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Abstract: Machine learning approaches are currently used to understand or model complex physical

systems. In general, a substantial number of samples must be collected to create a model with

reliable results. However, collecting numerous data is often relatively time-consuming or expensive.

Moreover, the problems of industrial interest tend to be more and more complex and depending on a

high number of parameters. High dimensional problems intrinsically involve the need of large data

amount through the curse of dimensionality. That is why, new approaches based on smart sampling

techniques are investigated to minimize the number of samples to be given to train the model,

such as Active Learning methods. Here, we propose a technique based on a combination of Fisher

information matrix and of Sparse Proper Generalized Decomposition that enables the definition of a

new Active Learning informativeness criterion in high dimensions. We provide examples proving the

performances of this technique on a theoretical 5D polynomial function and on an industrial crash

simulation application. The results prove that the proposed strategy over-perform the usual ones.

Keywords: active learning; design of experiments; regression; s-PGD

1. Introduction

In the context of multi-parametric problems where one wants to estimate an output value Y that

depends on multiple input variables, X = (x1, ..., xn) it is usual to resort to Machine Learning [1]. To

do so, an algorithm is trained on a few examples grouped as a training database (Xtraining, Ytraining)

to be able then to make predictions for unknown cases Xtest. The design of the training database

is a main issue because it partly determines the performances of the algorithm (i.e. the further

predictions). However, the generation of training samples if often costly. For instance, it can be really

time-consuming to run simulations or to realize experiments. It can also be relatively expensive

because of the cost of access to servers or machines.

Moreover, as the problems considered nowadays become more and more complex, and depend

on a lot of input parameters, the models need a lot of samples to be trained. This issue is known as

“curse of dimensionality” [2]. Indeed, the volume of the space increases so fast that the data become

sparse and the number of necessary points needed to approximate the space increases too. Therefore,

for these reasons, the samples employed by the algorithm need to be chosen efficiently.

Usually, training database are constructed thanks to the methodology of Design of Experiments [3].

Therefore, another approach has been developed over the past few years with the emergence of Active

Learning [4]. This technique proceeds by iteration and lies on the assumption that, adding at each step

the sample that improves the most the model will increase the performances quickly. Different ways to

evaluate informativeness of a sample regarding a specific model have been investigated. Then, various
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corresponding information criteria have been defined for classification and regression. Nevertheless, a

lot of them failed when it comes to operate in high dimensional settings.

Thus, we aim here to develop an efficient, iterative and automatic method to design a training

set for high dimensional regression problems. To address this issue, a new information criterion from

a combination of the information given by the Fisher matrix [5] with a Sparse Proper Generalized

Decomposition (s-PGD) [6] has been defined. The proposed methodology is described in the Section

2. It will be then tested on two different applications, a polynomial function and a crash simulation

problem. The results obtained are presented in Section 3. Finally, the paper is completed with some

concluding remarks in Section 4.

2. Methodology

To tackle the issue of high dimensional regression problem, a new method for designing training

databases has been defined following the steps of an Active Learning methodology. This method is

based on the combination of the properties from the Fisher information matrix and a Model Order

Reduction method through the use of s-PGD.

2.1. Active Learning

Firstly, various ways to design training databases for Machine Learning problems exist. One of

the most classic ways to build these training databases is to resort to Design of Experiment (DOE)

[3]. Indeed, DOE enables to better organize the tests done in scientific research or industrial studies.

Their objective is to extract the maximum information with a minimum number of experiments and

there are different ways in the literature to construct these plans such as : Full design [7], full factorial

design [8], Plackett-Burman [9], Latin Hypercube Sampling [10]...

However, their major disadvantage is that their conception only depends on the input space

and does not take into consideration the output. Moreover, the number of data needed depends on

the number of dimensions and levels chosen. Thus, it often increases drastically with the number of

dimensions, suffering from the “curse of dimensionality” [2]. That is why, other iterative and automatic

methods have subsequently been developed, like Active Learning methods [4].

