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Abstract: This article investigated the Automatic Generation Control (AGC) of multi-area multi-

source interconnected systems with hydropower plants, thermal power plants, and wind energy. 

In this paper, A technical novelty is present as well as a software novelty of utilizing a novel algo-

rithm. An Adaptive Neuro-fuzzy controller integrated with the cascaded proportional-integral-

derivative with filter (PIDF-PIDF) is a new cascaded controller (ANF-PIDF-PIDF) that has been 

presented as a secondary controller for the applied hybrid power system. In addition to the tech-

nical novelty, there exists a software novelty of utilizing the novel Skill Optimization Algorithm 

(SOA) to optimize PIDF- PIDF controller parameter gains and the Adaptive Neuro-Fuzzy control-

ler's input and output scaling factors. SOA is used to update the controller parameters with inte-

gral square error (ISE) employed as the objective function. SOA also outperforms other algorithms 

in terms of convergence speed and accuracy. The appropriate generating rate constraints (GRC) 

for the thermal and hydro plants have been considered. A 1% step load disturbance was consid-

ered simultaneously in all three areas. The controller's performance is evaluated and compared 

with and without considering the effects of wind energy sources and non-linearity for ANF-PIDF-

PIDF, PIDF-PIDF, and PIDF and it is determined that the ANF-PIDF-PIDF was the most efficient. 

The dynamic system performance is also compared with parallel high voltage direct current 

(HVDC) tie-lines. The investigation clearly shows that incorporating HVDC tie-line with multi-

area, multi-source provides better dynamic performance in terms of maximum amplitude, oscilla-

tion, and settling time. Additionally, sensitivity analysis is done, and the optimum controller gains 

do not need to be reset to uncertain values in system loading conditions. All simulation results 

were evaluated using MATLAB 2016b. 

Keywords: Automatic generation controls (AGC), Adaptive Neuro-Fuzzy controller, cascaded 

controller, parallel High voltage direct current (HVDC) tie-lines, Skill Optimization Algorithm 

(SOA) 

 

1. Introduction 

The power system's augmentation and control action are necessitated by its rapid 

expansion. It is necessary to balance energy production and energy consumption [1]. 

The Automatic Generation Control (AGC) is critical in ensuring that the frequency varia-

tions remain below acceptable bounds. The primary objective of AGC is to maintain the 

frequency deviation within acceptable limits and also control the power transfer be-

tween different locations. It is critical for managing the power variations along the tie 

lines. An interconnected power system with several producing sources, such as hydro-

power plants, thermal power plants, and renewable energy sources, among others, 

could have several generating sources in its control areas. A more complicated control 

structure is required when several sources of renewable energy are injected into power 
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systems. In multi-source interconnected power systems, frequency variation is, in es-

sence, the leading cause of variation. While maintaining suitable production, distribu-

tion, and customer load requirements, AGC's main objectives are to preserve frequencies 

and tie-line power variations within specific limits. In an integrated power system, the 

governor regulation and load frequency control cooperate to keep the system frequency 

deviation low [2]. The primary goal of lowering the area control error (ACE) is to main-

tain the frequencies and tie-line power within specified bounds [3]. Soft computing 

techniques and Artificial intelligence is now widely used in a variety of fields. The opti-

mum fuzzy control strategy governs the power flow in this power system problem. Elec-

tric power systems must now be operated in real-time by intelligent systems that draw 

knowledge, skills, and procedures from different sources due to the expanding scale and 

complexity of the sector as well as the increase in power consumption. 

Many papers look at different areas of AGC design, such as illustrating the effec-

tiveness of power systems' dynamic performance. The earliest test to adjust the power 

system's frequency used a flywheel and the power unit's speed governor. However, this 

method was insufficient for the power systems to function correctly. As a result, the 

power unit's speed governor added a supplementary control method based on the fre-

quency deviation (∆f) signal and its integral. Tasnin et al. in [4] has defined the tradi-

tional AGC techniques in power systems. The most popular non-conventional energy 

source used to provide consumer electrical energy is wind power plants [5]. Hakimud-

din et al. in [6] investigated the efficacy of AGC in thermal, hydro, and wind power 

plants. While changes in the amount of wind energy available to wind turbines can 

cause an increase or decrease in the imbalance between generation and load demands, 

combining WPPs with traditional power plants causes system instability. AGC is also 

used in conventional power plants, but because wind energy is stochastic, WPPs may 

cause disturbances [7]. Currently, wind power plants are not used to control and stabi-

lize perturbations in the control region. They may, however, have the potential to partic-

ipate in the design of AGC power systems. Furthermore, wind power plant dynamics 

are not included in the power system control regions model [8]. AGC is used to correct 

the disturbed problems and restore the frequency of the system. The work done in [9] 

shows two components of integrated hydro-thermal systems with a wind farm. The 

work done in [10] evaluated system dynamic frequency responses for three-area thermal 

systems, one of which incorporated a solar thermal power plant (STPP). Three diverse 

area thermal systems namely, hydro, wind, and solar photovoltaic plants were evaluat-

ed in the work done in [11]. Some authors examined the frequency response of various 

techniques in AGC investigations. The load-generation imbalance of a practical power 

system affects tie-line power flow and the system's nominal frequency [12]. The authors 

documented the effects of renewable energy sources such as solar photovoltaic panels, 

wind and frequency regulation on automatic load frequency control (ALFC) studies in 

the work done in [13]. The authors investigated the synchronous generator excitation is-

sue of two-area reheating thermal systems, such as PV arrays and wind, while taking in-

to account system non-linearity like GRC. The work done in [14] reports some control 

algorithms for designing the additional ALFC loop controller. Traditional controllers, 

however, might not even react adequately when the operational state of the power sys-

tem changes if they are programmed for a specific ALFC working state. With a typical 

controller set to a single functional form, it isn't easy to establish stability across the sys-

tem's whole working range due to its nonlinearity. To solve this problem and efficiently 

run the power generating units, frequency, and tie-line power flow, intelligent control 

technology such as the FLC is advised over the traditional one [15]. The Fuzzy log-

ic controller increases the traditional controller’s closed-loop effectiveness and can man-

age every variation in operational points by modifying controller parameters live. The 

researchers' primary focus in the combined AGC experiments has been designing the 

ALFC loop controller. The auxiliary controller of the ALFC loop, like traditional PID, 

fuzzy-PID, and Neuro-fuzzy-PID, with HVDC, has been done in the integrated LFC and 

automatic voltage regulator (AVR) inner loops in the work done in [15,16]. Abazari et al. 
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[17] demonstrated load frequency control Power Systems using a classical PID & Fuzzy 

PID controller. They proposed modeling a PID and fuzzy PID-based LFC controller to 

reduce the power system's frequency deviation. Furthermore, compared to traditional 

PID controllers, it achieves an entire system with a shorter settling time, minimizes the 

peak amplitude of the characteristic frequency variations, and minimizes the power of 

the exchanged tie line. However, more fine-tuning and simulation are required before it 

can be used; issues with locating appropriate membership values for fuzzy systems. 

Prakash et al. [18] employed one of the artificial intelligence approaches to investigate 

the LFC of interconnected system frameworks. They suggested modeling a PID and an 

artificial neural network (ANN) PID-based load frequency control to minimize the pow-

er system's frequency deviation. As a result, the intelligent control strategy based on 

ANNs is faster and more accurate, yielding better results. However, large amounts of 

data are required for training; neural networks can only be used if training data is avail-

able, and the learning process can be time-consuming. As a result, load frequency con-

trol research can be investigated by combining the advantages of neural networks and 

fuzzy logic controllers with traditional controllers. There has yet to be any prior research 

on the optimal Neuro-fuzzy controller integration with adaptive Neuro-Fuzzy cascaded 

PIDF-PIDF controller.  

