70*, 81-88, doi:10.1111/jphp.12835.

269. Liu, D.D.; Zhang, B.L.; Yang, J.B.; Zhou, K. Celastrol ameliorates endoplasmic stress-mediated apoptosis of osteoarthritis via regulating ATF-6/CHOP signalling pathway. *J Pharm Pharmacol* **2020**, *72*, 826-835, doi:10.1111/jphp.13250.

270. Jin, T.; Wu, D.; Liu, X.M.; Xu, J.T.; Ma, B.J.; Ji, Y.; Jin, Y.Y.; Wu, S.Y.; Wu, T.; Ma, K. Intra-articular delivery of celastrol by hollow mesoporous silica nanoparticles for pH-sensitive anti-inflammatory therapy against knee osteoarthritis. *J Nanobiotechnology* **2020**, *18*, 94, doi:10.1186/s12951-020-00651-0.

271. Kang, S.; Siddiqi, M.H.; Yoon, S.J.; Ahn, S.; Noh, H.Y.; Kumar, N.S.; Kim, Y.J.; Yang, D.C. Therapeutic potential of compound K as an IKK inhibitor with implications for osteoarthritis prevention: an in silico and in vitro study. *In Vitro Cell Dev Biol Anim* **2016**, *52*, 895-905, doi:10.1007/s11626-016-0062-9.

272. Lei, M.; Guo, C.; Hua, L.; Xue, S.; Yu, D.; Zhang, C.; Wang, D. Crocin Attenuates Joint Pain and Muscle Dysfunction in Osteoarthritis Rat. *Inflammation* **2017**, *40*, 2086-2093, doi:10.1007/s10753-017-0648-8.

273. Ding, Q.; Zhong, H.; Qi, Y.; Cheng, Y.; Li, W.; Yan, S.; Wang, X. Anti-arthritis effects of crocin in interleukin-1β-treated articular chondrocytes and cartilage in a rabbit osteoarthritic model. *Inflamm Res* **2013**, *62*, 17-25, doi:10.1007/s00011-012-0546-3.

274. Clutterbuck, A.L.; Mobasher, A.; Shakibaie, M.; Allaway, D.; Harris, P. Interleukin-1beta-induced extracellular matrix degradation and glycosaminoglycan release is inhibited by curcumin in an explant model of cartilage inflammation. *Ann N Y Acad Sci* **2009**, *1171*, 428-435, doi:10.1111/j.1749-6632.2009.04687.x.

275. Clutterbuck, A.L.; Allaway, D.; Harris, P.; Mobasher, A. Curcumin reduces prostaglandin E2, matrix metalloproteinase-3 and proteoglycan release in the secretome of interleukin 1β-treated articular cartilage. *F1000Res* **2013**, *2*, 147, doi:10.12688/f1000research.2-147.v2.

276. Wang, J.; Ma, J.; Gu, J.H.; Wang, F.Y.; Shang, X.S.; Tao, H.R.; Wang, X. Regulation of type II collagen, matrix metalloproteinase-13 and cell proliferation by interleukin-1β is mediated by curcumin via inhibition of NF-κB signaling in rat chondrocytes. *Mol Med Rep* **2017**, *16*, 1837-1845, doi:10.3892/mmr.2017.6771.

277. Li, X.; Feng, K.; Li, J.; Yu, D.; Fan, Q.; Tang, T.; Yao, X.; Wang, X. Curcumin Inhibits Apoptosis of Chondrocytes through Activation ERK1/2 Signaling Pathways Induced Autophagy. *Nutrients* **2017**, *9*, doi:10.3390/nu9040414.

278. Yan, D.; He, B.; Guo, J.; Li, S.; Wang, J. Involvement of TLR4 in the protective effect of intra-articular administration of curcumin on rat experimental osteoarthritis. *Acta Cir Bras* **2019**, *34*, e201900604, doi:10.1590/s0102-865020190060000004.

279. Kim, H.L.; Lee, H.J.; Lee, D.R.; Choi, B.K.; Yang, S.H. Herbal Composition LI73014F2 Alleviates Articular Cartilage Damage and Inflammatory Response in Monosodium Iodoacetate-Induced Osteoarthritis in Rats. *Molecules* **2020**, *25*, doi:10.3390/molecules25225467.

280. Ding, Q.H.; Ye, C.Y.; Chen, E.M.; Zhang, W.; Wang, X.H. Emodin ameliorates cartilage degradation in osteoarthritis by inhibiting NF-κB and Wnt/β-catenin signaling in-vitro and in-vivo. *Int Immunopharmacol* **2018**, *61*, 222-230, doi:10.1016/j.intimp.2018.05.026.

281. Liu, Z.; Lang, Y.; Li, L.; Liang, Z.; Deng, Y.; Fang, R.; Meng, Q. Effect of emodin on chondrocyte viability in an. *Exp Ther Med* **2018**, *16*, 5384-5389, doi:10.3892/etm.2018.6877.

282. Hu, H.; Song, X.; Li, Y.; Ma, T.; Bai, H.; Zhao, M.; Wang, X.; Liu, L.; Gao, L. Emodin protects knee joint cartilage in rats through anti-matrix degradation pathway: An in vitro and in vivo study. *Life Sci* **2021**, *269*, 119001, doi:10.1016/j.lfs.2020.119001.

