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Abstract: The supply of feed has a significant effect on fish growth and operation costs, making it a critical 

factor in aquaculture. Owing to the repetitive nature of feed supply, feeding techniques have undergone a shift 

from manual feeding to systems allowing operators to set feed quantities and timing, reducing labor efforts. 

However, unlike manual feeding, automatic systems cannot adjust the amount of feed supplied according to 

the feeding activities of fish, potentially resulting in overfeeding or underfeeding. Such overfeeding causes 

marine pollution and increases operational costs, whereas underfeeding hinders fish growth. In this paper, we 

present an intelligent feeding system that observes the depth-specific feeding behavior of red seabream during 

the feeding process and determines whether feed supply must be continued. The performance of the feeding 

algorithm is evaluated by comparing the feed loss rate measured during a feeding experiment at a red seabream 

sea cage farm with that of the traditional manual feeding method. The results reveal that the feed supply per 

unit time of the manual method and the developed intelligent feed supply system is at an equivalent level. 

Moreover, the difference in the average feed loss rate is a negligible 1.16%, confirming that the new system is 

slightly more advantageous. 
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1. Introduction 

The Food and Agriculture Organization has projected that aquaculture products will account 

for 53% of the global seafood consumption by 2030 [1]. With an increase in the significance of the 

aquaculture industry, several countries are now striving to develop it into a vital national sector [2]. 

Consequently, the traditional labor-intensive aquaculture industry is rapidly evolving into a 

technology-intensive industry driven by advances in automation, water treatment, and 

biotechnology. With this, technologies automating the aquaculture process are increasingly being 

developed to save labor, stabilize aquaculture production, and reduce operating costs [3].  

A representative example of such technology is automatic feeding. Feeding is a repetitive task 

in aquaculture that is labor intensive and exerts a direct impact on the growth of aquaculture 

organisms. Moreover, considering that the cost of feed procurement accounts for a large proportion 

of the operational costs, it is crucial to supply the appropriate amount of feed according to growth 

stages and feeding activities of fish to prevent feed loss [4, 5]. In particular, in land-based tank 

farming, excessive feeding can increase mortality rates owing to water pollution caused by increased 

excreta and feed loss [6]. In cage farming, lost feed contributes to marine environmental pollution [7, 

8]. 

Previous studies have developed methods to supply appropriate amounts of feed by analyzing 

feeding behavior; these methods employ mathematical models and image processing techniques to 

address existing problems in the feeding process [9]. Moreover, image processing techniques are 

increasingly being applied to determine the amount of feed supply based on quantifications of fish 

feeding activities in recirculating aquaculture systems [10]. However, assessing the fish feeding 
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activity using images presents challenges owing to the low-light conditions inside farms and complex 

backgrounds of the objects to be observed. Therefore, recent research has attempted to recognize 

feeding behavior using underwater acoustics and deep learning technology [11–13]. 

In this paper, we present an edge-computing-based intelligent feeding system that observes the 

depth-specific feeding behavior of red sea bream to automate feeding. The feeding algorithm is 

designed to observe the depth-specific feeding behavior of red seabream during the feeding process 

and determine whether the feed supply must be continued. We evaluate the performance of the 

intelligent feeding system by analyzing the feeding quantity and speed according to the feed 

diameter. To compare the feeding algorithm with the conventional manual feeding method, we 

analyzed the feed loss rate based on the total amount of feed supplied and the amount of lost feed 

measured in a feeding experiment conducted at a red seabream sea cage farm. 

2. Materials and Methods 

2.1. Design of the Intelligent Feeding System 

The developed intelligent feeding system is designed to supply feed using the wind force 

generated by a blower, as shown in Figure 1. The system consists of a hopper, blower, quantitative 

feeder, and programmable logic controller (PLC) that controls each component. The quantitative 

feeder comprises a feed measuring disk and motor that rotates the disk. The feed measuring disk is 

designed with circular grooves (diameter: 79.49 mm, height: 79.20 mm) with the same volume at 90° 
intervals to ensure that the feed is evenly loaded. Moreover, the quantitative feeder is designed to 

measure the rotation of the feed measuring groove. This is achieved by installing a bracket with 

protrusions along the same direction as the measuring groove on the motor shaft, enabling the 

rotating protrusion to be detected by the proximity sensor.  

 

Figure 1. Feeding system. 

The feeding amount (Wt) can be calculated using the volume (Vt) of the feed measuring groove, 

density (D) of the feed, and rotation count (n) of the feed measuring groove, as expressed in Equation 

1. However, the feeding quantity varies owing to the empty space between feed grains, depending 

on the diameter of the feed loaded into the feed measuring groove. Therefore, the feeding quantity 

must be calculated by considering the volume rate (C), which is represented by the volume (Vc) of the 

empty space in the volume of the measuring groove, as expressed in Equation 2. 