The main idea of Active Learning, is sum up in Figure 1. A Machine Learning algorithm will be

able to achieve better performances with few training samples if it can choose the data from which it

will learn. Therefore, the algorithms ask at each step for the real output value associated with a sample

“query” that an external entity named “oracle” must then provide. It stops when the objective had

been reached according to a stopping criterion.

As a result, Active Learning is particularly suitable in many current Machine Learning problems,

where data can be time-consuming or expensive to obtain.

Figure 1. Active Learning detailed methodology.

2.1.1. Scenarios

In Active Learning, there are different scenarios in which the queries can be made. Indeed,

there are different ways to select or take a sample in order to add it to the training database of the

trained model. That is why, a quick overview of the query strategies proposed in the literature will be

presented here.

The three main methods described in the literature and detailed after are: (i) Membership Query

Synthesis [11–13], (ii) Stream-Based Selective Sampling [14], and (iii) Pool-Based Sampling [15].
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(i) Membership Query Synthesis [11]: Here, the model can ask for any sample in the input space,

it can also ask for queries generated de novo rather than for those sampled from an underlying

natural distribution. This method has been particularly effective for problems confined to a finite

domain [12]. Initially developed for classification models, it can also be extended to regression

models [13]. However, this method may leave too much freedom to the algorithm which can be

led to request samples without any physical meaning.
(ii) Stream-Based Selective sampling [14]: Here, the initial assumption is that it is not expensive to

add a sample. Therefore, the model decides for each possible sample whether to add it as training

data. This approach is also called sometimes Stream-Based or Sequential Active Learning because

all the samples are considered one by one and the model chooses for each one whether to kept or

not.
(iii) Pool-Based Sampling [15]: There, a small set L of labelled data and a large set denoted U of

unlabelled available data are considered. The query is then made according to the information

criterion which evaluates the relevance of a sample from the basis U in comparison to the others.

The best sample according to this criterion is then chosen and added to the training set. The

difference with the previous scenario is that the decision regarding a sample is taken individually.

In the Pool-Based the others samples still available are taken into account. This last method is

the most used in real applications.

Next, to assess the relevance of a sample and to be able to apply these scenarios, it is necessary to

quantify the information carried by a sample.

2.1.2. Query strategies

The quantification of the information carried by a sample can also be diverse and has led to the

definition of various query strategies in the literature. The notation x∗A refers to the most informative

sample (i.e. the best or most relevant sample) for each of given method A. The input values are noted

x, the outputs yi range over all possible labelling i, and the model estimation θ.

• Uncertainty Sampling Uncertainty sampling [15–18] considers that the most informative sample is

the one the model is most uncertain to predict correctly. With the entropy definition from [18]

this uncertainty can be written:

x∗US = arg max
x

∑
i

Pθ(yi | x)logPθ(yi | x) (1)

• Query by Committee A committee of models trained on different hypothesis on the base L is

defined C =
{

θ(1), ..., θ(C)
}

. Then, a vote is done and the sample which generates the most

disagreement is selected and added [19]. There are different ways to measure the level of

disagreement and make the final vote. The two most used are: the vote entropy described in [20]

and the Kullback-Leibler (KL) divergence in [21].

• Expected model change For a given model and a given sample, the impact of the sample if added

to the training database L is estimated through a gradient calculation. The sample that induces

the biggest change is here the most relevant and is added to the training [22,23] :

x∗EMC = arg max
x

∑
i

Pθ(yi | x)‖∇lθ({x, yi})‖ (2)

where ∇lθ({x, yi}) is the gradient of the objective function l respectively to the parameters θ

applied to the tuple {x, yi}
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• Variance reduction The most informative sample which will be added to the training set is the one

minimizing the output variance (i.e. minimizing the generalization error) [24]:

x∗VR = arg min
x

< σ2
ŷ >

+x (3)

where < σ2
ŷ >

+x is the estimated mean output variance across the input distribution after the

model has been re-trained on the query x and its corresponding label.

Thanks to theses various definitions of scenarios and queries strategies many methods of active

sampling design can be settled up.

However, most of them don’t work effectively for high dimensional regression. Indeed, lots of

criterion are defined with an euclidean distance ‖xi − xj‖ between xi and xj points of the input space.