Moreover, in the previous research on load frequency control, seven membership 

functions with 7*7=49 rules were considered for the fuzzy controller design. However, 

more resolution is required to optimize the heavily loaded power system. As a result, 

the authors altered the eleven-membership function, resulting in 11*11=121 Rules for 

dealing with the complex dynamic framework. The gain parameters must be carefully 

chosen when developing an efficient controller for the area control system; the gain pa-

rameters must be carefully chosen. Different studies have proposed and validated dif-

ferent soft computing strategies for obtaining control parameters for system perfor-

mance optimization. Because of this, making an accurate selection of the controller gain 

is quite important for achieving better regulated performance. In recent years, by the 

year 2015, many bio-inspired algorithms have been developed to optimise the controller 

gain values. These algorithms include: 1) direct synthesis (DS) for tuning of PID control-

ler parameters [21], 2) grey wolf optimizer algorithm for tuning of PI and PID controller 

gain values [22], 3) self adaptive modified bat algorithm (SMBA) for tuning of PI control-

ler [23], 4) Cuckoo search (CS) algorithm for tuning of PI controller [24], 5) teaching 

learning based optimization [25] 6) hybrid particle swarm optimization (PSO) and pat-

tern search (PS) (hPSO-PS) optimization for tuning of fuzzy PI controller [26], 7) a mi-

nority charge carrier inspired (MCI) method was suggested for tuning the I and PI con-

troller [27], and 8) a modified harmony search algorithm (MHSA) was suggested for ad-

justing the parameters of the PID controller [28]. More recently, the Genetic Algo-

rithm(GA)[29], Tabu Search(TS)[30], Simulated Annealing(SA)[31], Differential Evolu-

tionary Algorithm(DEA)[32], Particle Swarm Algorithm(PSO)[33], Immune Algo-

rithm(IA)[34] were all also utilized for tuning PID controllers. Table 1 presents the ad-

vantages and disadvantages of various metaheuristic algorithms. 
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Table 1 : Advantages and Disadvantages of different algorithms 

ALGORITHM MAJOR ADVANTAGE  MAJOR DISADVANTAGE 

GA [29] 

 

Simple to understand and put into prac-

tice 

Does not require prior understanding of 

maths 

There is no guarantee of a solution that 

is optimal 

we are unable to solve a wide variety of 

different kinds of complicated optimi-

zation issues. 

The propensity to converge in the op-

timal solution for the immediate envi-

ronment 

 

 

 

 

TS[30] Escapes from local minima as well by 

using the "tabu list" 

A sluggish pace of convergence 

The ineffective approach to solving the 

high-dimensional problem 

 

SA[31] Can give a solution even in a huge 

search area. 

Easy to understand and apply  

Provides pretty excellent solutions for 

certain optimization issues 

 

A sluggish pace of convergence a lack 

of capacity to find solutions to difficult 

multifaceted issues 

Performance decline in big dimension 

issues 

 

DEA[32] Possesses the ability to solve multidi-

mensional, non-differential, and non-

continuous problems;  

Difficult  to choose the appropriate con-

trol settings 

There is no guarantee of the accuracy of 

the solution. 

 

PSO[33] It Converges rapidly;  

It is capable of resolving complicated 

optimization issues in a variety of appli-

cation areas. 

The unfavourable impact on the solu-

tions brought about by the incorrect 

selection of control factors 

The risk of becoming mired at a particu-

lar region's minimum point 

Poor performance in high-dimensional 

as well as multimodal optimization 

 

IA[34] It is adept at the search exploration pro-

cess. 

Poor utilisation of the search 

SOA High Convergence rate 

Can solve complex multidimensional 

problems  

It is faster and requires less iterations 

It is a little complex to understand 

 

 

We utilize a novel algorithm for the very first time in this application named the 

Skill Optimization Algorithm. SOA has been tested on multiple functions and has been 

determined to be better than all the above mentioned algorithms in terms of conver-

gence speed. The SOA based ANF-PIDF-PIDF controller is compared with GA and PSO 

to show that it is much more efficient than the conventional algorithms. There has been 

no research till now conducted by using SOA-based AGC to improve the gains of stand-

ard PIDF-PIDF and the input-output scaling factors of Neuro-Fuzzy controllers. 
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The cascade controller improves the dynamics system over a single controller since 

it has many configurable parameters. Furthermore, the cascade control technique is re-

nowned in the control system for its quick disturbance rejection before transmission to 

other system components. The earlier literature review presents a new hybrid control 

structure for the unified ALFC-AVR system, including Fuzzy logic control and the cas-

cades controller PI and PIDF. Frequency variation and ACE are the two input signals 

that the controller receives. According to the literature, the ALFC loop and the choice of 

controller settings improve the system performance of the researched system in the 

combined adaptive Neuro-Fuzzy cascaded PIDF model. Traditional methods may not 

deliver the best results for a plan with nonlinear constraints. Different studies have pro-

posed and validated different soft computing strategies for obtaining control parameters 

for system performance optimization [20]. 

The proposed controller must handle small variations in the system's state without 

affecting stability. [16] Performed a sensitivity study by altering the amount and position 

of the step load disturbance (SLD). The resilience of the 50% loading circumstances, skill 

optimization algorithm, enhanced adaptive Neuro-Fuzzy-cascaded PIDF inputs gains, 

and Neuro-Fuzzy inputs-output scaling factors and other parameters must be evaluated 

against a wide range of systems loading conditions.  

 

Because it has more configurable parameters than a single controller, the cascade 

controller improves the dynamics system over a single controller. Furthermore, the cas-

cade control technique is renowned in the control system for its quick disturbance rejec-

tion before transmission to other system components. The research done also explores a 

new hybrid control structure for the unified ALFC-AVR system, which includes fuzzy 

logic control and the cascades controllers PI and PIDF. Frequency variation and ACE are 

the two input signals that the controller receives. According to the literature, the ALFC 

loop and the choice of controller settings improve the system performance of the re-

searched system in the combined adaptive Neuro-Fuzzy cascaded PIDF model. Tradi-

tional methods may not deliver the best results for a plan with nonlinear constraints 

In addition to the maiden application of the novel optimization algorithm, we have 

also incorporated technical novelties with regard to power system stability with the help 

of AGC. Many researchers stated that the AGC considers ALFC and AVR loops, focus-

ing on traditional and non-traditional controllers, as demonstrated in the literature re-

view. Little attention was paid to several aspects such as, including source type, control-

lers, optimization techniques, sensitivity analysis using altered generator characteristics, 

variation in the water inertia time constant (Tw), the synchronization correlation coeffi-

cient of AC tie lines with system loading conditions, and the effects of a parallel HVDC 

tie line for stability analysis. This article investigates the optimal design and implemen-

tation of the cascaded adaptive Neuro-Fuzzy-PIDF-PIDF-based AGC controller for a 

three unequal area multi-sources power system network comprising hydro and thermal 

power plants and wind power plants (WPPs). The dynamic response of the optimum 

AGC controller is measured and compared to that of a PIDF controller. SOA adjusted 

conventional AGC controller that has also been built in the research in the presence of a 

1% step load perturbation in one of the control areas. Additionally, the effect of wind 

energy sources on the AGC scheme has been investigated when the amount of wind en-

ergy to the wind power plants (WPPs) reduces/increases load perturbations in one of the 

control areas. 

1.1. System Design Challenges 

The active power balance in the power system is required for frequency stability. 

When a disturbance occurs in the system, such as a short-circuit fault, trip, tie-line break-

ing, system disintegration, etc., the total generation and load power may become imbal-

anced.  
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The biggest challenges to fixing this issue are as follows: 

1. Using a novel AGC controller, we should effectively reduce changes in system fre-

quency, deviation, and tie-line flows from their specified areas. The developed con-

troller should produce system responses with the least settling time, undershoots, 

and overshoots possible. 

2. Finding and implementing the perfect optimization strategy for adjusting the de-

veloped controller's parameters. 

3. Finding the perfect performance indices for adjusting the developed controller's pa-

rameters 

4. When applied to various power system models, the new modeling technique must 

deliver superior results in comparison to conventional systems 

5. The design method must be robust. 

 

This article investigates the optimal design and implementation of the SOA optimized 

cascaded adaptive Neuro-Fuzzy-PIDF-PIDF-based AGC controller for a three unequal 

area multi-sources power system network comprising hydro and thermal power plants 

and wind power plants (WPPs). The cascade controller improves the dynamics system 

over a single controller since it has many configurable parameters. Furthermore, the cas-

cade control technique is renowned in the control system for its quick disturbance rejec-

tion before transmission to other system components. 

1.2. The primary objectives and achievements 

The following objectives have still to be examined based on the extensive literature 

review. 

• To develop three multi-source, unequal-area hydro-thermal systems integrated 

with wind turbines in the presence of linearity and non-linearity. 

• For the input and output scaling factors, as well as the system's built-in PIDF gains. 

