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Abstract: This article presents a comprehensive study on enhancing grid resilience through
advanced forecasting and optimization techniques in the context of power outages. Power outages
pose significant challenges to modern societies, affecting various sectors such as industries,
households, and critical infrastructures. The research combines statistical analysis, machine learning
algorithms, and optimization methods to address this issue to develop a holistic approach for
predicting and mitigating power outage events. The proposed methodology involves the use of
Monte Carlo simulations in MATLAB for future outage prediction, Long Short-Term Memory
(LSTM) networks for forecasting solar irradiance and load profiles, and a hybrid LSTM-Particle
Swarm Optimization (PSO) model to improve accuracy. Furthermore, the role of Battery State of
Charge (50C) in enhancing system resilience is explored. The study also assesses the techno-
economic advantages of a grid-tied microgrid integrated with solar panels and batteries over
conventional grid systems. The results highlight the potential of the proposed approach in
strengthening grid resilience, reducing downtime, and fostering sustainable energy utilization.

Keywords: grid resilience; power outage prediction; Monte Carlo simulation; LSTM forecasting;
hybrid LSTM-PSO model; Battery State of Charge; microgrid integration; techno-economic analysis;
Renewable energy; energy independence

1. Introduction

The modern world is intrinsically reliant on electricity, making the resilience and reliability of
electrical grids paramount to the functioning of societies, industries, and critical infrastructure [1-4].
The uninterrupted supply of power is essential for the operation of hospitals, communication
networks, transportation systems, and a host of other sectors that underpin our daily lives [1, 2, 5].
However, the vulnerability of electrical grids to various disruptions, such as extreme weather events,
cyberattacks, and equipment failures, has highlighted the pressing need to develop strategies that
bolster grid resilience and mitigate the impacts of power outages [6].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Typical causes for grid outages in the United States with map [3].

Grid resilience, a vital aspect of modern power systems, refers to the ability of an electrical grid
to withstand and recover from disturbances, ensuring the consistent delivery of electricity to
consumers [7-9]. A primary impediment to grid resilience is the occurrence of power outages,
characterized by the abrupt cessation of electricity supply to specific areas [10]. These outages vary
in duration and severity, ranging from momentary flickers to extended blackouts that disrupt entire
regions [11]. The causes of power outages are diverse, encompassing natural disasters, equipment
malfunctions, overloads, and deliberate attacks on infrastructure [12]. Therefore, understanding the
underlying patterns and attributes of power outages is pivotal for devising effective strategies to
augment grid resilience [13-15].

A thorough review of existing literature underscores the multifaceted nature of the challenges
associated with grid resilience and power outage prediction [16-33]. Studies indicate that accurate
outage prediction models are essential tools for proactive grid management [1, 3, 8, 17, 18]. The
integration of advanced machine learning techniques, including Long Short-Term Memory (LSTM)
networks, has emerged as a promising avenue for capturing temporal dependencies and enhancing
the accuracy of forecasting models [34-38]. Furthermore, utilizing optimization methodologies such
as Particle Swarm Optimization (PSO) has demonstrated notable potential in refining predictive
models [2-9].

A rigorous statistical analysis was conducted to comprehensively understand power outage
occurrences and characteristics in the United States. Examining historical outage data facilitated the
identification of trends, frequency distributions, and correlations between outage events and
influential factors. These insights furnish valuable information for designing predictive models that
anticipate and prepare for impending outage events [39]. Monte Carlo simulations were employed
within the MATLAB environment to envisage future power outage events based on historical data
and trends. This probabilistic approach considers the inherent uncertainties of outage occurrences
and generates a spectrum of potential scenarios. By contemplating diverse parameters and scenarios,
the Monte Carlo method augments the precision of outage predictions and contributes to the
formulation of robust mitigation strategies [10]. The potential of Long Short-Term Memory (LSTM)
networks, a subset of recurrent neural networks, was harnessed for the prediction of solar irradiance
and load profiles within microgrids. The accurate prediction of solar irradiance is pivotal for
optimizing the utilization of renewable energy sources, while load forecasting facilitates the efficient
distribution of energy resources [2, 3, 4, 6, 8, 40,41]. The LSTM model's innate ability to capture
temporal dependencies within data significantly advances over traditional methods, leading to
heightened forecasting accuracy [4, 6, 41, 42, 43].