In high dimensions the distance between two points is high for any points. Therefore, the criterion has

similar value for each point and can not be used.

2.2. s-PGD equations

On one hand, to deal with high dimensional problems a common solution is to resort to Model

Order Reduction methods (MOR) [25]. These methods allow to reduce the computational complexity

of mathematical models in numerical simulations. Indeed, even if using a reduced basis generates

some loss of generality, it often allows impressive computing time savings. Moreover, if the problem

solution is in the reduced basis, the calculated solution with MOR remains quite precise.

Various algorithms belong to the MOR field such as the Proper Orthogonal Decomposition

(POD) [26], Principal Component Analysis (PCA) [27] ... One of these algorithms is the sparse Proper

Generalized Decomposition (s-PGD) [6,28]. It is the one that will be used in this paper.

If we consider a function f in n dimensions:

f (x1, ..., xn) : Ω ⊂ R
n −→ R (4)

Where x1...xn are the input variables, the s-PGD can be expressed as the following decomposition:

f (x1, ..., xn) ≈ f̃ M(x1, ..., xn) =
M

∑
m=1

n

∏
k=1

Xk
m(xk) (5)

Then, X can be decomposed as :

Xk
m(xk) =

M

∑
j=1

Nk
j,mak

j,m = (N
k
m)

T
a

k
m (6)

Where M stands for the number of terms in the decomposition, Nk
j,m are the set of basis functions

for the corresponding kth dimension and mth mode, and ak
j,m are the coefficients for the corresponding

kth dimension and the mth mode also.

These approximated functions f̃ M are calculated step by step thanks to a greedy algorithm and

the new Mth order term is found using a non-linear solver (Picard or Newton, for instance):

f̃ M =
M−1

∑
m=1

n

∏
k=1

Xk
m(xk) +

n

∏
k=1

Xk
M(xk) (7)

In a Machine Learning framework this approximation allows to make an estimation of the output

values related to an unknown data. Moreover, achieving this is particularly difficult when confronted

with a high-dimensional problem, where the data is sparse and/or scarce. Indeed, the regression

problem described here only guarantees that the minimization is satisfied by the training. Thus, if
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the sampling points in the training set are not numerous enough, high oscillations may appear out of

these measured points because the risk of over-fitting has increased. This affects the predictions of the

generated model.

To deal with this issue, a Modal Adaptivity Strategy (MAS) can be settled up. The idea of MAS

is to minimize the oscillations outside the training set by starting the PGD algorithm with only low

degree modes. When the residual values then decrease slowly enough or reach a fixed value, higher

order approximation functions are added. This method has proven to be an efficient way to improve

the s-PGD performances in many cases [29–32]. However, some limits remain. For instance, it has

been noted that the desired accuracy is not achieved before reaching over-fitting or the algorithm

can stop too early when using MAS in some cases. In addition, in problems where just a few terms

of the interpolation basis are present, the method fails in identifying the true model and leads to

bad predictions.

To solve these difficulties, other versions of the PGD have been developed such as the rs-PGD

and the s2-PGD as detailed in [28].

2.3. Fisher Matrix

On the other hand, to develop an Active Learning methodology it is necessary to define an

informativeness criterion. Yet, one way to quantify the information quarried in a series of observations

is to use Fisher information [5,33], or for n parameters, the corresponding Fisher information matrix.

If considered the likehood f (X, µ) a function of X with respect to parameter µ. In statistics the

Fisher information is a way of measuring the information carried by an observable random variable

about an unknown parameter µ of a distribution that models X.

Moreover, the main issue in defining a DOE, is the ease to identify parameters by maximizing

the likehood. Indeed, where f is sharply peaked with respect to changes in µ, the data provides a lot

of information about the parameter µ. Then, it is easy to indicate the "correct" value of µ from the

data. On the contrary, if f is flat, many samples are needed to determine the actual parameters values

with an adequate accuracy. Therefore, the variance with respect to µ could be a valuable indicator to

optimize the design.

