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Abstract: Falls are a major health hazard for older adults, therefore, in the context of an aging population, 

predicting the risk of a patient suffering falls in the near future is of great impact for health care systems. 

Currently, the standard prospective fall risk assessment instrument is the relies on a set of clinical and functional 

mobility assessment tools, one of them is the Timed Up and Go (TUG) test. Recently, wearable inertial 

measurement units (IMUs) have been proposed to capture motion data that would allow to build estimates of 

fall risk. The hypothesis of this study is that the data gathered from IMU readings while the patient is performing 

the TUG test can be used to build a predictive model that would provide an estimate of the probability of 

suffering a fall in the near future, i.e., assessing prospective fall risk. This study applies deep learning 

convolutional neural networks (CNN) and recurrent neural networks (RNN) to build such predictive models 

based on features extracted from IMU data acquired during TUG test realizations. Data were obtained from a 

cohort of 106 older adults wearing a wireless IMU sensor with a sampling frequency of 100 Hz while performing 

the TUG test. The dependent variable is a binary variable that is true if the patient suffered a fall in a six-month 

follow-up period. This variable was used as the output variable for the supervised training and validations of 

the deep learning architectures and competing machine learning approaches. A hold out validation process 

using 75 subjects for training and 31 subjects for testing was repeated one hundred times to obtain robust 

estimations of model performances At each repetition, 5-fold cross-validation was carried out to select the best 

model over the training subset. Best results were achieved by a bidirectional long short-term memory (BLSTM), 

obtaining an accuracy of 0.83 and AUC of 0.73 with good sensitivity and specificity values. 

Keywords: Inertial sensors; fall prediction; fall risk assessment; deep learning; machine learning 

 

1. Introduction 

Older people suffering falls often require medical attention [1,2], hence falls are becoming a 

major public health problem due to the increasing aging of the population. The rising incidence of 

accidental falls has a great economic impact on healthcare systems and for society: 20-30% of falls 

lead to mild to severe injuries, and falls are the underlying cause of 10-15% of all emergency 

department visits of older people in the United Kingdom in 1999 [3], and these figures are growing 

with population aging since then. Moreover, falls often cause mobility impairments that lead to 

dependency for activities of daily living, along with psychological consequences such as anxiety and 

fear for future falls [4,5]. According to the World Health Organization, approximately, worldwide 

yearly incidence of falls for people over 65 years old is 28-35%, increasing to 32-42% for people aged 

over 70 years [6]. In particular, older adults living in nursing homes are especially prone to falling. In 

fact, the fall incidence in this population is three times that of older people living in the community 

[7]. The financial toll from older adult falls in the United States was estimated in $67.7 billion in 2016 

[8]. Therefore, fall prevention in older adults is of upmost socioeconomic importance. 
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To this end, clinical questionnaires and clinical assessment-based fall risk prediction tools have 

been proposed reporting a wide range in performance scores (sensitivity in the range 14-94%, 

specificity in the range 38-100%) [9]. Additionally, fall risk assessment protocols like the STEADI 

(stopping elderly accidents, deaths & injuries) proposed by the Centers for Disease Control (CDC) 

rely on functional mobility assessment tools in the form of questionnaires, physical tests, gait 

analysis, and physical activity measurements [10]. Some of the most widely used assessment tools 

are the Timed Up and Go (TUG) test [11], the Tinetti Assessment Tool [12], the STRATIFY score [13], 

and the Five-Times-Sit-to-Stand (FTSS) test [14]. Specifically, the TUG test has proven valuable in 

early assessment of balance and mobility [15–17]. However, all of these tools are in fact used 

qualitatively by the clinician trying to assess prospective fall risk. 

The main hypothesis of this study is that the information extracted from IMU readings during 

the realization of the TUG test can be used to build predictive models that provide an estimate of the 

probability of the patient suffering a fall in the near future. In other words, this information may be 

used for quantitative and predictive fall risk assessment. This information would be of great 

importance to guide fall prevention for older adults, and especially for those living in nursing homes 

due to their greater fall incidence. 

The paper reports two computational experiments. The first corresponds to application of 

supervised machine learning algorithms to some descriptive variables of the TUG test phases. The 

second corresponds to the application of deep learning architectures over the raw data of the IMU 

wearable. 

The contributions of this paper are the following ones: (a) the collection of a dataset of IMU 

readings while a large number of subjects are realizing a TUG test whose {F,NF} labels are generated 

in a follow-up period of 6 months; (b) the proposal of deep learning architectures to deal with this 

prediction problem; (c) the proposal of feature extraction processes and conventional machine 

learning for comparison with the deep learning approaches. 

2. Materials and Methods 

Recent surveys on the application of machine learning methods for prospective and 

retrospective discrimination between patients who experience falls, i.e., fallers, (F) from non-fallers 

(NF) using IMU information report widely different predictive performance results (accuracy: 62-

100%, sensitivity: 55-99%, specificity: 35-100%) in populations over 65 years old [18–21]. These 

surveys also report a large heterogeneity of sensor placement, tasks assessed, and sensor features. 

Specifically, some authors found that data from wearable IMU sensors add meaningful information 

to the TUG test [22]. 

