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Abstract: The supply of feed has a significant effect on fish growth and operation costs, making it a critical
factor in aquaculture. Owing to the repetitive nature of feed supply, feeding techniques have undergone a shift
from manual feeding to systems allowing operators to set feed quantities and timing, reducing labor efforts.
However, unlike manual feeding, automatic systems cannot adjust the amount of feed supplied according to
the feeding activities of fish, potentially resulting in overfeeding or underfeeding. Such overfeeding causes
marine pollution and increases operational costs, whereas underfeeding hinders fish growth. In this paper, we
present an intelligent feeding system that observes the depth-specific feeding behavior of red seabream during
the feeding process and determines whether feed supply must be continued. The performance of the feeding
algorithm is evaluated by comparing the feed loss rate measured during a feeding experiment at a red seabream
sea cage farm with that of the traditional manual feeding method. The results reveal that the feed supply per
unit time of the manual method and the developed intelligent feed supply system is at an equivalent level.
Moreover, the difference in the average feed loss rate is a negligible 1.16%, confirming that the new system is
slightly more advantageous.
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1. Introduction

The Food and Agriculture Organization has projected that aquaculture products will account
for 53% of the global seafood consumption by 2030 [1]. With an increase in the significance of the
aquaculture industry, several countries are now striving to develop it into a vital national sector [2].
Consequently, the traditional labor-intensive aquaculture industry is rapidly evolving into a
technology-intensive industry driven by advances in automation, water treatment, and
biotechnology. With this, technologies automating the aquaculture process are increasingly being
developed to save labor, stabilize aquaculture production, and reduce operating costs [3].

A representative example of such technology is automatic feeding. Feeding is a repetitive task
in aquaculture that is labor intensive and exerts a direct impact on the growth of aquaculture
organisms. Moreover, considering that the cost of feed procurement accounts for a large proportion
of the operational costs, it is crucial to supply the appropriate amount of feed according to growth
stages and feeding activities of fish to prevent feed loss [4, 5]. In particular, in land-based tank
farming, excessive feeding can increase mortality rates owing to water pollution caused by increased
excreta and feed loss [6]. In cage farming, lost feed contributes to marine environmental pollution [7,
8].

Previous studies have developed methods to supply appropriate amounts of feed by analyzing
feeding behavior; these methods employ mathematical models and image processing techniques to
address existing problems in the feeding process [9]. Moreover, image processing techniques are
increasingly being applied to determine the amount of feed supply based on quantifications of fish
feeding activities in recirculating aquaculture systems [10]. However, assessing the fish feeding

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202307.1766.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2023 do0i:10.20944/preprints202307.1766.v1

activity using images presents challenges owing to the low-light conditions inside farms and complex
backgrounds of the objects to be observed. Therefore, recent research has attempted to recognize
feeding behavior using underwater acoustics and deep learning technology [11-13].

In this paper, we present an edge-computing-based intelligent feeding system that observes the
depth-specific feeding behavior of red sea bream to automate feeding. The feeding algorithm is
designed to observe the depth-specific feeding behavior of red seabream during the feeding process
and determine whether the feed supply must be continued. We evaluate the performance of the
intelligent feeding system by analyzing the feeding quantity and speed according to the feed
diameter. To compare the feeding algorithm with the conventional manual feeding method, we
analyzed the feed loss rate based on the total amount of feed supplied and the amount of lost feed
measured in a feeding experiment conducted at a red seabream sea cage farm.

2. Materials and Methods

2.1. Design of the Intelligent Feeding System

The developed intelligent feeding system is designed to supply feed using the wind force
generated by a blower, as shown in Figure 1. The system consists of a hopper, blower, quantitative
feeder, and programmable logic controller (PLC) that controls each component. The quantitative
feeder comprises a feed measuring disk and motor that rotates the disk. The feed measuring disk is
designed with circular grooves (diameter: 79.49 mm, height: 79.20 mm) with the same volume at 90°
intervals to ensure that the feed is evenly loaded. Moreover, the quantitative feeder is designed to
measure the rotation of the feed measuring groove. This is achieved by installing a bracket with
protrusions along the same direction as the measuring groove on the motor shaft, enabling the
rotating protrusion to be detected by the proximity sensor.