To do so, the partial derivative with respect to µ of the log-likehood formally called score s can be

written as:

s(µ) =
∂ log f (X, µ)

∂µ
(8)

Then, the variance of the score is by definition the Fisher information I,

I(µ) = V(s(µ)) = E(s(µ)2)− (E(s(µ)))2 (9)

Under certain regularity conditions the first moment of the score vanishes,

E(s(µ)) = E

(

∂ log f (X, µ)

∂µ

)

=
∫

∂ f (x,µ)
∂µ

f (x, µ)
f (x, µ)dx

=
∂

∂µ

∫

f (x, µ)dx =
∂

∂µ
1 = 0

(10)

It gives,

I(µ) = E

(

(

∂ log f (X, µ)

∂µ

)2
)

(11)

Which taking into account,

∂2 log f (X, µ)

∂µ2
=

∂2 f (X,µ)
∂µ2

f (X, µ)
−

(

∂ log f (X, µ)

∂µ

)2

(12)
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And

E





∂2 f (X,µ)
∂µ2

f (X, µ)



 =
∂2

∂µ2

∫

f (x, µ)dx = 0 (13)

Yields

I(µ) = −E

(

∂2

∂µ2
log f (X, µ)

)

(14)

When considering many parameters µ = (µ1, µ2..., ) it results in the so-called Fisher information

matrix, whose components read,

Ii,j(µ) = E

(

(

∂

∂µi
log f (X, µ)

)

(

∂

∂µj
log f (X, µ)

))

(15)

i.e

I(µ) = E

(

(∇ log f (X, µ)) (∇ log f (X, µ))T
)

(16)

2.4. Computation of a new information criteria

The previous definition of Fisher information (16) can be applied to any model of X. Then, it can

be applied to a s-PGD decomposition (5).

For the ease of the exposition and without loss of generality, let us begin by assuming that the

unknown objective function lives in R2. If f is decomposed through s-PGD it gives for the first

decomposition mode:

f = (F
T

a)(GT
b) (17)

Where F = (F1, ..., FN) and G = (G1, ..., GN) are the set of basis functions for the corresponding

dimensions and a and b the corresponding vectors of coefficients.

Then, for a fixed value ak of a and bl of b :

∂ f

∂ak
= Fk(G

T
b) (18)

∂ f

∂bl
= Gl(F

T
a) (19)

Where Fk and Gl are the corresponding basis functions of ak and bl .

Thus, the derivative can be written as:

∂ f

∂µ
=

























F1(G
Tb)

...

FN(GTb)

G1(FT a)
...

GN(FT a)

























(20)
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Therefore,

I(µ) = E











∂ f (X,µ)
∂µ

f (X, µ)









∂ f (X,µ)
∂µ

f (X, µ)





T






= E

(

1

f (X, µ) f (X, µ)T

(

∂ f (X, µ)

∂µ

)(

∂ f (X, µ)

∂µ

)T
)

(21)

Finally, replacing with the derivative and with the variance noted σ,

I(µ) =
1

σ2

























F1(G
Tb)

...

FN(GTb)

G1(FT a)
...

GN(FT a)

















































F1(G
Tb)

...

FN(GTb)

G1(FT a)
...

GN(FT a)

























T

=
1

σ2

(

FFT(GTb)2 FGT(GTb)(FT a)

GFT(GTb)(FT a) GGT(FT a)2

)

(22)

Then, for a design of experiment of M samples ξ = (ξ1, ξ2, ..., ξM), the information matrix is:

I(µ, ξ) ≡
M

∑
i=1

I(µ, ξi) (23)

Finally, as demonstrated in the General Equivalence Theorem in [34], the equivalent variance on a

new point χ is:

d(µ, χ) ≡

(

∂ f (µ, χ)

∂µ

)T

I(µ, ξ)
∂ f (µ, χ)

∂µ
(24)

This value d will be used as our new information criterion in the Active Learning Process. As it is

an equivalent of the variance, we will seek for the point with the highest value of d. Then, we calculate

its corresponding output f (χ) to add the point to the training data base.

The whole methodology to build the training database step by step according to this criterion is

summed up in the following workflow.