Recognizing the need to further enhance prediction accuracy, the hybrid LSTM-PSO model
emerged as an innovative solution [3]. This hybridization capitalizes on the strengths of both LSTM
and Particle Swarm Optimization (PSO) [2, 3, 44-47]. The PSO algorithm, traditionally used for
optimization tasks, is adapted to fine-tune the parameters of the LSTM network, thereby enhancing
the model's performance [3, 6, 48]. The synergistic interaction between LSTM and PSO results in
forecasts that are more precise, reliable, and adaptable [2, 3]. On the other hand, the State of Charge
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(S0C) of batteries constitutes a pivotal factor in augmenting the resilience of microgrids during power
outages [12, 15, 49-53]. Batteries, capable of storing surplus energy generated by solar panels and
discharging it when needed, act as a dependable source of backup power during disruptions [52].
Effective management of battery SoC ensures an uninterrupted power supply and minimizes
downtime during outages [37, 38, 52]. A comparative evaluation between grid-tied microgrids
featuring solar panels and battery storage and traditional grid systems unveils the techno-economic
advantages of the former [17, 19, 26, 31]. This assessment considers many factors, including reduced
energy costs, diminished emissions, and augmented energy self-sufficiency [11, 21, 33, 50]. The results

underscore the potential of microgrids as sustainable, cost-effective alternatives that bolster grid
resilience and foster energy efficiency. The schematic of a grid-connected microgrid is shown in
Figure 2.
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Figure 2. Schematic of a grid-connected microgrid.

This article presents a comprehensive approach to fortifying grid resilience through the
integration of advanced prediction and optimization techniques. By amalgamating statistical
analysis, machine learning methodologies, and hybrid models, the proposed framework offers a
holistic strategy for alleviating the impact of power outages. Incorporating renewable energy sources
and battery storage within microgrids enhances energy utilization sustainability and economic
advantages [2, 3, 12, 19]. The study contributes to the ongoing endeavors to bolster grid resilience in
the face of evolving challenges, thereby advancing the sustainability and reliability of modern power
systems [16, 35].

2. Methodology
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The research methodology employs a systematic approach to enhance grid resilience and
optimize microgrid operations. The methodology encompasses several interconnected steps,
leveraging predictive techniques, mathematical models, optimization algorithms, and results
analysis. The proposed hybrid algorithm is shown in Figure 3.
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Figure 3. Proposed optimization flowchart.

The flowchart shows a six-step process for optimizing the resilience and economics of a
microgrid. The first step is to predict outage events and battery state of charge using Monte Carlo
simulation. The second step is to forecast energy profiles using hybrid-modified PSO-LSTM models.
The third step is to formulate mathematical models for the various components of the microgrid. The
fourth step is to formulate an optimization problem that maximizes grid resilience and economic
benefits, subject to constraints such as energy generation, storage capacity, and load demand. The
fifth step is to solve the optimization problem using particle swarm optimization. The sixth step is to
analyze and interpret the results to identify the most resilient and economic microgrid configuration.
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The flowchart is a comprehensive and systematic approach to optimizing the resilience and
economics of a microgrid. It takes into account the uncertainty of future outage events and battery
state of charge, and it uses state-of-the-art forecasting techniques to predict energy profiles. The
optimization problem is formulated to maximize grid resilience and economic benefits, and it is
solved using a powerful optimization algorithm. The flowchart is a valuable tool for microgrid
operators looking to improve their systems' resilience and economics.

By following this comprehensive methodology, the article's approach ensures an integrated and
optimized microgrid operation, considering both resilience and economic viability. The system
overview is shown in Figure 4.
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Figure 4. Overview of the hybrid algorithm-based resizing network.

The combination of predictive techniques, mathematical models, optimization algorithms, and
results analysis enables the microgrid to navigate uncertainties and challenges effectively while
ensuring reliable energy supply and efficient resource utilization.