The skill optimization algorithm (SOA) is used to optimize adaptive Neuro-fuzzy 

controllers, and the present controllers are acquired by assessing dynamic perfor-

mances of the system. 

• To establish which is best, the dynamic performance of the proposed adaptive Neu-

ro-fuzzy-PIDF-PIDF (NF-PIDF-PIDF) controller is compared to that of the classical 

PIDF-PIDF and PIDF controller. 

• To evaluate the sensitivity analysis by altering the characteristics of the generators 

while accounting for a system loading ± 25%. 

• To investigate the effects of non-linearity requirements on the system using the pre-

sent adaptive NF-PIDF-PIDF controller. 

• To investigate the effects of parallel HVDC tie-line on the system using the present 

adaptive NF-PIDF-PIDF controller. 

• To demonstrate how the water inertia time constant (𝑇𝑤) varies in loading systems, 

to evaluate the sensitivity analysis by altering the generators' parameters, and to 

verify the sensitivity of the present NF-PIDF-PIDF controller.  

• To show how the suggested controller outperforms the SOA optimum PIDF-PIDF 

and PIDF controllers created for the AGC power system presented in (i). 

The primary contribution of this paper is the design of a novel optimal integration Neu-

ro-Fuzzy-PIDF-PIDF (NF-PIDF-PIDF) controller for different power system models that 

perform more dynamically than other previously published papers. 

The rest of this paper is summarized as the following organization:  

Section-2 presents a detailed system design with mathematical equations, system inves-

tigation, modeling of the proposed ANF-PIDF-PIDF controller and optimization tech-
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nique, Section-3 reveals the simulation and discussion of the detailed results. The article 

is concluded in Section-4, followed by a list of references and an appendix. 

 

2. Materials and Methods 

2.1. Frequency Response Modeling  

2.1.1. Reheated thermal power turbine modeling 

Each area uses a conventional power system generating plant, as depicted in Figure.2. 

Reheated Thermal Power (RTP) is implemented using a speed governor mechanism and 

a turbine with a re-heater, as shown in a thorough block diagram.  

 

The following are the transfer function models for the reheated turbine (GTRT) and 

speed governing method (GGRT) [11]. 

GGRT(s) = 
1

1+𝑠𝑇𝑔𝑟𝑡
  and GTRT(s) = (

1

1+𝑠𝑇𝑡𝑟𝑡
)(
1+𝑠𝐾𝑟𝑇𝑟

1+𝑠𝑇𝑟
) (1) 

Where 𝑇𝑔𝑟𝑡and 𝑇𝑡𝑟𝑡 are the governor and turbine time constants, respectively, and 𝐾𝑟  and 

𝑇𝑟 are the reheated thermal power plant's re-heater gain and time constant, respectively. 

2.1.2. Hydro Power Turbine Modeling 

A turbine unit in power systems transforms natural energy, like water energy, into 

mechanical power (𝑃𝑚), which is then delivered to the generator. The authors commonly 

utilize a simplified inelastic penstock model without the water hammer effect in power 

system analysis. The following transfer function(T.F.) is obtained using a simple prime 

mover model with a single water time constant Tw [14]. 

𝑇. 𝐹. =  
△ 𝑃𝑚(𝑠)

△ 𝑃𝑣(𝑠)
=

1 − 𝑇𝑤𝑆

1 + 0.5𝑇𝑤𝑆
 (2) 

The water starting time is Tw in this case, the time it takes for a head Ho to accelerate the 

water in the penstock from rest to velocity Vo. It is worth noting that Tw varies depend-

ing on the load  
lpvpo

ghgo
  is the answer. Tw at full load is usually varied between 0.5 and 4.0 

seconds.  Equation (2) depicts a hydraulic turbine's traditional transfer function. For an 

ideal lossless turbine, it depicts how the turbine power output varies in reaction to 

changes in gate opening. A simple hydro turbine's block diagram is depicted in Figure 1. 

                

Figure1. Turbine Block Diagram 

Equation (3) states that the hydro turbine head alters the water acceleration in the 

penstock. 

(𝜌𝑙𝑝𝐴𝑝)
𝑑Δ𝑣𝑝

𝑑𝑡
= 𝐴𝑝(𝜌𝑔)Δℎ𝑔 (3) 

Where 

• 𝑙𝑝 is the penstock length. 

• 𝑣𝑝 is water velocity in the penstock. 

• 𝐴𝑝 is the pip cross-sectional area. 

• ρ is the mass density of water. 

• g is the gravity acceleration. 

• (𝜌𝑙𝑝𝐴𝑝) is the mass of water in the penstock. 

• (𝜌𝑔)Δℎ𝑔) denotes the incremental pressure varies atthe hydro turbine gate. 
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Using equation (3) make normalized by dividing both sides by Apghgovpo, to normalize                          

the Equation (3), and obtain (4) 

lpvpo

ghgo

d

dt
(
∆vp

vpo
) = −

∆hg

hgo
 (4) 

 

 

𝑇𝑤  =
lpvpo

ghgo
 

(5) 

The mass flow rate in the penstock is calculated as qo = Apvpo, where qo is the product of 

pipe area and water velocity in the penstock. Inserting vpo into the equation (5) yields the 

water's starting time is given by (6).  

𝑇𝑤 =
lpqo

gAphgo
 (6) 

Equation (6) calculated the hydro turbine time constant or Tw under variable plant load-

ing (PL).  I. Pan et al. in [35] describes the penstock's hydro turbine gate valve opening 

(𝑉𝑜) versus water flow rate. The mathematical description of water flow rate in terms of 

𝑉𝑜 is given in (7). 

       q(p. u) =
1

104
(%𝑉𝑜)2 (7) 

 

A change in the plant loading has caused the 𝑉𝑜 to change. Therefore, equation (7) can be 

expressed in plant loading, as illustrated in (8). 

q(p. u) =
1

104
(%PL)2 (8) 

Using equation (6) and equation (8) 

Tw = m × 10−4  × (%PL)2 (9) 

Where m = 
lpqo

 gAphgo
 = 4 

As a result, equation (9) demonstrates that Tw varies with the PL load levels. 

2.1.3. Wind Power Plant Modeling 

The wind's kinetic energy is transformed into mechanical energy by rotating ma-

chines known as wind turbines. After that, the electrical grid receives this mechanical 

energy and turns it into electricity. The generator and rotor of turbines accomplish these 

energy transformations. The rotor is the main part of the turbine which contains the hub 

and blades. The turbine's hub rotates as wind strikes the blades due to aerodynamic 

forces. This rotation is then sent to the transmission mechanism, which reduces the rota-

tions per minute. The transmission system is composed of the important bearing, high-

speed shaft, gearbox, and low-speed shaft [36]. The pitch angle control system ensures 

that the desired pitch angle is maintained regardless of wind speed, allowing wind tur-

bine production to be adjusted regardless of wind speed. The hydraulic pitch actuator 

data fit pitch response, and blade characteristics are included in the mathematical analy-

sis of the wind power plant. Modeling the wind farm system, pitch control, hydraulic 

pitch actuator, data fit pitch response, and induction generator are all described in detail 

below [37]. 

 

                   GP (S) =
𝐾𝑊𝑃1(1+𝑆𝑇𝑊𝑃1)

(1+𝑆)
                                      (10) 
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              GH (S) =
𝐾𝑊𝑃2

(1+𝑆𝑇𝑤𝑝2)
                                            (11) 

 

               GD (S) =
𝐾𝑊𝑃3

(1+𝑆𝑇𝑤𝑝3)
                                            (12) 

 

               G1 (S) =
1

(1+𝑆𝑇𝑤)
                                              (13) 

The output of wind power deviation can be written as: 
        
              ∆𝑃𝑃𝑚 = 𝐾𝑓𝑐𝐺1(𝑆)                                                                                  (14)                                                                                           

  

Where Kwp1 and Twp1 are the pitch control systems gain and time constants, Kwp2 and Twp2 

are the gains for hydraulic pitch actuator gain and time constant, Kwp3, Twp3 data appro-

priate pitch response gain and time constant, and Kfc is fluid coupling. 