Quantitative feeder

- 3 — > Proximity sensor
AN

Bracket

Motor

Rotation direction

: Inside.

Rl

an Tesdiingd Losny > Wind direction

(U Feeding direction
v

Figure 1. Feeding system.

The feeding amount (W;) can be calculated using the volume (V;) of the feed measuring groove,
density (D) of the feed, and rotation count (n) of the feed measuring groove, as expressed in Equation
1. However, the feeding quantity varies owing to the empty space between feed grains, depending
on the diameter of the feed loaded into the feed measuring groove. Therefore, the feeding quantity
must be calculated by considering the volume rate (C), which is represented by the volume (V) of the
empty space in the volume of the measuring groove, as expressed in Equation 2.

Feeding quantity (W)= V; x D x n x C €))
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2.2. Edge Computing System

As shown in Figure 2, the hardware of the edge computing system is composed of a CruzPro
Fishfinder (PCFF80) transducer and interface box, a mini PC, and a Wi-Fi router to observe the depth-
specific feeding behavior of red seabream and establish a link with the intelligent feeding system.

Tablet PC

(=) A
@™ v

Ethernet LY
PLC r— PC
A A
RS232
Y Y
Blower Interface box
Motor T
Proximity sensor il
Pressure sensor Transducer
Feeding system Edge computing system

Figure 2. Configuration of the intelligent feeding system based on edge computing.

The specifications of the Fishfinder are listed in Table 1. The Fishfinder and PC use the RS232
communication method, and the PLC of the intelligent feeding system communicates with the PC via
Ethernet. Additionally, an app for mobile devices based on the Android operating system was
developed to remotely set the feeding time of the intelligent feeding system, monitor the swimming
depth of the fish school, and check the operating status.

Table 1. Specifications of Fishfinder

Communication

Frequency Depth Capability  Operating Supply Interface

RS232, 115,200 bps,

2,500 feet or more at 9.5-16.0 VDC, 0.05 A serial data USB 1.1

2 H inal
200/50 kHz 00 kHz nominas and 2.0 compatible
1,000 feet or more at 4.7 A peak at max )
50 kHz ower (comes with both USB
P and RS232)

The PC software of the edge computing system was designed to collect and analyze the data
output in ASCII code from the Fishfinder, reflecting the target strength (TS)—the reflected signal (Ir)
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from the target according to the incident signal (li)—at different depths, as expressed in Equation 3.
The data processing flow of the PC software is illustrated in Figure 3. To visualize the swimming
depth of the fish school, the PC software was designed to convert the ASCII code of the Fishfinder
into eight bits, divide it into 16 sections, and then map the color information of each section to
reconstruct it into a pixel line format.

TS = 10log(Ir/l1i), 3)

ASCII data Depth XIS

l 0
Convert to 8bit 2 i Direction of the

pixel lines
! 4

Mapping in 16 colors

!

Reproduction of 8
a pixel line

saul| joxid

Time(s)

Figure 3. Processing of the PC software based on edge computing.

2.3. Feeding Algorithm

Generally, the feeding behavior of red seabream being farmed in sea cages involves the
movement of the fish from deeper waters to the surface of the sea when feed is supplied, consuming
sufficient feed in a school, followed by their movement back to deeper waters. Utilizing this
characteristic, we developed a feeding algorithm that determines whether the feed supply must be
continued based on the depth-specific feeding behavior observations of the red seabream from the
feed supply time, as illustrated in Figure 4.