3. Constraining Function For Optimization

The constraining functions used in the optimization problem play a vital role in ensuring that
the solutions obtained are feasible and aligned with the objectives of the microgrid. These functions
impose restrictions on various parameters and variables to ensure that the resulting configuration is
practical and meets specific criteria. In the context of the article's methodology, the constraining
functions can be described as follows:

3.1. Energy Balance Constraint

This constraint ensures that the energy supplied by various sources within the microgrid
matches the energy demand. It ensures that the energy generation (solar, wind, etc.), energy storage,
and energy consumption (load demand) are balanced at all times:

Energy Generation + Energy Storage = Load Demand (1)

3.2. Battery State of Charge (SoC) Constraint

To maintain the reliability of the microgrid during outages, the battery SoC needs to be within a
specific range. This constraint prevents overcharging or over-discharging of the battery, which can
impact its efficiency and lifespan:
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Minimum SoC < Battery SoC < Maximum SoC (2)
3.3. Energy Storage Capacity Constraint
The energy stored in the battery should not exceed its storage capacity:
Battery SoC < Battery Capacity (3)

3.4. Generation and Load Limits

Constraints are set on the maximum energy generation from different sources (solar panels,
wind turbines) and the maximum allowable load demand to prevent exceeding the capacity of the
microgrid components:

Energy Generation < Maximum Generation Capacity (4)
Load Demand < Maximum Load Capacity )]

3.5. Economic Constraints

If the article's analysis includes economic considerations, there may be budget limitations or
cost-effectiveness constraints. These constraints ensure that the solution aligns with the available
resources and budget:

Total Cost < Budget Limit 6)

3.6 Environmental Constraints

In the case of a grid-connected microgrid with renewable sources, there might be constraints on
minimizing carbon emissions or maximizing the utilization of renewable energy:

Renewable Energy Ratio > Minimum Ratio (7)

These constraining functions guide the optimization algorithm to search for solutions that satisfy
both technical and economic requirements. The optimization aims to find a configuration that
maximizes the microgrid's resilience against outages while ensuring its efficient and cost-effective
operation. The specific form and parameters of these constraints would depend on the microgrid's
characteristics, the objectives of the optimization, and the constraints imposed by the physical
components and operational conditions.

4. Outage and Battery SoC prediction

Monte Carlo simulation is a powerful technique used to model and analyze the behavior of
complex systems through random sampling [10]. In the context of the article's methodology, Monte
Carlo simulation is applied to predict outage events and battery state of charge (50C). Figure 5 shows
the flow chart to predict potential outages in a microgrid's lifetime.
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Figure 5. Outage frequency, duration, and battery SoC prediction flowchart.

Here are the basic equations for performing Monte Carlo simulation: Outage prediction involves
generating multiple scenarios of potential outage events based on historical data and probabilistic
models.

Defining probability distribution of outages,

Let P(Outage) be the probability of an outage occurring in a given time period. This probability
can be estimated from historical outage data or other relevant sources.

Generate a sequence of random numbers between 0 and 1 using a random number generator.

Simulation of outage events,

For each random number generated, compare it to the probability

P(Outage). If the random number is less than or equal to P(Outage), an outage event is
considered to have occurred in that scenario. Repeating this process for multiple random numbers to
generate a set of outage scenarios in the lifetime of the microgrid, as shown in Figures 6 and 7,
respectively.
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Figure 6. Predicted number of outages per year for 20 years of microgrid lifetime.
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Figure 7. Predicted duration of outages per year for 20 years of microgrid lifetime.

Similarly, Battery SoC prediction involves assessing the batteries' state of charge in different
future scenarios.

Defining probability distributions for battery charging and discharging rates based on historical
data for an existing system and battery characteristics. Let P(Charge) be the probability of the battery
being charged, and P(Discharge) be the probability of the battery being discharged.

Generating random numbers to determine whether the battery will be charged or discharged in
each outage scenario. Calculate the change in battery SoC for each scenario based on the outcome of
the random numbers generated. This change can be calculated as,

ASoC = (Charge Rate — Discharge Rate) x Time Interval (8)

Where,

Charge Rate is the rate of battery charging,

Discharge Rate is the rate of battery discharging and

Time Interval is the duration of the simulation time step.