2.1.3.1. The Effect of Wind Power Integration on Grid Frequency Stability 

The active power balance is a prerequisite for the power system's frequency stabil-

ity. The total generation power and the total load power may be out of balance when a 

disturbance in the system (such as a short-circuit fault, trip, tie-line breaking, system dis-

integration, etc.) occurs. The system frequency will increase if the total generation power 

exceeds the total load power (including grid losses). In contrast, it will decrease if the to-

tal generation power is less than the total load power. The associated steps, mainly regu-

lating the active generator output, disintegrating the generator, disintegrating the load, 

and so forth, shall be adopted based on the various frequency variations and the real op-

eration condition of the system. Frequent regulation is essential for the electrical system 

to run securely and reliably [38]. In order to maintain frequency security and frequency 

stability during continuous operation of the power system once wind power is incorpo-

rated into the grid, it has become one of the main topics in wind power research as wind 

power penetration rises. The system inertia will be critical in determining the rate of var-

iation of the system frequency in the event of a fault when the grid frequency is drasti-

cally lowered. The lower the inertia, the quicker the system frequency drops. Any de-

crease in inertia response puts the power system at risk for a significant frequency acci-

dent. 

The security of a power system is defined as its capacity to endure disruptions without 

experiencing a breakdown. Wind turbines must be able to ramp up and down in order 

to prevent insecure power system operation. Wind turbines must be able to avoid exces-

sive fault levels while also assisting with fault identification and also must be able to 

contribute to both voltage and frequency control to stabilize the power system following 

a disturbance [39]. 

2.1.4 Governor and Generator Modeling 

2.1.4.1 Governor Modeling 

  In reaction to changes in load, the turbine controlling system's primary goal is to 

control turbine speed, which affects the frequency and active power. In power systems, 

governors are employed to detect the frequency bias brought on by a change in load and 

negate it by adjusting inputs to turbines. The speed governing mechanism can be classi-

fied into two categories namely, Electric Governor and Mechanical Governor[40]. The 

transfer of electrical governor is given as - 

 GtEg =
kdhs

2+kphs+kih

kdhs
2+(kph+

f

R
)s+kih

    (15) 
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Where Kdh, Kph, and Kih electric governor derivative, proportional, and integral gains, respective-

ly 

 

The transfer function of the Mechanical Governor is given as - 

   Ukg =
Kg

Tgs+1
     (16) 

where kg and Tg  mechanical governor constant gain and governor time constant respec-

tively 

 

2.1.4.2 Generator Modeling 

A generator power system converts mechanical energy from a turbine to electrical ener-

gy. The mechanical power conveyed by the turbine is no longer equal to the electrical 

power produced by the generator when the load changes. The error is between mechan-

ical (𝑃𝑚) and electrical power (𝑃𝑒 ) is incorporated into the rotor speed variation r, which 

could be multiplied by 2π to get the frequency bias Δf [41]. 

 2H

Ws

dΔw

dt
= Δ𝑃𝑚 − Δ𝑃𝑒 (17) 

 

In terms of a slight speed difference 

d(
𝛥𝑊

𝑊𝑠
)𝑑𝑡 =

1

2H
(Δ𝑃𝑚 − Δ𝑃𝑒) (18) 

 

Speed is measured in units per second. 

𝑑𝛥𝑊

𝑑𝑡
=

1

2𝐻
(𝛥𝑃𝑚 − 𝛥𝑃𝑒) (19) 

The LFC closed Loop 

         ∆𝑃𝑇 − ∆𝑃𝐷 =
2𝑊

𝑓0

𝑑

𝑑𝑡
(∆𝑓) + 𝐷∆𝑓𝑀𝑊                   (20) 

The preceding equation, after Laplace transformation, produces 

    ∆PT(s) − ∆PD(s) =
2W

f0
s
d

dt
 ∆f(s) + D∆f(s)MW  

= [
2w

f0
s + D] ∆f(s)  i. e 

 ∆f(s) =
1

2H
f0

[∆PT(s) − ∆PD(s)] 
(21) 

             ∆f(s) = Gp(s)[    ∆PT(s) − ∆PD(s)] (22) 

where 

          𝐺𝑝(𝑠) =
1

2H

f0
+𝐷
= 

1 𝐷⁄

(1+
2𝐻

𝑓0𝐷
)
= 

𝐾𝑃

1+𝑆𝑇𝑃
 

(22.1) 

KP = 
1

D
TP =

2H

f0D
,  (22.2) 

   f = f0+∆f 
(22.3) 

D =
PLp.u

f0
 (22.4) 
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Where Pm is mechanical input power in per-unit, Pe is electrical output power in per-

unit, H is the inertia constant, ∆W is the synchronous rotor speed, D load damping 
constant and f is nominal frequency, fo is operating frequency, ∆f frequency deviation. 

2.1.5 AGC of three-area interconnected power system 

Multi-control regions are present in any interconnected power network all generators in 

power systems are believed to work together an analogous turbine generator and gov-

ernor system can be installed in the proposed research investigated three areas intercon-

nected in a ring topology as illustrated in Figure.2. 

 

 

 

 

 

       Figure.2. Three area models were linked by ring topology. 

The real power delivered through the tie-line is indicated is given equation (23) during 

the regular operation of the power system. 

𝑃12  = 
𝑉1 V2

𝑋12
  sin( 𝛿₁ − 𝛿₂) (23) 

Where δ1 and δ2 are the respective power angles of machines that are identical and X12 is 

the tie-line reactance. At the comparable machines in areas 1 and 2, the voltages are V1 

and V2, respectively. 

To obtain the tie power deviation as shown in equation (23), the authors reformed equa-

tion (24) for a small tie-line flow P12 around an equilibrium point δ01 δ02. 

𝛥𝑃₁₂ = 𝑃𝑠₁₂ ( 𝛥𝛿₁ − 𝛥𝛿₂)   (24) 

 

The synchronizing power coefficient Ps can be calculated using equation (25). 

𝑃𝑠 = 
dp12

dδ12
|𝛿₁₂° =

E1 E2

X12
cos (𝛿₁°− 𝛿₂°) (25) 

 

When the relationship between speed and area power angle speed is considered, equa-

tion (25) could be expressed as equation (26). 

𝛥𝑃₁₂ = 𝑃𝑠12 (∫ ∆𝜔1 − ∫∆𝜔2) (26) 

where Δω1 and Δω2 are the speed variations in areas 1 and 2, respectively. The equation 

(27) is obtained by taken the Laplace transformation function of equation (26).  
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𝛥𝑃₁₂(𝑠) = 𝑃𝑠12𝑆 (∫ 𝛥𝜔₁(𝑠) − ∫ 𝛥𝜔₂(𝑠)) (27) 

Similarly, the difference in tie-line power between areas 1 and 3 is given Eq. (28). 

𝛥𝑃₁₃(𝑠) = 𝑃𝑠13𝑆 (∫ 𝛥𝜔₁(𝑠)− ∫ 𝛥𝜔₃(𝑠)) (28) 

Equation (27) and equation (28) is used the overall change in tie-line power transfer be-

tween area-1 and the other two areas in equation (29).  

   









− 

==

jPsPs
s j

j

j


3,2

11

3,2

1

1

 

 

(29) 

The load causes the variation in the tie-line transfer power for those areas in the provid-

ed location; the tie-line power deviation (∆𝑃𝑡𝑖𝑒 ) could be added to the mechanical power 

variation (∆𝑃𝑚) and area load perturbation 𝑃𝐿  using a relevant sign. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2022                   doi:10.20944/preprints202211.0422.v1

https://doi.org/10.20944/preprints202211.0422.v1


 

 𝐾𝑤1

1 + 𝑇𝑤1𝑠
 

 

 𝐾𝑤2

1 + 𝑇𝑤2𝑠
 

 

 Kw3 

 𝐾𝑤1

1 + 𝑇𝑤1𝑠
 

 

 𝐾𝑤2

1 + 𝑇𝑤2𝑠
 

 

 𝐾𝑤1

1 + 𝑇𝑤1𝑠
 

 

 Kw3 

 𝐾𝑤2

1 + 𝑇𝑤2𝑠
 

 

