

1 Article

2 **The Effect of HDPE Plastic Fibres on Concrete Performance**3 **Tamrin Rahman^{1*}, and Juli Nurdiana²**4 ^{1*} Faculty of Engineering, Mulawarman University, Indonesia; fts_tamrin@ft.unmul.ac.id5 ² Faculty of Engineering, Mulawarman University, Indonesia; julinurdiana@ft.unmul.ac.id;6 Department of Governance and Technology for Sustainability, University of Twente, The
7 Netherlands; j.nurdiana@utwente.nl

8 *Author to whom correspondence should be addressed

9 Received: date; Accepted: date; Published: date

10

11 **Abstract:** HDPE (high-density polyethylene) plastic waste is stronger, harder, and more resistant to
12 high temperatures than other plastics. Using it as an additive in a concrete mixture is one solution
13 to reduce this type of waste. We examined how HDPE-type plastics can be used as an additive
14 material in the manufacture of concrete to improve its hardness, tensile strength and compressive
15 strength. Using 156 samples, we aimed to identify the effect of HDPE plastic fibres on concrete of
16 three qualities; B0, f'c10 MPa (low quality), and f'c25 MPa (medium and high quality). We added
17 four compositions (2.5%, 5%, 10% and 20% by weight of cement) of HDPE plastic fibre to each
18 quality of cement, with HDPE plastic fibre sizes of 1 x 1 cm, 0.5 x 2 cm or 0.25 x 4 cm. We found that
19 the addition of 5% HDPE plastic fibre with a 0.5 x 2 cm cross-sectional shape to the f'c10 MPa
20 concrete gives the best result, with increased tensile and compressive strength of the concrete.

21

22 **Keywords:** Concrete quality; concrete additive; cross-section; concrete mixture; concrete
23 composition; plastic waste; HDPE; plastic fibre

24

1. Introduction

25 Plastic has long been considered a human-made material that has many benefits. It has
26 lightweight properties and is easily shaped to the desires of its designers. This has led to its
27 widespread use. In 2016–2017, plastic consumption increased from 335 million tons to 348 million
28 tons. This demand is expected to reach 485 million tons by 2030 [1]. The downside of plastic use is
29 the waste generated, which can cause environmental pollution because it a non-biodegradable
30 material that takes between 500 and 1000 years to decompose [2]. The pollution risks associated with
31 plastic include the following: pollution of groundwater, death of animals due to toxins released by
32 plastics, food chain poisoning, and reducing soil fertility [3]. Furthermore, if it is burnt in an open
33 space, it produces carbon monoxide (a greenhouse gas), and if it is disposed of in the river, it can
34 cause siltation and impede river flow, causing flooding [4,5].

35

36 Research on beaches showed that the amount of plastic waste that reached the coast of 192
37 countries in 2010 was between 4.8 and 12.7 million metric tons [6]. This waste harms the life of
38 organisms that live in the sea [7]. This may require restrictions on plastic use and shaping behaviour
39 at the consumer level [8], as well as encouraging recycling as a solution to avoid the environmental
40 impact caused by plastic waste. By 2050, it is projected that about 12 billion metric tons of plastic litter
41 will end up in landfills and the natural environment [9]. Poor processing and managing of plastic
42 waste in developing countries is caused by limited plastic waste treatment facilities, across the stages
43 of collection, separation, and disposing into landfills.

43

44 In developed countries, it is known that, since 2006, recycling rates have increased, and by 2018,
45 processing of waste plastic for energy used 42.6% of the collected post-consumer waste stream [1].
46 The recycling of plastic waste starts with sorting it into several types of polymers, followed by
cleaning, scraping, smelting, and finally, converting it into pellets, which are later recycled into plastic

47 bags, plastic containers, carpets, jacket insulation materials, and other materials. Traditional recycling
48 suffers from cross-contamination with various types of plastic materials and requires high-energy
49 consumption [10]. Low-carbon reusable materials are being considered as alternatives, instead of
50 disposing of single-use plastics, e.g., PET (polyethene terephthalate) and HDPE (high-density
51 polyethene) [11]. Identifying the particular local strategy for waste (including plastics) and tailoring
52 partnerships with the various main stakeholders, i.e., business, industries, and civil society, is
53 necessary [12, 13]. Therefore, building a nexus between the waste and construction sectors offers a
54 possible option for increasing the circularity of plastic, especially microplastics, as they are one of the
55 main forms of plastic pollution due to their widespread use [14].

56 The fact that plastic materials are generally lightweight, resistant to weather, and have high
57 thermal insulation properties [10,15] means that they can be considered suitable as an added material,
58 for instance, in concrete [16]. The addition of plastic to a concrete mix (to give 25% plastic) can be
59 used in construction for structural and non-structural applications [17]. A recent publication showed
60 that addition of plastic fibre to a concrete mix is more suitable for non-structural works [18], e.g., wall
61 panels [10], shotcrete (or Gunite) [19], or concrete footpaths [16, 20], since they do not need to have a
62 high strength. In Indonesia, precast concrete walls are a common example of a non-structural
63 application. Together with fillers (e.g., sand, quarry fine), the concrete mix could help prevent heat
64 transfer within its elements. Further, there is a strong connection between thermal conductivity and
65 concrete weight. The use of plastic fibres as lightweight aggregates can reduce concrete thermal
66 conductivity [21]. Poonyakan et al. [10] showed that HDPE, LDPE (low-density polyethene),
67 polypropylene (PP), and PET have lower thermal conductivity compared to plain concrete, which
68 increases air voids in the concrete. Therefore, they can reduce the heat, and thus, lower the energy
69 consumption, in buildings.

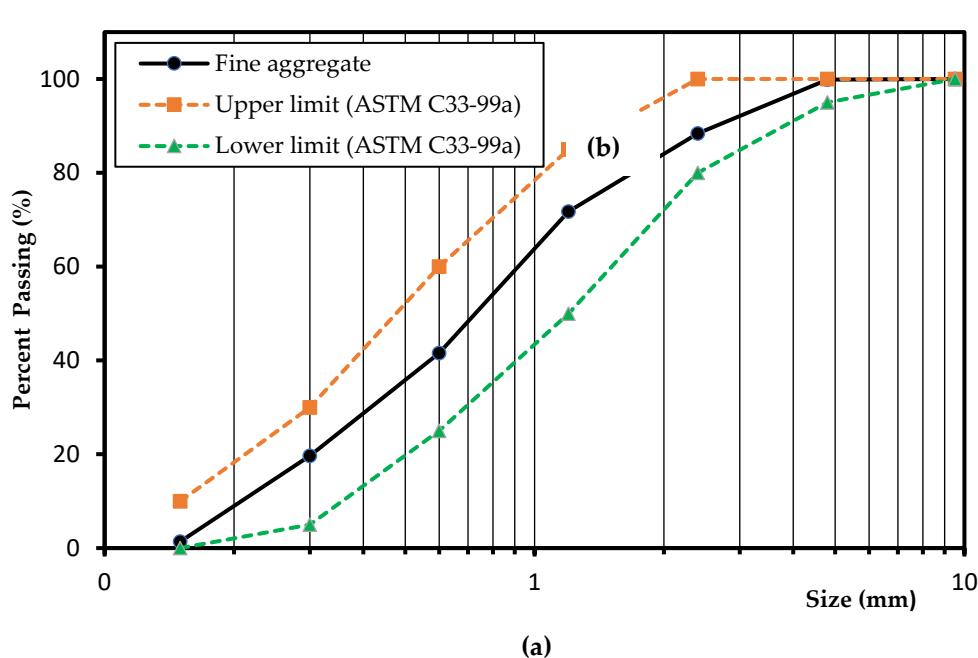
70 Depending on the mixtures, the concrete can harden with a strength stronger than that of wood
71 and asphalt. However, previous studies have found different amounts of tensile strength and
72 compressive strength in different concretes [22-25]. A higher percentage of plastic fibre decreases the
73 workability of the concrete due to its complex structure, except for 30% PET [10]. In addition,
74 previous studies have found a relationship between PET and the properties of concrete [26,27], and
75 depending on the size, type, and shape of the plastic aggregate, the plastic admixture can influence
76 the properties of the concrete, i.e., its tensile strength and compressive strength [16,28,29].