Deep learning architectures have been applied successfully in many areas of computer vision 

[23], medical image analysis [24], assisted/autonomous driving [25], and machine anomaly 

monitoring [26], to name a few applications. Deep Learning has already been applied to the 

classification of IMU sensor data [27–30] for human activity recognition. However, multiple data 

sources and adequate assessment tests are necessary to generalize fall risk predictions. Nait Aicha et 

al. [31] compared deep learning approaches to traditional machine learning methods to model fall 

risk on the basis of daily-life body trunk accelerometer data. They acquired data of participants 

wearing a triaxial accelerometer for 1 week. They evaluated convolutional neural network (CNN), 

the long short-term memory (LSTM) model, and a combination of both which they refer to as the 

“ConvLSTM”, reporting good results in modelling the training data, but it generalized poorly over 

new subjects and the relatively long period during which subjects must wear the inertial sensor is a 

barrier to its implementation. 

Due to the multidimensional nature of the risk of falls in older adults, there is no single ideal 

tool that performs a perfect risk assessment in any context. For this reason, the simultaneous 

application of multiple tools is recommended [32].  

The present article presents a secondary analysis of two single-blinded and multicenter 

randomized controlled trials that were registered with codes [ACTRN12618000536268; 

NCT03996083] whose primary outcomes have previously been published [33,34]. This study includes 
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106 subjects (68 women and 38 men) from 9 long-term nursing homes (LTNHs) (Gipuzkoa, Basque 

Country, Spain). Subject’s ages ranged from 70 and 104 years old and their physical and cognitive 

characteristics were described previously [35]. After providing written consent, participants 

performed the TUG test twice wearing a wireless inertial sensor (G-Walk, BTS Bioengineering Corp.) 

and the best (fastest) trial was selected. This sensor was placed on the lower back area in order to 

quantify the center of mass movement. This study was approved by the Committee on Ethics in 

Research at the University of the Basque Country (Humans Committee Code M10/2016/105). All 

feature extraction and classification cross-validation was carried out in Matlab using wavelet, 

statistics and machine learning, and deep learning toolboxes. For performance evaluation we split 

the data in 5 groups and in each iteration, we hold out one group/fold and train the algorithms in the 

remaining 4 groups. We perform this method to get a less biased model than other methods, such as 

a simple train/test split. This process is carried out for all evaluated classifiers and feature extraction 

techniques. A fall was defined as an unintentional event in which the person comes to rest on the 

ground, not as a result of an epilectic seizure or an acute stroke [36]. Falls suffered by the residents 

are systematically detected and immediately recorded in the database by the staff of each nursing 

home. Information regarding residents who experienced any fall during 6-month follow-up period 

was extracted from the participant’s medical record as provided by the medical staff. Participants 

were labeled as faller (F) or non-faller (NF). The number of falls was not taken into consideration in 

the present study. 

2.2. Data and Feature Extraction 

2.2.1. TUG Test Realization for Data Capture 

The TUG test process is decomposed into six phases, as shown in Figure 1, which are described 

as follows: 

1. The time elapsed from the beginning of standing-up motion up to the instant when the subject 

stands up; 

2. The time elapsed walking from the initial standing up position to the position where s/he starts 

turning down; 

3. The time elapsed while turning down; 

4. The time elapsed walking back to the chair from the end of the first turn to the beginning of the 

second turn; 

5. The time elapsed turning to prepare to sit down, and; 

6. The time elapsed sitting down in the chair, completing the TUG test. 

 

Figure 1. The process of the realization of the TUG test decomposed into six phases. 
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2.2.1. Raw IMU Data and Labels 

The G-Walk IMU sensor acquires acceleration, angular velocity and magnetic field data. Its 

components are: a triaxial accelerometer (x, y, z), a triaxial gyroscope (x, y, z) and a triaxial 

magnetometer (roll, pitch, yaw). Sampling frequency was adjusted to 100 Hz. The accelerometer has 

a resolution of 16 bits per axe and its sensitivity was adjusted to 2g. The gyroscope also has a 

resolution of 16 bits per axe and its sensitivity was adjusted to 2000 ◦/s. The magnetometer has a 

resolution of 13 bits with a sensitivity of 1200 µT. Figure 2 shows example readings from the sensor. 

(a) 

 

(b) 

Figure 2. An instance of the readings of the G-walk during a TUG test realization shown as raw data 

plots: (a) triaxial accelerometer, and (b) triaxial gyroscope. 

We collected raw IMU data for each TUG test realization by a subject. Due to variability in the 

time taken to perform the TUG test, the number of samples per subject varies from 1364 to 9975 as 

shown in Figure 3. Additionally, data of patients suffering fall occurrences during a 6-month follow-

up period were collected and provided to the researchers by the staff of the LTNHs. In this period, 

21 subjects (19%) were labeled as fallers (F). This label data is used the dependent variable in the 

training and validation of the classification algorithms, both deep learning networks and 

conventional machine learning approaches.  

 

Figure 3. Number of samples per recorded IMU sequence during the realization of TUG tests sorted 

in ascending order. 
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In the pre-processing steps we remove the subjects with missing values of IMU sensors or 

without label information (faller/non-faller). Then, we sort the subjects regarding their number of 

samples, observing that the great majority of them have less than 5000 IMU data samples, and that 

those above this number could be considered outliers. However, these subjects are precisely the ones 

that have a higher fall risk. Consequently, we train our model with data from all the subjects.  

The class imbalance in the dataset is moderate (ratio 1:5), however conventional machine 

learning approaches are usually biased towards the majority class, which in this study is the non-

fallers (NF) class, suffering of low sensitivity even when reporting high accuracy [37]. 