Turn on a blower —>» Standby —>0O—> Turn on an quantitative feeder
for 10 seconds A

Feeding time = 30s

Monitoring the distribution value(D )
of red color pixels within
the observation area

Standby oL
w Turn of a blower <— 510 Satohts P — Turn off an quantitative feeder

Figure 4. Feeding algorithm based on observations of red seabream feeding behavior.
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The observation results of the depth-specific feeding behavior of red seabream are illustrated by
the number of pixels shown in red in Figure 3, which represents the acoustic intensity value of the
fish school in the set observation area. The system determines whether the feed supply must be
continued by observing the proportion (Dy) of red pixels in the set observation area from the time
feed is supplied. However, the proportion of red pixels in the set observation area is high in both
cases, i.e., when the red seabream school rises to the sea surface to consume feed and when it
descends to deeper waters after adequate feed consumption. Therefore, the feeding algorithm was
designed to stand by for the duration the red seabream ascends to the sea surface from the time feed
is supplied and to cease feed supply upon detecting their descent after sufficient feed consumption.
The standby time from the time feed is supplied until the red seabream ascends to the sea surface
and the distribution value of red pixels (D, ) in the observation area were set to 30 s and 70%,
respectively, reflecting the field experiment results.

2.4. Performance Evaluation Method

The performance of the intelligent feeding system was evaluated by measuring and analyzing
the difference in feeding quantity according to the diameter of the feed and the maximum feeding
speed. The difference in feeding quantity was analyzed through 50 repeated experiments that
involved measuring the weight of the feed filled to the brim in the measuring grooves of the
quantitative feeder according to the diameter of the feed. The maximum feeding speed was
determined based on the feeding time and quantity. The feeding time was measured based on the
pressure signals from the pressure gauge during feed spray and time, and the feeding quantity was
determined by referring to the weight data of the feeding amount according to the diameter.

The performance of the feeding algorithm was evaluated by comparing its results with those of
the traditional manual feeding method in a feeding experiment at a red seabream sea cage farm. In
the feeding experiment, we categorized the traditional manual method and the feeding algorithm as
the control group and experimental group, respectively. Table 2 presents the aquaculture
information. The sea cage farm sizes (12 x 12 x 6 m) of the control and experimental groups are

identical.
Table 2. Aquaculture information of the experimental fish species.
Grou Feeding Method Average Weight (g) Number of Fish Diameter of
oup eeding Metho erage Weight (g erof Fish o 4 (mm)
Control Manual 538.2+19.0 ~28,000 7
Experimental Algorithm 506.2+20.2 ~25,000 7

For the sea cage farm of the experimental group, we fixed the Fishfinder transducer and the
developed edge computing-based intelligent feeding system by creating an installation bracket, as
shown in Figure 5 (a). The transducer was installed at the exact center of the cage where the feed was
sprayed, as shown in Figure 5(b). Additionally, the transmitter and receiver of the transducer were
installed to face the bottom of the ocean from the surface, making it easier to observe the depth-
specific feeding activity of the red seabream. The settings of the Fishfinder are listed in Table 3.
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Figure 5. (a). Installation bracket for Fishfinder transducer and (b). installation location in the red
seabream sea cage farm.

Table 3. Fishfinder settings.

Frequency Beam Width Fixed Analog Gain Depth Range
200 kHz 11° 10 0~5m

The performance of the feeding algorithm was evaluated by conducting a comparative analysis
of the results of 30 repeated feeding experiments involving both the control and experimental groups.
The evaluation considered the total feeding time, amount of feed supplied, amount of feed lost, and
loss rate. Here, the lost feed refers to the amount of feed that the red seabream did not consume and
was subsequently lost. The weight of the lost feed was measured by installing a feed collection net
(size: 1,500 x 2,000 x 200 mm) under the point where feed was supplied and collecting it, as shown in
Figure 6.

The feed loss rate can be calculated using Equation 4, which uses the total weight (W) of the feed
supplied in the feeding experiment and the weight of the feed collected by the feed collection net
(W).

Feed Loss Rate (%) = % x 100 4)
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Figure 6. (a). Installation of feed collection bet. (b). Collection method for lost feed. (c). Scene of
capturing feed using the fabricated collection net.