77 This study focuses on HDPE fibres because of their characteristics. They are translucent, more
78 rigid and relatively stable compared to PET, which makes them more difficult to crack. They also
79 have a higher temperature resistance compared to PET (melting at 130–135 °C), and are more
80 waterproof [30]. They can be found in different types of products, e.g., cable insulation, containers,
81 milk bottles, and children toys. In Indonesia, plastics have become the second biggest waste products
82 generated after organic waste, reaching 16.65% in 2018 [31]. Therefore, we aimed to investigate the
83 potential use of HDPE fibres in concrete mixes, as a means of reducing the solid waste disposal of
84 HDPE plastic into soil and water. We also aimed to assess the effect of HDPE recycled plastic fibres
85 on concrete that is used for non-structural works, as an alternative to lightweight concrete mixes. Our
86 study is based on the concrete quality, and the size of the HDPE cross-section and its percentage to
87 the total cement used.

88 2. Materials and Methods

89

90 We used concrete mixes formed from cement and aggregate (fine and coarse aggregate), which
91 are designed to have three concrete qualities, namely B0, f'c10 MPa, and f'c25 MPa. Three different
92 sizes of HDPE fibres (1 x 1 cm, 0.5 x 2 cm, and 0.25 x 4 cm) were added to the mixtures before
93 examining the effect of plastic-based aggregates on concrete properties using the ASTM (American
94 Society for Testing and Materials) testing standards. The analysis was based on the calculation of
95 bulk density, slump value, and tensile and compressive strength.


99 2.1 Materials

100 2.1.1. Cement Preparation

101 As the scope of this study was non-structural applications, the cement used for this examination
102 was cement type 1, which is intended for walls, pavement, sidewalks and other precast products.
103 Using the ASTM C-127 standard, the cement material has a specific gravity valued at 3.18 gr/cm³,
104 which meets the acceptable range of 3.1–3.3 gr/cm³. The cement composition comprises four main
105 chemical compounds, including tricalcium silicate (3CaO. SiO₂), which is shortened to C₃S (55% of
106 the weight), dicalcium silicate (2CaO. SiO₂), which is abbreviated to C₂S (17%), tricalcium aluminate
107 (3CaO. Al₂O₃), shortened to C₃A (10%), and tertracalsium alumino-ferrite (4CaO. Al₂O₃. Fe₂O₃),
108 shortened to C₄AF (7%), as well as carbon disulfide (CS₂) (6%).

109 2.1.2. Aggregate

110 We used coarse and fine aggregates, which were collected from Palu, Central Sulawesi,
111 Indonesia. The physical characteristics of the aggregates and their quality provided adequate
112 consolidation in concrete mixes, compared to different aggregates obtained from the areas in East
113 Kalimantan. The aggregates were further tested in the Laboratory of the Faculty of Engineering,
114 Mulawarman University, Samarinda, following the standard ASTM procedure of C 33-99 [32], which
115 defines the adequate requirement for grading and aggregate quality in concrete. The results of this
116 test are shown in Figure 1 below.

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

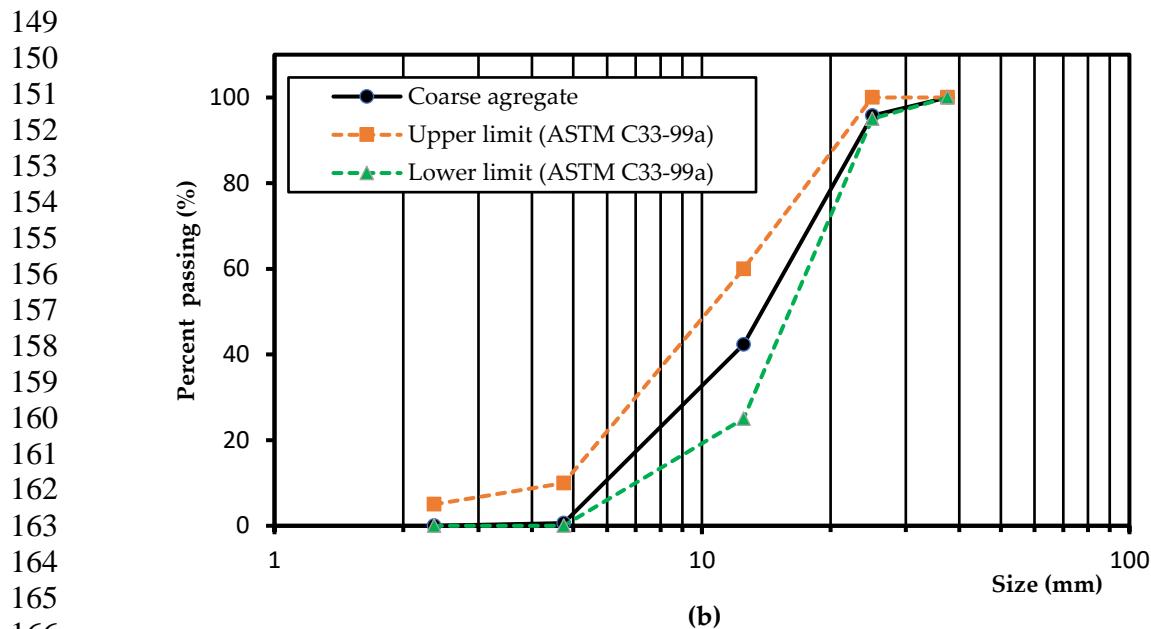


Figure 1. Aggregate size; (a) fine aggregate, (b) coarse aggregate

2.1.3. Preparation of HDPE Fibres

The HDPE plastic materials were collected from the disposal at Samarinda landfills, as part of the plan to reduce non-sustainable waste that can contaminate the waterways and aquifers. We then rinsed them to ensure they were ready for the cutting process. As shown in Figure 2, to ensure visual similarity among the HDPE plastic fibres, we selected plastic materials with a thickness of 0.05 mm and cut them to a size of 1×1 cm, 0.5×2 cm, and 0.25×4 cm. The reason for this was to give them the same surface area of 1 cm^2 . As the interaction between the fibres and cement affects the reinforced concrete mixes, the same surface area was assumed to give a similar bonding effect in the process. HDPE fibre propositions were set at 2.5%, 5%, 10%, and 20% of the total cement used.

Figure 2. The preparation of HDPE plastic fibres; (a) preparation for the cutting process and tools, and (b) HDPE fibres at a size of 0.5×2 cm

195 2.2 Concrete Preparation and Testing

196 2.2.1. Job Mix Design

197 The concrete mix designs and material composition of the three concrete qualities are shown in
 198 Table 1. The calculation was based on a standard density of construction materials, and a total of 156
 199 specimens were considered and tested with two samples for each variation. The process to identify
 200 the right proportion of concrete mixture complied with the code requirements for reinforced concrete
 201 and commentary of the American Concrete Institute (ACI 318-89) [33]. Therefore, based on the ACI,
 202 the concrete tests were performed 28 days before they were used to ensure the concrete properties
 203 satisfied the designs for quality control.

