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Abstract

In previous work we have used the computer program AmyloGram to assess the amyloidogenic
potential of proteins observed using mass spectrometry-based proteomics in thrombi extracted from
individuals who had suffered an ischaemic stroke. As anticipated from our experimental observation
of substantial amounts of amyloid in such clots, the AmyloGram scores were very high and entirely
consistent with the amyloid nature of such thrombi. We here apply a similar strategy to assess the
amyloidogenic nature of proteins in thrombi removed from venous thromboembolisms including
pulmonary embolisms, similarly finding very high AmyloGram scores. The same is true for
atherosclerotic plaques as determined from multiple studies in which the data were readily available.
Amyloidogenesis is a specific activity or subset of a class of proteins known to adopt very different
macrostates, in which amyloidogenesis to create insoluble fibrils is more or less irreversible. Another
subset of multi-state proteins, whose conformational interchanges are much more reversible,
involves what are referred to as ‘fold-switching’ or ‘metamorphic’ proteins’. We here use
AmyloGram to analyse the amyloidogenic potential of these too, finding that while some are highly
amyloidogenic their amyloidogenic potential is considerably more heterogeneous and little different
from that of the overall proteome within Uniprot.

Keywords: amyloid; fibrinaloid; proteomics; inflammation; amyloidogenic sequences; embolism;
atherosclerosis

Introduction

Following our discovery that blood can clot into an anomalous amyloid form [1, 2] to produce
what we and others refer to as fibrinaloid microclots [3-17], we have more recently discovered
experimentally that the macroclots retrieved from ischaemic stroke are also amyloid in nature [10,
18].

Among the conventional pathogenic amyloidoses [19-22], it is well known that amyloidogenic
cross-seeding can be occurring [23-28]. This has led (i) to the recognition that this is also occurring in
the microclots (as reflected in the complex proteomes so observed [15, 29-31]) and (ii) to predictions
that this would also be true in macroclots [16].

A variety of computational programs exist for predicting the amyloidogenicity of a protein
(summarised in [32] and in Table 1 of [15]), and we recently used one of these, AmyloGram [33, 34],
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to predict the amyloidogenicity of proteins observed in a variety of ischaemic stroke thrombi [35]. In
that work [35], we ‘calibrated’ the system with proteins annotated by humans at Uniprot, where (with
a generous margin) every one of these had an AmyloGram score exceeding 0.7 (as did 79% of all
human polypeptides). Specifically, of the 83,567 proteins that were analysed, 66,190 (79.2%) had
AmyloGram scores exceeding 0.7, while 45,169 (54.1%) exceeded 0.8 and 7409 (8.9%) were above 0.9.
The implication was that any thrombus with a higher percentage than 0.7 (or a much higher median
AmyloGram score) could or would effectively be enriched in amyloidogenic proteins, and this turned
out very much to be the case [35], consistent with the experimental observations [10, 18].

As well as thrombi retrieved from ischaemic stroke, we also predicted that a variety of other
thrombi, for which experimental proteomic data existed, including those from venous
thromboembolisms including pulmonary embolism and deep vein thrombosis, and various cardiac
issues, would also be amyloid in nature, though we did not test this with AmyloGram [16]. The
purpose of the present work is, where the data are available in a suitable format, precisely to perform
those analyses. We conclude that in all cases where proteomic data are available the thrombi are, like
those from ischaemic stroke, expected to be amyloid in nature.

Materials and Methods

Just as with our previous endeavour [35] this work wuses the online
http://biongram.biotech.uni.wroc.pl/AmyloGram/ or R-based versions of AmyloGram (see
https://github.com/michbur/AmyloGram or https://cran.r-
project.org/web/packages/AmyloGram/index.html) to determine the AmyloGram scores; protein
identification data are given in the original publications cited, or in Tables here.