283. Caron, J.P.; Gandy, J.C.; Brown, J.L.; Sordillo, L.M. Omega-3 fatty acids and docosahexaenoic acid oxymetabolites modulate the inflammatory response of equine recombinant interleukin1 β -stimulated equine synoviocytes. *Prostaglandins Other Lipid Mediat* **2019**, *142*, 1-8, doi:10.1016/j.prostaglandins.2019.02.007.

284. Wann, A.K.; Mistry, J.; Blain, E.J.; Michael-Titus, A.T.; Knight, M.M. Eicosapentaenoic acid and docosahexaenoic acid reduce interleukin-1 β -mediated cartilage degradation. *Arthritis Res Ther* **2010**, *12*, R207, doi:10.1186/ar3183.

285. Zainal, Z.; Longman, A.J.; Hurst, S.; Duggan, K.; Caterson, B.; Hughes, C.E.; Harwood, J.L. Relative efficacies of omega-3 polyunsaturated fatty acids in reducing expression of key proteins in a model system for studying osteoarthritis. *Osteoarthritis Cartilage* **2009**, *17*, 896-905, doi:10.1016/j.joca.2008.12.009.

286. Chen, Y.; Shou, K.; Gong, C.; Yang, H.; Yang, Y.; Bao, T. Anti-Inflammatory Effect of Geniposide on Osteoarthritis by Suppressing the Activation of p38 MAPK Signaling Pathway. *Biomed Res Int* **2018**, *2018*, 8384576, doi:10.1155/2018/8384576.

287. Pan, T.; Shi, X.; Chen, H.; Chen, R.; Wu, D.; Lin, Z.; Zhang, J.; Pan, J. Geniposide Suppresses Interleukin-1 β -Induced Inflammation and Apoptosis in Rat Chondrocytes via the PI3K/Akt/NF- κ B Signaling Pathway. *Inflammation* **2018**, *41*, 390-399, doi:10.1007/s10753-017-0694-2.

288. Chen, W.J.; Bao, T.Z.; Chen, K.; Zhu, C.M.; Wan, F.; Tan, Y.L.; Yan, F. [Effects of geniposide on SNP-induced apoptosis of chondrocyte and cell cycle]. *Zhongguo Gu Shang* **2013**, *26*, 232-235.

289. Yuan, J.; Ding, W.; Wu, N.; Jiang, S.; Li, W. Protective Effect of Genistein on Condylar Cartilage through Downregulating NF-. *Biomed Res Int* **2019**, *2019*, 2629791, doi:10.1155/2019/2629791.

290. Cui, Z.; Crane, J.; Xie, H.; Jin, X.; Zhen, G.; Li, C.; Xie, L.; Wang, L.; Bian, Q.; Qiu, T., et al. Halofuginone attenuates osteoarthritis by inhibition of TGF- β activity and H-type vessel formation in subchondral bone. *Ann Rheum Dis* **2016**, *75*, 1714-1721, doi:10.1136/annrheumdis-2015-207923.

291. Mu, W.; Xu, B.; Ma, H.; Li, J.; Ji, B.; Zhang, Z.; Amat, A.; Cao, L. Halofuginone Attenuates Osteoarthritis by Rescuing Bone Remodeling in Subchondral Bone Through Oral Gavage. *Front Pharmacol* **2018**, *9*, 269, doi:10.3389/fphar.2018.00269.

292. Mu, W.; Xu, B.; Ma, H.; Ji, B.; Zhang, Z.; Li, J.; Amat, A.; Cao, L. Halofuginone attenuates articular cartilage degeneration by inhibition of elevated TGF- β 1 signaling in articular cartilage in a rodent osteoarthritis model. *Mol Med Rep* **2017**, *16*, 7679-7684, doi:10.3892/mmr.2017.7549.

293. Chrubasik, J.E.; Lindhorst, E.; Neumann, E.; Gerlach, U.; Faller-Marquardt, M.; Torda, T.; Müller-Ladner, U.; Chrubasik, S. Potential molecular basis of the chondroprotective effect of Harpagophytum procumbens. *Phytomedicine* **2006**, *13*, 598-600, doi:10.1016/j.phymed.2006.01.014.

294. Gong, D.; Geng, C.; Jiang, L.; Cao, J.; Yoshimura, H.; Zhong, L. Effects of hydroxytyrosol-20 on carrageenan-induced acute inflammation and hyperalgesia in rats. *Phytother Res* **2009**, *23*, 646-650, doi:10.1002/ptr.2686.

295. Takuma, M.; Haruka, K.; Mutsuto, W.; Toshiki, M.; Kenshiro, M.; Akane, T.; Hiroshi, M.; Yoshihiro, N. Olive leaf extract prevents cartilage degeneration in osteoarthritis of STR/ort mice. *Biosci Biotechnol Biochem* **2018**, *82*, 1101-1106, doi:10.1080/09168451.2018.1451741.

296. Mével, E.; Merceron, C.; Vinatier, C.; Krisa, S.; Richard, T.; Masson, M.; Lesoeur, J.; Hivernaud, V.; Gauthier, O.; Abadie, J., et al. Olive and grape seed extract prevents post-traumatic osteoarthritis damages and exhibits in vitro anti IL-1 β activities before and after oral consumption. *Sci Rep* **2016**, *6*, 33527, doi:10.1038/srep33527.