204

205 **Table 1.** Concrete Job Mix Design

Description	B0 Concrete	f'c 10 MPa	f'c25 MPa
Compressive Strength	7 MPa	10 MPa	25 MPa
Targeted of average compressive strength of the concrete	B0	f'cr 10 MPa	f'cr 25 MPa
Cement Water Factor	0.95	0.63	0.52
Combined aggregate content	1,040	1,250	1,780
Slump Value	120 ± 5 mm	120 ± 5 mm	120 ± 5 mm
Amount of Water	180 kg/m ³	190 kg/m ³	215 kg/m ³
Amount of Cement	190 kg/m ³	295 kg/m ³	413 kg/m ³
Fine aggregate content (36%)	969 kg/m ³	828 kg/m ³	687 kg/m ³
Coarse aggregate content (64%)	1,010 kg/m ³	1,014 kg/m ³	1,220 kg/m ³

206

207 2.2.2. The mixing process

208 As seen in Table 2, this study included three concrete qualities, four percentages of HDPE fibres,
 209 and other aggregate particles that were used for the mixture. The process was started by mixing the
 210 different types of cement and aggregates under dry conditions for a few minutes and then adding
 211 water into the mixture until it was evenly mixed and homogeneous. The HDPE fibres were then
 212 added to each concrete type as per their size categories (1 x 1 cm; 0.5 x 2 cm; 0.25 x 4 cm) until the
 213 concrete mixture became homogeneous. To facilitate observation, the test items were grouped as
 214 shown in Table 2. The terms used in the mixed composition can be explained as follows:

215 a) B0 concrete is a normal concrete without the addition of HDPE fibres, B0-HDPE 2.5% is B0
 216 concrete with the addition of 2.5% HDPE, B0-HDPE 5% is B0 concrete with the addition of 5%
 217 HDPE, B0-HDPE 10% is B0 concrete with the addition of 10% HDPE, and B0-HDPE 20% is B0
 218 concrete with the addition of 20% HDPE.

219 b) f'c10 concrete is f'c10 MPa normal concrete without the addition of HDPE fibres, f'c10-HDPE 2.5%
 220 is f'c10 concrete with the addition of 2.5% HDPE, f'c10-HDPE 5% is f'c10 concrete with the addition
 221 of 5% HDPE, f'c10-HDPE 10% is f'c10 concrete with the addition of 10% HDPE, and f'c10-HDPE
 222 20% is f'c10 concrete with the addition of 20% HDPE.

223 c) f'c25 concrete is f'c25 MPa normal concrete without the addition of HDPE fibre, f'c25-HDPE 2.5%
 224 is f'c25 concrete with the addition of 2.5% HDPE, f'c25-HDPE 5% is f'c25 concrete with the addition
 225 of 5% HDPE, f'c25-HDPE 10% is f'c25 concrete with the addition of 10% HDPE, and f'c25-HDPE
 226 20% is f'c25 concrete with the addition of 20% HDPE.

227

228

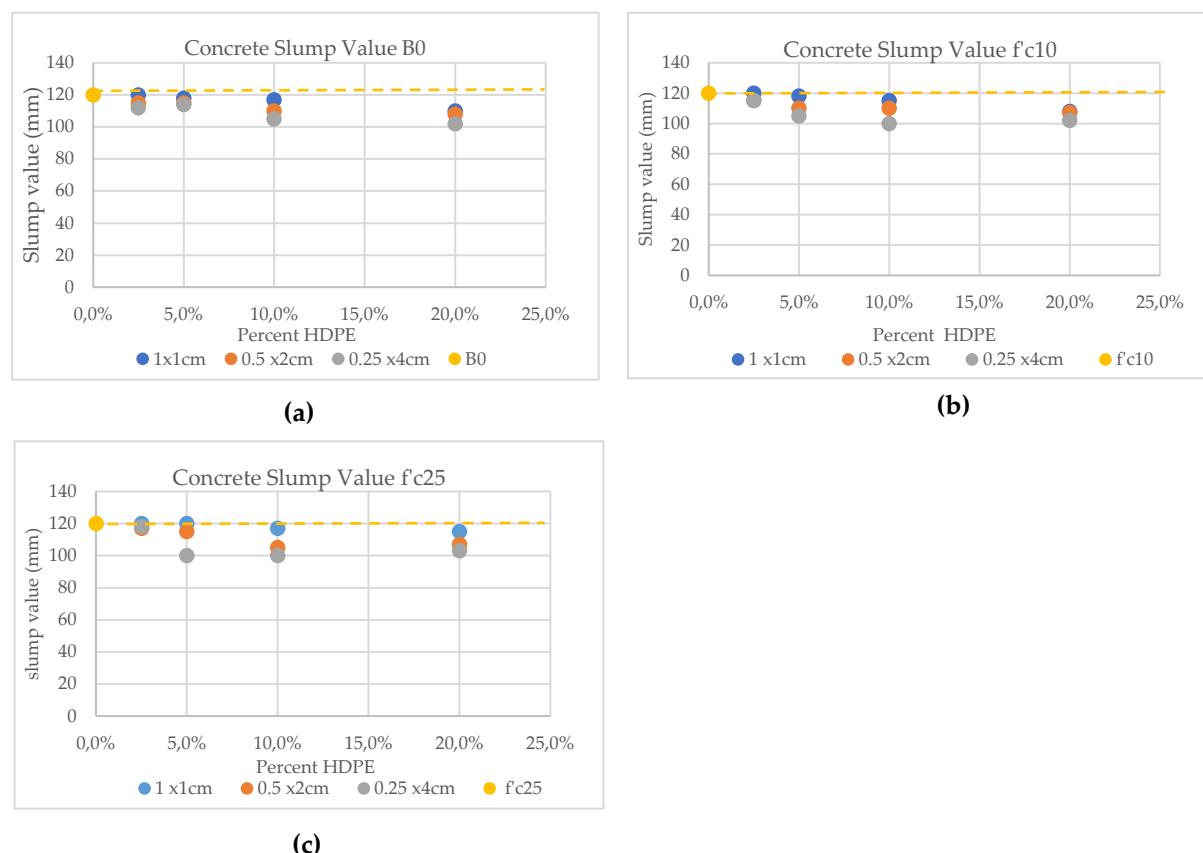
229

230 **Table 2.** Testing specimens

Mixed composition	Water	Cement	Sand	Coarse	Water	Fibre	Number of samples		
	Cement	(kg/m ³)	Aggregate	Aggregate	(kg/m ³)	Plastic HDPE	Compressive Strength	Tensile Strength	Total sample
	(W/C)		(kg/m ³)	(kg/m ³)		(kg)			
B0 Concrete	0.95	190	969	1010	180	-	2	2	4
B0-HDPE 2.5%	0.95	190	969	1010	180	4.75	6	6	12
B0-HDPE 5%	0.95	190	969	1010	180	9.50	6	6	12
B0-HDPE 10%	0.95	190	969	1010	180	19	6	6	12
B0-HDPE 20%	0.95	190	969	1010	180	38	6	6	12
f'c10 MPa	0.63	295	828	1014	190	-	2	2	4
f'c10-HDPE 2.5%	0.63	295	828	1014	190	7.38	6	6	12
f'c10-HDPE 5%	0.63	295	828	1014	190	14.75	6	6	12
f'c10-HDPE 10%	0.63	295	828	1014	190	29.50	6	6	12
f'c10-HDPE 20%	0.63	295	828	1014	190	59	6	6	12
f'c25 MPa	0.52	413	687	1220	215	-	2	2	4
f'c25-HDPE 2.5%	0.52	413	687	1220	215	10.33	6	6	12
f'c25-HDPE 5%	0.52	413	687	1220	215	20.65	6	6	12
f'c25-HDPE 10%	0.52	413	687	1220	215	41.3	6	6	12
f'c25-HDPE 20%	0.52	413	687	1220	215	82.6	6	6	12
Number of samples									156

231

232 We set a higher w/c ratio to produce a workable concrete. Usually, the minimum w/c ratio is set
 233 at 0.35–0.4, as a lower ratio may cause concrete to be too dry and unworkable [34]. This study
 234 complies with the ASTM standards for test methods to evaluate the effect of HDPE on concrete
 235 properties. These standards include ASTM C143 [35] for testing concrete slumps, ASTM C617 for
 236 surface specimen capping [36], ASTM C496 for testing concrete tensile strength [37] and ASTM C39
 237 for testing the compressive strength of concrete [38].