Feeding quantity (Wt) = Vt × D × n × C (1) 
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C = 1 − VcVt  (2) 

2.2. Edge Computing System 

As shown in Figure 2, the hardware of the edge computing system is composed of a CruzPro 

Fishfinder (PCFF80) transducer and interface box, a mini PC, and a Wi-Fi router to observe the depth-

specific feeding behavior of red seabream and establish a link with the intelligent feeding system. 

 

Figure 2. Configuration of the intelligent feeding system based on edge computing. 

The specifications of the Fishfinder are listed in Table 1. The Fishfinder and PC use the RS232 

communication method, and the PLC of the intelligent feeding system communicates with the PC via 

Ethernet. Additionally, an app for mobile devices based on the Android operating system was 

developed to remotely set the feeding time of the intelligent feeding system, monitor the swimming 

depth of the fish school, and check the operating status. 

Table 1. Specifications of Fishfinder 

Frequency Depth Capability Operating Supply 
Communication  

Interface 

200/50 kHz 

2,500 feet or more at 

200 kHz 

1,000 feet or more at 

50 kHz 

9.5–16.0 VDC, 0.05 A 

nominal, 

4.7 A peak at max 

power 

RS232, 115,200 bps, 

serial data USB 1.1 

and 2.0 compatible 

(comes with both USB 

and RS232) 

The PC software of the edge computing system was designed to collect and analyze the data 

output in ASCII code from the Fishfinder, reflecting the target strength (TS)—the reflected signal (Ir) 
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from the target according to the incident signal (Ii)—at different depths, as expressed in Equation 3. 

The data processing flow of the PC software is illustrated in Figure 3. To visualize the swimming 

depth of the fish school, the PC software was designed to convert the ASCII code of the Fishfinder 

into eight bits, divide it into 16 sections, and then map the color information of each section to 

reconstruct it into a pixel line format. TS = 10log(Ir/Ii), (3) 

 

 

Figure 3. Processing of the PC software based on edge computing. 

2.3. Feeding Algorithm 

Generally, the feeding behavior of red seabream being farmed in sea cages involves the 

movement of the fish from deeper waters to the surface of the sea when feed is supplied, consuming 

sufficient feed in a school, followed by their movement back to deeper waters. Utilizing this 

characteristic, we developed a feeding algorithm that determines whether the feed supply must be 

continued based on the depth-specific feeding behavior observations of the red seabream from the 

feed supply time, as illustrated in Figure 4. 

 

Figure 4. Feeding algorithm based on observations of red seabream feeding behavior. 
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The observation results of the depth-specific feeding behavior of red seabream are illustrated by 

the number of pixels shown in red in Figure 3, which represents the acoustic intensity value of the 

fish school in the set observation area. The system determines whether the feed supply must be 

continued by observing the proportion (Dv) of red pixels in the set observation area from the time 

feed is supplied. However, the proportion of red pixels in the set observation area is high in both 

cases, i.e., when the red seabream school rises to the sea surface to consume feed and when it 

descends to deeper waters after adequate feed consumption. Therefore, the feeding algorithm was 

designed to stand by for the duration the red seabream ascends to the sea surface from the time feed 

is supplied and to cease feed supply upon detecting their descent after sufficient feed consumption. 

The standby time from the time feed is supplied until the red seabream ascends to the sea surface 

and the distribution value of red pixels (Dv ) in the observation area were set to 30 s and 70%, 

respectively, reflecting the field experiment results. 

2.4. Performance Evaluation Method 

The performance of the intelligent feeding system was evaluated by measuring and analyzing 

the difference in feeding quantity according to the diameter of the feed and the maximum feeding 

speed. The difference in feeding quantity was analyzed through 50 repeated experiments that 

involved measuring the weight of the feed filled to the brim in the measuring grooves of the 

quantitative feeder according to the diameter of the feed. The maximum feeding speed was 

determined based on the feeding time and quantity. The feeding time was measured based on the 

pressure signals from the pressure gauge during feed spray and time, and the feeding quantity was 

determined by referring to the weight data of the feeding amount according to the diameter. 

The performance of the feeding algorithm was evaluated by comparing its results with those of 

the traditional manual feeding method in a feeding experiment at a red seabream sea cage farm. In 

the feeding experiment, we categorized the traditional manual method and the feeding algorithm as 

the control group and experimental group, respectively. Table 2 presents the aquaculture 

information. The sea cage farm sizes (12 × 12 × 6 m) of the control and experimental groups are 

identical. 