297. Sun, K.; Luo, J.; Jing, X.; Xiang, W.; Guo, J.; Yao, X.; Liang, S.; Guo, F.; Xu, T. Hyperoside ameliorates the progression of osteoarthritis: An in vitro and in vivo study. *Phytomedicine* **2021**, *80*, 153387, doi:10.1016/j.phymed.2020.153387.

298. Tang, W.; Zhang, H.; Liu, D.; Jiao, F. Icariin accelerates cartilage defect repair by promoting chondrogenic differentiation of BMSCs under conditions of oxygen-glucose deprivation. *J Cell Mol Med* **2022**, *26*, 202-215, doi:10.1111/jcmm.17073.

299. Xiang, W.; Zhang, J.; Wang, R.; Wang, L.; Wang, S.; Wu, Y.; Dong, Y.; Guo, F.; Xu, T. Role of IFT88 in icariin-regulated maintenance of the chondrocyte phenotype. *Mol Med Rep* **2018**, *17*, 4999-5006, doi:10.3892/mmr.2018.8486.

300. Huang, H.; Zhang, Z.F.; Qin, F.W.; Tang, W.; Liu, D.H.; Wu, P.Y.; Jiao, F. Icariin inhibits chondrocyte apoptosis and angiogenesis by regulating the TDP-43 signaling pathway. *Mol Genet Genomic Med* **2019**, *7*, e00586, doi:10.1002/mgg3.586.

301. Liu, Y.; Mi, B.; Lv, H.; Liu, J.; Xiong, Y.; Hu, L.; Xue, H.; Panayi, A.C.; Liu, G.; Zhou, W. Shared KEGG pathways of icariin-targeted genes and osteoarthritis. *J Cell Biochem* **2018**, doi:10.1002/jcb.28048.

302. Liu, D.; Tang, W.; Zhang, H.; Huang, H.; Zhang, Z.; Tang, D.; Jiao, F. Icariin protects rabbit BMSCs against OGD-induced apoptosis by inhibiting ERs-mediated autophagy via MAPK signaling pathway. *Life Sci* **2020**, *253*, 117730, doi:10.1016/j.lfs.2020.117730.

303. Chen, W.P.; Hu, Z.N.; Jin, L.B.; Wu, L.D. Licochalcone A Inhibits MMPs and ADAMTSs via the NF-κB and Wnt/β-Catenin Signaling Pathways in Rat Chondrocytes. *Cell Physiol Biochem* **2017**, *43*, 937-944, doi:10.1159/000481645.

304. Yan, Z.; Qi, W.; Zhan, J.; Lin, Z.; Lin, J.; Xue, X.; Pan, X.; Zhou, Y. Activating Nrf2 signalling alleviates osteoarthritis development by inhibiting inflammasome activation. *J Cell Mol Med* **2020**, *24*, 13046-13057, doi:10.1111/jcmm.15905.

305. Hu, S.; Wang, S.; He, J.; Bian, Y. Tetramethylpyrazine alleviates endoplasmic reticulum stress-activated apoptosis and related inflammation in chondrocytes. *Mol Med Rep* **2022**, *25*, doi:10.3892/mmr.2021.12528.

306. Zhang, X.; Shi, Y.; Zhang, Z.; Yang, Z.; Huang, G. Intra-articular delivery of tetramethylpyrazine microspheres with enhanced articular cavity retention for treating osteoarthritis. *Asian J Pharm Sci* **2018**, *13*, 229-238, doi:10.1016/j.ajps.2017.12.007.

307. Cai, Z.; Feng, Y.; Li, C.; Yang, K.; Sun, T.; Xu, L.; Chen, Y.; Yan, C.H.; Lu, W.W.; Chiu, K.Y. Magnoflorine with hyaluronic acid gel promotes subchondral bone regeneration and attenuates cartilage degeneration in early osteoarthritis. *Bone* **2018**, *116*, 266-278, doi:10.1016/j.bone.2018.08.015.

308. Cai, Z.; Hong, M.; Xu, L.; Yang, K.; Li, C.; Sun, T.; Feng, Y.; Zeng, H.; Lu, W.W.; Chiu, K.Y. Prevent action of magnoflorine with hyaluronic acid gel from cartilage degeneration in anterior cruciate ligament transection induced osteoarthritis. *Biomed Pharmacother* **2020**, *126*, 109733, doi:10.1016/j.biopha.2019.109733.

309. Iacono, A.; Gómez, R.; Sperry, J.; Conde, J.; Bianco, G.; Meli, R.; Gómez-Reino, J.J.; Smith, A.B.; Gualillo, O. Effect of oleocanthal and its derivatives on inflammatory response induced by lipopolysaccharide in a murine chondrocyte cell line. *Arthritis Rheum* **2010**, *62*, 1675-1682, doi:10.1002/art.27437.

310. Scotece, M.; Gómez, R.; Conde, J.; Lopez, V.; Gómez-Reino, J.J.; Lago, F.; Smith, A.B.; Gualillo, O. Further evidence for the anti-inflammatory activity of oleocanthal: inhibition of MIP-1 α and IL-6 in J774 macrophages and in ATDC5 chondrocytes. *Life Sci* **2012**, *91*, 1229-1235, doi:10.1016/j.lfs.2012.09.012.