238 **3. Results and Analysis**

239 Previous studies indicated that fibre materials, including plastics, at an appropriate mix
 240 composition can improve concrete properties [10, 30]. Owing to its low biodegradability, the use of
 241 plastic in concrete mixes could improve the long-term performance of the concrete structure and
 242 contribute to the green construction industry [39]. A small amount of added plastic does not affect
 243 the mixture workability. However, a higher percentage could decrease the compressive strength of
 244 concrete due to the high water absorption of the aggregates [30]. Fibres that have often been used in
 245 previous studies include steel fibres, plastic fibres, carbon fibres, and fibres from natural materials,
 246 such as flax or other plants. Recently, two types of plastic fibres have also been used in concrete mixes
 247 and have shown satisfactory results with addition of 30% plastic waste [40]. Besides compressive
 248 strength and tensile strength, another important factor that needs to be considered for addition of
 249 fibres to a standard mix design is workability. This is so the concrete can be easily carried to work
 250 locations, and is easy to work with, easily compacted, and easy to finish. The level of concrete
 251 workability can be measured by testing the value of slump, which is identical to the concrete mixture
 252 plasticity. To examine the appropriate mixes of HDPE fibres as an addition to concrete for non-
 253 structural applications, this study conducted several trials to observe the effects of HDPE sizes on
 254 normal concrete, low quality concrete and high quality concrete.

255 3.1 Concrete Slump test

256 As the slump value depends on many factors, e.g., temperature and concrete ingredients, we set
 257 the slump value for normal concrete to 115–125 mm. As the workability of concrete mixes may reduce
 258 with increased plastic addition, we investigated the effect of varying the percentage of HDPE fibres
 259 (2.5%, 5%, 10% and 20%) on concrete workability. The changing slump value may be attributed to
 260 water absorption due to the flakiness of plastic fibres. The plastic percentage influences the
 261 insufficient mixes in the fresh state because of their impervious character, which at a later stage could
 262 reduce the concrete mass and cause cracks.

263 Figures 3 shows the effects of HDPE fibre additions on the concrete slump value. The results
 264 show that a larger HDPE fibre addition causes a lower slump value compared to normal concrete.
 265 This finding supports previous studies showing that slump value will decrease sharply following an
 266 increase in plastic waste in the concrete mixture due to the angular and non-uniform aggregate
 267 particles, resulting in lower fluidity in the mixture [30, 41]. However, the addition of plastic could
 268 improve toughness and energy absorption, which can be useful for non-structural works, i.e., precast
 269 concrete and walls [41]. Previous studies have proposed ways to prevent segregation, which can
 270 happen during casting due to the low workability of fresh concrete [42,43]. These suggestions include
 271 increasing the amount of water used in the job mix concrete mixture and adding the additives to
 272 maintain concrete density.

289 **Figure 3.** The relation between slump value, the percentage of HDPE and the size of HDPE, (a) B0, (b) f'c10,
 290 and (c) f'c25

291 As shown in Figure 3, the addition of HDPE fibres to concrete will make the concrete mixture
 292 thicker, and the concrete slump value lower, due to the hydrophobicity of the plastics. We found that

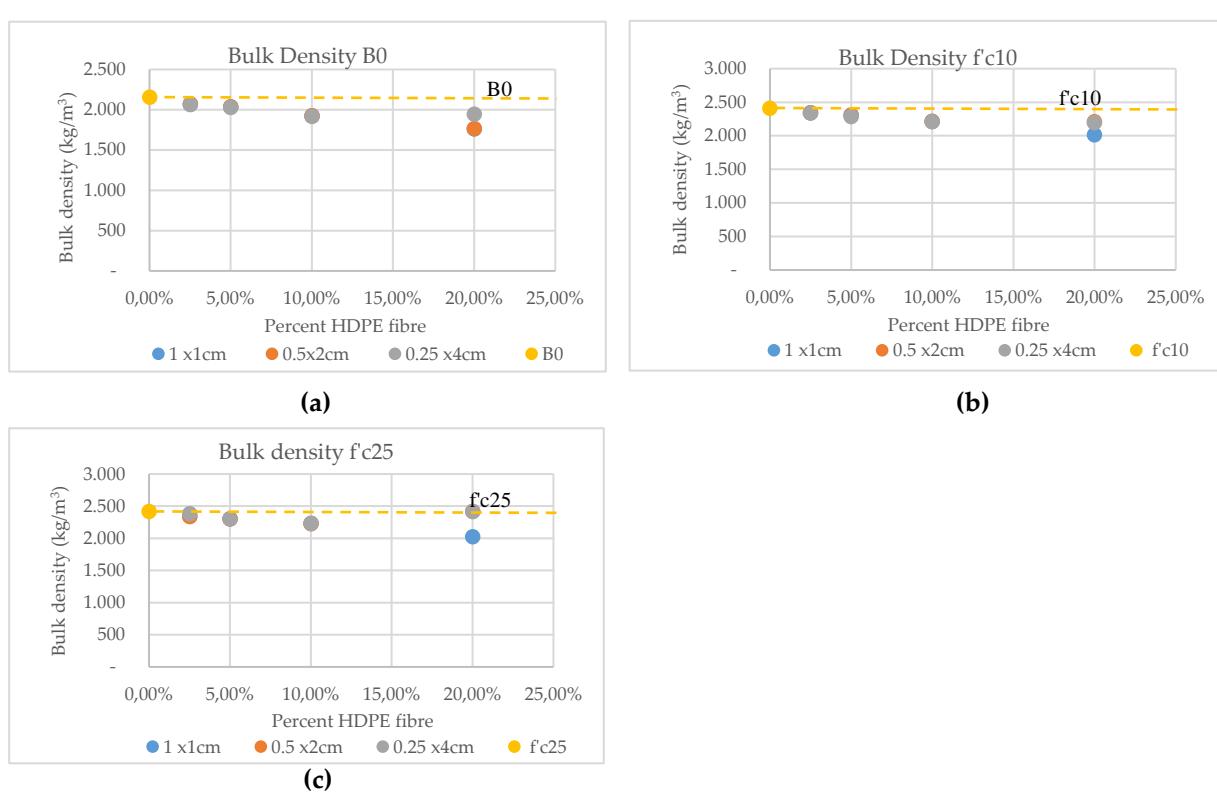
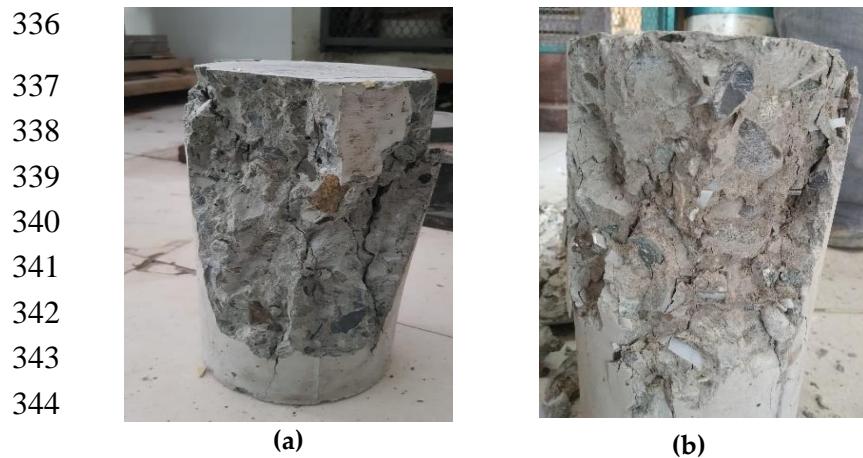

293 this started to occur with the addition of 5% HDPE. The greater the addition of HDPE, the greater the
294 reduction in fresh and dry densities in the concrete mixture. This study found that the max value of
295 the reduction ranged from 10 to 60 mm, compared to normal concrete. The preparation process of
296 specimens and mixtures is shown in Figure 4.