 Kw3 

+

 1

1 + 𝑠𝑇𝑔1
 

 1

1 + 𝑠𝑇𝑡1
 

 1 + 𝑠𝐾𝑟1𝑇𝑟1

1 + 𝑠𝑇𝑟1
 

 1− 𝑠𝑇𝑤1

1 + 0.5 𝑇𝑤1
 

 1

1 + 𝑠𝑇𝑔2
 

 1

1 + 𝑠𝑇2
 

 1

1 + 𝑠𝑇𝑔3
  1 + 𝑠𝑇𝑅3

1 + 𝑠𝑇3
 

 1 + 𝑠𝐾𝑟2𝑇𝑟3

1 + 𝑠𝑇𝑟3
 

 1

1 + 𝑠𝑇3
 

 1 + 𝑠𝑇𝑅3

1 + 𝑠𝑇3
 

 1− 𝑠𝑇𝑤3

1 + 0.5 𝑇𝑤3
 

 1 + 𝑠𝑇𝑅1

1 + 𝑠𝑇1
 

 1

1 + 𝑠𝑇1
 

 1 + 𝑠𝐾𝑟2𝑇𝑟2

1 + 𝑠𝑇𝑟2
 

 1 + 𝑠𝑇𝑅2

1 + 𝑠𝑇2
 

 1 + 𝑠𝑇𝑅2

1 + 𝑠𝑇2
 

 1− 𝑠𝑇𝑤2

1 + 0.5 𝑇𝑤2
 

 𝐾𝑃1

1 + 𝑆𝑇𝑃1
 

 𝐾𝑃2

1 + 𝑆𝑇𝑃2
 

 𝐾𝑃3

1 + 𝑆𝑇𝑃3
 

 1

𝑅1
 

ANF-

PIDF-PIDF

-

-

ANF-

PIDF-PIDF

ANF-

PIDF-PIDF

 + 
- 
 

 𝟐 ∗ 𝝅 ∗ 𝑻𝟏𝟐

𝑺
 

 𝟐 ∗ 𝝅 ∗ T13

𝑺
 

 + 
- 
 

 + 
- 
 

 𝟐 ∗ 𝝅 ∗ T23

𝑺
   a13 

 a23 

 a12 
+

+

+

+

+

+

-

-

-

-

-

+

+ -

-

+

+ -

-

+

+ -

+

+

 Β2 
 𝟏

𝑹𝟐
 

+

+

 Β3 

 1

𝑅3
 

+

+

-

-
+

+

+ -

+
-

-

+

+
-

+

+

-

area-1

area-2

area-3

Wind power plant

Wind power plant

Reheat-Thermal power plant

Reheat-Thermal power plant

Reheat-Thermal power plant

Hydro power plant

Hydro power plant

Hydro power plant

Wind power plant

ΔPd1

ΔPd2

ΔPd3

Δf1

Δf2

Δf3

 B1 

Du/dt

Du/dt

Du/dt

Du/dt

Du/dt

Du/dt

+

+

 

1+sT

K

DC

DC

 

 

1+sT

K

DC

DC

 

 

1+sT

K

DC

DC

 

+

+

+

+

 

            Figure 3. Three unequal area function models of AGC hybrid power systems under investigation 

 

2.2 Systems Investigated 

Figure 3 illustrates a block diagram of the system under investigation. Traditional 

interconnected power system (IPS) has three areas with unequal capacity, namely 

Pr1=2000 MW, Pr2=6000 MW, and Pr3=12000 MW, with wind power plants in areas 1, 2, 

and 3, as well as a re-heated thermal power plant (RTPP) and hydropower plant (HPP) 

acting as traditional power sources. The three unequal areas' various parameter per-unit 

values are compared on a respective basis. Therefore, a parameter a12 = - Pr1/Pr2, a23 = -
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Pr2/Pr3, and a13 = -Pr1/Pr3 are taken into consideration in the three-area system when mod-

eling interconnected areas with varying capabilities. In the system considered, speed 

regulation parameters of Ri = 4 % (2.4 Hz/pu) and frequency bias parameters of Bi = βi = 

0.425 are chosen. In practice, the rate of change in generating power has a maximum and 

a minimum value. In this study, the authors considered appropriate generation rate con-

straints (GRC) for each area for thermal and hydropower plants but not for wind power 

plants. The GRC restriction value of 3% per/min took into account the re-heating thermal 

system and hydro system 270% per/min for the rising system generation and 360% for 

lowering generation [26]. This work's mathematical model of different plants assumed 

for an interconnected power system was adapted from. The Appendix contains their 

nominal parameter values. Each subsystem is described in detail in the section that fol-

lows. A multi-area power system's frequency is within reasonable bounds, and the tie 

line exchange power should maintain within reasonable bounds. In addition, each loca-

tion must absorb its load schedule [34]. In most cases, this is accomplished in the addi-

tional feedback loop by having to add a tie-line power variation to the system frequency 

deviation. It is known as tie-line bias control. For area 1, the area control error (ACE) is a 

combination of frequency and tie-line power variations. In any domain, Eq. (30) could be 

expressed as ACE. The dynamic system performance is evaluated for all areas using 1% 

step load perturbation (SLP). 

𝐴𝐶𝐸𝑖=∑ ΔPij  + Ki Δω
𝑛

𝑗=1
 (30) 

Where Ki is known as area bias, it controls how much interaction occurs when one 

region is disturbed by another. When the gains Ki value is selected to equal the frequen-

cy bias factor of that area Bi, which Eq. (31) identifies, a steady-state performance is at-

tained.  

𝐵𝑖 = 
1

𝑅𝑖
+ 𝐷𝑖  (31) 

Where Bi, is frequency bias factor of area i, Ri governor speed regulation parameter of 

area i.  

When a steady state is attained, this control can immediately modify the reference pow-

er set point (ΔPref). 

2.3. The proposed optimal Adaptive Neuro-Fuzzy-PIDF-PIDF controller (NF-PIDF-PIDF) mod-

eling 

2.3.1. Fuzzy logic controller (FLC) 

In 1965, FLC theory was introduced as a theoretical idea that advances convention-

al control theories. FLC is a crucial instrument for mathematical methods for resolving 

power system issues. In order to increase the reliability and resilience of power system 

control, a sizable body of literature has been documented on FLC applications. A robust 

fuzzy logic-based tuning strategy for AGC regulators in a multi-area power grid is de-

scribed, along with a design process and numerical validation.  However, extreme cau-

tion must be exercised when designing, tweaking, and deploying these systems.  FLC 

includes fuzzification, rule-based fuzzy inference systems, and Defuzzification [42].  

Fuzzification changes a crisp quantity (set) into a fuzzy quantity (set). It is necessary to 

admit the utter no determinism and uncertainty of the different known crisp and deter-

ministic quantities. This uncertainty may have developed due to fuzziness and impreci-

sion, leading to the variables' capacity to be represented by a membership function. The 

rule base explains the entire control scheme and is essentially an if-then rule [43]. The 

Membership functions and rule foundation must be tuned to create a well-structured 

Fuzzy controller. Because these rules have been converted into fuzzy forms, using the 

fuzzy inference system is impractical. This study used a well-known "center of gravity" 

Defuzzification approach, and Mamdani FIS was used to increase the firing power of the 
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rule base [32]. Additionally, seven membership functions with 7*7=49 criteria were con-

sidered in the earlier literature on AGC for the fuzzy controller design. However, it is in-

sufficient to optimize the heavy-loading power system. The authors updated the eleven 

membership functions to adapt to the intricate dynamic framework, resulting in 

11*11=121 Rules. 

Defuzzification is converting fuzzy values into crisp values that plants can use. The 

Fuzzy logic controller takes two Scaling Factors, Ki1 and Ki2, as inputs and outputs, Ko3. 

An equal representation of input and output membership functions is required to ensure 

exceptional computing performance and memory utilization [44]. According to the liter-

ature review, triangular membership functions are preferred because they are simple to 

develop in real-time applications, consume less memory, and are simple to run through 

a fuzzy interfacing system (FIS). As a result, eleven MFs are considered for both outputs 

and inputs. All MFs have a value between -1 and 1, [45- 48]. Mamdani, obtain the value 

for each membership function output. The logic of the fuzzy interface system generates. 

The Mamdani Fuzzy interface system logic generates the output from each rule basis. 

PV stands for "positive very high," PL for "positive large," PB for "positive big," PM for 

"positive medium," PS for "positive small," ZR for "zero," NS for "negative small," NM 

for "negative medium," NB for "negative big," NL for "negative large," and NV for "nega-

tive very high" (negative very high). Figure 4 depicts the basic block diagram of fuzzy 

logic controller. The range of all membership operations is from -1 to 1, as illustrated in 

Figure. 5 (a)-(c).  