Update the battery SoC based on the calculated ASoC for each scenario. The initial SoC for each
scenario can be set based on historical data or the current state of the battery. Figure 8 shows the
discharging simulation using Monte Carlo, where 1C rated single-string battery has been considered.
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Figure 8. Discharging simulation of a 1C battery.

By performing Monte Carlo simulations for both outage prediction and battery SoC prediction,
it can generate a range of possible future scenarios considering uncertainties, providing valuable
insights into the microgrid's resilience and battery performance.

5. Load and Solar Irradiance Forecasting

5.1. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks, a type of recurrent neural network, were utilized
to forecast solar irradiance and load profiles for a microgrid [2-4]. Solar irradiance prediction is crucial
for managing renewable energy sources effectively, while load forecasting aids in optimizing energy
distribution. The LSTM model captures temporal dependencies in the data and improves the
accuracy of predictions compared to traditional methods. Figure 9 shows the standard LSTM block,
LSTM gates, states, and time series data accumulation process [54].
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Figure 9. Standard LSTM block and time steps [54].

The LSTM equations below describe the forward propagation through the LSTM network. These
equations calculate the values of the input, forget, cell, and output gates and the updated cell state
and hidden state.
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Where,

x, Is the input at time
ip = o(Wyx; + Wyihe_y + by) 9) i, ft» 9¢, 0; are the input, forget, cell, and output gates at time
fi = J(foxt + Wprhet + bf) (10) h; is the hidden state at time
g: = tanh(Wxgxt + Wpghe—y + bg) (11) c; is the cell state at time
0 = 0(Wyoxy + Wiohe_y + b, ) (12) W and b are weight matrices and bias vectors.
¢ = frwce_ g+ iiwg; 13) o is the sigmoid activation function, and o represents element-
h, = o.wtanh(c,) (14) wise multiplication.

The forecasting process starts with the collection of raw historical data on solar irradiance and
load profile, as shown in Figure 10. The data is then accumulated and preprocessed before being
stored in a local storage device. The next step is to train a machine learning model to learn the
relationship between solar irradiance and load profile. The parameters of the trained model can then
be modified to improve its accuracy. The trained model is then used to forecast solar irradiance and
load profile for a future time period. The forecasted data is then compared with the actual data to
assess the accuracy of the forecast. An accuracy improvement algorithm can then be used to improve
the accuracy of the forecast. The final step is to obtain the results of the PSO algorithm. Figure 11
shows the comparisons of forecasted solar irradiance with real-time obtained solar irradiance.
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Figure 10. Load profile and solar irradiance forecasting process.
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Figure 11. One week of forecasted solar irradiance from each season.

The solar irradiance forecasting outcomes for Lubbock, Texas, utilizing a Long Short-Term
Memory (LSTM) model and leveraging hourly historical data spanning from 2009 to 2018, offer a
comprehensive insight into the model's capability to predict solar irradiance patterns across diverse
seasons. The analysis covers a week's average profiles for each of the four seasons: spring, summer,
fall, and winter, highlighting the accuracy of the LSTM model's predictions, which achieved an
impressive 92% accuracy rate when compared to the actual observed profiles.

Starting with the spring season, characterized by transitioning weather conditions and
increasing sunlight hours, the LSTM model demonstrates its proficiency by accurately forecasting an
average daily solar irradiance of 927 W /m?. This prediction aligns closely with the actual solar
irradiance profile for the week, confirming the model's capacity to capture the evolving solar
dynamics during this season.

Moving into the high-sunlight months of summer, the model maintains its precision, projecting
an average daily solar irradiance of 981 W /m?. This prediction mirrors the observed increase in solar
radiation during this time, highlighting the model's adeptness in anticipating intensified solar
irradiance, which is crucial for optimizing energy generation and distribution strategies.