The norm of the 3D acceleration vectors is computed at each instant in order to obtain a scalar 

time series. In this way, significant changes in acceleration magnitude, which occur in events such as 

walking, turning or getting up / sitting in the chair, are easily detected regardless of the orientation 

of the device.  

2.2.3. TUG Test Variables per Phase 

We recorded spatiotemporal measurements of the IMU wearable sensor during TUG test 

realizations decomposed into standing phase, sitting phase, walking phases, and body trunk 

rotations (flexion and/or extension angle). These measurements are used as input variables by the 

conventional machine learning classification algorithms. Table 1 shows the maximum, minimum and 

average values of each of these parameters across subjects. The first group of variables are the 

duration of the different phases. During “Sit to Stand" and "Stand to Sit” phases we recorded the 

vertical, media-lateral, and anterior-posterior accelerations, as well as extension and bending angles. 

In “Turning” phases we recorded the angular accelerations. We recorded the duration of each activity 

phase for all subjects computing the mean and variance of each of them.  

Table 1. Descriptive statistics of the spatiotemporal measurements of the TUG test realizations 

corresponding to standing phase, sitting phase and rotations body trunk kinematics (flexion and/or 

extension angle). Accelerations (acc) are measured in m/s2. Body trunk rotations are measured in 

degrees. Anterior-posterior (AP), Medio-Lateral (ML), and Vertical (Vert) axis accelerometer data 

are shown. 

Variable Max        Min               Average 

 

PHASE DURATION 

Sit_to_Stand (s) 4.7 0.33 1.73  

Walking_out (s) 24.99 0.78 4.66  

Turning (s) 17.19 1.5 4.81  

Walking_in (s) 10.1 0.57 3.15  

Turning_around (s) 11.43 1.5 3.73  

Stand_to_Sit (s) 4 0.5 1.95  

     

SIT TO STAND 

Sit_to_Stand_Vert_Min_acc 

(m/s²) 
4.53 0.26 1.83  

Sit_to_Stand_Vert_Min_acc 

(m/s²) 
-0.72 -4.12 -1.93  

Sit_to_Stand_ML_Max_acc 

(m/s²) 
2.26 0.1 0.86  

Sit_to_Stand_ML_Min_acc 

(m/s²) 
-0.34 -2.34 -0.94  

Sit_to_Stand_AP_Max_acc 

(m/s²) 
4.27 0.29 1.60  
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Sit_to_Stand_AP_Min_acc (m/s²) -0.42 -2.69 -1.12  

Sit_to_Stand_Extension_Peak (°) 60.2 4.9 33.36  

Sit_to_Stand_Extension_Range 

(°) 
39 0.1 14.21  

Sit_to_Stand_Bending_Peak (°) 70 19.9 47.42  

Sit_to_Stand_Bending_Range (°) 69.9 10.4 44.85  

     

TURNING 

First_Turn_Avg__Angular_Acc 

(m/s²) 
88.4 11.4 43.76  

First_turn_Peak_Angular_Acc 

(m/s²) 
181.4 28.5 88.63  

 

TURNING AROUND 

Second_Turn_Avg_Angular_Ac

c (m/s²) 
109.2 14.1 50.71  

Second_turn_Peak_Angular_Acc 

(m/s²) 
194.3 40.3 100.20  

 

 

 

 

 

 

 

   

 

STAND TO SIT     

Stand_to_Sit_Vert_Max_acc 

(m/s²) 
9.84 0.39 4.88  

Stand_to_Sit_Vert_Min_acc 

(m/s²) 
-0.59 -4.84 -2.39  

Stand_to_Sit_ML_Max_acc 

(m/s²) 
3.69 0.67 1.78  

Stand_to_Sit_ML_Min_acc 

(m/s²) 
-0.53 -6.59 -1.87  

Stand_to_Sit_AP_Max_acc 

(m/s²) 
6.19 0.43 3.02  

Stand_to_Sit_AP_Min_acc (m/s²) 0.11 -2.5 -0.98  

Stand_to_Sit_Extension_Peak (°) 55.8 1 11.82  

Stand_to_Sit_Extension_Range 

(°) 
66.5 0.6 42.28  

Stand_to_Sit_Bending_Peak (°) 75.5 19.5 53.27  

Stand_to_Sit_Bending_Range (°) 62.6 0 24.94  

Figure 4 show a box plot of the duration of each phase. The turning phase has the longest average 

duration followed by the walking out, turning around and walking-in phases. The sitting and 

standing activities have the shortest average durations. We compute the univariate Chi-Square Test 

[38] of each feature relative to the {F, NF} class label, obtaining the feature importance ranking shown 

in Figure 5. 
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. 

Figure 4. Box-plot of each phase duration in TUG test. The median, upper- lower quartiles and 

maximum-minimum values are shown. 

 

Figure 5. Univariate Chi-Square Test importance ranking of TUG test phase input variables used by 

conventional machine learning classifiers. 

2.2.4. Wavelet Features 

Wavelet Transforms (WT) are used to represent a signal in terms of localized basis functions 

called wavelets. WT use a wavelet function and a lowpass scaling function to generate low-variance 

representations of real-valued time series data at different time scales. The general formulation of the 

wavelet is like the following equation: 

 
Traditional frequency analysis methods such as the Fourier Transform yield only frequency-

domain information without any indication of the temporal location/extent of a given frequency 
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component. Wavelet transforms on the other hand provide both temporal and frequency information, 

as the basis functions it relies upon are localized in both time and frequency. 