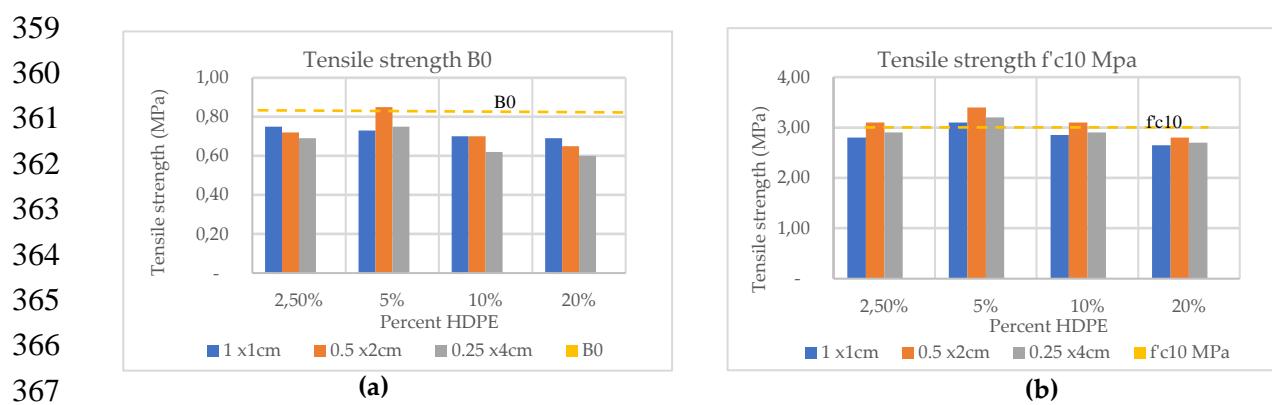
Figure 4. The preparation of B0 concrete for the slump test; (a) slump test, (b) sample printing

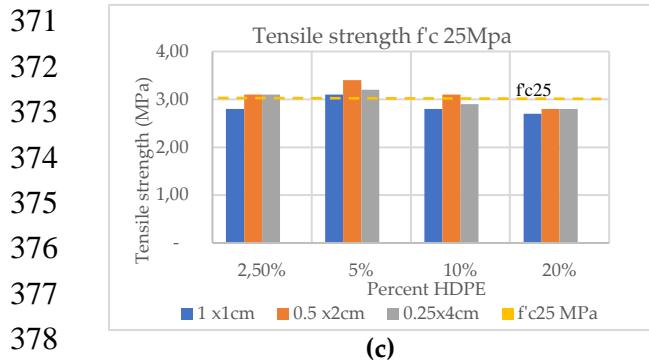

308 3.2 Concrete Bulk Density

309 We also tested the density of the concrete mass after the addition of HDPE fibres. We found that
310 concrete added to HDPE fibres decreased in weight compared to normal concrete, as shown in figure
311 5.

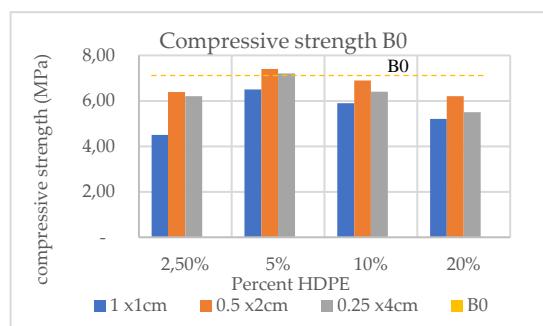
330 **Figure 5.** The relation between the bulk density, the percentage of HDPE and the size of HDPE; **(a)** B0, **(b)** f_c10,
 331 and **(c)** f_c25.

332 As seen in Figure 6, which shows the inner layers of each destroyed sample, concrete containing
 333 HDPE fibres seems more permeable and not fully solid. This study shows that the greater the amount
 334 of fibre added to concrete, the more layers of concrete are porous. Thus, the addition of fibres will be
 335 beneficial for reducing the weight of the concrete.




345 **Figure 6.** The visualisation of concrete density containing HDPE fibres; (a) without the addition of HDPE, (b)
 346 with HDPE addition

347
 348 Figure 6 shows that, of all the sizes of HDPE plastic fibres that were tested, the size of 0.5 x 2 cm
 349 had the greatest influence on the physical properties of all concrete qualities. The addition of 0.5 x 2
 350 cm fibres to concrete gave a higher compressive strength value. Figure 6 (a) shows proper compaction
 351 of concrete aggregate which packs the materials together, and increases the concrete density. On the
 352 other hand, Figure 6(b) shows that when the concrete collapsed, there was no broken HDPE plastic
 353 fibres, and some of the HDPE plastic fibres were folded during casting.


354 3.3. Tensile and Compressive Strengths

355 The most important test to do besides the two tests above is concrete strength testing to identify
 356 the strength of concrete containing HDPE fibres. The tensile strength is an important determinant of
 357 how the concrete performs under the induced stresses. The results of concrete compressive and
 358 tensile testing can be seen in Figure 7 and 8.

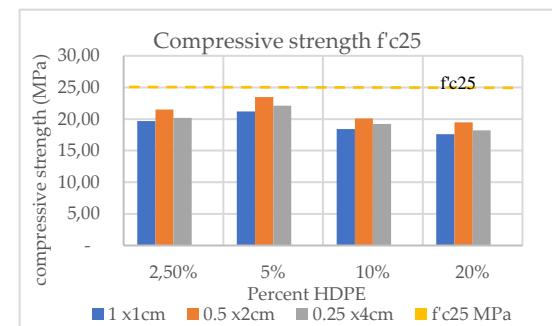
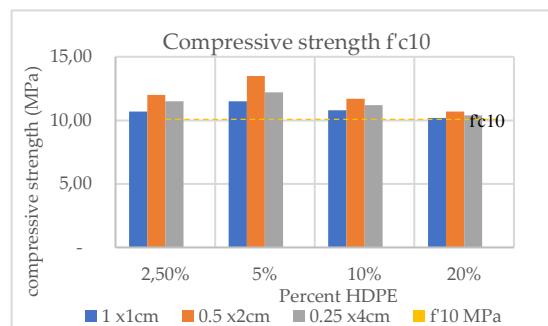



Figure 7. Graphic relationship between split tensile strength, percentage of HDPE fibres and HDPE fibre shape, for (a) B0, (b) f'c10 MPa, and (c) f'c25 MPa

(a)

Figure 8. The relationship between compressive strength, percentage of HDPE fibres and HDPE fibre shape, for (a) B0, (b) f'c10 MPa, and (c) f'c25 MPa

In essence, the tensile strength of concrete is very low when compared to its compressive strength. Thus, in construction applications, the part of the concrete that experiences a pull-out strength is embedded by pulling iron. Recently, plastic materials have been considered to replace the function of pulling iron. However, due to safety factors such as fire hazards, concrete containing plastics cannot be used as primary structure construction materials, i.e., columns, beams, and plate constructions. According to Hasan et al. [42], inserting fibres into a concrete mixture can increase the strength of concrete composites by about 10–15% of the tensile strength of normal concrete. Several other researchers have found similar results [44–46].