Results
Venous Thromboembolism

In the case of thrombi removed from individuals following a venous thromboembolism, we
identified the 18 proteins given in the data from Stachowicz and colleagues (their Table 1, that
included concentrations) [36], and ran the list on the AmyloGram server, with the results shown in
Figure 1. With one exception, each scores above 0.7, with a median score exceeding 0.86, strongly
implying that these clots are amyloid in nature.

Protein . AmyloGram Average
Ds Protein names Gene names score concn
(nmol/g)
P08697 Alpha-2-antiplasmin SERPINF2 0.8627 39.2436
P01023 Alpha-2-macroglobulin A2M 0.8508 16.1977
P01008 Antithrombin-IlI SERPINCA1 0.8661 1.6678
P02749 Beta-2-glycoprotein 1 APOH 0.7307 0.1782
P00740 Coagulation factor IX F9 0.9176 0.004
P12259 Coagulation factor V F5 0.888 0.0125
P00451 Coagulation factor VI F8 0.8902 0.0005
P00748 Coagulation factor XII F12 0.0135 0.8451 0.0135
Poo4gg ~ Coagulation factor XIILA F13A1 0.8898  13.554
P05160 Coagu'at':h”aifﬁcmr Xiie F13B 0.8811 0.0347
P02671 Fibrinogen alpha chain FGA 0.8276 303.171
P02675 Fibrinogen beta chain FGB 0.8627 377.274
P02679  Fibrinogen gamma chain FGG 09222 | 324.323
P02751 Fibronectin FN1 0.9176 62.3088
P00747 Plasminogen PLG 0.8755 2.8753
P00734 Prothrombin F2 0.7237 2.348

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1049.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2025 d0i:10.20944/preprints202508.1049.v1

3 of 21

P04004 Vitronectin VTN 0.8475 1.3471
P04275 von Willebrand factor VWF I 09176 | 0.2985

Figure 1. AmyloGram scores of 18 proteins given in the data from Stachowicz and colleagues [36] (their Table 1)

that included concentrations in the thrombi. The colour scale reflects the AmyloGram score.

Pulmonary Embolism

The data we used for these studies came from a study of Bryk and colleagues [37], whose Table
(their Supplementary Information Table S1) contained 198 polypeptides that were both in thrombi
retrieved following a pulmonary embolism and were also differentially expressed relative to controls
(normal clots more-or-less reflect the standard plasma proteome [15]). Six proteins (SERPINA1,
IGKC;IGKV1-8, IGHM, IGLL5, IGHG3, SRRM1) would not run with the R code for some reason and
were added via the Web server at http://biongram.biotech.uni.wroc.pl/AmyloGram/. The data are
illustrated in Figure 2, where it may be observed that 190/198 have AmyloGram scores exceeding 0.7,
148/198 exceeding 0.8, 108 exceeding 0.85, and 22 (labelled in Fig 2) exceeding 0.9. The highest
AmyloGram score is held by the human telomerase reverse transcriptase TERT (Uniprot 014746)
with a value of 0.956. Again it is very clear that the amyloidogenicity of proteins enriched in the clots
taken following a pulmonary embolism are very much greater than the average, a finding consistent
with recent studies from other thrombi [10, 15, 16, 18, 35] and — since insoluble amyloids are well
known to be much more refractory to proteolysis than are soluble proteins — one that plausibly
underpins their resistance to fibrinolysis.

AmyloGram score
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Figure 2. AmyloGram scores for 198 polypeptides that were both found in thrombi retrieved following a
pulmonary embolism and were also differentially expressed relative to those of control clots. Those 22 with an

AmyloGram score exceeding 0.9 are labelled.

Atherosclerosis and Acute Myocardial Infarction

Lipoprotein proteomes have been reviewed by [38]. However, our interest here is in
atherosclerotic plaques, whose proteomes have been studied by several groups [38-51], with some
papers providing more easily accessible/analysable data than others.