The IMU readings are transformed by the wavelet time scattering decomposition using the 

Gabor wavelet [39] that yields representations insensitive to translations in the input signal without 

sacrificing class discriminability and separate the data from different classes as far clear as possible. 

These wavelet features are obtained after applying the filter banks of the wavelet transform to our 

signals The scattering sequences are 38-by-1250 where 1250 is the number of time steps and 38 is the 

number of scattering scales. This matrix constitutes the input features for our 1-D CNN approach to 

fall risk prediction. Additionally, for we consider each element of the matrix as an independent 

feature. As a result, we get 47500 independent wavelet features with this decomposition. Due to the 

large number of features, we need to carry out a feature selection process to enhance the efficiency of 

the model. The importance of each wavelet feature to discriminate faller vs. non faller is evaluated 

by individual Chi-square tests [40]. Finally, we choose the 20 most significant wavelet features as the 

optimal ones. Increased number of wavelet features did not improve the classification performance.  

2.3. Machine Learning 

The fall risk assessment is stated as a binary classification problem, where the classes are {F, NF} 

labels assigned in the follow-up period after the IMU measurements (hence, we deal with a 

prospective problem). 

2.3.1. Conventional Machine Learning Algorithms 

We have applied the following 5 conventional Machine Learning (ML) algorithms to classify the 

subjects according to their fall risk assessment: Random Forest (RF), Support Vector Machines (SVM), 

K nearest neighbors (KNN), Naive Bayes (NB). The hyper-parameters of the machine learning 

algorithms are set as follows: RF: #splits=105, #learners= 30 SVM: quadratic kernel; KNN: K=10; NB: 

Gaussian kernel. The implementations used are the standard ones provided in MATLAB. 

Conventional ML algorithms are applied over TUG test phase variables described in Table 1, because 

the raw IMU signals have an extremely large dimensionality to be used as inputs for the selected ML 

models. 

2.3.2. Deep Learning Neural Network Models 

One of the most distinctive characteristics of deep learning approaches is that they learn a 

hierarchy of abstract representations from the raw data [41] overcoming the need to define and tune 

specific features for the problem at hand. In fact, most deep learning approaches are artificial neural 

networks, so that the term “deep” refers to the number of layers in the network—the more layers, the 

deeper the network. Two of the most popular deep learning networks are the convolutional neural 

network (CNN) [42] and the long short-term memory (LSTM) [43]. CNNs built up a hierarchy of 

convolution filters trained from the data. We use a specific brand of CNNs whose input data is 

extracted by means of Scattering Wavelet Transforms [43,44] in its 1D version. 

An LSTM is good for classifying sequential and time-series data, when the prediction or output 

of the network must be based on a remembered sequence of data points. An LSTM is a type of 

recurrent neural network (RNN) [45] that can learn long-term dependencies between time steps of 

sequence data. Unlike a CNN, a LSTM can remember the state of the network between predictions 

[23]. The core components of a LSTM network are a sequence input layer and a LSTM layer. A 

sequence input layer incorporates time-series data into the network. A LSTM layer learns long-term 

dependencies between time steps of sequence data over time. The LSTM is trained over the raw IMU 

readings, after computing the norms of the 3D vectors of each measure. 

3. Results 

We have performed 4 different computational experiments evaluating the different fall risk 

predictors performance in terms of accuracy, sensitivity, specificity. In the case of raw data, we have 

also computed the area under the receiving operator curve (AUC). In all cases, we have carried out 
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100 repetitions of the holdout cross validation with 75 subjects for training and 31 for testing using 

stratified sampling in the sample extraction, and 5-fold cross-validation over the training set to select 

the best model for testing at each holdout repetition. 

3.1. Conventional Machine Learning Classifiers 

We have carried out two different computational experiments with conventional ML classifiers 

that will serve as benchmarks for the deep learning approaches. In the first experiment, we use as 

features the aggregated spatiotemporal measurements of the realizations of TUG test corresponding 

to standing phase, sitting phase and rotations body trunk kinematics from Table 1. The results are 

shown in Table 2. We have carried out the classifier validation experiments over three distinct subsets 

of features: (a) the most important TUG phase descriptive variables selected by independent Chi-

square tests, (b) the duration of each phase of the TUG test, and (c) the entire set of TUG phase 

descriptive variables. Results are rather poor for all models and features, with accuracy below 0.7, 

and sensitivity below 0.33. 

Table 2. Average test performance results after 100 repetitions of hold-out cross-validation of 

different classifiers for sets of features extracted from the TUG test phases enumerated in Table 1. 

Feature Set Classifier Accuracy Sensitivity Specificity 

 RF 0.62 0.08 0.84 

 SVM 0.65 0.25 0.80 

6 Most Important Feature Set KNN 0.69 0.04 0.95 

 NB 0.65 0.25 0.80 

 LR 0.66 0.04 0.90 

 LD 0.67 0.04 0.92 

 RF 0.60 0.17 0.77 

 SVM 0.65 0.21 0.82 

Phase Duration Features KNN 0.65 0.46 0.72 

 NB 0.66 0.21 0.84 

 LR 0.66 0.13 0.87 

 LD 0.66 0.13 0.87 

 RF 0.68 0.17 0.89 

 SVM 0.54 0.21 0.67 

All Feature Set KNN 0.58 0.33 0.67 

 NB 0.59 0.25 0.72 

 LR 0.48 0.21 0.59 

 LD 0.57 0.36 0.62 

In the second experiment, we apply the ML classifiers to the selection of the 20 most significant 

wavelet scattering features extracted from the magnitude of the acceleration signal. Results presented 

in Table 3 show significant improvement over results reported in Table 2. The increase in specificity 

may be due to the class imbalance induced bias, while the naive Bayes approach achieves an average 

sensitivity of 0.52, which is the best result found. 