Table 2. Aquaculture information of the experimental fish species. 

Group Feeding Method Average Weight (g) Number of Fish 
Diameter of 

Feed (mm) 

Control Manual 538.2±19.0 ~28,000 7 

Experimental Algorithm 506.2±20.2 ~25,000 7 

For the sea cage farm of the experimental group, we fixed the Fishfinder transducer and the 

developed edge computing-based intelligent feeding system by creating an installation bracket, as 

shown in Figure 5 (a). The transducer was installed at the exact center of the cage where the feed was 

sprayed, as shown in Figure 5(b). Additionally, the transmitter and receiver of the transducer were 

installed to face the bottom of the ocean from the surface, making it easier to observe the depth-

specific feeding activity of the red seabream. The settings of the Fishfinder are listed in Table 3. 
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Figure 5. (a). Installation bracket for Fishfinder transducer and (b). installation location in the red 

seabream sea cage farm. 

Table 3. Fishfinder settings. 

Frequency Beam Width Fixed Analog Gain Depth Range 

200 kHz 11° 10 0~5 m 

The performance of the feeding algorithm was evaluated by conducting a comparative analysis 

of the results of 30 repeated feeding experiments involving both the control and experimental groups. 

The evaluation considered the total feeding time, amount of feed supplied, amount of feed lost, and 

loss rate. Here, the lost feed refers to the amount of feed that the red seabream did not consume and 

was subsequently lost. The weight of the lost feed was measured by installing a feed collection net 

(size: 1,500 × 2,000 × 200 mm) under the point where feed was supplied and collecting it, as shown in 

Figure 6. 

The feed loss rate can be calculated using Equation 4, which uses the total weight (Wt) of the feed 

supplied in the feeding experiment and the weight of the feed collected by the feed collection net 

(Wl). 
Feed Loss Rate (%) = 

WlWt × 100 (4) 
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Figure 6. (a). Installation of feed collection bet. (b). Collection method for lost feed. (c). Scene of 

capturing feed using the fabricated collection net. 

3. Results and Discussion 

3.1. Feeding Behavior Characteristics of Red Seabream 

The feeding behavior characteristics of the red seabream were identified by observing the 

swimming depth of the fish school using the Fishfinder while manually supplying the feed, as 

depicted in Figure 7. These observations demonstrated that when feed is supplied, the red seabream 

rises from the net at the bottom of the sea cage to the sea surface to consume the feed, and once they 

have consumed enough feed, they descend back to the net at the bottom of the sea cage. Notably, this 

phenomenon was consistent for adult fish rather than juveniles and when the water temperature was 

at least 11 °C. 

 

Figure 7. Depth-specific feeding behavior characteristics of red seabream recorded using Fishfinder. 

3.2. Performance of the Intelligent Feeding System 

Figure 8 illustrates a plot of the average weight of the feed supplied and measured according to 

the diameter of the feed. From the experimental results, it can be observed that the weight of the feed 
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supplied by the intelligent feeding system differs owing to the volume of the empty space based on 

the diameter of the feed. The regression analysis results listed in Table 4 indicate that as the diameter 

of the feed increases, the supply amount decreases as a power function. 

 

Figure 8. Change in weight of feed supplied according to the diameter of feed. 

Table 4. Regression analysis results. 

Equation a b R2 y = a · xb 231.41 -0.043 0.986 

In the feeding experiment, the maximum supply distance and feeding speed were analyzed by 

measuring the spray pressure of the feed and the rotation count and time of the feed measuring 

grooves using a proximity sensor. The experimental conditions were as follows: feed with a diameter 

of 7 mm, motor designed with a reduction ratio of 100:1 set at the maximum speed of the inverter, 60 

Hz. 

According to the experimental results, as shown in Figure 9, the feed was sprayed up to 

approximately 8.1 m, which is the central position of the sea cage, with a maximum pressure of 1,300 

mm Aq at 1 s intervals. Therefore, the maximum feeding speed is determined by the time per second, 

and the average weight of the feed is determined by its diameter, as shown in Figure 8. When using 

feed with a diameter of 7 mm, as in this feeding experiment, the maximum supply speed averages at 

213.21 g/s. 
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Figure 9. Feed spray pressure, rotation count, and time of feed measuring groove. 

3.3. Analysis of the Feed Loss Rate 

We performed experiments in designated areas divided into the control and experimental 

groups, each using the manual method and feeding algorithm, respectively. In the experimental 

group, feed with a diameter of 7 mm was supplied at an average rate of 213.21 g per session at 3 s 

intervals. To facilitate a fair comparison, the control group was also supplied with feed under the 

same conditions. 

