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Abstract 

In previous work we have used the computer program AmyloGram to assess the amyloidogenic 

potential of proteins observed using mass spectrometry-based proteomics in thrombi extracted from 

individuals who had suffered an ischaemic stroke. As anticipated from our experimental observation 

of substantial amounts of amyloid in such clots, the AmyloGram scores were very high and entirely 

consistent with the amyloid nature of such thrombi. We here apply a similar strategy to assess the 

amyloidogenic nature of proteins in thrombi removed from venous thromboembolisms including 

pulmonary embolisms, similarly finding very high AmyloGram scores. The same is true for 

atherosclerotic plaques as determined from multiple studies in which the data were readily available. 

Amyloidogenesis is a specific activity or subset of a class of proteins known to adopt very different 

macrostates, in which amyloidogenesis to create insoluble fibrils is more or less irreversible. Another 

subset of multi-state proteins, whose conformational interchanges are much more reversible, 

involves what are referred to as ‘fold-switching’ or ‘metamorphic’ proteins’. We here use 

AmyloGram to analyse the amyloidogenic potential of these too, finding that while some are highly 

amyloidogenic their amyloidogenic potential is considerably more heterogeneous and little different 

from that of the overall proteome within Uniprot.  

Keywords: amyloid; fibrinaloid; proteomics; inflammation; amyloidogenic sequences; embolism; 

atherosclerosis 

 

Introduction 

Following our discovery that blood can clot into an anomalous amyloid form [1, 2] to produce 

what we and others refer to as fibrinaloid microclots [3-17], we have more recently discovered 

experimentally that the macroclots retrieved from ischaemic stroke are also amyloid in nature [10, 

18].  

Among the conventional pathogenic amyloidoses [19-22], it is well known that amyloidogenic 

cross-seeding can be occurring [23-28]. This has led (i) to the recognition that this is also occurring in 

the microclots (as reflected in the complex proteomes so observed [15, 29-31]) and (ii) to predictions 

that this would also be true in macroclots [16]. 

A variety of computational programs exist for predicting the amyloidogenicity of a protein 

(summarised in [32] and in Table 1 of [15]), and we recently used one of these, AmyloGram [33, 34], 
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to predict the amyloidogenicity of proteins observed in a variety of ischaemic stroke thrombi [35]. In 

that work [35], we ‘calibrated’ the system with proteins annotated by humans at Uniprot, where (with 

a generous margin) every one of these had an AmyloGram score exceeding 0.7 (as did 79% of all 

human polypeptides). Specifically, of the 83,567 proteins that were analysed, 66,190 (79.2%) had 

AmyloGram scores exceeding 0.7, while 45,169 (54.1%) exceeded 0.8 and 7409 (8.9%) were above 0.9. 

The implication was that any thrombus with a higher percentage than 0.7 (or a much higher median 

AmyloGram score) could or would effectively be enriched in amyloidogenic proteins, and this turned 

out very much to be the case [35], consistent with the experimental observations [10, 18]. 

As well as thrombi retrieved from ischaemic stroke, we also predicted that a variety of other 

thrombi, for which experimental proteomic data existed, including those from venous 

thromboembolisms including pulmonary embolism and deep vein thrombosis, and various cardiac 

issues, would also be amyloid in nature, though we did not test this with AmyloGram [16]. The 

purpose of the present work is, where the data are available in a suitable format, precisely to perform 

those analyses. We conclude that in all cases where proteomic data are available the thrombi are, like 

those from ischaemic stroke, expected to be amyloid in nature.  

Materials and Methods 

Just as with our previous endeavour [35] this work uses the online 

http://biongram.biotech.uni.wroc.pl/AmyloGram/ or R-based versions of AmyloGram (see 

https://github.com/michbur/AmyloGram or https://cran.r-

project.org/web/packages/AmyloGram/index.html) to determine the AmyloGram scores; protein 

identification data are given in the original publications cited, or in Tables here. 