Table 3. Average test performance results after 100 repetitions of hold-out cross-validation of 

different classifiers using the 20 most significant wavelet scattering features extracted from the 

acceleration magnitude signal recorded along the TUG test. 

Classifier. Accuracy Sensitivity Specificity AUC 

RF 0.81 0.10 0.99 0.75 

SVM 0.69 0.29 0.79 0.64 

KNN 0.77 0.10 0.94 0.61 

NB 0.79 0.52 0.86 0.77 
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LR 0.71 0.19 0.84 0.61 

LD 0.73 0.19 0.86 0.70 

3.2. Deep Learning Results 

3.2.1. CNN 

We evaluate 1-D CNN using as inputs the wavelet scattering matrices computed over the 

acceleration magnitude. The scattering sequences are 38-by-1250 where 1250 is the number of time 

steps and 38 is the number of scattering paths. Results are shown in Table 4 for various selections of 

gradient descent optimization methods (RMSProp, SGDM, and Adam). Results improve over the ML 

conventional classifiers in terms of accuracy; however, they are not above of RF in terms of AUC, 

which for many authors is a more appropriate performance measure for class imbalanced datasets. 

Table 4. Average test performance results after 100 repetitions of hold-out cross-validation for the 

1D CNN architectures. 

 1D CNN 

 RMSProp SGDM Adam 

Accuracy 0.84 0.81 0.81 

Sensitivity 0.33 0.33 0 

Specificity 0.96 0.92 1 

Precision 0.66 0.50 0 

AUC 0.63 0.65 0.5 
 

3.2.2. LSTM 

We evaluate LSTM deep learning algorithms over raw inertial sensor data (triaxial 

accelerometer, gyroscope and magnetometer). Both standard LSTM and bidirectional LSTM (BLSTM) 

were used as we have access to the entire sequence data. We evaluated mini-batch sizes from 5 to 25 

with number of hidden units set to 40 and a learning rate of 0.005. The best accuracy results were 

obtained for mini-batch sizes of 10, 11 and 15. To find the optimal number of hidden units, we set the 

mini-batch size to 11 and we evaluated the accuracy beginning from 10 until 100 units with 

increments of 10. The best values are obtained for 40 hidden units. We chose a mini- batch size of 11. 

Subjects were ordered according to their number of samples and shuffle was disabled to reduce the 

“padding effect”. 

Table 5 shows the average test performance results after 100 repetitions of hold-out cross 

validation of various LSTM architectures. We found that BLSTM performance measures are 

significantly better than standard LSTM results for every mini-batch size and the best size for BLSTM 

is ten. The BLSTM trained with SGDM outperforms significantly all other approaches in terms of 

sensitivity and AUC. Figure 6 shows the corresponding ROC curve with point-wise confidence 

bounds. 

Table 5. Average test performance results after 100 repetitions of hold-out cross validation for the 

LSTM architectures. 

 LSTM LSTM LSTM BLSTM BLSTM BLSTM 

 RMSProp SGDM Adam RMSProp SGDM Adam 

Accuracy 0.87 0.80 0.80 0.83 0.83 0.87 

Sensitivity 0.33 0.16 0.16 0.33 0.50 0.33 

Specificity 1 0.96 0.96 0.96 0.92 1 

Precision 1 0.50 0.50 0.66 0.85 1 

AUC 0.60 0.64 0.62 0.66 0.73 0.78 
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Figure 6. ROC curve with Point-wise Confidence Bounds of an instance of the 5-fold cross-validation 

of the BILSTM architecture. The dashed lines represent the chance ROC. 

4. Discussion 

In the present study, conventional machine learning classifiers and deep learning networks have 

been applied to prospective fall risk prediction over IMU sensor data captured during the realization 

of the TUG test for a cohort of older adults (N=106, of which 21 are fallers). The hypothesis of this 

work is that processing this data with machine learning and deep learning approaches would allow 

prospective fall risk prediction. We have explored several signal features including the raw signal 

and several machine learning and deep learning approaches. Best results in terms of sensitivity (i.e., 

accurate prediction of fallers) have been obtained by the naive Bayes approach on wavelet scattering 

features (sensitivity=0.52), and by the BLSTM trained with SGDM on the raw IMU signal data (0.50). 

We got high specificity in many instances, however the cost of misclassification of a faller is higher 

than misclassification of a non-faller, hence sensitivity is a more relevant performance measure. It 

was argued that the ability of the TUG test to assess prospective fall risk was limited [14], however 

our results show that processing the IMU sensor data, that implicitly takes into account postural 

stability, gait, stride length, and sway, a fair prediction of fall risk can be achieved. In the future, we 

will be testing our approach in larger cohorts. Additionally, we will be exploring the application of 

Generative Adversarial Networks (GAN) for the enrichment of the faller class in order to obtain more 

balanced datasets for training and synthetic data generation techniques like SMOTE (Synthetic 

Minority Over-sampling Technique). We believe our results are promising and could contribute to 

fall prevention enhancement. This is important and would directly benefit older adults themselves, 

as those at risk of falling would be identified beforehand and it would enable the relevant entities to 

consider proper measures and to implement strategies to prevent falling, ultimately preserving their 

independence and reducing medical care costs. 