Algorithm 1 Active Learning : Matrix criterion

1: Inputs: Training data base ξ with few elements (random or small DOE), Pool Data Base on the input space Xpool

(D-dimensional grid), Stopping criteria (R2, error...)
2: Outputs: Trained learner
3:
4: Initialization
5: Train learner on ξ
6: Make a prediction for all elements in Xpool

7:
8: Main
9: while Stopping criteria not reached do

10: for All element in pool database Xpool do
11: Calculate information criterion value d
12: end for
13: Determine best element according to d and calulate its output
14: Add the best element to training database
15: Delete the best element from pool database Xpool

16: Train learner on the new training database
17: Make a prediction for all elements in Xpool

18: end while
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Finally, a sampling design method has been obtained and can be applied to high dimensional

regression problem.

For a general s-PGD decomposition with more functions and modes the same idea can be extended.

Some detailed calculations are shown in Appendix A.

3. Tests and results

In this section, the proposed method will be applied to two examples. First, one theoretical

example with a polynomial function in a 5 dimensional space that is not well estimated using a simple

DOE and s-PGD. Secondly, one industrial crash simulation application.

The results obtained on these two applications have been compared to the ones computed with

more usual, or previously used, sampling methods.

3.1. Polynomial function

As a first example, we are trying to estimate the following polynomial function from [28] in a 5

dimensional input space.

f (x = (x1, x2, x3, x4, x5))

= (8x3
1 − 6x1 − 0.5x2)

2 + (4x3
3 − 3x3 − 0.25x4)

2 + 0.1(2x2
5 − 1)

(25)

In Figure 2, a plot of the ground truth function is shown for f (x1, x2, x3 = 0, x4 = 0, x5 = 0.7071)

as in [28] for comparison purpose.

Figure 2. Ground truth for f (x1, x2, x3 = 0, x4 = 0, x5 = 0.7071).

The function is considered on the input space Ω = [−0.5, 0.5]5, and the predictions are made over

this space using an s-PGD model trained with the Fisher Matrix Active Learning method. The results

are compared with an s-PGD trained on an LHS with the same number of samples as training database

and with the results of the previous article [28], which are obtained through a 4-th order MAS s-PGD,

and an LHS of 160 points as training set.

Moreover, for the Matrix Method the next sample is chosen within a pool of available samples like in a

pool-based strategy. This pool is defined as a k-dimensional grid (5 here) of N subdivisions, which

gives a group of Nk possible elements evenly distributed over the input parametric space. In our

application, a refined research grid of size 205 is used to have a wide choice of queries.

In Figure 3, the output shape of the function is plotted at different steps for the same fixed

parameters as before. The blue points are the initial training points for the model at this step. The

red ones are the new added points for different number of queries. On the left side the samples are

computed with the Matrix Method. On the right side, new samples are computed using LHS.
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Figure 3. Predictions with the matrix method (left) and a classic LHS (right) for x1, x2, x3 = 0, x4 =

0, x5 = 0.7071 after 1 (top), 10 (middle) and 30 (bottom) queries.

With the Matrix Method, the training points are added accordingly to the shape of the predicted

output function and in order to reduce the output variance. This leads to more points on the curved

areas and borders, while the LHS gives a more random and evenly distributed screening on the input

space independent of the output shape. As shown in Figure 3, the prediction is adapted step by step

in the Matrix Method until no more significant change. This precision can be settled accurately by

adapting the value of the stopping criterion.

To compare more directly the performances of both methods, the correlation coefficients, defined

as follows in Equation (26) and calculated on the test set, are evaluated.

R2 =
∑

n
i=1(Ypred,i − Ypred)(Ytrue,i − Ytrue)

√

∑
n
i=1(Ypred,i − Ypred)2

√

(Ytrue,i − Ytrue)2
(26)
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Where Ypred corresponds to the prediction made by the model, Ytrue to the real output values and

Ypred, Ytrue to the corresponding means.

The results, from 25 to 55 queries, for both LHS and Matrix Method at each step are plotted in

Figure 4. These plots have been repeated for 400 iterations of the whole Active Learning process with

different initialization databases (constructed with different LHS of 25 values). The average, first and

last quartile of R2 have been extracted for each method.