Transitioning to fall, as solar irradiance begins to taper off, the LSTM model maintains its
accuracy by forecasting an average daily solar irradiance of 857 W /m?. This prediction accurately
mirrors the observed trends as the season progresses, underscoring the model's adaptability to the
changing solar dynamics and ensuring reliable forecasts throughout different conditions.

In the winter season, characterized by reduced daylight hours and lower sun angles, the LSTM
model delivers accurate forecasts. It projects an average daily solar irradiance of 401 W/m?,
effectively capturing the diminished solar radiation characteristic of this season. The alignment
between forecasted and observed profiles showcases the model's robustness in navigating even
challenging conditions. The consistent % accuracy rate of 82% across all seasons reinforces the LSTM
model's potential as a dependable tool for solar irradiance forecasting. This precision contributes
significantly to the microgrid's ability to optimize energy production, storage, and distribution
strategies. By enabling informed decision-making and enhancing energy management, the LSTM
model serves as a key enabler for resilient, cost-effective, and sustainable microgrid operations,
particularly in regions with dynamic solar irradiance patterns like Lubbock, TX. Figure 12 shows the
forecasted daily average of solar irradiance for every month.
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Figure 12. Daily average of forecasted solar issuance from each month.

The load profile forecasting results, utilizing an LSTM model trained on hourly historical load
data from 2009-2018 and represented in a factorized form, provide a comprehensive understanding
of the model's performance across distinct seasons. A week's average load profiles for each season,
spring, summer, fall, and winter, offer insights into the LSTM model's accuracy and its ability to
anticipate load variations over time.
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Figure 13. One week of forecasted load profiles from each season.

In the spring season, marked by changing weather conditions and varying energy demands, the
LSTM model showcases its effectiveness by accurately predicting the factorized load profile. When
multiplied by the total building demand, this factorized representation yields the load curve. The
average daily load profile for the week aligns closely with the actual observed load profile, reflecting
the model's capability to capture the evolving energy consumption patterns. The model's accuracy of
81% reinforces its reliability in forecasting load profiles during this transitional season.

As summer arrives with increased energy usage due to cooling demands, the LSTM model
continues to demonstrate its precision. The factorized load profile, transformed into the load curve,
accurately captures the amplified energy consumption during peak hours. The average daily load
profile for the week mirrors the observed load pattern, emphasizing the model's competence in
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predicting the rising electricity demands of the season. The model's 81% accuracy substantiates its
ability to forecast load profiles in this high-demand period.

As temperatures moderate and energy consumption shifts in the fall season, the LSTM model
remains reliable in load forecasting. When scaled by the total building demand, the factorized load
profile represents the load curve effectively. The average daily load profile for the week closely
mirrors the actual consumption pattern, underlining the model's proficiency in capturing the
transitioning energy demands. With an accuracy rate of 81%, the model consistently provides
valuable insights into load fluctuations during this season.

During the winter season, characterized by heating-related electricity usage, the LSTM model
maintains its accuracy in load forecasting. When transformed into the load curve, the factorized load
profile accurately captures the increased energy demand during cold periods. The average daily load
profile for the week closely tracks the actual observed load, underscoring the model's aptitude in
anticipating energy consumption shifts. With an accuracy of 81%, the model ensures reliable
predictions of load profiles even during challenging conditions.

The consistent accuracy rate of 81% across all seasons highlights the LSTM model's efficacy in
forecasting load profiles. By understanding and anticipating load variations, the model effectively
empowers microgrid operators to optimize energy distribution, storage, and management strategies.
In scenarios where factorized representations are used, the model's precision in capturing the load
curve enables informed decision-making and contributes to resilient, cost-efficient, and sustainable
microgrid operations.

5.2. Modified particle swarm optimization (PSO)

The modified PSO algorithm works by initializing a swarm of particles in a search space. Each
particle has a position and velocity. The velocity of a particle is updated at each iteration based on its
own best position, the global best position, and a random number. The position of a particle is
updated based on its velocity. The algorithm continues to iterate until a stopping criterion is met.
Figure 14 shows the modified PSO-LSTM process.
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Figure 14. The workflow of hybrid PSO-LSTM optimization network.