5. Conclusion 

Falls are among the most significant challenges faced by older adults, making their assessment 

and prevention critically important, particularly in the current demographic context. Although 

several tools exist for assessing fall risk, these are typically based on time, distance, or visual 

observation metrics. In fact, these tools are of qualitative nature helping to guide the medical staff 
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assessment. Our approach, by contrast, leverages the large amount of information that can be 

collected by wearable IMU sensors on individuals being studied while performing the Timed Up and 

Go (TUG) test , specifically we can use the raw data from the accelerometer, gyroscope, and 

magnetometer. Given the relatively high sampling frequency (100 samples per second), the duration 

of the test, and the three-dimensional data produced by each of the three sensors, a substantial 

volume of data is generated. The most effective way to analyze such data, with current technological 

capabilities, is through the application of artificial intelligence. The study includes 106 subjects (68 

women and 38 men) from 9 long-term nursing homes (LTNHs). Upon comparing traditional machine 

learning methods with deep learning approaches, it was found that the latter yielded the most 

accurate results, specifically the BLSTM algorithm. We believe that our method complements 

traditional fall risk screening methods and adds valuable information to improve the assessment of 

subjects with frailty. 

Author Contributions: Conceptualization, J.M., G.G., C.R. and M.G.; methodology, J.M.; software, J.M.; 

validation, G.G., C.R. and B.S.; investigation, G.G., B.S.; resources, C.R. and B.S.; data curation, J.M.; writing—

original draft preparation, J.M.; writing—review and editing, M.G., C.R. and B.S.; visualization, J.M.; 

supervision, M.G.; funding acquisition, M.G. All authors have read and agreed to the published version of the 

manuscript. 

Funding: The Grupo de Inteligencia Computacional, Universidad del Pais Vasco, UPV/EHU, received research 

funds from the Basque Government from 2007 until 2025. The current code for the grant is IT1689-22. The 

Spanish MCIN has also granted the authors a research project under code PID2020-116346GB-I00. 

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki 

and approved by the Committee on Ethics in Research at the University of the Basque Country (Humans 

Committee Code M10/2016/105). for studies involving humans. 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study. 

Data Availability Statement: Restrictions apply to the availability of these data. Data were obtained from Matia 

Fundazioa and are available from the authors with the permission of Matia Fundazioa. 

Acknowledgments: We would like to thank the staff of the centers that participated in our study for their 

support: Bermingham, Lamourous, Julián Rezola (Matia Fundazioa), Anaka, Betharram (Fundación Caser), Villa 

Sacramento, Berra (DomusVi), Zorroaga, and San Markosene. We especially thank the study participants and 

their families for their participation and cooperation. 

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the 

study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to 

publish the results. 

References 

1. P. Kannus et al., “Fall-induced injuries and deaths among older adults,” J Am Med Assoc, vol. 281, no. 20, 

pp. 1895–1899, 1999, doi: 10.1001/jama.281.20.1895. 

2. D. A. Sterling, J. A. O’Connor, and J. Bonadies, “Geriatric falls: Injury severity is high and disproportionate 

to mechanism,” Journal of Trauma - Injury, Infection and Critical Care, vol. 50, no. 1, pp. 116–119, 2001, doi: 

10.1097/00005373-200101000-00021. 

3. P. Scuffham and S. Chaplin, “Incidence and costs of unintentional falls in older people in the United 

Kingdom,” J Epidemiol Community Health, vol. 57, pp. 740–744, 2003, doi: 10.1136/jech.57.9.740. 

4. P. Eggenberger, N. Theill, S. Holenstein, V. Schumacher, and E. de Bruin, “Multicomponent physical 

exercise with simultaneous cognitive training to enhance dual-task walking of older adults: a secondary 

analysis of a 6-month randomized controlled trial with 1-year follow-up,” Clin Interv Aging, p. 1711, Oct. 

2015, doi: 10.2147/CIA.S91997. 

5. D. J. Hallford, G. Nicholson, K. Sanders, and M. P. McCabe, “The Association Between Anxiety and Falls: 

A Meta-Analysis,” J Gerontol B Psychol Sci Soc Sci, p. gbv160, Jan. 2016, doi: 10.1093/geronb/gbv160. 

6. United Nations Department Of Economic and Social Affairs, “WHO Global Report on Falls Prevention in 

Older Age.,” Community Health, p. 53, 2007, doi: 978 92 4 156353 6. 

7. L. Z. Rubenstein, “Falls in older people: epidemiology, risk factors and strategies for prevention,” Age 

Ageing, vol. 35, no. suppl_2, pp. ii37–ii41, Sep. 2006, doi: 10.1093/ageing/afl084. 

8. National Council on Aging, “Falls Prevention Facts,” 2016. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2024 doi:10.20944/preprints202409.1021.v1

https://doi.org/10.20944/preprints202409.1021.v1


 13 

 

9. V. Scott, K. Votova, A. Scanlan, and J. Close, “Multifactorial and functional mobility assessment tools for 

fall risk among older adults in community, home-support, long-term and acute care settings,” Age Ageing, 

vol. 36, no. 2, pp. 130–139, Jan. 2007, doi: 10.1093/ageing/afl165. 