3. Results and Discussion

3.1. Feeding Behavior Characteristics of Red Seabream

The feeding behavior characteristics of the red seabream were identified by observing the
swimming depth of the fish school using the Fishfinder while manually supplying the feed, as
depicted in Figure 7. These observations demonstrated that when feed is supplied, the red seabream
rises from the net at the bottom of the sea cage to the sea surface to consume the feed, and once they
have consumed enough feed, they descend back to the net at the bottom of the sea cage. Notably, this
phenomenon was consistent for adult fish rather than juveniles and when the water temperature was
at least 11 °C.

Start feeding Fishfinder transducer
i End feeding
: - 1
i e
e SR W o
¥ 4 o B \7 ol X
R '(:v ‘:: # X
# S Botdmy v
: -‘f - B
Start feeding End feeding
® o0 @
® ©

Figure 7. Depth-specific feeding behavior characteristics of red seabream recorded using Fishfinder.

3.2. Performance of the Intelligent Feeding System

Figure 8 illustrates a plot of the average weight of the feed supplied and measured according to
the diameter of the feed. From the experimental results, it can be observed that the weight of the feed
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supplied by the intelligent feeding system differs owing to the volume of the empty space based on
the diameter of the feed. The regression analysis results listed in Table 4 indicate that as the diameter
of the feed increases, the supply amount decreases as a power function.

235

230+

225

220

Averaged feed weight (g)

215 +

210 T T T T T

Diameter of feed (mm)

Figure 8. Change in weight of feed supplied according to the diameter of feed.

Table 4. Regression analysis results.

Equation a b R?
y=a-x° 231.41 -0.043 0.986

In the feeding experiment, the maximum supply distance and feeding speed were analyzed by
measuring the spray pressure of the feed and the rotation count and time of the feed measuring
grooves using a proximity sensor. The experimental conditions were as follows: feed with a diameter
of 7 mm, motor designed with a reduction ratio of 100:1 set at the maximum speed of the inverter, 60
Hz.

According to the experimental results, as shown in Figure 9, the feed was sprayed up to
approximately 8.1 m, which is the central position of the sea cage, with a maximum pressure of 1,300
mm Aq at 1 s intervals. Therefore, the maximum feeding speed is determined by the time per second,
and the average weight of the feed is determined by its diameter, as shown in Figure 8. When using
feed with a diameter of 7 mm, as in this feeding experiment, the maximum supply speed averages at
213.21 g/s.

1800

T: Feeding priode

1600 -
1400 4 x, F
1200 -

1000 +

Pressure (mmAq)

800 +

600 -

400 it I S T—
0 1 2 3 4 5
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Figure 9. Feed spray pressure, rotation count, and time of feed measuring groove.

3.3. Analysis of the Feed Loss Rate

We performed experiments in designated areas divided into the control and experimental
groups, each using the manual method and feeding algorithm, respectively. In the experimental
group, feed with a diameter of 7 mm was supplied at an average rate of 213.21 g per session at 3 s
intervals. To facilitate a fair comparison, the control group was also supplied with feed under the
same conditions.

The feeding time was recorded from the time that feed was supplied. The control group was
analyzed until the termination of feeding activity as a result of the red seabream adequately
consuming the feed, while the experimental group was analyzed until feeding was automatically
stopped by the algorithm. The amount of feed supplied was calculated by weight as the total amount
of feed supplied during the feeding time.

Figure 10 illustrates the total feeding amount and time measured during the 30 repetitions of the
feeding experiment, for each feeding method of the control and experimental groups. Table 5 presents
the sum of the measured feeding amount and supply time during the feeding experiment period,
value converted to the feeding amount per unit time, and results of the regression analysis.

95

904 o Manual o
Algorithm

85
80 -
75-
70
65 -
60 -
55 4
50 -
45
600 700 600 900 1000 1100 1200 1300 1400
Time taken for feeding fish (s)

Total feeding weight (kg)

Figure 10. Supply amount and supply time according to the feeding method.

Table 5. Total feeding amount and time and regression analysis results by feeding method.