Our study showed that addition of 5% HDPE plastic fibre, with a size of 0.5 cm x 2 cm, to all concretes increased the tensile strength to 13% above that of normal concrete, which is in line with the previous study [10]. Furthermore, this study also found that the optimal amount of HDPE plastic

413 fibre to add was 5% with a fibre cross-sectional shape of 0.5×2 cm. Fibres with a size of 1×1 cm and
414 0.25×4 cm increased the tensile strength by only 10% and 5% (Figure 7). Visualisation of the condition
415 of the HDPE fibres in f'c10 MPa concrete when the concrete is split under tension is presented in
416 Figure 9.

417

418

(a)

(b)

(c)

419 **Figure 9.** Visualization of the condition of the HDPE fibres; (a) 1×1 cm, (b) 0.5×2 cm, (c) 0.25×4 cm

420

421 Figure 9(a) shows that when the concrete obtains a crack, the HDPE plastic fibres remain intact
422 and do not suffer damage; this picture also shows that the HDPE fibres do not experience bending
423 during casting. In contrast, Figure 9(b) shows that when the concrete is broken, some HDPE fibres
424 break up. In this picture, the HDPE fibres were also not found to be flexed during casting. Figure 9(c)
425 shows that when the concrete was broken, HDPE fibres were still intact and the plastic was released
426 from the concrete bond when the concrete received the load during testing. Many plastic positions
427 were flexed during casting, so plastic is not optimal for accepting external forces.

428

429 **4. Discussion**

430 This study identified several findings, which are discussed below.

431 *4.1 Concrete Properties*

432 Figure 1 shows that the addition of HDPE fibres to concrete affects the properties of the concrete.
433 One of the properties that changes due to the addition of HDPE is the slump value, which is essential
434 for concrete workability. It also affects the quality of the concrete, due to the reduced slump value, as
435 the concrete will become thick and more compact. However, the addition of proportional HDPE
436 fibres to the concrete can increase its quality, as shown for a 5% addition of HDPE in Figure 7b and
437 8b.

438 Based on the figures, it can be said that the greater the addition of HDPE fibres into the concrete,
439 the higher the viscosity of the concrete [22,29], which results in the accumulation of coarse aggregate,
440 causing segregation. Therefore, to prevent segregation due to the addition of HDPE plastic fibres in
441 casting, adding additives to the concrete or adding water after a job mix can be done, which in line
442 with previous research [30,41,42].

443

444 *4.2 Bulk Density of Concrete*

445 In this study, a concrete density test was carried out to determine the relationship between the
446 weight of the test specimen and the amount of HDPE fibre addition. This study inferred that the more
447 plastic fibres in the concrete mixture, the lower the weight of the concrete compared to normal
448 concrete [42,47,48]. This is because the irregular stack of HDPE fibres in concrete causes the formation
449 of porosity on the surface [25]. We found that the lowest weight was obtained at a size of 0.25 x 4 cm.
450 This shows that the length of the HDPE fibres is one of the variables that affect concrete bulk density,
451 as during the casting process, many fibres may be folded under pressure by coarse aggregates. The
452 lowest bulk density in quality B0 concrete is 1765 kg/m³, in f'c 10 concrete is 2010 kg/m³ and in f'c 25
453 concrete is 2021 kg/m³.

454 We identified that increased porosity in the concrete causes a decrease in concrete weight, due to
455 the tension on the surface of the uneven HDPE fibres. Furthermore, the surface tension is also
456 primarily determined by the position of HDPE plastic fibres during casting, which may cause the
457 coarse aggregate bond in the concrete mixture to not be optimal. This research shows that adding
458 more plastic fibres to concrete causes a reduction in concrete weight, which is directly proportional
459 to the reduced density of the concrete.

460 *4.3 Tensile Strength and Compressive Strength*

461 The f'c10 MPa concrete showed better tensile and compressive test results for all sizes of HDPE
462 fibres and HDPE percentages. However, the addition of 5 % HDPE fibres gave a higher value than
463 the others. Furthermore, the addition of 10% and 20% HDPE fibres, lowered the tensile and
464 compressive strength for all HDPE sizes. These findings support other studies that showed that an
465 increase of the volume fraction can affect the fibre bonds and reduce the strength of concrete
466 composites [15,25,49].

467 The most optimal shape of the HDPE plastic fibres (for f' c10 MPa) is 0.5 x 2 cm, which is
468 relatively proportional compared to others. The fibres were not folded during the casting and did not
469 break during the tensile and compressive test. This implies that this form provides better bonds
470 between plastics and cement, and shows a higher value of concrete quality compared to 1 x 1 cm and
471 0.25 x 4 cm. The 0.5 x 2 cm size increased the tensile strength by 14%, and the compressive strength
472 by 13%, compared to normal concrete. Therefore, this suggests that the size of the fibre is an important
473 factor in concrete quality. This is in line with Hasan et al. [42], who showed that fibres can increase
474 cement composites in concrete and can increase the tensile strength of normal concrete by about 10–
475 15%.

476 This study also suggests that addition of up to 20% of HDPE fibres in the form of 0.5 x 2 cm can
477 be used for f'c10 MPa concrete quality aimed for non-structural works. On the other hand, for 1 x 1
478 cm and 0.25 x 4 cm, only 10% addition is recommended. In this case, although the cross-sectional area
479 of the HDPE fibres inserted into the concrete is the same (1 cm²), the different shapes differentially
480 affect the concrete properties. More information can be summarised as follows:

- 481 a. HDPE fibres with a size of 0.5 x 2 cm give better results on compressive and tensile strength tests
482 than other sizes. This indicates that this size offers an ideal shape, both length and width, that will
483 be able to adjust and will not fold during the casting process. Furthermore, the shape is not too

484 wide, meaning that the cement can work well with other aggregates and the fibres work optimally
485 at strengthening the concrete composite.
486 b. Although HDPE plastic fibres with a size of 1 x 1 cm have the same contact area, they do not work
487 well when receiving force due to their square shape. The length of the cross-section that receives
488 the force is shorter, and the square shape will tend to have difficulty in adjusting itself during
489 casting. Eventually, it causes a higher number of pores in the concrete and lower bonding between
490 the cement and other materials, especially those that are smaller than the HDPE fibre size.
491 c. Although the 0.25 x 4 cm HDPE fibres have the same contact area, they do not work properly due
492 to their small width, especially during the casting process. In this process, HDPE plastics can be
493 folded and may create pores in the concrete, which lowers the bonding between cement and other
494 materials smaller than the size of the HDPE fibres.

495 4.3 Advantages of Concrete with a mixture of HDPE fibres

496 The phenomenon of increasing porosity in concrete containing HDPE fibres opens the possibility
497 of developing lightweight concrete. It was found in other studies that the addition of plastic in
498 concrete could help reduce the spread of heat [10]. Therefore, we propose using HDPE fibre addition
499 for building walls, in particular for Indonesia. This may reduce the burden on the structure and the
500 use of energy consumption within the building for cooling the inside temperature. However, these
501 findings do not exclude the use of Bo concrete for pavement foundry on highways and paving blocks
502 for parking with low loads.