10. K. L. Perell, A. Nelson, R. L. Goldman, S. L. Luther, N. Prieto-Lewis, and L. Z. Rubenstein, “Fall Risk 

Assessment Measures: An Analytic Review,” 2001. Accessed: Jul. 10, 2019. [Online]. Available: 

http://biomedgerontology.oxfordjournals.org/ 

11. S. Mathias, U. S. Nayak, and B. Isaacs, “Balance in elderly patients: the &quot;get-up and go&quot; test.,” 

Arch Phys Med Rehabil, vol. 67, no. 6, pp. 387–9, Jun. 1986, Accessed: Jul. 10, 2019. [Online]. Available: 

http://www.ncbi.nlm.nih.gov/pubmed/3487300 

12. M. E. Tinetti, T. Franklin Williams, and R. Mayewski, “Fall risk index for elderly patients based on number 

of chronic disabilities,” Am J Med, vol. 80, no. 3, pp. 429–434, Mar. 1986, doi: 10.1016/0002-9343(86)90717-5. 

13. D. Oliver, M. Britton, P. Seed, F. C. Martin, and A. H. Hopper, “Development and evaluation of evidence 

based risk assessment tool (STRATIFY) to predict which elderly inpatients will fall: case-control and cohort 

studies,” BMJ, vol. 315, no. 7115, pp. 1049–1053, Oct. 1997, doi: 10.1136/bmj.315.7115.1049. 

14. M. Csuka and D. J. McCarty, “Simple method for measurement of lower extremity muscle strength,” Am J 

Med, vol. 78, no. 1, pp. 77–81, Jan. 1985, doi: 10.1016/0002-9343(85)90465-6. 

15. O. Bruyere et al., “Controlled whole body vibration to decrease fall risk and improve health-related quality 

of life of nursing home residents,” Arch Phys Med Rehabil, vol. 86, no. 2, pp. 303–307, 2005, doi: 

10.1016/j.apmr.2004.05.019. 

16. T. Herman, N. Giladi, and J. M. Hausdorff, “Properties of the ‘Timed Up and Go’ test: More than meets the 

eye,” Gerontology, vol. 57, no. 3, pp. 203–210, 2011, doi: 10.1159/000314963. 

17. D. Schoene et al., “Discriminative Ability and Predictive Validity of the Timed Up and Go Test in 

Identifying Older People Who Fall: Systematic Review and Meta-Analysis,” J Am Geriatr Soc, vol. 61, no. 2, 

pp. 202–208, Feb. 2013, doi: 10.1111/jgs.12106. 

18. Y. Liu, S. J. Redmond, K. Wang, N. H. Lovell, and T. Shany, “Review: Are we stumbling in our quest to 

find the best predictor? Over-optimism in sensor-based models for predicting falls in older adults,” Healthc 

Technol Lett, vol. 2, no. 4, pp. 79–88, Aug. 2015, doi: 10.1049/htl.2015.0019. 

19. D. Hamacher, N. B. Singh, J. H. Van Dieen, M. O. Heller, and W. R. Taylor, “Kinematic measures for 

assessing gait stability in elderly individuals: a systematic review,” J R Soc Interface, vol. 8, no. 65, pp. 1682–

1698, Dec. 2011, doi: 10.1098/rsif.2011.0416. 

20. J. Howcroft, J. Kofman, and E. D. Lemaire, “Review of fall risk assessment in geriatric populations using 

inertial sensors,” J Neuroeng Rehabil, vol. 10, no. 1, p. 91, Aug. 2013, doi: 10.1186/1743-0003-10-91. 

21. J. Howcroft, J. Kofman, and E. D. Lemaire, “Prospective Fall-Risk Prediction Models for Older Adults Based 

on Wearable Sensors,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 10, pp. 

1812–1820, 2017, doi: 10.1109/TNSRE.2017.2687100. 

22. V. Cimolin et al., “Do wearable sensors add meaningful information to the Timed Up and Go test? A study 

on obese women,” Journal of Electromyography and Kinesiology, vol. 44, pp. 78–85, 2019, doi: 

10.1016/j.jelekin.2018.12.001. 

23. P. Tang, H. Wang, and S. Kwong, “G-MS2F: GoogLeNet based multi-stage feature fusion of deep CNN for 

scene recognition,” Neurocomputing, vol. 225, pp. 188–197, Feb. 2017, doi: 10.1016/J.NEUCOM.2016.11.023. 

24. H.-C. Shin et al., “Deep Convolutional Neural Networks for Computer-Aided Detection: CNN 

Architectures, Dataset Characteristics and Transfer Learning,” IEEE Trans Med Imaging, vol. 35, no. 5, pp. 

1285–1298, May 2016, doi: 10.1109/TMI.2016.2528162. 

25. Q. Rao and J. Frtunikj, “Deep learning for self-driving cars,” in Proceedings of the 1st International Workshop 

on Software Engineering for AI in Autonomous Systems - SEFAIS ’18, New York, New York, USA: ACM Press, 

2018, pp. 35–38. doi: 10.1145/3194085.3194087. 