Langley and colleagues [43] sought biomarkers of high-risk atherosclerotic plaques, and
identified a 4-biomarker signature (matrix metalloproteinase 9, S100A8/S100A9 (calprotectin),
cathepsin D, and galectin-3-binding protein). Their AmyloGram scores are respectively 0.9148, 0.7768
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(for S100A8), 0.7941, and 0.8661. Clearly, each is highly amyloidogenic, and we previously
highlighted galectin-3-binding protein (LG3BP, Uniprot Q08380) [16] as being a major player in
essentially every kind of persistent thrombus.

Rocchiccioli and colleagues [52] found 31 proteins that were differentially secreted from
atherosclerotic plaques. ELISA assays of plasma samples confirmed a significantly higher
concentration of thrombospondin-1 and vitamin D binding protein in atherosclerotic subjects; as with
LG3BP above, we had previously highlighted thrombospondin-1 as being a major player in
essentially every kind of persistent thrombus [16], not least as it has long been known [53-55] that it
is actually incorporated into fibrin during thrombus formation.

Theofilatos and colleagues [46] also determined a 4-protein atherosclerotic plaque signature for
high-risk cardiovascular mortality, consisting of calponin-1 (Uniprot P51911), Vitamin K-dependent
protein C (Uniprot P04070), serpin H1 (Uniprot P50454), and versican (Uniprot P13611). Their
AmyloGram scores are, respectively, 0.6934, 0.9148, 0.8789, and 0.8627.

Alonso-Orgaz and colleagues [42] assessed the proteome of the human coronary thrombus in
patients with ST-segment elevation acute myocardial infarction, using means of three different
approaches involving a separation step followed by mass spectrometry. 46 proteins could be
identified using all three methods [42], and these are illustrated in Figure 3. All 46 have an
AmyloGram score exceeding 0.7, 35 have scores that exceed 0.8, while 29 (labelled in the Figure)
exceed more than 0.85, and three exceed 0.9. The median value (between proteins scoring 0.856 and
0.863) is 0.86. Interestingly, talin-1, with a score of 0.851 is among them and is a known amyloidogen
[56]. Obviously these are again very high scores, serving to underline the fact that such thrombi are
likely to be amyloid in nature, and this recognition adds a major means of explaining why they are
so resistant to proteolysis. Amyloid deposition in the thrombus associated with cardiac amyloidosis
is of course known [57], and (although seemingly not widely recognised) amyloid deposition is in
fact an established feature of atherosclerotic plaques [58-63], so in one sense the high AmyloGram
scores here are unsurprising.

AmyloGram score
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Figure 3. AmyloGram scores of proteins in the proteome of the human coronary thrombus in patients with ST-
segment elevation acute myocardial infarction. 46 proteins were found present in each case when assessed with
three different separation/mass spectrometric methods. Data taken from the Supplementary information

provided with reference [42].
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Wang and colleagues [51] identified 11 proteins associated with coronary atherosclerosis (Their
Table 1), and their AmyloGram scores are given in Figure 4. Every single entry has an AmyloGram
score exceeding 0.75.

Protein  UniProt Length/ residues AmyloGram

Score
PCSK9  Q8NBP7 692 0.7906
CELSR2 Q9HCU4 2923 0.8898
APOE P02649 317 0.8349
LPA P08519 2040 0.874
IL6R P08887 468 0.8776
FN1 P02751 2477 0.9176
APOA5 (Q6Q788 366 0.7995

AGER Q15109 404 09322
CD4 P01730 458 0.9113
TGFB1 P01137 390 0.8021

SPARCL1 Q14515 664 07515

Figure 4. 11 proteins identified by Wang and colleagues (Table 1 of [51]) as being associated with coronary

atherosclerosis. The colouring reflects the AmyloGram score.