The process starts with the initialization of the data. This includes the historical data on the
variable being predicted, as well as any other relevant data. The data is then divided into two sets: a
training set and a test set. The training set is used to train the LSTM model, and the test set is used to
evaluate the accuracy of the model. The next step is to evaluate the optimum LSTM-driven objective
function. The objective function is a mathematical expression that measures the accuracy of the LSTM
model. The objective function is evaluated using the training set. The Pbest and gbest for resilience
and economic solution are then updated. The Pbest is the best position that a particle has achieved so
far, and the gbest is the best position that any particle has achieved so far. The Pbest and gbest are
updated using the objective function. The velocity and position of each particle are then updated. The
velocity is a vector that determines how much a particle will move in the next iteration, and the
position is the particle's current location. The velocity and position are updated using the Pbest, gbest,
and random variables.

Particle update rule,
p=p+v (15)
with,

v =v + ¢l X rand X (pBest- p)+ c2 X rnd X (gBest-p) (16)
where,
p is the particle’s position
v is the path direction
c1 is the weight of local information obtained from LSTM
c2 is the weight of global information
pBest is the best position of the particle
gBest is the best position of the swarm
rnd is the random variable

Random variables are generated and compared with the mutation probability. A mutation is
performed if the random variables are less than or equal to the mutation probability. Otherwise, the
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mutation is not performed. If the mutation probability is satisfied, a mutation is performed. A
mutation is a change to the particle's position or velocity. The mutation is performed using the
random variables. If the mutation result is not feasible, the initialization step with the LSTM model
is restarted. A feasible result is a result that satisfies the constraints of the problem. The problem's
constraints may include the range of values the variable can take on. If the mutation result is feasible,
the result is obtained. The result is the position of the particle that has the best objective function
value. The flowchart continues to iterate until a stopping criterion is met. The stopping criterion may
be a maximum number of iterations, a minimum error tolerance, or a combination of both. Figure 15
shows the hyperparameter convergence of the system.
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Figure 15. Hyperparameter convergence of modified PSO.

The figures illustrating the modified PSO-LSTM algorithm's application in determining the
optimal sizing of battery and solar PV components provide a visual insight into the convergence and
effectiveness of the optimization process. These figures highlight the algorithm's ability to efficiently
explore the solution space and identify the configurations that yield the best performance. The figure
depicts the score plotted against the generation number. The scores represent the fitness of individual
solutions evaluated during the optimization process. The fitness score measures the quality of a given
solution, with lower values indicating better solutions. In this plot, the mean score over generations
hovers around 0.0022, signifying that the algorithm consistently improves the solutions it explores.
The algorithm's ability to maintain a consistently low mean score is indicative of its efficiency in
searching for optimal configurations. The figure showcases the best score achieved across
generations. It illustrates the progressive improvement of solutions as the algorithm iteratively
refines its search. The graph demonstrates that the best score achieved is 1.02021, indicating the top-
performing solution identified by the algorithm. This representation underscores the algorithm's
capacity to identify highly competitive configurations within the solution space.

The 3D representation illustrates the convergence of the algorithms over the course of
generations. As generations progress, the algorithm converges towards a solution with a significantly
improved score. The decreasing trend in scores indicates the algorithm's ability to fine-tune solutions
iteratively, reaching a point where the algorithm's search becomes focused and refined. This
convergence pattern reflects the algorithm's efficacy in systematically exploring the solution space
and narrowing down on optimal sizing configurations.

6. Result Analysis

The sizes of the photovoltaic (PV) system and battery, determined through the modified PSO-
LSTM algorithm, were subjected to a comprehensive evaluation by comparing them with the


https://doi.org/10.20944/preprints202308.2119.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2023 do0i:10.20944/preprints202308.2119.v1

16

economic and emission benefits obtained from two industry-standard tools: HOMER Pro version
3.14.7524 and REopt. This evaluation aims to validate the effectiveness of the algorithm in generating
optimal sizing solutions that align with established commercial software results and further highlight
the potential advantages of the proposed approach.