Results 

Venous Thromboembolism 

In the case of thrombi removed from individuals following a venous thromboembolism, we 

identified the 18 proteins given in the data from Stachowicz and colleagues (their Table 1, that 

included concentrations) [36], and ran the list on the AmyloGram server, with the results shown in 

Figure 1. With one exception, each scores above 0.7, with a median score exceeding 0.86, strongly 

implying that these clots are amyloid in nature. 

Protein 

IDs 
 Protein names  Gene names 

AmyloGram 
score 

 Average 
concn 

(nmol/g) 
P08697  Alpha-2-antiplasmin  SERPINF2 0.8627 39.2436 
P01023  Alpha-2-macroglobulin  A2M 0.8508 16.1977 
P01008  Antithrombin-III  SERPINC1 0.8661 1.6678 
P02749  Beta-2-glycoprotein 1  APOH 0.7307 0.1782 
P00740  Coagulation factor IX  F9 0.9176 0.004 
P12259  Coagulation factor V  F5 0.888 0.0125 
P00451  Coagulation factor VIII  F8 0.8902 0.0005 
P00748  Coagulation factor XII  F12 0.0135 0.8451 0.0135 

P00488 
 Coagulation factor XIII A 

chain 
 F13A1 0.8898 13.554 

P05160 
 Coagulation factor XIII B 

chain 
 F13B 0.8811 0.0347 

P02671  Fibrinogen alpha chain  FGA 0.8276 303.171 
P02675  Fibrinogen beta chain  FGB 0.8627 377.274 
P02679  Fibrinogen gamma chain  FGG 0.9222 324.323 
P02751  Fibronectin  FN1 0.9176 62.3088 
P00747  Plasminogen  PLG 0.8755 2.8753 
P00734  Prothrombin  F2 0.7237 2.348 
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P04004  Vitronectin  VTN 0.8475 1.3471 
P04275  von Willebrand factor  VWF 0.9176 0.2985 

Figure 1. AmyloGram scores of 18 proteins given in the data from Stachowicz and colleagues [36] (their Table 1) 

that included concentrations in the thrombi. The colour scale reflects the AmyloGram score. 

Pulmonary Embolism 

The data we used for these studies came from a study of Bryk and colleagues [37], whose Table 

(their Supplementary Information Table S1) contained 198 polypeptides that were both in thrombi 

retrieved following a pulmonary embolism and were also differentially expressed relative to controls 

(normal clots more-or-less reflect the standard plasma proteome [15]). Six proteins (SERPINA1, 

IGKC;IGKV1-8, IGHM, IGLL5, IGHG3, SRRM1) would not run with the R code for some reason and 

were added via the Web server at http://biongram.biotech.uni.wroc.pl/AmyloGram/. The data are 

illustrated in Figure 2, where it may be observed that 190/198 have AmyloGram scores exceeding 0.7, 

148/198 exceeding 0.8, 108 exceeding 0.85, and 22 (labelled in Fig 2) exceeding 0.9. The highest 

AmyloGram score is held by the human telomerase reverse transcriptase TERT (Uniprot O14746) 

with a value of 0.956. Again it is very clear that the amyloidogenicity of proteins enriched in the clots 

taken following a pulmonary embolism are very much greater than the average, a finding consistent 

with recent studies from other thrombi [10, 15, 16, 18, 35] and – since insoluble amyloids are well 

known to be much more refractory to proteolysis than are soluble proteins – one that plausibly 

underpins their resistance to fibrinolysis. 

 

Figure 2. AmyloGram scores for 198 polypeptides that were both found in thrombi retrieved following a 

pulmonary embolism and were also differentially expressed relative to those of control clots. Those 22 with an 

AmyloGram score exceeding 0.9 are labelled. 

Atherosclerosis and Acute Myocardial Infarction 

Lipoprotein proteomes have been reviewed by [38]. However, our interest here is in 

atherosclerotic plaques, whose proteomes have been studied by several groups [38-51], with some 

papers providing more easily accessible/analysable data than others.  