Figure 4. Evolution of R² values for the two methods function of the number of points in the training

set over 400 runs of the whole Active Learning process.

It appears that the Matrix Method converges faster than the LHS, reaching a stable level with a

training database of 40 samples, while the LHS performances are still increasing and lower. Adding

samples increasingly gives an average correlation value of 0.824 while it only reaches 0.647 with an

LHS for 35 samples. Compared to the results of the previous study in [28], where a training of an LHS

with 160 samples has been chosen to reach an R2 of 0.88, here the same value can be obtained with

only 35 samples.

Besides, it is also noteworthy that the initial training database has a lot of impact on the results.

Specially at the beginning of the Active Learning process. Indeed, the interquartile range is, at first,

around 0.23 for the Matrix Method and 0.21 for the LHS, meaning the dispersion is notable. After that,

it decreases quickly for the Matrix Method, reaching 0.07 against 0.5 for the LHS around 10 queries.

This phenomenon is explained because the LHS seeks to increase the inertia by starting in random

directions. This is optimal for a group of tests, but the estimator does not take into account the past

training data. On the contrary, our approach, is sought to optimize the points and the past sets of

points with a criterion of minimization of the variance.

Moreover, the grid size can be more or less refined and needs a compromise. Indeed, this is

illustrated in Figure 5 where the final value of R2 after 30 queries is plotted. That is to say after the

criterion has converged and no more variation between the queries at the state n and n + 1. This shows

that with a wider grid size the R2 values obtained by the Matrix Method can be higher and thus the

performances obtained by the model are better. For example, for 35 queries a R2 value of 0.790 is

obtained for a 105 grid against 0.824 for a 205 grid.

This can be easily explained because with a more refined grid more “next points” are available,

and the algorithm can choose more precisely where to add a new point. However, it is also more time

consuming to compute the criterion for the whole grid, and it is more memory consuming to save and

calculate the corresponding values. Thus a compromise is necessary. Moreover, it appears in Figure 5

that after 10 subdivisions the slope of increase is lower. For this problem a subdivision after 10 should

be chosen, still taking into account the calculation time.
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Figure 5. Impact of the grid size on the performances of the Matrix Method.

Globally, the results obtained with the Matrix Method appear to be significantly better than with

usual samplings. Although at first it is more time-consuming, or computationally more expensive,

to determine the next point to add at each step, time and costs are saved in the end because fewer

amount of samples are required by the model to converge. This aspect is particularly interesting for

industrial applications where simulation or experimental costs need to be minimized.

3.2. Application on a box-beam crash absorber

Now, this method was applied to an industrial mechanical problem through a box-beam deformation

example. The idea, here, is to study and predict the deformation of a beam separated in tree parts. Each

part (part 1, part 2 and part 3) has a specific thickness. The whole beam is subjected to a loading along its

main axis (y) on one side and clamped on the other. The model is represented in Figure 6.

Figure 6. Structure of the box-beam and settlement of the problem.
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The application of the stress smashes the beam along the y axis. The corresponding deformation

depends on the thickness chosen for the tree boxes. Some cases are represented in Figure 7. First,

intermediate and last time step for different inputs values of thicknesses for the 3 parts are illustrated.

Figure 7. Visualisation of 3D box-beam simulation results at first, intermediate and last time step for

different input values of thicknesses for the tree parts.

In this case, the model’s aim is to estimate the displacement along the main axis of a point located

at the edge of the beam at the final simulation time step function of the thicknesses chosen for each box

as input parameters (h1, h2, h3). As before, we will compare the performances (in terms of R2 values)

for s-PGD models trained with our active method and with an LHS with the same number of samples.

As only 3 parameters are involved here, the initialization for the Matrix Method is done with a small

LHS of 10 samples.

Moreover, the whole process is repeated 100 times to make an average of the results obtained,

which is plot in Figure 8.

The grid is refined with a 350 size to be precise enough.