26. P. Tamilselvan, P. W.-R. E. & S. Safety, and undefined 2013, “Failure diagnosis using deep belief learning 

based health state classification,” Elsevier, Accessed: Jul. 19, 2019. [Online]. Available: 

https://www.sciencedirect.com/science/article/pii/S0951832013000574 

27. O. Dehzangi, M. Taherisadr, and R. ChangalVala, “IMU-based gait recognition using convolutional neural 

networks and multi-sensor fusion,” Sensors (Switzerland), vol. 17, no. 12, 2017, doi: 10.3390/s17122735. 

28. H. F. Nweke, Y. W. Teh, G. Mujtaba, and M. A. Al-garadi, “Data fusion and multiple classifier systems for 

human activity detection and health monitoring: Review and open research directions,” Information Fusion, 

vol. 46, 2019, doi: 10.1016/j.inffus.2018.06.002. 

29. J. Hannink, T. Kautz, C. F. Pasluosta, K. G. Gasmann, J. Klucken, and B. M. Eskofier, “Sensor-Based Gait 

Parameter Extraction with Deep Convolutional Neural Networks,” IEEE J Biomed Health Inform, vol. 21, no. 

1, 2017, doi: 10.1109/JBHI.2016.2636456. 

30. D. Ravi, C. Wong, B. Lo, and G. Z. Yang, “A Deep Learning Approach to on-Node Sensor Data Analytics 

for Mobile or Wearable Devices,” IEEE J Biomed Health Inform, vol. 21, no. 1, 2017, doi: 

10.1109/JBHI.2016.2633287. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2024 doi:10.20944/preprints202409.1021.v1

https://doi.org/10.20944/preprints202409.1021.v1


 14 

 

31. A. Nait Aicha, G. Englebienne, K. S. van Schooten, M. Pijnappels, and B. Kröse, “Deep Learning to Predict 

Falls in Older Adults Based on Daily-Life Trunk Accelerometry,” Sensors (Basel), vol. 18, no. 5, pp. 1–14, 

2018, doi: 10.3390/s18051654. 

32. V. Strini, R. Schiavolin, and A. Prendin, “Fall Risk Assessment Scales: A Systematic Literature Review,” 

Nurs Rep, vol. 11, no. 2, pp. 430–443, Jun. 2021, doi: 10.3390/nursrep11020041. 

33. C. Rezola-Pardo et al., “Comparison Between Multicomponent Exercise and Walking Interventions in 

Long-Term Nursing Homes: A Randomized Controlled Trial,” Gerontologist, vol. 60, no. 7, pp. 1364–1373, 

Sep. 2020, doi: 10.1093/geront/gnz177. 

34. C. Rezola-Pardo et al., “Comparison between multicomponent and simultaneous dual-task exercise 

interventions in long-term nursing home residents: the Ageing-ONDUAL-TASK randomized controlled 

study,” Age Ageing, vol. 48, no. 6, pp. 817–823, Nov. 2019, doi: 10.1093/ageing/afz105. 

35. C. Rezola-Pardo et al., “A randomized controlled trial protocol to test the efficacy of a dual-task 

multicomponent exercise program in the attenuation of frailty in long-term nursing home residents: Aging-

ONDUAL-TASK study,” BMC Geriatr, vol. 19, no. 1, pp. 1–9, 2019, doi: 10.1186/s12877-018-1020-z. 

36. A. G. Society, G. Society, A. A. Of, and O. S. P. On Falls Prevention, “Guideline for the Prevention of Falls 

in Older Persons,” J Am Geriatr Soc, vol. 49, no. 5, pp. 664–672, May 2001, doi: 10.1046/j.1532-

5415.2001.49115.x. 

37. A. Luque, A. Carrasco, A. Martín, and A. de las Heras, “The impact of class imbalance in classification 

performance metrics based on the binary confusion matrix,” Pattern Recognit, vol. 91, 2019, doi: 

10.1016/j.patcog.2019.02.023. 

38. M. L. McHugh, “The Chi-square test of independence,” Biochem Med (Zagreb), vol. 23, no. 2, 2013, doi: 

10.11613/BM.2013.018. 

39. S. Mallat, “Group invariant scattering,” Commun Pure Appl Math, vol. 65, no. 10, pp. 1331–1398, 2012. 

40. M. L. McHugh, “The chi-square test of independence,” Biochem Med (Zagreb), vol. 23, no. 2, pp. 143–149, 

2013. 

41. M. Z. Alom et al., “A state-of-the-art survey on deep learning theory and architectures,” 2019. doi: 

10.3390/electronics8030292. 

42. C. Avilés-Cruz, A. Ferreyra-Ramírez, A. Zúñiga-López, and J. Villegas-Cortéz, “Coarse-fine convolutional 

deep-learning strategy for human activity recognition,” Sensors (Switzerland), vol. 19, no. 7, 2019, doi: 

10.3390/s19071556. 

43. F. J. Ordóñez and D. Roggen, “Deep convolutional and LSTM recurrent neural networks for multimodal 

wearable activity recognition,” Sensors (Switzerland), vol. 16, no. 1, 2016, doi: 10.3390/s16010115. 

44. J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE Trans Pattern Anal Mach Intell, 

vol. 35, no. 8, 2013, doi: 10.1109/TPAMI.2012.230. 

45. A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik, “Action Recognition in Video Sequences 

using Deep Bi-Directional LSTM with CNN Features,” IEEE Access, vol. 6, pp. 1155–1166, 2017, doi: 

10.1109/ACCESS.2017.2778011. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2024 doi:10.20944/preprints202409.1021.v1

https://doi.org/10.20944/preprints202409.1021.v1