Langley and colleagues [43] sought biomarkers of high-risk atherosclerotic plaques, and 

identified a 4-biomarker signature (matrix metalloproteinase 9, S100A8/S100A9 (calprotectin), 

cathepsin D, and galectin-3-binding protein). Their AmyloGram scores are respectively 0.9148, 0.7768 
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(for S100A8), 0.7941, and 0.8661. Clearly, each is highly amyloidogenic, and we previously 

highlighted galectin-3-binding protein (LG3BP, Uniprot Q08380) [16] as being a major player in 

essentially every kind of persistent thrombus.  

Rocchiccioli and colleagues [52] found 31 proteins that were differentially secreted from 

atherosclerotic plaques. ELISA assays of plasma samples confirmed a significantly higher 

concentration of thrombospondin-1 and vitamin D binding protein in atherosclerotic subjects; as with 

LG3BP above, we had previously highlighted thrombospondin-1 as being a major player in 

essentially every kind of persistent thrombus [16], not least as it has long been known [53-55] that it 

is actually incorporated into fibrin during thrombus formation. 

Theofilatos and colleagues [46] also determined a 4-protein atherosclerotic plaque signature for 

high-risk cardiovascular mortality, consisting of calponin-1 (Uniprot P51911), Vitamin K-dependent 

protein C (Uniprot P04070), serpin H1 (Uniprot P50454), and versican (Uniprot P13611). Their 

AmyloGram scores are, respectively, 0.6934, 0.9148, 0.8789, and 0.8627. 

Alonso-Orgaz and colleagues [42] assessed the proteome of the human coronary thrombus in 

patients with ST-segment elevation acute myocardial infarction, using means of three different 

approaches involving a separation step followed by mass spectrometry. 46 proteins could be 

identified using all three methods [42], and these are illustrated in Figure 3. All 46 have an 

AmyloGram score exceeding 0.7, 35 have scores that exceed 0.8, while 29 (labelled in the Figure) 

exceed more than 0.85, and three exceed 0.9. The median value (between proteins scoring 0.856 and 

0.863) is 0.86. Interestingly, talin-1, with a score of 0.851 is among them and is a known amyloidogen 

[56]. Obviously these are again very high scores, serving to underline the fact that such thrombi are 

likely to be amyloid in nature, and this recognition adds a major means of explaining why they are 

so resistant to proteolysis. Amyloid deposition in the thrombus associated with cardiac amyloidosis 

is of course known [57], and (although seemingly not widely recognised) amyloid deposition is in 

fact an established feature of atherosclerotic plaques [58-63], so in one sense the high AmyloGram 

scores here are unsurprising. 

  

Figure 3. AmyloGram scores of proteins in the proteome of the human coronary thrombus in patients with ST-

segment elevation acute myocardial infarction. 46 proteins were found present in each case when assessed with 

three different separation/mass spectrometric methods. Data taken from the Supplementary information 

provided with reference [42]. 
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Wang and colleagues [51] identified 11 proteins associated with coronary atherosclerosis (Their 

Table 1), and their AmyloGram scores are given in Figure 4. Every single entry has an AmyloGram 

score exceeding 0.75.  

Protein UniProt Length/ residues AmyloGram 
Score 

PCSK9 Q8NBP7 692 0.7906 
CELSR2 Q9HCU4 2923 0.8898 

APOE P02649 317 0.8349 
LPA P08519 2040 0.874 
IL6R P08887 468 0.8776 
FN1 P02751 2477 0.9176 

APOA5 Q6Q788 366 0.7995 
AGER Q15109 404 0.9322 
CD4 P01730 458 0.9113 

TGFB1 P01137 390 0.8021 
SPARCL1 Q14515 664 0.7515 

Figure 4. 11 proteins identified by Wang and colleagues (Table 1 of [51]) as being associated with coronary 

atherosclerosis. The colouring reflects the AmyloGram score. 

Hansmeier et al. [64] identified 20 proteins that were raised in atherosclerotic plaques (their 

Supplementary Table S3), and these are tabulated, along with their AmyloGram scores and lengths, 

in Figure 5. All proteins again have AmyloGram scores exceeding 0.7, many being considerably 

greater. 