                          

Fuzzification 

interface

Interface 

Engine

Defuzzification 

interface

Knowledge 

Base

Controller 

inputs

Fuzzy 

inputs

Fuzzy 

outputs

Controller 

outputs

 

Figure 4. Block diagram of fuzzy logic controller 
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Figure 5. Fuzzy logic control membership functions. (a) Error input signal (e), (b) Error derivative 

input signal (de), (c) error output signal (u)  

 

2.3.2. Artificial Neural Network (ANN) 

Artificial neural networks' best approximation of arbitrary non-linear functions and 

application to parallel processing and multivariable systems are particularly interesting 

to researchers. A neural network may learn in a sophisticated multi-layer network, mim-

icking the human brain, and respond intelligently. The ANN in deep learning algo-

rithms used with supervised and unsupervised learning methods can have a variety of 

topologies. Additionally, ANN's recently developed reinforcement learning algorithms 

are gaining popularity in practical applications. Researchers’ offer and use ANN 

schemes throughout AGC systems' building [49]. An ANN-based AGC for a three-area 

integrated power grid network is proposed to achieve the minimum acceptable regula-

tion in the area frequency and eliminate the disturbance's effect during heavy loading 

conditions and line disturbances [50]. 

Artificial intelligence techniques use the human nervous system's ability to adapt and 

learn. An artificial neural network is a structure of artificial neurons used in artificial in-

telligence. The ANN basic model is depicted in Figure.6. Neuron Structure comprises 

the following elements: xp stands for Inputs, wkp stands for Weights, phi (φ) stands for ac-

tivation function, and out stands for output. The net input of the activation function is 

diminished using the threshold [43-50].  
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Figure 6. Non-linear model of a neuron 

2.3.3. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Adaptive Neuro-fuzzy inference is used to modify the membership function parameters 

of fuzzy inference systems of the Mamdani type (ANFIS). Using test data alters the 

structure of the inference system and assesses the tuned system's propensity for general-

ization. The ANFIS is one approach for constructing a fuzzy inference system given in-

put/output data pairs. The fuzzy logic controller and neural network used in the ANFIS 

enable the controller to be self-tuning and adaptive. If we combine these two cutting-

edge strategies, we will produce high-quality and quantity reasoning. The related FIS 

can track the input/output data with the help of this system's fuzzy logic capability, 

which can be used to adjust the membership function parameters. The parameters of the 

ANFIS model will be changed using the information collected from the FIS controller. It 

is essential to modify the typical neural network structure to build a fuzzy rule using 

neural networks [50]. 

Figure 7 depicts the block diagram of the hybrid neuro fuzzy controller. The architecture 

of this model is depicted in Figure. 8 and can be used to train and change the fuzzy in-

terfaces system design uploaded to the ANFIS. The first layer's black circles represent 

the inputs, the second layer's white circles the input membership functions, the third 

layer's blue circles the rules, the fourth layer's white circles the output membership func-

tion, and the fifth layer's white circles the tuned output. 

Fuzzification changes a crisp quantity (set) into a fuzzy quantity (set). It is necessary to 

admit the utter no determinism and uncertainty of the different known crisp and deter-

ministic quantities. Defuzzification is converting fuzzy values into crisp values that 

plants can use. Fuzzy inference uses fuzzy logic to formulate the mapping from a given 

input to an output. The knowledge base is represented in rules, and Mamdani's most 

common rule structure involves linguistic variables. Hence, when dealing with multiple 

inputs-single output (MISO) systems. The knowledge base comprises two parts: a data-

base and a rule base. The database contains information about domain boundaries, do-

main transformations, and fuzzy sets with corresponding linguistic terms. 126 The rule 

base contains linguistic control rules. Modern, sophisticated knowledge-based systems 

are robust because they integrate databases, knowledge bases, inference, and conven-

tional numerical and algorithmic approaches effectively and efficiently. The authors 

provide an overview of handling imprecision in these three domains using fuzzy logic in 

general and fuzzy query, fuzzy rule-based inference, and fuzzy optimization in particu-

lar. This is in conjunction with soft computing and new technology requirements. Im-

precise data transfer, cooperative techniques, and recurrent utilization integration prob-

lems are also addressed. 
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        Figure 7. Block diagram of hybrid Neuro-fuzzy controller 

 

Figure 8. Adaptive Neuro-Fuzzy interface system structure 

The adaptive network can be converted into traditional feed-forward neural network architecture. 

This suggested network performs similarly to the Mamdani fuzzy controllers' adaptive network 

simulator. A 2-input ANFIS with 121 rules is depicted in Figure 8. Each input has a corresponding 

set of eleven membership functions, resulting in 121 subspaces subdivided according to fuzzy if-

then rules. The consequent part of a rule specifies the output within the fuzzy subspace defined by 

the premise. The function family listed below corresponds to the node functions in the same layer. 

The first layer is the input layer. Crisp external signals are transmitted to Layer 2 by neurons in 

this layer. The second layer is the fuzzification layer. Fuzzification is carried by neurons in this 

layer using the triangle membership function. The third layer is the ruling layer. A single fuzzy 

rule of the Mamdani type corresponds to each neuron in this layer. A rule neuron calculates the 

rule's firing strength using input from the corresponding fuzzification neurons. The operator 

product in an ANFIS assesses the conjunction of the rule antecedents. The fourth layer is the nor-

malization layer. Each neuron in this layer processes information from every neuron in the rule 

layer to determine the normalized firing strength of a specific rule. The ratio of a given rule's firing 
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strength to the total firing strength of all rules is known as the normalized firing strength. It shows 

how a particular rule affected the result. The fifth layer is the Defuzzification layer. This layer's 

normalization neurons serve as the initial inputs for each neuron and are coupled to them. Here, 

the maximum membership value of each function in the output is weighted, forming the weighted 

average Defuzzification approach. Layer 6 is represented by the neuron that calculates the sum of 

outputs of all Defuzzification neurons and produces the overall ANFIS output. 

2.3.4. Cascaded Proportional-Integration-Derivative with Filter Coefficient (PIDF-PIDF) 

Controller 

The Proportional-Integral-Derivative with filter coefficient (PIDF) control is the most 

common control algorithm used in industry and has been universally accepted in indus-

trial control. The popularity of PID controllers can be attributed partly to their robust 

performance in a wide range of operating conditions and partly to their functional sim-

plicity, which allows engineers to operate them in a simple, straightforward manner. 

However, the performances of conventional controllers are not so promising in a higher-

order system with non-linearity. Most of the time, classical techniques diverge from op-

timal solutions, are time-consuming, and suffer from premature convergence.  

Improved stability and quicker controller response can be attained using conventional 

PID control. However, due to the derivative mode, the plant receives excessively high 

levels of meaningful control inputs. The noise already presents in the control signals is 

the primary culprit in this issue. The injected noise is removed by including a filtering 

portion in the derivative part. The noise chattering can be decreased by fine-tuning the 

pole. Therefore, in the cascaded controller, the PIDF-PIDF is chosen.  

To enhance the effectiveness of the control, it combines the PID-PID with the derivative 

filter. The developed controller's primary objective is to control the frequency response 

in each area during load fluctuations, renewable energy source changes, and unpredict-

able power system conditions. To reduce the disturbance effects that enter the secondary 

loop from the primary loop using the cascaded structure of AGC. As a result, it can de-

liver more incredible performance compared to architectures with a single control loop. 

They can lessen the effects of gain changes on system performance, which is an addi-

tional benefit. 
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The output of one control serves as an input set point for the other control in the cas-

caded control structure being used. The set point for the second stage is provided by the 

ANFIS, which is used as the primary external control loop or master controller. The sec-

ondary controller of the slave controller, which is part of the inner control loop, uses the 

PIDF-PIDF. Figure.9 depicts the generalized cascade controller structure. Where c(s) is 

the adaptive Neuro-fuzzy controller, c(s) is the PIDF-PIDF controller, g(s) is the first-

order transfer function of the system, and g(s) is the power system's first-order transfer 

faction. 

The output of one control serves as an input set point for the other control in the cascad-

ed control structure being used. The set point for the second stage is provided by the 

ANFIS, which is used as the primary external control loop or master controller. The sec-

ondary controller of the slave controller, which is part of the inner control loop, uses the 

ANF-PIDF-PIDF. Figure. 10 depict the physical layout of the proposed cascaded ANF-

PIDF-PIDF controller [48-51]. 