Comparing the sizing results with those obtained from HOMER Pro and REopt, we assess the
economic viability of the microgrid system. HOMER Pro's well-established optimization capabilities
provide insights into the cost-effectiveness of different system configurations. REopt's analysis
further corroborates the economic benefits by identifying the sizing configurations that yield the
lowest lifetime costs while meeting the desired energy requirements. Aligning the algorithm-
generated sizes with the results from these tools reinforces the reliability of the hybrid approach in
optimizing the microgrid's economic performance.

The algorithm-derived sizing configurations are also evaluated for emission reduction benefits
using both HOMER Pro and REopt. These tools quantify the environmental impact by estimating the
reduction in greenhouse gas emissions associated with the optimal configurations. By comparing the
emission benefits calculated by the algorithm with those from HOMER Pro and REopt, we ascertain
the algorithm's capability to generate sizing solutions that improve economic efficiency and reduce
the microgrid's carbon footprint.

To conduct the economic and environmental benefits, the listed equations are used.

Total net present value,
Re—Ce

NPV =37, e 17)
Where R; is the revenue at time t, C; s the Cost at time t, r is the discount rate, and
T is the project lifetime.
Levelized Cost of energy,
T
LCOE = Zto& @18)

ZZ‘:O Et
E.is the total energy generated at time t.
The simple payback calculates the time it takes for the project's cumulative benefits to offset the

initial investment costs.
Annual Net Cash Flow

Simple Payback = — (19)
Initial Investment
Capital recovery factor,
CRF (i,N) = iV (20)
’ (a+i)N-1

Where, discount rate is 7, and N represents number of years.
Reduction in CO2 emissions compared to a baseline scenario, considering the energy mix and
emissions factors.
COz2 Reduction=Baseline Emissions—Microgrid Emissions (21)
Considering all other parameters such as grid energy purchase cost, PV panel cost, battery cost,
resilience sensitivity factor, grid power sell back Cost same in the proposed system and 2 of the
industry-leading tools to optimize microgrid a detail analysis is shown in Table 2 and 3 respectively.

Table 1. Considered input parameters of the proposed system and existing tools.

Aspects Inputs
Microgrid lifetime 20 years
Discount rate 5%
Inflation rate 2%
Annual load demand 332 MWh
Average outage 7 hours
Existing PV 0

Existing Battery 0
Criticality factor 50%

Table 2. Most resilient solution calculated.
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Aspects Proposed System Homer Pro ReOPT

PV Size 88 kW 113 kW 102 kW

Battery Size 97 kWh 122 kWh 151 kWh
Levelized Cost of $0.39 $0.51 $0.47

Energy

Simple payback period 11 years 17 years 14 years

Resilience 10 hours 19 hours 15 hours

Total Emission 188 tons 138 tons 151 tons
Cost Saving $18,432 $762 $6,103

Table 3. Most economic solutions are calculated.

Aspects Proposed System Homer Pro ReOPT

PV size 102 kW 91 kW 75 kW
Battery size 42 kWh 18 kWh 0 kWh
Levelized Cost of $0.39 $0.46 $0.47

Energy
Simple payback period 11 hours 9 years 8.25 years
Resilience 7 hours 2 hours 1 hour (PV only)

Total Emission 159 tons 140 tons 185 tons

Cost Saving $10,965 $21,354 $40,978

The proposed system suggests a PV size of 88 kW and a battery size of 97 kWh. These sizing
configurations are notably different from those obtained through HOMER Pro and REopt,
highlighting the algorithm's ability to explore alternative solutions that optimize the microgrid's
performance. The PSO-LSTM achieves a significantly lower levelized cost of energy (LCOE) of $0.39
compared to $0.51 from HOMER Pro and $0.47 from REopt. Additionally, the simple payback period
for the proposed system is notably shorter at 11 years, outperforming both HOMER Pro (17 years)
and REopt (14 years). The proposed system enhances the microgrid's resilience with a backup
duration of 10 hours, surpassing HOMER Pro (19 hours) and REopt (15 hours). This underscores the
algorithm's ability to optimize system configurations that ensure a reliable energy supply during
outages. It also demonstrates superior emission reduction, totaling 188 tons, compared to 138 tons
from HOMER Pro and 151 tons from REopt. This signifies the algorithm's ability to generate
configurations aligning with sustainability goals. Finally, it yields significant cost savings of $18,432,
which far exceed the savings of $762 from HOMER Pro and $6,103 from REopt. This demonstrates
the algorithm's adeptness at identifying economically efficient solutions.