311. Aini, H.; Ochi, H.; Iwata, M.; Okawa, A.; Koga, D.; Okazaki, M.; Sano, A.; Asou, Y. Procyanidin B3 prevents articular cartilage degeneration and heterotopic cartilage formation in a mouse surgical osteoarthritis model. *PLoS One* **2012**, *7*, e37728, doi:10.1371/journal.pone.0037728.

312. Masuda, I.; Koike, M.; Nakashima, S.; Mizutani, Y.; Ozawa, Y.; Watanabe, K.; Sawada, Y.; Sugiyama, H.; Sugimoto, A.; Nojiri, H., et al. Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes. *Sci Rep* **2018**, *8*, 7229, doi:10.1038/s41598-018-25348-1.

313. Ma, T.W.; Wen, Y.J.; Song, X.P.; Hu, H.L.; Li, Y.; Bai, H.; Zhao, M.C.; Gao, L. Puerarin inhibits the development of osteoarthritis through antiinflammatory and antimatrix-degrading pathways in osteoarthritis-induced rat model. *Phytother Res* **2020**, doi:10.1002/ptr.6988.

314. Chen, X.; Huang, C.; Sun, H.; Hong, H.; Jin, J.; Bei, C.; Lu, Z.; Zhang, X. Puerarin suppresses inflammation and ECM degradation through Nrf2/HO-1 axis in chondrocytes and alleviates pain symptom in osteoarthritic mice. *Food Funct* **2021**, *12*, 2075-2089, doi:10.1039/d0fo03076g.

315. Wang, L.; Shan, H.; Wang, B.; Wang, N.; Zhou, Z.; Pan, C.; Wang, F. Puerarin Attenuates Osteoarthritis via Upregulating AMP-Activated Protein Kinase/Proliferator-Activated Receptor-γ Coactivator-1 Signaling Pathway in Osteoarthritis Rats. *Pharmacology* **2018**, *102*, 117-125, doi:10.1159/000490418.

316. Wei, B.; Zhang, Y.; Tang, L.; Ji, Y.; Yan, C.; Zhang, X. Protective effects of quercetin against inflammation and oxidative stress in a rabbit model of knee osteoarthritis. *Drug Dev Res* **2019**, *80*, 360-367, doi:10.1002/ddr.21510.

317. Hu, Y.; Gui, Z.; Zhou, Y.; Xia, L.; Lin, K.; Xu, Y. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. *Free Radic Biol Med* **2019**, *145*, 146-160, doi:10.1016/j.freeradbiomed.2019.09.024.

318. Zhang, J.; Yin, J.; Zhao, D.; Wang, C.; Zhang, Y.; Wang, Y.; Li, T. Therapeutic effect and mechanism of action of quercetin in a rat model of osteoarthritis. *J Int Med Res* **2020**, *48*, 300060519873461, doi:10.1177/0300060519873461.

319. Permatasari, D.A.; Karliana, D.; Iskandarsyah, I.; Arsianti, A.; Bahtiar, A. Quercetin prevent proteoglycan destruction by inhibits matrix metalloproteinase-9, matrix metalloproteinase-13, a disintegrin and metalloproteinase with thrombospondin motifs-5 expressions on osteoarthritis model rats. *J Adv Pharm Technol Res* **2019**, *10*, 2-8, doi:10.4103/japtr.JAPTR_331_18.

320. Britti, D.; Crupi, R.; Impellizzeri, D.; Gugliandolo, E.; Fusco, R.; Schievano, C.; Morittu, V.M.; Evangelista, M.; Di Paola, R.; Cuzzocrea, S. A novel composite formulation of palmitoylethanolamide and quercetin decreases inflammation and relieves pain in inflammatory and osteoarthritic pain models. *BMC Vet Res* **2017**, *13*, 229, doi:10.1186/s12917-017-1151-z.

321. Wang, J.; Gao, J.S.; Chen, J.W.; Li, F.; Tian, J. Effect of resveratrol on cartilage protection and apoptosis inhibition in experimental osteoarthritis of rabbit. *Rheumatol Int* **2012**, *32*, 1541-1548, doi:10.1007/s00296-010-1720-y.

322. Elmali, N.; Esenkaya, I.; Harma, A.; Ertem, K.; Turkoz, Y.; Mizrak, B. Effect of resveratrol in experimental osteoarthritis in rabbits. *Inflamm Res* **2005**, *54*, 158-162, doi:10.1007/s00011-004-1341-6.

323. Wei, Y.; Jia, J.; Jin, X.; Tong, W.; Tian, H. Resveratrol ameliorates inflammatory damage and protects against osteoarthritis in a rat model of osteoarthritis. *Mol Med Rep* **2018**, *17*, 1493-1498, doi:10.3892/mmr.2017.8036.

324. Gu, H.; Li, K.; Li, X.; Yu, X.; Wang, W.; Ding, L.; Liu, L. Oral Resveratrol Prevents Osteoarthritis Progression in C57BL/6J Mice Fed a High-Fat Diet. *Nutrients* **2016**, *8*, 233, doi:10.3390/nu8040233.

325. Horcajada, M.N.; Sanchez, C.; Membrez Scalfo, F.; Drion, P.; Comblain, F.; Taralla, S.; Donneau, A.F.; Offord, E.A.; Henrotin, Y. Oleuropein or rutin consumption decreases the spontaneous development of osteoarthritis in the Hartley guinea pig. *Osteoarthritis Cartilage* **2015**, *23*, 94-102, doi:10.1016/j.joca.2014.08.016.