The cascade control can be thought of as a feedback-combining method. In this control 

method, the inner loop controller would get its set point from an outer-loop control. So 

there would be two controllers in this control system, and the output of one is the input 

of the other. As a result, in this controller, the secondary controller works in tandem 

with the primary controller to improve control of the primary process variable. 
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A second measurement and secondary feedback would be included in the cascade loop. 

A cascade control system would consist of two controllers, with the output of one driv-

ing the set point of the other. This structure has multiple loops, and the principal output 

of the controller in the outer loop corresponds to the controller's set point in the inner 

loop. Because the process is divided into two and one process variable will be changed, 

two controllers are utilized in cascade control [51]. 

 

Figure 9. Generalized cascade controller structure 
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Figure 10. Block diagram of the proposed control using hybrid Neuro-Fuzzy-PIDN controller for 

AGC 

2.4. Skill Optimization Algorithm 

Metaheuristic algorithms are widely used in solving optimization problems. This paper 

proposed a recent metaheuristic algorithm called the Skill optimization Algorithm 

(SOA) to solve optimization problems. The real inspiration for designing SOA is human 

efforts to acquire and improve skills [52]. To choose the best response, the SOA starts by 

creating a random population of different strings. The fitness value of each agent for the 

present population's next generation is determined at each stage. Fitness is the encoded 

value of the objective function's solution with appropriate performance indices, which 

must be optimized. The procedure is repeated until the ideal and worldwide answer has 

been identified. The SOA is used to determine the values of the best PIDN gain parame-

ters, including fuzzy scaling factors (K1, K2, and K3) controllers for AGC and KP, KI, KD, 

and N. Figure.11. depicts the SOA flow chart for determining the appropriate optimiza-

tion parameter values [47-48]. Before creating the Neuro-fuzzy logic-based PIDN con-

troller, selecting the target function with the requirements and limits is more important. 

The benchmarks determine which goal function is used to optimize the controller gain 

settings. Performance criteria are assessed using time-domain specifications for peak 

overshoots undershoots, settling time, and steady-state error. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2022                   doi:10.20944/preprints202211.0422.v1

https://doi.org/10.20944/preprints202211.0422.v1


 

The number of search agents (n) = 30, the population size (n) = 100, the problem dimen-

sion (d) = 21, the damping coefficient (d) = 0.7, and the maximum number of iterations 

(N) = 50 are all taken into account in this simulation. The constraint in equation (37) is 

applied to the cost function values in this optimization. 

2.4.1. The Proposed Optimization Process 

The optimization procedure is driven by minimizing the fitness function that has been 

selected. The frequency deviations in area 1, 2 and 3, (∆F1, ∆F2, ∆F3), and the variation in 

the tie-line power between the three areas (Ptie12, Ptie23, and Ptie13) are the six key met-

rics for the optimization process. Due to the inclusion of p.u. measurements, the objec-

tive function in the suggested optimization approach contains all six measures without 

weighing considerations. The suggested optimization procedure will make use of four 

primary representations of objective functions. 

The frequency and tie-line power deviations were minimized in the suggested optimiza-

tion technique in order to estimate the aforementioned objective functions. Additionally, 

the measures are applied during simulations while considering the various current con-

straints. The two areas' targeted control objectives and the four objective functions can 

be described as follows [55]: 

 

 ISE = (∫∆f1
2 +∆f2

2 + ∆f3
2 + ∆ptie12

2 + ∆ptie23
2 + ∆ptie13

2)dt  (33) 

      ITSE = (∫∆f1
2 +∆f2

2 + ∆f3
2 + ∆ptie12

2 + ∆ptie23
2 + ∆ptie13

2) t. dt    (34) 

           IAE = (∫ abs (∆f1
2 +∆f2

2 + ∆f3
2 + ∆ptie12

2 + ∆ptie23
2 + ∆ptie13

2))dt     (35) 

             ITAE = (∫ abs(∆f1
2 +∆f2

2 + ∆f3
2 + ∆ptie12

2 + ∆ptie23
2 + ∆ptie13

2)) t. dt   (36) 

Figure.9 depicts the essential steps of the SOA-based parameter tuning for the proposed 

controller, with the different parameters in areas 1, 2 and 3. The following is an expres-

sion for the control parameters' considered limits: Under the following constraints, skill 

optimization algorithms are used to tune controller parameters [56]. 

                           

Kp,min ≤  Kp ≤  Kp,max 
Ki,min ≤  Ki ≤  Ki,max
Kd,min ≤ Kd ≤  Kd,max
Nmin ≤  N ≤  Nmax

K1,min ≤ K1 ≤  k1,max
K2,min ≤ K2 ≤  k2,max
K3,min ≤ K3 ≤   K3,max}

  
 

  
 

  (37) 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2022                   doi:10.20944/preprints202211.0422.v1

https://doi.org/10.20944/preprints202211.0422.v1


 

Input information of the 

optimization problem

Set parameters population 

(N) and iteration (T)

Create initial population

Calculate the objective 

function 

i=i+1 

Yes

No

Start SOA

Output the best solution of the objective function found by SOA

Compute the best, global 

best solution

Update ith
 candidate solution 

for different phases 

  End SOA

i==N?
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Yes

No

 
Figure.11.The flow chart of Skill Optimization Algorithm 

The SOA is a population-based method, and its participants are actual individuals who 

are continuously striving to increase their knowledge and skills. In actuality, members of 

the SOA population are candidates for solving the optimization issue at hand. Based on 

the positions of these members in the search space, the values of the problem decision 

variables may be derived. The first placements of SOA members are decided by a ran-

dom method at the start of the algorithm. A mathematical model of the SOA population 

may be developed using a matrix (Eq. 32) 
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 X = 

[
 
 
 
 
𝑋1
⋮
𝑋𝑖
⋮
𝑋𝑁]
 
 
 
 

=  

[
 
 
 
 
𝑥1,1 ⋯ 𝑥1,𝑑 ⋯ 𝑥1,𝑚
⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑖,1 ⋯ 𝑥𝑖,𝑑 … 𝑥𝑖,𝑚
⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑁,1 ⋯ 𝑥𝑁,𝑑 ⋯ 𝑥𝑁,𝑚]

 
 
 
 

 (32) 

 

In this case, X is the population matrix for the SOA, Xi is the ith candidate solution, xi, d 

is the value of the dth variable that was suggested by the ith population member, N is the 

number of members of the SOA, and m is the number of variables. 

Each member of the population has the potential to contribute to the issue's resolution. 

In other words, a value for the target function is determined by putting each component 

into the corresponding variable in the problem. 

F = 

[
 
 
 
 
𝐹1
⋮
𝐹𝑖
⋮
𝐹𝑁]
 
 
 
 

𝑁×1

=  

[
 
 
 
 
𝐹(𝑋1)
⋮

𝐹(𝑋𝑖)
⋮

𝐹(𝑋𝑁)]
 
 
 
 

𝑁×1

                 (33) 

The target function values can be formally described using a vector according to Eq (33). 

F is a vector holding all objective function values, and Fi is the ith candidate solution's ob-

jective function value. The best objective function value indicates the best member, 

whereas the worst value identifies the worst member. Since the goal function and popu-

lation are modified on each iteration, the best and worst members of the population also 

vary. 

SOA's population is updated by exploration and exploitation. In the exploring phase, 

you'll imitate learning from a pro. During the exploitation phase, you'll emulate indi-

vidual users' skill improvement. The update process in SOA design involves two phases: 

exploration and exploitation. Exploration is a global search, while exploitation is a local 

search. During the exploratory phase, SOA members followed the instructions of other 

members rather than following the best member. This increases the algorithm's explora-

tion capability, allowing it to better scan the search space and find the optimum spot. In 

the exploitation phase, the algorithm converges to improved likely solutions owing to 

local search near each population member. 