Name Gene Uniprot 
Length/ 

Residues 
AmyloGra
m Score 

Complement C1q 
subcomponent subunit B  C1QB  A0A0A0MSV6 228 0.7546 

Asporin  ASPN  Q9BXN1 380 0.7915 
Vitronectin  VTN  P04004 478 0.8475 

Insulin-like growth factor-
binding protein 7  IGFBP7  Q16270 282 0.7643 

Serum amyloid P-component  APCS  P02743 223 0.9148 

Alpha-1-antichymotrypsin  
SERPINA3 P01011 423 0.8627 

Pigment epithelium-derived 
factor 

 
SERPINF1  P36955 418 0.8627 

Tetranectin  CLEC3B  P05452 202 0.7225 
Apolipoprotein A-IV  APOA4  P06727 396 0.7249 
Complement C1q 

subcomponent subunit C  C1QC  P02747 245 0.7792 

Plasminogen  PLG  P00747 810 0.8755 
Cysteine and glycine-rich 

protein 2  CSRP2  Q16527 193 0.8074 

Alpha-1-antitrypsin  
SERPINA1  P01009 418 0.802 

Vitamin D-binding protein  GC  P02774 474 0.8988 
Biglycan  BGN  P21810 368 0.8452 
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Antithrombin-III 
 

SERPINC
1 

 P01008 464 0.8661 

Glutathione S-transferase 
omega-1  GSTO1  P78417 241 0.9132 

Lumican  LUM  P51884  338 0.8096 
Kininogen-1  KNG1  P01042  644 0.8559 

Beta-2-glycoprotein 1  APOH P02749 345 0.7307 

Figure 5. 20 proteins that were raised in atherosclerotic plaques (Supplementary Table S3 of [64]) and their 

AmyloGram scores. 

The data from the 2025 study of Lorentzen and colleagues [49] (their Supplementary Information 

Table S2, provided there as an Excel sheet, with 128 peptides and 83 unique proteins) analysed 

proteins in atherosclerotic plaque from the perspective of their ease of degradation/ plaque stability 

or otherwise, though our interest here is simply which proteins were present and their AmyloGram 

scores. The data are given in Figure 6. All but 5 proteins (some represented by multiple peptides) 

have AmyloGram scores exceeding 0.7.  

 

Figure 6. 83 proteins enriched differentially in atherosclerotic plaque from the perspective of their ease of 

degradation/ plaque stability. Protein identification data are obtained from Supplementary Table S2 of a study 

of Lorentzen and colleagues [49]. Again almost all have an AmyloGram score in excess of 0.7. 

Aragonès and colleagues [40] compared the proteome of carotid atherosclerotic plaque and non-

diseased mammary artery; 25 proteins showed statistically significant differences. Their median 

AmyloGram score is 0.845, and they are listed, along with their AmyloGram scores, in Figure 7. 

Uniprot Protein Gene Length/ 
residues 

AmyloGram 
Score 

P51911 Calponin-1 CNN1 297 0.6943 
P09493 Tropomyosin α-1 chain TPM1 284 0.699 

Page
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P00325 
All-trans-retinol 

dehydrogenase (NAD(+)) 
ADH1B 

ADH1B 375 0.7872 

Q01995 Transgelin TAGLN 201 0.8836 
P07951 Tropomyosin beta chain TPM2 284 0.5363 
P21333 Filamin-A FLNA 2647 0.8898 

P30086 Phosphatidylethanolamine-
binding protein 1 (RKIP) PEBP1 187 0.9176 

P63267 Actin, gamma-enteric smooth 
muscle ACTG2 376 0.7797 

P18206 Vinculin VCL 1,134 0.8627 
P08670 Vimentin VIM 466 0.7466 
O43707 Alpha-actinin-4 ACTN4 911 0.8195 
P12814 Alpha-actinin-1 ACTN1 892* 0.8755 