Hansmeier et al. [64] identified 20 proteins that were raised in atherosclerotic plaques (their
Supplementary Table S3), and these are tabulated, along with their AmyloGram scores and lengths,
in Figure 5. All proteins again have AmyloGram scores exceeding 0.7, many being considerably

greater.
Name Gene Uniprot Len.gthl AmyloGra
Residues m Score
ComplementC1q. C1QB  AOAOAOMSVE 228 | 0.7546
subcomponent subunit B
Asporin ASPN Q9BXN1 380 0.7915
Vitronectin VTN P04004 478 0.8475
Insulin-like growth factor-— ~eapy 416970 282 | 0.7643
binding protein 7
Serum amyloid P-component APCS P02743 223 _
Alpha-1-antichymotrypsin SERPINA3 P01011 423 0.8627
Pigment epithelium-derived
factor SERPINF1 P36955 418 0.8627
Tetranectin CLEC3B  P05452 202 | 0.7225 |
Apolipoprotein A-IV APOA4 P06727 396 0.7249
Complement C1q
subcomponent subunit C C1QC P02747 245 0.7792
Plasminogen PLG P00747 810 0.8755
Cysteineand glycine-rich  ~qppy 16527 193 0.8074
protein 2
Alpha-1-antitrypsin SERPINA1 P01009 418 0.802
Vitamin D-binding protein GC P02774 474 0.8988
Biglycan BGN P21810 368 0.8452
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Antithrombin-Ill SERPINC P01008 464 0.8661
1
Glutathione S-transferase GSTO1 P78417 a1 -
omega-1
Lumican LUM P51884 338 0.8096
Kininogen-1 KNG1 P01042 644 0.8559
Beta-2-glycoprotein 1 APOH P02749 345 0.7307

Figure 5. 20 proteins that were raised in atherosclerotic plaques (Supplementary Table S3 of [64]) and their
AmyloGram scores.

The data from the 2025 study of Lorentzen and colleagues [49] (their Supplementary Information
Table S2, provided there as an Excel sheet, with 128 peptides and 83 unique proteins) analysed
proteins in atherosclerotic plaque from the perspective of their ease of degradation/ plaque stability
or otherwise, though our interest here is simply which proteins were present and their AmyloGram
scores. The data are given in Figure 6. All but 5 proteins (some represented by multiple peptides)
have AmyloGram scores exceeding 0.7.

AmyloGram score
0.95

0.9 -
0.85

®
0.8 &
0.75 [ ]
0.7
0.65
0.6
0.55
0.5
0.45
04 @ ®

100 400 1,000 4,000

Length/ residues

Figure 6. 83 proteins enriched differentially in atherosclerotic plaque from the perspective of their ease of
degradation/ plaque stability. Protein identification data are obtained from Supplementary Table S2 of a study
of Lorentzen and colleagues [49]. Again almost all have an AmyloGram score in excess of 0.7.

Aragones and colleagues [40] compared the proteome of carotid atherosclerotic plaque and non-
diseased mammary artery; 25 proteins showed statistically significant differences. Their median
AmyloGram score is 0.845, and they are listed, along with their AmyloGram scores, in Figure 7.

Length/ AmyloGram

Uniprot Protein Gene .
residues Score
P51911 Calponin-1 CNN1 297 0.6943
P09493 Tropomyosin a-1 chain TPM1 284 0.699

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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All-trans-retinol

P00325  dehydrogenase (NAD(+)) ADH1B 375 0.7872
ADH1B

Q01995 Transgelin TAGLN 201 0.8836

P07951 Tropomyosin beta chain TPM2 284 0.5363

P21333 Filamin-A FLNA 2647 0.8898

Phosphatidylethanolamine-
P30086 binding protein 1 (RKIP) PEBP1 187 -
PE3267 Actin, gamma-enteric smooth ACTG2 376 0.7797
muscle

P18206 Vinculin VCL 1,134 0.8627

P08670 Vimentin VIM 466 0.7466

043707 Alpha-actinin-4 ACTN4 911 0.8195

P12814 Alpha-actinin-1 ACTN1 892* 0.8755

Heat shock 70 kDa protein  HSPA1A/

P08107 1A/1B HSPA1B 641 0.8508

poo75 | ructose-bisphosphate ) oy gy 0.7532
aldolase A

P00915 Carbonic anhydrase 1 CAl 259 0.8887

P32119 Peroxiredoxin-2 PRDX2 198 0.8313

paggps ~ lawatedehvdrogenase, -y, gg, 0.9113
cytoplasmic

P04264 Keratin, typg Il cytoskeletal 1 KRT1 644 0.8627
(epidermal)