503 5. Conclusions

504 We conclude that the use of HDPE plastic fibres as a concrete additive material is able to increase
505 the strength of concrete in the composition with the addition of 5% HDPE for all fibre sizes. Of the
506 three concrete qualities examined, the f'c10 MPa concrete quality was the best quality to interact with
507 added HDPE plastic fibre material. We found that added HDPE plastic should only be used on low-
508 quality concrete, aiming for non-structural concrete works.

509 In the cases where the concrete containing HDPE plastic fibres is for the manufacture of wall
510 panels from precast concrete (f'c10 MPa), the addition should only be around 5–10%. For future
511 research, further investigations are needed to determine the effects of more than 20% HDPE and other
512 varying plastic addition into concrete, including to thermal insulation. This study has contributed to
513 the understanding of the optimal composition of HDPE plastic fibres in concrete. These findings will
514 add to the development of lightweight concrete for the green construction sector, especially for non-
515 structural concrete applications. Furthermore, the use of HDPE fibres could also lead to a more
516 sustainable approach to reducing plastic waste.

517

518 **Author Contributions:** Tamrin; conceptualisation, design and analysis, investigation, and initial draft; Juli
519 Nurdiana; draft preparation, visualisation, administration process, and the editing process.

520 **Conflicts of Interest:** The authors declare no conflicts of interest associated with this publication and there has
521 been no significant financial support for this work that could have influenced its outcome.

522 References

- 523 1. The Association Of Plastic Recyclers (APR): Recognition Program Operating Procedures,
524 Available online:
525 https://plasticsrecycling.org/images/pdf/Recognition_Program/Procedure/Recognition_Program_Operating_Procedures_June_2009.pdf (accessed on 27 May 2020)
- 526

527 2. How Long it Takes For Some Everyday Items to Decompose. Available online:
528 http://storage.neic.org/event/docs/1129/how_long_does_it_take_garbage_to_decompose.pdf(ac-
529 cessed on 27 May 2020)

530 3. Rinku Verma; K. S Vinoda; M. Papireddy; ANS Gowda. Toxic Pollutants from Plastic Waste-A
531 Review. *Procedia Environ. Sci.* **2016**, *35*, 701 – 708. <https://doi.org/10.1016/j.proenv.2016.07.069>

532 4. Laurent C.M. L, Joost van der Zwet, Jan-Willem Damsteeg, Boyan Slat, Anthony Andrady, Julia
533 Reisser. River plastic emissions to the world's ocean. *Nat. Commun* **2017**, *8*, 1-10.
<https://doi.org/10.1038/ncomms15611>

534 5. van Emmerik, T; Schwarz, A. Plastic debris in rivers. *WIREs Water* **2020**, *7*,
535 e1398. <https://doi.org/10.1002/wat2.1398>

536 6. Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law,
537 KL Plastic waste inputs from land into the ocean. *Science* **2015**, *347*(6223), 768–71.
<https://doi.org/10.1126/science.1260352>

538 7. Mattsson,K.; Hansson,L.A.; Cedervall,T. Nano-plastics in the aquatic environment. *Environ Sci-
539 Proc Imp* **2015**, *17*(10), 1712–21. <https://doi.org/10.1039/c5em00227c>

540 8. Baier, D.; Rausch, T.M.; Wagner, T.F. The drivers of sustainable apparel and sportswear
541 consumption: a segmented kano perspective. *Sustainability* **2020**, *12*(7), 2788–2788.
<https://doi.org/10.3390/su1207278>

542 9. Geyer R., Jambeck J.R., Law KL Production, use, and fate of all plastics ever made. *Sci. Adv.* **2017**,
543 *3*(7), e1700782. <https://doi.org/10.1126/sciadv.1700782>

544 10. Artid Poonyakan; Manaskorn Rachakornkij; Methi Wecharatana; Watanachai Smittakorn.
545 Potential Use of Plastic Wastes for Low Thermal Conductivity Concrete. *Material* **2018**, *11*(10); 2-
546 17. <https://doi.org/10.3390/ma11101938>

547 11. Ana L. Patrício Silva; Joana C. Prata; Tony R. Walker; Diana Campos; Armando C. Duarte;
548 Amadeu M.V.M. Soares; Damià Barcelò; Teresa Rocha-Santos. Rethinking and optimising plastic
549 waste management under COVID-19 pandemic: Policy solutions based on redesign and
550 reduction of single-use plastics and personal protective equipment *Sci Total Environ* **2020**, *742*,
551 140565. <https://doi.org/10.1016/j.scitotenv.2020.140565>

552 12. Linda Godfrey. Waste Plastic, the Challenge Facing Developing Countries-Ban It, Change It,
553 Collect It? . *Recycling* **2019**, *4*(1), 3. <https://doi.org/10.3390/recycling4010003>

554 13. Nurdiana, J.; Franco-García, M.L.; Hophmayer-Tokich S. Incorporating circular sustainability
555 principles in DKI. Jakarta: lessons learned from Dutch business schools management, in
556 *Towards Zero Waste*. Franco-García, M.L., Carpio-Aguilar, J., Bressers, H. (Eds.), Greening of
557 Industry Networks Studies, Springer Cham, 2019; Volume 6, pp. 146-163.
https://doi.org/10.1007/978-3-319-92931-6_8

558 14. Napper, I.E.; Thompson, R.C. Plastic Debris in the Marine Environment: History and Future
559 Challenges. *Glob Chall* **2020**, *4*(6), 1900081. <https://doi.org/10.1002/gch2.201900081>

560 15. Fraternali, F.; Ciancia, V.; Chechile, R.; Rizzano, G.; Feo, L.; Incarnato, L. Experimental study of
561 the thermo-mechanical properties of recycled PET fiber-reinforced concrete. *Compos. Struct.* **2011**,
562 *93*(9), 2368–2374. <https://doi.org/10.1016/j.compstruct.2011.03.025>

563 16. Adewumi, J. B.; Branko Savija; Suvash, C. P.; Vivi, A. Engineering properties of concrete with
564 waste recycled plastic: a review. *Sustainability* **2018**, *10*, 3875. <https://doi.org/10.3390/su10113875>

565 17. Alqahtani, F.K.; Ghataora, G.; Khan, M.I.; Dirar, S. Novel lightweight concrete containing
566 manufactured plastic aggregate. *Constr Build Mater* **2017**, *148*, 386–397.
<https://doi.org/10.1016/j.conbuildmat.2017.05.011>

567 18. Jain, A., Siddique, S., Gupta, T., Jain, S., Sharma, R. K., Chaudhary, S. Fresh, strength, durability
568 and microstructural properties of shredded waste plastic concrete. *IJST-T Civ Eng* **2019**, *43*(1),
569 455–465. <https://doi.org/10.1007/s40996-018-0178-0>

570 19. Kaufmann, J.; Frech, K.; Schuetz, P.; Münch, B. Rebound and orientation of fibers in wet sprayed
571 concrete applications. *Constr. Build. Mater.* **2013**, *49*, 15–22.
<https://doi.org/10.1016/j.conbuildmat.2013.07.051>

578 20. Alani, A.M.; Beckett, D. Mechanical properties of a large scale synthetic fibre reinforced concrete
579 ground slab. *Constr. Build. Mater.* **2013**, *41*, 335–344.
580 <https://doi.org/10.1016/j.conbuildmat.2012.11.043>

581 21. Tasdemir, C.; Sengul, O.; Tasdemir, M.A. A comparative study on the thermal conductivities
582 and mechanical properties of lightweight concretes. *Energy Build.* **2017**, *151*, 469–475.
583 <https://doi.org/10.1016/j.enbuild.2017.07.013>

584 22. Mutiu A. Akinpelu; Samson O. Odeyemi; Oladipupo S. Olafusi; Fatimah Z. Muhammed.
585 Evaluation of splitting tensile and compressive strength relationship of self-compacting
586 concrete. *J. King Saud Univ. Eng. Sci.* **2019**, *31*(1), 19–25. <https://doi.org/10.1016/j.jksues.2017.01.002>

587 23. Lavanya, G.; Jegan, J. Evaluation of relationship between split tensile strength and compressive
588 strength for geopolymers concrete of varying grades and molarity. *Int. J. Appl. Eng. Res.* **2015**,
589 *10*(15), 35523–35529.