P08107 Heat shock 70 kDa protein 
1A/1B 

HSPA1A / 
HSPA1B 641 0.8508 

P04075 Fructose-bisphosphate 
aldolase A ALDOA 364 0.7532 

P00915 Carbonic anhydrase 1 CA1 259 0.8887 
P32119 Peroxiredoxin-2 PRDX2 198 0.8313 

P40925 
Malate dehydrogenase, 

cytoplasmic MDH1 334 0.9113 

P04264 Keratin, type II cytoskeletal 1 
(epidermal) 

KRT1 644 0.8627 

P08294 Extracellular superoxide 
dismutase (Cu-Zn) SOD3 240 0.8146 

Q9Y490 Talin-1 TLN1 2,541 0.8508 

P59665 
Neutrophil defensin 1 

(Defensin alpha-1) 
DEFA1 / 
DEFA1B 94 0.8451 

P01766 Immunoglobulin heavy 
variable 3-13 IGHV3-13 116 0.7645 

P02649 Apolipoprotein E APOE 317 0.8349 

P10909 Clusterin (Clusterin 
precursor) CLU 449 0.872 

P25311 
Zinc-alpha-2-glycoprotein 

(precursor) AZGP1 298 0.8661 

Figure 7. 25 proteins that were raised in the proteome of carotid atherosclerotic plaque relative to non-diseased 

mammary artery [40], along with their Amyogram scores (that are also encoded in colour). 

Overall, there is a high enrichment of amyloidogenic proteins in each of the eight studies of 

atheromatous plaques as reviewed here.  

Fold-Switching Proteins 

Amyloidogenic proteins, including prions, clearly represent a set of proteins that can exist in 

multiple stable macrostates under a given set of conditions. The usual form or conformational 

ensemble, as synthesised at the ribosome, commonly has abundant -helices whereas the amyloid 

forms are much richer in -sheets, specifically the crossed- structure [65-70], that is the characteristic 

of amyloid and the one to which fluorogenic stains such as thioflavin T bind [71-74]. While the 

amyloid form is significantly more stable thermodynamically (amyloidogenesis, involving accretion 
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of multiple molecules leading to insoluble fibril formation, is essentially irreversible), the two forms 

are separated via a substantial energy barrier of some 36 kJ.mol-1 [75-80]. 

It has long been known that the same peptide sequences can adopt quite different conformations 

in different proteins [81-84](and, for that matter, that similar conformations can have very different 

dynamics [85, 86]). In particular, this ability to adopt multiple stable conformations or macrostates, 

usually referred to as polymorphs [4, 78, 87-113], is very much true of amyloids. Equally, there is a 

more general class of proteins that can adopt multiple macrostates, in this case often often – but not 

always – reversibly. These macrostates or conformations probably have different evolutionarily 

selected functions, and proteins exhibiting this are known as fold-switching [114-128] or 

metamorphic [117, 129-141] proteins. Some 6% are known to be fibril-forming [120], and the question 

thus arose as to whether these might also have a tendency to be more amyloidogenic.  

A list of fold-switching proteins (see [122]) was kindly provided by Dr Lauren Porter. It is based 

on PDB references, some of which are different 3D structures of the same protein, and we have cut 

this down to provide one representative of each as per Table S1 of the Supplementary Information. 

This leaves 121 examples, and their AmyloGram scores and lengths are plotted in Figure 8. 

 

Figure 8. AmyloGram scores of 121 fold-switching proteins. Those six with an AmyloGram score exceeding 0.9 

are marked in blue. 95 of the 121 have an AmyloGram score exceeding 0.7. 

For context, the median AmyloGram score of the 204 proteins labelled at Uniprot as amyloid 

(following human analysis) was 0.88, while the median score for all human proteins was 0.81 [35]. 