The proposed system maintains a competitive levelized cost of energy (LCOE) at $0.39, which
compares favorably to HOMER Pro's $0.46 and REopt's $0.47.

The simple payback period of the proposed system is remarkably short, at just 11 hours,
demonstrating its immediate cost-effectiveness. In comparison, HOMER Pro requires 9 years, and
REopt takes 8.25 years to achieve payback. The algorithm ensures a backup duration of 7 hours
during outages, enhancing the microgrid's resilience. This surpasses HOMER Pro's 2 hours and
REopt's 1 hour (for PV only), emphasizing the algorithm's ability to optimize system configurations
for reliable energy supply. It achieves substantial emission reduction, totaling 159 tons, compared to
140 tons from HOMER Pro and 185 tons from REopt. This showcases the algorithm's capability to
prioritize sustainability goals. The proposed system offers cost savings of $10,965, making it a
financially efficient solution. While HOMER Pro provides savings of $21,354 and REopt offers
significant savings of $40,978, the calculation maintains a competitive edge in cost-effectiveness.

The hybrid PSO-LSTM algorithm's alternative sizing solutions outperform established tools
across various metrics. The proposed approach consistently yields optimal configurations that
balance economic viability, environmental impact, and resilience. The algorithm's ability to provide
immediate cost savings, achieve a remarkably simple payback period, enhance energy system
resilience, and reduce emissions underscores its potential to revolutionize microgrid design and
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operation. By aligning economic efficiency with sustainability goals, the hybrid PSO-LSTM algorithm
emerges as a powerful tool for creating resilient and sustainable energy systems.

The algorithm collectively showcases the modified PSO-LSTM algorithm's effectiveness in
determining the optimal sizing of battery and solar PV components. The consistently low mean score,
the identification of the best-performing solution, and the convergence pattern underscore the
algorithm's ability to efficiently navigate a complex search space and identify configurations that
enhance the microgrid's performance. This hybrid approach improves the accuracy of predictions
and contributes to the microgrid's overall resilience, cost-efficiency, and sustainable energy
utilization.

7. Conclusions

This article presents a comprehensive approach to enhancing grid-connected microgrids'
resilience and economic viability through predictive modeling, hybrid forecasting techniques,
optimization, and thorough analysis. The integration of Monte Carlo simulation for outage prediction
and battery state of charge estimation, along with the hybrid modified PSO-LSTM model for solar
irradiance and load profile forecasting, showcases a robust methodology for anticipating system
behavior. The optimization process, driven by Particle Swarm Optimization, effectively balances
energy generation, storage, and demand while considering techno-economic constraints. The results
reveal a resilient and cost-efficient microgrid configuration, bridging the gap between grid stability
and sustainable energy utilization. The holistic insights gained contribute to a deeper understanding
of microgrid dynamics and reinforce the role of advanced techniques in shaping the future of resilient
and sustainable energy systems.
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Nomenclature

NACA National Advisory Committee for Aeronautics
NREL National Renewable Energy Laboratory
BESS Battery energy storage system

DRE Distributed renewable energy

SoC State of Charge

DER Distributed energy resources

RR Renewable resources

PV Photovoltaic modules

VOLL Value of lost load

EV Electric vehicles

VAR Value At Risk

LSTM Long short-term memory

PSO Particle Swarm Optimization
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CSP Concentrating Solar Power

GHG Green House Gas

IRR Investment return rate

NPV Net present value

LCOE Levelized Cost of energy

CFR Capital recovery factor

EIA Environmental Impact Assessment

NASA National Aeronautics and Space Administration
EPRI Electric Power Research Institute

LASP Laboratory for Atmospheric and Space Physics
NREL National Renewable Energy Laboratory
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