P08294 Extrgcellular superoxide SOD3 240 0.8146

dismutase (Cu-Zn)
Q9Y490 Talin-1 TLN1 2,541 0.8508
Neutrophil defensin 1 DEFA1/
P59665 (Defensin alpha-1) DEFA1B 94 0.8451
po1766  mmunoglobulinheavy e s 146 0.7645
variable 3-13

P02649 Apolipoprotein E APOE 317 0.8349

P10909 Clusterin (Clusterin CLU 449 0.872
precursor)

pos3yy  Znc-alpha-2-glycoprotein o 0p) ogg 0.8661
(precursor)

Figure 7. 25 proteins that were raised in the proteome of carotid atherosclerotic plaque relative to non-diseased

mammary artery [40], along with their Amyogram scores (that are also encoded in colour).

Overall, there is a high enrichment of amyloidogenic proteins in each of the eight studies of
atheromatous plaques as reviewed here.

Fold-Switching Proteins

Amyloidogenic proteins, including prions, clearly represent a set of proteins that can exist in
multiple stable macrostates under a given set of conditions. The usual form or conformational
ensemble, as synthesised at the ribosome, commonly has abundant a-helices whereas the amyloid
forms are much richer in B-sheets, specifically the crossed- structure [65-70], that is the characteristic
of amyloid and the one to which fluorogenic stains such as thioflavin T bind [71-74]. While the
amyloid form is significantly more stable thermodynamically (amyloidogenesis, involving accretion

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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of multiple molecules leading to insoluble fibril formation, is essentially irreversible), the two forms
are separated via a substantial energy barrier of some 36 kJ.mol! [75-80].

It has long been known that the same peptide sequences can adopt quite different conformations
in different proteins [81-84](and, for that matter, that similar conformations can have very different
dynamics [85, 86]). In particular, this ability to adopt multiple stable conformations or macrostates,
usually referred to as polymorphs [4, 78, 87-113], is very much true of amyloids. Equally, there is a
more general class of proteins that can adopt multiple macrostates, in this case often often — but not
always — reversibly. These macrostates or conformations probably have different evolutionarily
selected functions, and proteins exhibiting this are known as fold-switching [114-128] or
metamorphic [117, 129-141] proteins. Some 6% are known to be fibril-forming [120], and the question
thus arose as to whether these might also have a tendency to be more amyloidogenic.

A list of fold-switching proteins (see [122]) was kindly provided by Dr Lauren Porter. It is based
on PDB references, some of which are different 3D structures of the same protein, and we have cut
this down to provide one representative of each as per Table S1 of the Supplementary Information.
This leaves 121 examples, and their AmyloGram scores and lengths are plotted in Figure 8.

AmyloGram score

IAPP_HUMAN

0.95 @ POL_HV1H2
MD2L1_HUMAN
LAS‘) STRP1 ' :303 TEYTTS
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0.75 e .. . 8 ‘.‘ ® © ®
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0.65 ®
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0.55 o]
°,.°
0.45
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0.35
0.25 g
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Figure 8. AmyloGram scores of 121 fold-switching proteins. Those six with an AmyloGram score exceeding 0.9

are marked in blue. 95 of the 121 have an AmyloGram score exceeding 0.7.