The median score for fold-switching proteins was 0.81, meaning that in general they did not tend 

overall to be unusually amyloidogenic or otherwise. This is reasonable, as fold-switching is based on 

a relatively short subsequence (‘fold-switching regions’) of the protein of interest [118, 142]. This said, 

the distribution of overall AmyloGram scores is significantly heterogeneous, since some of them, with 

AmyloGram scores in excess of 0.9, such as the well-known amyloidogenic proteins amylin (islet 

amyloid polypeptide) [143-145] and 2microglobulin [146-148], certainly are amyloid in nature, while 

complement C3 seems to be involved in cross-seeding and thus guilty by association [149-151]. HIV 

reverse transcriptase is also of interest, as it has been implicated in amyloidogenesis as part of 

Alzheimer’s dementia [152]. The numbers (out of 121) of polypeptides with AmyloGram scores 

exceeding 0.7, 0.75, 0.8, 0.85 and 0.9 are, respectively, 95, 83, 64, 35 and 6.  

Discussion 

Page
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The amyloidogenic clotting of blood to make fibrinaloid microclots (commonly with an 

equivalent diameter of 2-200 m) is now well established, and has been described in dozens of papers 

from multiple laboratories (e.g. [1-17, 31, 153-156]). More recently, it was established that the 

macroclots (of over 1 mm diameter) that can be thrombectomised following an ischaemic stroke are 

also amyloid in character [10, 18], and there is also evidence that amyloid is a feature of atherosclerotic 

plaques [60-63]. Cross seeding, in which an amyloid protein induces amyloid formation in other 

amyloidogenic proteins that can then become part of the same fibril, is also commonplace [15, 23-25, 

27, 28, 109, 157-182], as are amyloid-nucleic acid interactions [183-188]. 

Consequently, one can predict (correctly) that insoluble amyloid structures will tend to 

accumulate preferentially those proteins that are themselves more amyloidogenic than normal [15, 

16]. In a recent study [35] we used the amyloid prediction program AmyloGram [33, 34] to assess this 

for the proteome of macroclots extracted following an ischaemic stroke, finding that the AmyloGram 

scores for the proteins in the stroke thrombus proteome (as measured by a number of groups) were 

indeed noticeably greater than the average for proteins [35].  

The purpose of the present study was to assess this kind of phenomenon for macroclots taken 

from other diseases, such as venous thromboembolism and pulmonary embolism, and also for the 

many examples in which the proteome of insoluble atherosclerotic plaques had been analysed. The 

conclusion from the analyses above was again that in all cases the proteomes displayed a very strong 

tendency towards amyloidogenicity, consistent with self-seeding and providing a ready explanation 

both for why they are insoluble and – since amyloids are notoriously resistant to proteolysis (e.g. [70, 

189-193]) – for why the thrombi are rather resistant to the normal mechanisms of fibrinolysis. 

There are no necessary changes in the primary sequence of proteins following their amyloid 

formation; notwithstanding, amyloids can form multiple, stable variants known as polymorphs, and 

the insolubilisation of amyloids when they form fibrils is thermodynamically more-or-less 

irreversible. However, another class of proteins that can switch conformation dramatically but 

reversibly, including from -helices to -sheets, are referred to as fold-switching or metamorphic 

proteins. It was thus of interest to assess whether or not these too tended to be unusually 

amyloidogenic. The answer is that while some examples such as amylin and 2microglobulin are 

indeed highly amyloidogenic, the median amyloidogenicity as reflected in their overall AmyloGram 

score was more or less identical to that of the proteins in Uniprot. Since it is recognised that relatively 

short subsequences of amino acids are actually responsible for the fold switching, this is possibly not 

surprising, but it was worth assessing. 

Conclusion 

Having established the fact that the AmyloGram scores of proteins embedded in the thrombi 

extracted following an ischaemic stroke are sufficient to predict that they are highly amyloidogenic 

[35], as they are experimentally [10, 18], it was of interest to assess the amyloidogenic potential in 

thrombi from other thrombi such as those involving venous thromboembolisms [16]. In every case it 

was found that the proteomes of these thrombi involved highly amyloidogenic proteins. The same 

was true in a series of studies of atherosclerotic plaques. Given that the simple presence of these 

plaques and thrombi indicates clearly (by definition) that they are resistant to the normal methods of 

fibrinolysis, it is clear that novel means will be required to effect their removal. This provides exciting 

opportunities. 
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