326. Zhong, Y.; Huang, Y.; Santoso, M.B.; Wu, L.D. Sclareol exerts anti-osteoarthritic activities in interleukin-1 β -induced rabbit chondrocytes and a rabbit osteoarthritis model. *Int J Clin Exp Pathol* **2015**, *8*, 2365-2374.

327. Fu, D.; Shang, X.; Ni, Z.; Shi, G. Shikonin inhibits inflammation and chondrocyte apoptosis by regulation of the PI3K/Akt signaling pathway in a rat model of osteoarthritis. *Exp Ther Med* **2016**, *12*, 2735-2740, doi:10.3892/etm.2016.3642.

328. Li, F.; Yin, Z.; Zhou, B.; Xue, F.; Yang, W.; Chang, R.; Ma, K.; Qiu, Y. Shikonin inhibits inflammatory responses in rabbit chondrocytes and shows chondroprotection in osteoarthritic rabbit knee. *Int Immunopharmacol* **2015**, *29*, 656-662, doi:10.1016/j.intimp.2015.09.014.

329. Wang, L.; Gai, P.; Xu, R.; Zheng, Y.; Lv, S.; Li, Y.; Liu, S. Shikonin protects chondrocytes from interleukin-1 β -induced apoptosis by regulating PI3K/Akt signaling pathway. *Int J Clin Exp Pathol* **2015**, *8*, 298-308.

330. Ju, X.D.; Deng, M.; Ao, Y.F.; Yu, C.L.; Wang, J.Q.; Yu, J.K.; Cui, G.Q.; Hu, Y.L. Protective effect of sinomenine on cartilage degradation and chondrocytes apoptosis. *Yakugaku Zasshi* **2010**, *130*, 1053-1060, doi:10.1248/yakushi.130.1053.

331. Wu, Y.; Lin, Z.; Yan, Z.; Wang, Z.; Fu, X.; Yu, K. Sinomenine contributes to the inhibition of the inflammatory response and the improvement of osteoarthritis in mouse-cartilage cells by acting on the Nrf2/HO-1 and NF- κ B signaling pathways. *Int Immunopharmacol* **2019**, *75*, 105715, doi:10.1016/j.intimp.2019.105715.

332. Javaheri, B.; Poulet, B.; Aljazzar, A.; de Souza, R.; Piles, M.; Hopkinson, M.; Shervill, E.; Pollard, A.; Chan, B.; Chang, Y.M., et al. Stable sulforaphane protects against gait anomalies and modifies bone microarchitecture in the spontaneous STR/Ort model of osteoarthritis. *Bone* **2017**, *103*, 308-317, doi:10.1016/j.bone.2017.07.028.

333. Sudirman, S.; Chen, C.K.; Long, B.T.; Chang, H.W.; Tsou, D.; Kong, Z.L. Nut Triterpene-Rich Extract Ameliorates Symptoms of Inflammation on Post-Traumatic Osteoarthritis in Obese Rats. *J Pain Res* **2020**, *13*, 261-271, doi:10.2147/JPR.S228766.

334. Park, J.S.; Lee, H.J.; Lee, D.Y.; Jo, H.S.; Jeong, J.H.; Kim, D.H.; Nam, D.C.; Lee, C.J.; Hwang, S.C. Chondroprotective Effects of Wogonin in Experimental Models of Osteoarthritis in vitro and in vivo. *Biomol Ther (Seoul)* **2015**, *23*, 442-448, doi:10.4062/biomolther.2015.045.

335. Smith, J.F.; Starr, E.G.; Goodman, M.A.; Hanson, R.B.; Palmer, T.A.; Woolstenhulme, J.B.; Weyand, J.A.; Marchant, A.D.; Bueckers, S.L.; Nelson, T.K., et al. Topical Application of Wogonin Provides a Novel Treatment of Knee Osteoarthritis. *Front Physiol* **2020**, *11*, 80, doi:10.3389/fphys.2020.00080.

336. Anderson, O.S.; Sant, K.E.; Dolinoy, D.C. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. *J Nutr Biochem* **2012**, *23*, 853-859, doi:10.1016/j.jnutbio.2012.03.003.

337. Choi, S.W.; Friso, S. Epigenetics: A New Bridge between Nutrition and Health. *Adv Nutr* **2010**, *1*, 8-16, doi:10.3945/an.110.1004.

338. Kumari, A.; Bhawal, S.; Kapila, S.; Yadav, H.; Kapila, R. Health-promoting role of dietary bioactive compounds through epigenetic modulations: a novel prophylactic and therapeutic approach. *Crit Rev Food Sci Nutr* **2022**, *62*, 619-639, doi:10.1080/10408398.2020.1825286.

339. Vahid, F.; Zand, H.; Nosrat-Mirshekarlou, E.; Najafi, R.; Hekmatdoost, A. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. *Gene* **2015**, *562*, 8-15, doi:10.1016/j.gene.2015.02.045.

340. Langley-Evans, S.C. Developmental programming of health and disease. *Proc Nutr Soc* **2006**, *65*, 97-105, doi:10.1079/pns2005478.