Figure 8. Evolution of R² values for the two methods function of the number of points in the training

set over 100 runs of the whole Active Learning process with and without Active Learning
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It appears in Figure 8 that as for the previous example, the Matrix Method reaches higher values

of R2 faster than the use of an usual DOE. Indeed, it gives in average a value 12% higher than with the

LHS. However, the increase of the two methods is here more similar than before. The difference is

also less important. This can be explained because there are only three parameters involved and the

behaviour of the output is quite simple. There is also still a variability associated to the initialization

state, with a 19% of average variation for the Matrix Method and 22% for standard LHS.

4. Conclusion and future works

To sum up, a new information criterion was proposed to determine which sample would be the

most valuable to add to the training database of a high-dimensional regression model to improve

its performances step by step. The results of this method appear to be quite conclusive. Indeed, the

precision of the predictions function of the number of samples in the training database increases faster

with this method, than with more usual DOEs (such as LHS). Moreover, this criterion does not only

depend on the shape of the input space, but also takes into account the output values. This way, the

models are automatically refined where there are variations in the output space and can adapt faster to

a specific problem.

However, this methodology can still be improved in different ways:

• First, the samples, in this study, are added one by one, but it could be interesting to add them

by group. Indeed, it seems that the algorithm needs to select some points in the same area to

estimate it before moving to others. This behaviour can be explained because the information

criterion used aims to minimize the global output variance. Adding points by group could be

an interesting way to solve this issue. In further studies, studying how and how much points

to add would be relevant. Moreover, when the real output value (given by the “oracle”) comes

from experiments, it is more pertinent to do more than one point simultaneously to have a better

organization.
• Another point that could be optimized, is the search of the criterion optimum value. As for now,

a simple research along a refined grid is used. Using an optimized method to find optimum

(such as a gradient descent for example) or using an adaptive grid mesh which would refine itself

near the interesting areas could be an option. This is also interesting in a purpose of reducing the

computational cost of the algorithm. Indeed, searching precisely without generating a huge grid

will be a good improvement and should be optimized.
• In terms of practical use, developing an algorithm to determine and maybe adapt during the

whole active learning process the s-PGD parameter (number of modes, function degrees) would

also improve the speed of convergence.

• Finally, the mix of the criterion with a more specific cost function is also considered to improve

the results as it was studies in the preliminary’s step of the method development.

In the end, let’s highlight that the matrix method criterion is particularly efficient for high

dimensional problems. Indeed, unlike usual active learning regression criterion it does not depend

on any distance. This will be confirmed by applying this new methodology for a much higher

dimensionaly problem.
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Appendix A. Matrix method criterion detailed definition

Let us consider an unknown function whose approximation is precisely the objective of this work.

A function f depending of n input variables x1, x2, ..., xn such as:

f (x1, x2, ..., xn) : Ω ⊂ Rn −→ R (A1)

With s-PGD it can be also written as:

f (x1, ..., xn) ≈ f̃ M(x1, ..., xn) =
M

∑
m=1

n

∏
k=1

Xk
m(xk) (A2)

The modes will be noted m, the degrees of the functions d, the dimensions k and Xk
m and Nk

d are

the decomposition vectors.
The corresponding vector for an example where m = [1, 2], d = [1, 2] and k = [1, 2, 3]

can be written:

J(µ, x1, x2, x3) =










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
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
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
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









k = 1

k = 2

k = 3







N1
1 (x1)X2

1(x2)X3
1(x3)

N2
1 (x1)X2

1(x2)X3
1(x3)

N3
1 (x1)X2

1(x2)X3
1(x3)






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









k = 1
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(A3)

According to the methodology seen in Section 2.4, on a considered point (x1, x2, x3) and for a

model previously trained on the data base ξ, we have criterion:

d(µ, x1, x2, x3) ≡

(

∂ f (µ, x1, x2, x3)

∂µ

)T

I(µ, ξ)
∂ f (µ, x1, x2, x3)

∂µ

= J(µ, x1, x2, x3)
T
I(µ, ξ)J(µ, x1, x2, x3)

(A4)

This value d will be the new criterion used to determine the information in one point of the

database. Therefore, it controls if the point should be added or not to the training set.
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