590 24. Yeol Choi; Robert L Yuan. Experimental relationship between splitting tensile strength and
591 compressive strength of GFRC and PFRC. *Cem. Concr. Res.* **2015**, *35*, 1587–1591.
592 <https://doi.org/10.1016/j.cemconres.2004.09.010>

593 25. Sung Bae Kim; Na Hyun Yi; Hyun Young Kim; Jang Ho Jay Kim; Young Chul Song. Material
594 and structural performance evaluation of recycled PET fibre reinforced concrete. *Cem. Concr.*
595 *Compos.* **2010**, *32*, 232–240. <https://doi.org/10.1016/j.cemconcomp.2009.11.002>

596 26. Islam, M. J., Meherier, M. S., Islam, A. K. M. R. Effects of waste pet as coarse aggregate on the
597 fresh and harden properties of concrete. *Constr. Build. Mater.* **2016**, *125*, 946–951.
598 <https://doi.org/10.1016/j.conbuildmat.2016.08.128>

599 27. Ibrahim, A.; Bassam, AT; Rayed, A.; Hisham, A.; Abdeliazim, M.M. Eco-friendly concrete
600 containing recycled plastic as partial replacement for sand. *J. Mater. Res. Technol.* **2020**, *9*(3), 4631–
601 4643. <https://doi.org/10.1016/j.jmrt.2020.02.090>

602 28. Soroushian, P.; Plasencia, J.; Ravanbakhsh, S. Assessment of reinforcing effects of recycled
603 plastic and paper in concrete. *ACI Mater. J.* **2003**, *100*(3), 203–207. <https://doi.org/10.14359/12620>

604 29. Batayneh, M.; Marie, I.; Asi, I. Use of selected waste materials in concrete mixes. *Waste Manag.*
605 **2007**, *27*(12), 1870–1876. <https://doi.org/10.1016/j.wasman.2006.07.026>

606 30. Bahij, S.; Omary, S.; Feugeas, F.; Faqiri, A. Fresh and Hardened Properties of Concrete
607 Containing Different Forms of Plastic Waste - a Review. *J. Waste Manag.* **2020**, *113*, 157–175.
608 <https://doi.org/10.1016/j.wasman.2020.05.048>

609 31. Sistem Informasi Pengelolaan Sampah Nasional. Available online:
610 <http://sipsn.menlhk.go.id/?q=3a-komposisi-sampah> (accessed on 4 August 2020).

611 32. ASTM C 33-99, **Standard Specification for Concrete Aggregates**, ASTM Book of Standards.

612 33. American Concrete Institute, **ACI 318-89 Building Code Requirements for Reinforce Concrete**,
613 Part I, General Requirements, Fifth Edition, Skokie, Illinois, USA: PCA, 1990.

614 34. Setareh M.; Darvas R. Reinforced Concrete Technology. In *Concrete Structures*. Springer, Cham,
615 2017; pp. 1–35. https://doi.org/10.1007/978-3-319-24115-9_1

616 35. ASTM International. Standard Test Method for Slump of Hydraulic Cement Concrete;
617 **ASTMC143**. West Conshohocken, PA, USA, 2000

618 36. ASTM C617 / C617M-15, Standard Practice for Capping Cylindrical Concrete Specimens, ASTM
619 International, West Conshohocken, PA, 2015, www.astm.org

620 37. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens;
621 **ASTMC496**; ASTM International: West Conshohocken, PA, USA, 2009.

622 38. Test Method for Compressive Strength of Cylindrical Concrete Specimens; **ASTMC39**; ASTM
623 International: West Conshohocken, PA, USA, 2014.

624 39. Kamaruddin, M.A.; Abdullah, M.M.A.; Zawawi, M.H., Zainol, M.R.R.A. International
625 Conference of Applied Science and Technology for Infrastructure Engineering 2017, ICASIE
626 2017. Potential use of plastic waste as construction materials: recent progress and future
627 prospect. *IOP Conference Series: Materials Science and Engineering* **2017**, *267*(1).
628 <https://doi.org/10.1088/1757-899X/267/1/012011>

629 40. Aldahdooh, M.A.A.; Jamrah, A.; Alnuaimi, A.; Martini, M.I.; Ahmed, M.S.R.; Ahmed, A.S.R.
630 Influence of Various Plastics-Waste Aggregates on Properties of Normal Concrete. *J. Build. Eng.*
631 **2018**, *17*, 13–22. <https://doi.org/10.1016/j.jobe.2018.01.014>

632 41. Ismail, Z.Z.; Al-Hashmi, E.A. Use of Waste Plastic in Concrete Mixture As Aggregate
633 Replacement. *J. Waste Manag.* **2008**, *28* (11), 2041–2047.
634 <https://doi.org/10.1016/j.wasman.2007.08.023>

635 42. Hasan, M.J.; Afroz, M.; Mahmud, H.M.I. An experimental investigation on the mechanical
636 behavior of macro synthetic fibre reinforced concrete. *Int. J. Civ. Environ. Eng.* **2011**, *11*(3), 18–23.

637 43. Albano, C.; Camacho, N.; Hernandez, M.; Matheus, A.; Gutierrez, A. Influence of content and
638 particle size of waste pet bottles on concrete behavior at different w/c ratios. *Waste Manag.* **2009**,
639 *29*(10), 2707–2716. <https://doi.org/10.1016/j.wasman.2009.05.007>

640 44. Xu, L., Li, B., Ding, X., Chi, Y., Li, C., Huang, B., Shi, Y. Experimental investigation on damage
641 behavior of polypropylene fibre reinforced concrete under compression. *Int. J. Concr. Struct. M.*
642 **2018**, *12*(1), 1–20. <https://doi.org/10.1186/s40069-018-0302-3>

643 45. Turner, R.P.; Kelly, C.A.; Fox, R.; Hopkins, B. Re-Formative Polymer Composites from Plastic
644 Waste: Novel Infrastructural Product Application. *Recycling* **2018**, *3*(4), 54.
645 <https://doi.org/10.3390/recycling3040054>

646 46. Hadeel K. Awad. Influence of Cooling Methods on the Behavior of Reactive Powder Concrete
647 Exposed to Fire Flame Effect. *Fibre* **2020**, *8*(3), 1–22. <https://doi.org/10.3390/fib8030019>

648 47. Mazaheripour, H.; Ghanbarpour, S.; Mirmoradi, S.H.; Hosseinpour, I. The effect of
649 polypropylene fibres on the properties of fresh and hardened lightweight self-compacting
650 concrete. *Constr. Build. Mater.* **2011**, *25*(1), 351–358.
651 <https://doi.org/10.1016/j.conbuildmat.2010.06.018>

652 48. Yin, S.; Tuladhar, R.; Shi, F.; Combe, M.; Collister, T.; Sivakugan, N. Use of macro plastic fibres
653 in concrete: A review. *Constr. Build. Mater.* **2015**, *93*, 180–188.
654 <https://doi.org/10.1016/j.conbuildmat.2015.05.105>

655 49. Dawood, E. T., Hamad, A. J. Toughness behaviour of high-performance lightweight foamed
656 concrete reinforced with hybrid fibres. *Struct. Concr.* **2015**, *16*(4), 496–507.
657 <https://doi.org/10.1002/suco.201400087>

658

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).