341. Chmurzynska, A. Fetal programming: link between early nutrition, DNA methylation, and complex diseases. *Nutr Rev* **2010**, *68*, 87-98, doi:10.1111/j.1753-4887.2009.00265.x.

342. Jirtle, R.L.; Skinner, M.K. Environmental epigenomics and disease susceptibility. *Nat Rev Genet* **2007**, *8*, 253-262, doi:10.1038/nrg2045.

343. Kucharski, R.; Maleszka, J.; Foret, S.; Maleszka, R. Nutritional control of reproductive status in honeybees via DNA methylation. *Science* **2008**, *319*, 1827-1830, doi:10.1126/science.1153069.

344. Wolff, G.L.; Kodell, R.L.; Moore, S.R.; Cooney, C.A. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. *FASEB J* **1998**, *12*, 949-957.

345. Aagaard-Tillery, K.M.; Grove, K.; Bishop, J.; Ke, X.; Fu, Q.; McKnight, R.; Lane, R.H. Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. *J Mol Endocrinol* **2008**, *41*, 91-102, doi:10.1677/JME-08-0025.

346. Dolinoy, D.C.; Weidman, J.R.; Waterland, R.A.; Jirtle, R.L. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. *Environ Health Perspect* **2006**, *114*, 567-572, doi:10.1289/ehp.8700.

347. Tain, Y.L.; Lee, W.C.; Wu, K.L.H.; Leu, S.; Chan, J.Y.H. Resveratrol Prevents the Development of Hypertension Programmed by Maternal Plus Post-Weaning High-Fructose Consumption through Modulation of Oxidative Stress, Nutrient-Sensing Signals, and Gut Microbiota. *Mol Nutr Food Res* **2018**, *e1800066*, doi:10.1002/mnfr.201800066.

348. Remely, M.; Lovrecic, L.; de la Garza, A.L.; Migliore, L.; Peterlin, B.; Milagro, F.I.; Martinez, A.J.; Haslberger, A.G. Therapeutic perspectives of epigenetically active nutrients. *Br J Pharmacol* **2015**, *172*, 2756-2768, doi:10.1111/bph.12854.

349. Montgomery, M.; Srinivasan, A. Epigenetic Gene Regulation by Dietary Compounds in Cancer Prevention. *Adv Nutr* **2019**, *10*, 1012-1028, doi:10.1093/advances/nmz046.

350. Lee, W.J.; Shim, J.Y.; Zhu, B.T. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. *Mol Pharmacol* **2005**, *68*, 1018-1030, doi:10.1124/mol.104.008367.

351. Robertson, K.D. DNA methylation and human disease. *Nat Rev Genet* **2005**, *6*, 597-610, doi:10.1038/nrg1655.

352. Suzuki, M.M.; Bird, A. DNA methylation landscapes: provocative insights from epigenomics. *Nat Rev Genet* **2008**, *9*, 465-476, doi:10.1038/nrg2341.

353. Fang, M.; Chen, D.; Yang, C.S. Dietary polyphenols may affect DNA methylation. *J Nutr* **2007**, *137*, 223S-228S, doi:10.1093/jn/137.1.223S.

354. Cameron, E.E.; Bachman, K.E.; Myöhänen, S.; Herman, J.G.; Baylin, S.B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. *Nat Genet* **1999**, *21*, 103-107, doi:10.1038/5047.

355. Shankar, S.; Kumar, D.; Srivastava, R.K. Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition. *Pharmacol Ther* **2013**, *138*, 1-17, doi:10.1016/j.pharmthera.2012.11.002.

356. Link, A.; Balaguer, F.; Goel, A. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. *Biochem Pharmacol* **2010**, *80*, 1771-1792, doi:10.1016/j.bcp.2010.06.036.

357. Chen, X.; Liu, J.; Sun, Y.; Wen, J.; Zhou, Q.; Ding, X.; Zhang, X. Correlation analysis of differentially expressed long non-coding RNA HOTAIR with PTEN/PI3K/AKT pathway and inflammation in patients with osteoarthritis and the effect of baicalin intervention. *J Orthop Surg Res* **2023**, *18*, 34, doi:10.1186/s13018-023-03505-1.

358. Li, Z.; Cheng, J.; Liu, J. Baicalin Protects Human OA Chondrocytes Against IL-1 β -Induced Apoptosis and ECM Degradation by Activating Autophagy via MiR-766-3p/AIFM1 Axis. *Drug Des Devel Ther* **2020**, *14*, 2645-2655, doi:10.2147/DDDT.S255823.

359. Yang, X.; Zhang, Q.; Gao, Z.; Yu, C.; Zhang, L. Baicalin alleviates IL-1 β -induced inflammatory injury via down-regulating miR-126 in chondrocytes. *Biomed Pharmacother* **2018**, *99*, 184-190, doi:10.1016/j.biopha.2018.01.041.

360. Ji, Q.; Qi, D.; Xu, X.; Xu, Y.; Goodman, S.B.; Kang, L.; Song, Q.; Fan, Z.; Maloney, W.J.; Wang, Y. Cryptotanshinone Protects Cartilage against Developing Osteoarthritis through the miR-106a-5p/GLIS3 Axis. *Mol Ther Nucleic Acids* **2018**, *11*, 170-179, doi:10.1016/j.omtn.2018.02.001.