For context, the median AmyloGram score of the 204 proteins labelled at Uniprot as amyloid
(following human analysis) was 0.88, while the median score for all human proteins was 0.81 [35].
The median score for fold-switching proteins was 0.81, meaning that in general they did not tend
overall to be unusually amyloidogenic or otherwise. This is reasonable, as fold-switching is based on
arelatively short subsequence (‘fold-switching regions’) of the protein of interest [118, 142]. This said,
the distribution of overall AmyloGram scores is significantly heterogeneous, since some of them, with
AmyloGram scores in excess of 0.9, such as the well-known amyloidogenic proteins amylin (islet
amyloid polypeptide) [143-145] and Bzmicroglobulin [146-148], certainly are amyloid in nature, while
complement C3 seems to be involved in cross-seeding and thus guilty by association [149-151]. HIV
reverse transcriptase is also of interest, as it has been implicated in amyloidogenesis as part of
Alzheimer’s dementia [152]. The numbers (out of 121) of polypeptides with AmyloGram scores
exceeding 0.7, 0.75, 0.8, 0.85 and 0.9 are, respectively, 95, 83, 64, 35 and 6.

Discussion

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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The amyloidogenic clotting of blood to make fibrinaloid microclots (commonly with an
equivalent diameter of 2-200 pm) is now well established, and has been described in dozens of papers
from multiple laboratories (e.g. [1-17, 31, 153-156]). More recently, it was established that the
macroclots (of over 1 mm diameter) that can be thrombectomised following an ischaemic stroke are
also amyloid in character [10, 18], and there is also evidence that amyloid is a feature of atherosclerotic
plaques [60-63]. Cross seeding, in which an amyloid protein induces amyloid formation in other
amyloidogenic proteins that can then become part of the same fibril, is also commonplace [15, 23-25,
27,28, 109, 157-182], as are amyloid-nucleic acid interactions [183-188].

Consequently, one can predict (correctly) that insoluble amyloid structures will tend to
accumulate preferentially those proteins that are themselves more amyloidogenic than normal [15,
16]. In a recent study [35] we used the amyloid prediction program AmyloGram [33, 34] to assess this
for the proteome of macroclots extracted following an ischaemic stroke, finding that the AmyloGram
scores for the proteins in the stroke thrombus proteome (as measured by a number of groups) were
indeed noticeably greater than the average for proteins [35].

The purpose of the present study was to assess this kind of phenomenon for macroclots taken
from other diseases, such as venous thromboembolism and pulmonary embolism, and also for the
many examples in which the proteome of insoluble atherosclerotic plaques had been analysed. The
conclusion from the analyses above was again that in all cases the proteomes displayed a very strong
tendency towards amyloidogenicity, consistent with self-seeding and providing a ready explanation
both for why they are insoluble and — since amyloids are notoriously resistant to proteolysis (e.g. [70,
189-193]) — for why the thrombi are rather resistant to the normal mechanisms of fibrinolysis.

There are no necessary changes in the primary sequence of proteins following their amyloid
formation; notwithstanding, amyloids can form multiple, stable variants known as polymorphs, and
the insolubilisation of amyloids when they form fibrils is thermodynamically more-or-less
irreversible. However, another class of proteins that can switch conformation dramatically but
reversibly, including from a-helices to B-sheets, are referred to as fold-switching or metamorphic
proteins. It was thus of interest to assess whether or not these too tended to be unusually
amyloidogenic. The answer is that while some examples such as amylin and Bamicroglobulin are
indeed highly amyloidogenic, the median amyloidogenicity as reflected in their overall AmyloGram
score was more or less identical to that of the proteins in Uniprot. Since it is recognised that relatively
short subsequences of amino acids are actually responsible for the fold switching, this is possibly not
surprising, but it was worth assessing.

Conclusion

Having established the fact that the AmyloGram scores of proteins embedded in the thrombi
extracted following an ischaemic stroke are sufficient to predict that they are highly amyloidogenic
[35], as they are experimentally [10, 18], it was of interest to assess the amyloidogenic potential in
thrombi from other thrombi such as those involving venous thromboembolisms [16]. In every case it
was found that the proteomes of these thrombi involved highly amyloidogenic proteins. The same
was true in a series of studies of atherosclerotic plaques. Given that the simple presence of these
plaques and thrombi indicates clearly (by definition) that they are resistant to the normal methods of
fibrinolysis, it is clear that novel means will be required to effect their removal. This provides exciting
opportunities.
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