The feeding time was recorded from the time that feed was supplied. The control group was 

analyzed until the termination of feeding activity as a result of the red seabream adequately 

consuming the feed, while the experimental group was analyzed until feeding was automatically 

stopped by the algorithm. The amount of feed supplied was calculated by weight as the total amount 

of feed supplied during the feeding time. 

Figure 10 illustrates the total feeding amount and time measured during the 30 repetitions of the 

feeding experiment, for each feeding method of the control and experimental groups. Table 5 presents 

the sum of the measured feeding amount and supply time during the feeding experiment period, 

value converted to the feeding amount per unit time, and results of the regression analysis.  

 

Figure 10. Supply amount and supply time according to the feeding method. 

Table 5. Total feeding amount and time and regression analysis results by feeding method. 

 Total Feeding 

Weight (kg) 

Time Taken for  

Feeding Fish (s) 

Feed Weight Per  

Second (Kg/s) 

Equation: 𝐲 = 𝐚 · 𝐱 + 𝐛 

     a     b      c 

Manual 2311.4 1743.6 0.071 0.070 -0.814 0.948 

Algorithm 32397 24588 0.070 0.070 0.927 0.997 

Based on the experimental results, the control group had a relatively larger and longer feed 

supply compared to the experimental group, but there was no difference in the amount of feed 

supplied per unit of time. Additionally, the regression analysis shows that the supply amount relative 

to supply time has a linear relationship, (a) the slopes of the control and experimental groups are the 

same, and (b) the error in the feeding amount is negligible. These results indicate that the difference 

in feeding amount and time between the control and experimental groups arises because the average 

weight per red seabream in the control group is 32 g larger, and there were 3,000 more fish farmed. 

Moreover, for farmed fish like red seabream, the feed consumption and feeding activity may vary 

with changes in the farming environment, such as water temperature and dissolved oxygen, so 

differences can be expected in the feeding amount and time [14, 15].  
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Feed loss according to the feeding method was measured by collecting the feed from the feed 

collection net installed for the control and experimental groups after feeding was stopped, and then 

weighing the feed using a digital scale. Figure 11 shows the feed loss rate measured through 30 

repeated trials of feed supply experiments, each conducted using different feed supply methods in 

the control and experimental groups. The feed loss rate was calculated as the proportion of the lost 

feed amount to the total feed supplied, as expressed in Equation 3. 

The experimental results indicate that the average feed loss rates of the control and experimental 

groups are 4.91% and 6.07%, respectively. A t-test was conducted to compare the averages between 

the two groups. The resulting p-value was significantly below the threshold at 0.0027 (p<0.05), 

demonstrating a 1.16% difference in the average feed loss rates between the control and experimental 

groups. These findings suggest that the control group, with a lower feed loss rate, exhibits better feed 

supply performance than the experimental group. 

 

Figure 11. Feed loss rate according to the feeding method. 

However, feed loss rates can vary depending on the amount of feed lost due to the flow rate of 

water during the feed capture process. Consequently, to compare the feed supply performance of the 

control and experimental groups more accurately, it is deemed necessary to either perfectly measure 

the feed lost underwater or devise a method to collect it. 

4. Conclusions 

In this study, we developed an intelligent feeding system that determines whether the feed 

supply must be continued or terminated by observing the depth-specific feeding behavior of red 

seabream. We compared the feeding performance of the system with that of traditional manual 

feeding by conducting a field experiment to investigate the per-unit-time feed supply amount and 

loss rate. The experimental results show that while the per-unit-time feed supply of both the manual 

method and the intelligent feed supply system was at an equivalent level, the intelligent feed supply 

system yielded a feed loss rate 1.16% higher than the manual method. This negligible difference in 

feed loss underscores the feasibility and effectiveness of the feeding method, as confirmed through 

observation of the depth-specific feeding behavior of the red seabream. 

However, continuous follow-up research is deemed necessary to improve the performance of 

the developed technology and assure reliability. Moreover, the developed intelligent feeding system 

requires measures against malfunctions, such as failures in the edge computing system and 

Fishfinder, that can cause the system to continue or stop feeding. Accordingly, in future research, we 

plan to analyze the correlations between farming environment data (e.g., water temperature and 
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dissolved oxygen) and depth-specific feeding behavior data of red seabream collected in the feeding 

experiment to predict the appropriate amount of feed according to the farming environment using 

the edge computing system. 

Such research is expected to help improve the operating environment of aquaculture sites, 

ensure appropriate feed supply, stabilize fish production, ensure the health of fish, and reduce overall 

operational costs. Moreover, we expect that the developed system can contribute to shifting from 

traditional labor-intensive farming methods to a technology-intensive aquaculture industry by 

automating the farming process using intelligent techniques. 
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