361. Yang, D.; Cao, G.; Ba, X.; Jiang, H. Epigallocatechin-3-O-Gallate promotes extracellular matrix and inhibits inflammation in IL-1B stimulated chondrocytes by the PTEN/miRNA-29b pathway *Pharm Biol* **2022**, *60*, 589-599, doi:10.1080/13880209.2022.2039722.

362. Rasheed, Z.; Rasheed, N.; Al-Shaya, O. Epigallocatechin-3-O-gallate modulates global microRNA expression in interleukin-1 β -stimulated human osteoarthritis chondrocytes: potential role of EGCG on negative co-regulation of microRNA-140-3p and ADAMTS5. *Eur J Nutr* **2018**, *57*, 917-928, doi:10.1007/s00394-016-1375-x.

363. Rasheed, Z.; Rasheed, N.; Al-Shobaili, H.A. Epigallocatechin-3-O-gallate up-regulates microRNA-199a-3p expression by down-regulating the expression of cyclooxygenase-2 in stimulated human osteoarthritis chondrocytes. *J Cell Mol Med* **2016**, *20*, 2241-2248, doi:10.1111/jcmm.12897.

364. Zheng, W.; Feng, Z.; You, S.; Zhang, H.; Tao, Z.; Wang, Q.; Chen, H.; Wu, Y. Fisetin inhibits IL-1 β -induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice. *Int Immunopharmacol* **2017**, *45*, 135-147, doi:10.1016/j.intimp.2017.02.009.

365. Cetrullo, S.; D'Adamo, S.; Guidotti, S.; Borzì, R.M.; Flamigni, F. Hydroxytyrosol prevents chondrocyte death under oxidative stress by inducing autophagy through sirtuin 1-dependent and -independent mechanisms. *Biochim Biophys Acta* **2016**, *1860*, 1181-1191, doi:10.1016/j.bbagen.2016.03.002.

366. Facchini, A.; Cetrullo, S.; D'Adamo, S.; Guidotti, S.; Minguzzi, M.; Borzì, R.M.; Flamigni, F. Hydroxytyrosol prevents increase of osteoarthritis markers in human chondrocytes treated with hydrogen peroxide or growth-related oncogene α . *PLoS One* **2014**, *9*, e109724, doi:10.1371/journal.pone.0109724.

367. D'Adamo, S.; Cetrullo, S.; Guidotti, S.; Borzì, R.M.; Flamigni, F. Hydroxytyrosol modulates the levels of microRNA-9 and its target sirtuin-1 thereby counteracting oxidative stress-induced chondrocyte death. *Osteoarthritis Cartilage* **2017**, *25*, 600-610, doi:10.1016/j.joca.2016.11.014.

368. D'Adamo, S.; Cetrullo, S.; Borzì, R.M.; Flamigni, F. Effect of oxidative stress and 3-hydroxytyrosol on DNA methylation levels of miR-9 promoters. *J Cell Mol Med* **2019**, *23*, 7885-7889, doi:10.1111/jcmm.14657.

369. Bao, J.; Yan, W.; Xu, K.; Chen, M.; Chen, Z.; Ran, J.; Xiong, Y.; Wu, L. Oleanolic Acid Decreases IL-1. *Oxid Med Cell Longev* **2020**, *2020*, 7517219, doi:10.1155/2020/7517219.

370. Li, Y.; Nie, J.; Jiang, P. Oleanolic acid mitigates interleukin-1 β -induced chondrocyte dysfunction by regulating miR-148-3p-modulated FGF2 expression. *J Gene Med* **2020**, *22*, e3169, doi:10.1002/jgm.3169.

371. Dong, S.; Xu, G.; Li, X.; Guo, S.; Bai, J.; Zhao, J.; Chen, L. Exosomes Derived from Quercetin-Treated Bone Marrow Derived Mesenchymal Stem Cells Inhibit the Progression of Osteoarthritis Through Delivering miR-124-3p to Chondrocytes. *DNA Cell Biol* **2024**, *43*, 85-94, doi:10.1089/dna.2023.0341.

372. Liang, C.; Xing, H.; Wang, C.; Xu, X.; Hao, Y.; Qiu, B. Resveratrol Improves the Progression of Osteoarthritis by Regulating the SIRT1-FoxO1 Pathway-Mediated Cholesterol Metabolism. *Mediators Inflamm* **2023**, *2023*, 2936236, doi:10.1155/2023/2936236.

373. Yi, H.; Zhang, W.; Cui, S.Y.; Fan, J.B.; Zhu, X.H.; Liu, W. Identification and validation of key long non-coding RNAs in resveratrol protect against IL-1 β -treated chondrocytes via integrated bioinformatic analysis. *J Orthop Surg Res* **2021**, *16*, 421, doi:10.1186/s13018-021-02574-4.

374. Liu, S.; Yang, H.; Hu, B.; Zhang, M. Sirt1 regulates apoptosis and extracellular matrix degradation in resveratrol-treated osteoarthritis chondrocytes via the Wnt/ β -catenin signaling pathways. *Exp Ther Med* **2017**, *14*, 5057-5062, doi:10.3892/etm.2017.5165.

375. Abed, É.; Delalandre, A.; Lajeunesse, D. Beneficial effect of resveratrol on phenotypic features and activity of osteoarthritic osteoblasts. *Arthritis Res Ther* **2017**, *19*, 151, doi:10.1186/s13075-017-1365-2.