Total Feeding  Time Taken for Feed Weight Per Equation: y=a-x+b

Weight (kg) Feeding Fish (s)  Second (Kg/s) a b c
Manual 23114 1743.6 0.071 0.070 | -0.814 | 0.948
Algorithm 32397 24588 0.070 0.070 | 0.927 | 0.997

Based on the experimental results, the control group had a relatively larger and longer feed
supply compared to the experimental group, but there was no difference in the amount of feed
supplied per unit of time. Additionally, the regression analysis shows that the supply amount relative
to supply time has a linear relationship, (a) the slopes of the control and experimental groups are the
same, and (b) the error in the feeding amount is negligible. These results indicate that the difference
in feeding amount and time between the control and experimental groups arises because the average
weight per red seabream in the control group is 32 g larger, and there were 3,000 more fish farmed.
Moreover, for farmed fish like red seabream, the feed consumption and feeding activity may vary
with changes in the farming environment, such as water temperature and dissolved oxygen, so
differences can be expected in the feeding amount and time [14, 15].
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Feed loss according to the feeding method was measured by collecting the feed from the feed
collection net installed for the control and experimental groups after feeding was stopped, and then
weighing the feed using a digital scale. Figure 11 shows the feed loss rate measured through 30
repeated trials of feed supply experiments, each conducted using different feed supply methods in
the control and experimental groups. The feed loss rate was calculated as the proportion of the lost
feed amount to the total feed supplied, as expressed in Equation 3.

The experimental results indicate that the average feed loss rates of the control and experimental
groups are 4.91% and 6.07%, respectively. A t-test was conducted to compare the averages between
the two groups. The resulting p-value was significantly below the threshold at 0.0027 (p<0.05),
demonstrating a 1.16% difference in the average feed loss rates between the control and experimental
groups. These findings suggest that the control group, with a lower feed loss rate, exhibits better feed
supply performance than the experimental group.

13.5 Manual Algorithm
iy [ IMean+1SD
12.0 1 Range within 1.51QR
] — Median Line
Mean
10.5 1
g 9.0 4 - I
P ]
& 7.5+
/)] 4
7]
S 6.0 i
° ]
g —
r 454 I
3.0 4 |
1.5 -
0.0

Figure 11. Feed loss rate according to the feeding method.

However, feed loss rates can vary depending on the amount of feed lost due to the flow rate of
water during the feed capture process. Consequently, to compare the feed supply performance of the
control and experimental groups more accurately, it is deemed necessary to either perfectly measure
the feed lost underwater or devise a method to collect it.

4. Conclusions

In this study, we developed an intelligent feeding system that determines whether the feed
supply must be continued or terminated by observing the depth-specific feeding behavior of red
seabream. We compared the feeding performance of the system with that of traditional manual
feeding by conducting a field experiment to investigate the per-unit-time feed supply amount and
loss rate. The experimental results show that while the per-unit-time feed supply of both the manual
method and the intelligent feed supply system was at an equivalent level, the intelligent feed supply
system yielded a feed loss rate 1.16% higher than the manual method. This negligible difference in
feed loss underscores the feasibility and effectiveness of the feeding method, as confirmed through
observation of the depth-specific feeding behavior of the red seabream.

However, continuous follow-up research is deemed necessary to improve the performance of
the developed technology and assure reliability. Moreover, the developed intelligent feeding system
requires measures against malfunctions, such as failures in the edge computing system and
Fishfinder, that can cause the system to continue or stop feeding. Accordingly, in future research, we
plan to analyze the correlations between farming environment data (e.g., water temperature and
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dissolved oxygen) and depth-specific feeding behavior data of red seabream collected in the feeding
experiment to predict the appropriate amount of feed according to the farming environment using
the edge computing system.

Such research is expected to help improve the operating environment of aquaculture sites,
ensure appropriate feed supply, stabilize fish production, ensure the health of fish, and reduce overall
operational costs. Moreover, we expect that the developed system can contribute to shifting from
traditional labor-intensive farming methods to a technology-intensive aquaculture industry by
automating the farming process using intelligent techniques.
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