376. Yue, S.; Su, X.; Teng, J.; Wang, J.; Guo, M. Cryptotanshinone interferes with chondrocyte apoptosis in osteoarthritis by inhibiting the expression of miR-574-5p. *Mol Med Rep* **2021**, *23*, doi:10.3892/mmr.2021.12063.

377. Ye, H.; Long, Y.; Yang, J.M.; Wu, Y.L.; Dong, L.Y.; Zhong, Y.B.; Luo, Y.; Wang, M.Y. Curcumin regulates autophagy through SIRT3-SOD2-ROS signaling pathway to improve quadriceps femoris muscle atrophy in KOA rat model. *Sci Rep* **2024**, *14*, 8176, doi:10.1038/s41598-024-58375-2.

378. Feng, K.; Ge, Y.; Chen, Z.; Li, X.; Liu, Z.; Li, H.; Tang, T.; Yang, F.; Wang, X. Curcumin Inhibits the PERK-eIF2. *Oxid Med Cell Longev* **2019**, *2019*, 8574386, doi:10.1155/2019/8574386.

379. Qiu, B.; Xu, X.; Yi, P.; Hao, Y. Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the miR-124/NF- κ B and miR-143/ROCK1/TLR9 signalling pathways. *J Cell Mol Med* **2020**, *24*, 10855-10865, doi:10.1111/jcmm.15714.

380. Wang, X.; Li, X.; Zhou, J.; Lei, Z.; Yang, X. Fisetin suppresses chondrocyte senescence and attenuates osteoarthritis progression by targeting sirtuin 6. *Chem Biol Interact* **2024**, *390*, 110890, doi:10.1016/j.cbi.2024.110890.

381. Zhi, L.Q.; Yao, S.X.; Liu, H.L.; Li, M.; Duan, N.; Ma, J.B. Hydroxytyrosol inhibits the inflammatory response of osteoarthritis chondrocytes via SIRT6-mediated autophagy. *Mol Med Rep* **2018**, *17*, 4035-4042, doi:10.3892/mmr.2017.8353.

382. Ruan, H.; Zhu, T.; Wang, T.; Guo, Y.; Liu, Y.; Zheng, J. Quercetin Modulates Ferroptosis via the SIRT1/Nrf-2/HO-1 Pathway and Attenuates Cartilage Destruction in an Osteoarthritis Rat Model. *Int J Mol Sci* **2024**, *25*, doi:10.3390/ijms25137461.

383. Feng, K.; Chen, Z.; Pengcheng, L.; Zhang, S.; Wang, X. Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. *J Cell Physiol* **2019**, *234*, 18192-18205, doi:10.1002/jcp.28452.

384. Qiu, L.; Luo, Y.; Chen, X. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats. *Biomed Pharmacother* **2018**, *103*, 1585-1591, doi:10.1016/j.bioph.2018.05.003.

385. Liang, C.; Xing, H.; Wang, C.; Xu, X.; Hao, Y.; Qiu, B. Resveratrol protection against IL-1 β -induced chondrocyte damage via the SIRT1/FOXO1 signaling pathway. *J Orthop Surg Res* **2022**, *17*, 406, doi:10.1186/s13018-022-03306-y.

386. Zhang, G.; Zhang, H.; You, W.; Tang, X.; Li, X.; Gong, Z. Therapeutic effect of Resveratrol in the treatment of osteoarthritis via the MALAT1/miR-9/NF- κ B signaling pathway. *Exp Ther Med* **2020**, *19*, 2343-2352, doi:10.3892/etm.2020.8471.

387. Lei, M.; Wang, J.G.; Xiao, D.M.; Fan, M.; Wang, D.P.; Xiong, J.Y.; Chen, Y.; Ding, Y.; Liu, S.L. Resveratrol inhibits interleukin 1 β -mediated inducible nitric oxide synthase expression in articular chondrocytes by activating SIRT1 and thereby suppressing nuclear factor- κ B activity. *Eur J Pharmacol* **2012**, *674*, 73-79, doi:10.1016/j.ejphar.2011.10.015.

388. Yan, M.; Zhang, D.; Yang, M. Saikosaponin D alleviates inflammatory response of osteoarthritis and mediates autophagy via elevating microRNA-199-3p to target transcription Factor-4. *J Orthop Surg Res* **2024**, *19*, 151, doi:10.1186/s13018-024-04607-0.

389. Dong, H.C.; Li, P.N.; Chen, C.J.; Xu, X.; Zhang, H.; Liu, G.; Zheng, L.J.; Li, P. Sinomenine Attenuates Cartilage Degeneration by Regulating miR-223-3p/NLRP3 Inflammasome Signaling. *Inflammation* **2019**, *42*, 1265-1275, doi:10.1007/s10753-019-00986-3.

390. Li, X.; Zhang, Z.; Liang, W.; Zeng, J.; Shao, X.; Xu, L.; Jia, L.; He, X.; Li, H.; Zheng, C., et al. Tougu Xiaotong capsules may inhibit p38 MAPK pathway-mediated inflammation: In vivo and in vitro verification. *J Ethnopharmacol* **2020**, *249*, 112390, doi:10.1016/j.jep.2019.112390.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.