5.1 The First Phase: Learning from Experienced Individuals (Exploration) 

During the initial phase, each member of the SOA acquires a talent under the supervi-

sion of an expert member of the community. The value of an individual's objective func-

tion is exactly proportionate to his or her contribution to the population as a whole. An 

SOA member is considered to have an expert member when that member's conditions 

are assessed to be superior to those of the other members based on the value of the ob-

jective function. If a member of the SOA has a higher objective function value than any 

other member of the SOA, then the members with the highest objective function values 

are included in the "experts set" for that member. After being selected at random, one of 

these individuals will act as a mentor to the individual in question. Therefore, the chosen 

specialist to lead the SOA member may not always be the best selection. In reality, the 

best potential solution is a non-rotating member of the ex-experts set that applies to all 

SOA members. Learning the skill, which refers to the algorithm's capacity for both glob-

al search and exploration, directs the population to various locations inside the search 

space. This is the expert member's responsibility. If the new location estimated for each 

member of the population increases the goal function's value, it may be deemed ac-
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ceptable. Consequently, the first phase of the update may be characterised using Equa-

tions (34) and (35) in line with the previously given concepts. 

𝑋𝑖
𝑃1 ∶  𝑋𝑖,𝑑

𝑃1 = 𝑥𝑖,𝑑 + 𝑟 × (𝐸𝑖,𝑑 − 𝐼 × 𝑥𝑖,𝑑), 𝐸𝑖 = 𝑋𝑘,                                                      
(34) 

Where 𝐹𝑘 < 𝐹𝑖 and k is randomly selected from {1,2,…,N}, k≠ 𝑖 

𝑋𝑖 = {
𝑋𝑖
𝑃1, 𝐹𝑖

𝑃1 < 𝐹𝑖
𝑋𝑖 , 𝑒𝑙𝑠𝑒

   (35) 

 

Here, XP1 is the newly calculated status of the ith candidate solution based on the first 

phase, xP1 is its I i,d dth dimension, FP1 is the value of its objective function, Ei is the ex-

pert who has been chosen to guide and train the ith member of the population, Ei,d de-

notes its dth dimension, r is a random number in the range [0 1], and I is a random num-

ber that is chosen at random from 

5.2 The second phase focuses on improving one's skills via individual effort and practise 

(Exploitation) 

During the second phase, every member of the population engages in autonomous 

study and practise to further enhance the skills acquired in the previous phase. This no-

tion is modelled as local search in SOA in order to increase exploitation such that each 

member in the vicinity of its position seeks better circumstances to increase the value of 

its goal function. This is done with the intention of increasing exploitation as a whole 

(which indicates the level of skill). Similar to the previous step, the newly computed lo-

cation in this phase is deemed acceptable if it increases the value of the objective func-

tion. Eqs. (3) and (367) are utilised to offer a mathematical representation of the ideas 

𝑋𝑖
𝑃2: 𝑥𝑖,𝑑

𝑃2= {
𝑥𝑖,𝑑 +

1−2𝑟

𝑡
× 𝑥𝑖,𝑑, 𝑟 < 0.5

𝑥𝑖,𝑑 +
𝑙𝑏𝑗+𝑟(𝑢𝑏𝑗−𝑙𝑏𝑗)

𝑡
× 𝑥𝑖,𝑑 , 𝑒𝑙𝑠𝑒

 (36) 

𝑋𝑖 = {
𝑋𝑖
𝑃1, 𝐹𝑖

𝑃1 < 𝐹𝑖
𝑋𝑖 , 𝑒𝑙𝑠𝑒

   (37) 

Here, XP2 denotes the newly computed status of the ith candidate solution based on the 

second phase, xP2 denotes its dth dimension, FP2 denotes the value of its objective func-

tion, t denotes the iteration counter, and lbj and ubj denote the lower and upper bounds 

of the jth variable, respectively. 

5.3 The Sequential Object Architecture's Repetition Process 

After all SOA members have been brought up to date in accordance with the first and 

second phases, the first iteration of SOA is complete. The algorithm will then proceed to 

the next iteration, at which point the updating procedure will be carried out in line with 

Equations (33) to (37). When the SOA has been fully implemented, the output will in-

clude the optimal solution. Figure 5 displays the flowchart for the SOA. 

Table2 displays the mean value of the assessment findings of Unimodal functions of var-

ious techniques compared to SOA, as presented in [46]. In terms of optimization, it is ev-

ident from the mean values of evaluation results for unimodal functions that SOA is bet-

ter to any other approach. Multimodal functions have a comparable pattern. In Table 3, 

the mean values for unimodal functions F1 through F4 demonstrating the superiority of 

SOA are provided, although a similar pattern is observed for higher levels of function 

beyond F4.  
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Table 2 : Mean values of Evaluation results of Unimodal functions 

 GA PSO GSA TLBO GWO MVO WOA TSA MPA RFO SOA 

F

1 

21.2698

1 

0.00051 7.68E-17 4.29E

-61 

1.3E-

100 

0.20712

5 

6.5E-82 3.21E

-82 

5.99E

-86 

6.46E

-84 

0 

F

2 

1.56953

1 

0.59116

1 

3.95E-08 4.47E

-32 

1.8E-

58 

0.30035

4 

2.2E-175 1.82E

-48 

2.67E

-47 

6.78E

-46 

4.6E

-191 

F

3 

2081.24

5 

1393.67 185.062

2 

1.03E

-19 

6.47E

-29 

21.4485

4 

6629.85

6 

3.65E

-21 

7.73E

-23 

4.67E

-58 

0 

F

4 

2.69652 4.39557 1.05E-08 3.98E

-25 

9.73E

-25 

0.62842

1  

 

35.2111

7  

 

1.01E

-05  

 

1.23E

-32  

 

1.34E

-35  

 

1.9E

-181  

 

 

2.4.2. Implementation of  AGC scheme 

The objective function must be carefully chosen for the controller to operate at its best. 

AGC's (∆fi) and ∆Ptie goals enhance post-disturbance system responsiveness. In compari-

son; an ISE-tuned controller can generate a strong control signal that could be hazardous 

in the event of an unexpected imbalance. A smaller initial weight can be offered since 

the error signal generated at the time of the load imbalance has a larger magnitude. 

While ITAE functions, which check the system's transient response, can severely punish 

errors that happen late. Additionally, ISE and ITSE offer outstanding step responses and 

can settle more quickly due to the greater weight given to time parameters. Since ISE 

provides the response with the least amount of oscillation and overshoot [53]. 

The SOA technique covered in the previous part is used in AGC, and the procedures are 

carried out under the flowchart in Figure. 10. Here, a population size of 100 and a max-

imum number of iterations of 50 have been taken into account. The outer and inner 

loops for the thermal, hydro, and wind power sources are the primary controller param-

eters for the cascaded ANF-PIDF-PIDF controller. Table.3 shows the comparative per-

formance for different indices criteria considering various optimization techniques such 

as SOA, PSO, and GA with the proposed controller. The results show that the SOA tech-

nique-based present controller performs better than the GA and PSO technique-based 

present controller when all four performance indices ISE, IAE, ITSE, and ITAE are con-

sidered. Figure.12 clearly reveals that the integral squared error (ISE) is a better perfor-

mance index than others [57-59]. 

Table3.Comparative performance for different indices criteria 

 

Controller with techniques 

Objective function 

 ISE 

(𝐱𝟏𝟎−𝟓) 
𝐈𝐓𝐒𝐄 

(𝐱𝟏𝟎−𝟑) 
ITAE 

(𝐱𝟏𝟎−𝟐) 
IAE 

(𝐱𝟏𝟎−𝟐) 
SOA-ANF-PIDF-PIDF 1.4770 1.575 2.939 1.148 

PSO-ANF-PIDF-PIDF 1.6670 1.7635 5.225 1.3750 

GA-ANF-PIDF-PIDF 2.0690 1.9610 8.360 1.7270 
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Figure.12. Various performance indices comparison considering proposed SOA  

3. Results and Discussion 

The AGC problems of three unequal-area interconnected power systems are con-

sidered with the linearity and non-linearity systems. A hybrid combination of adaptive 

Neuro-Fuzzy and cascaded PIDF is used to evaluate multi-area multi-source power sys-

tems' frequency and tie-line responses. The simulations were carried out with PIDF, 

PIDF-PIDF, and adaptive Neuro-Fuzzy, controllers, and the results have been compared. 

Table 4 shows optimized controller gains and scaling factor values of three unequal are-

as of the hydro-thermal system incorporating wind energy using Skill Optimization Al-

gorithm and considering traditional PIDF cascaded PIDF, and optimal Neuro-Fuzzy cas-

caded PIDF controller We have shown the Scaling Factors -Kpi, KIi , KDi as well as Ni for 

Area 1,Area 2 and Area 3 for six different cases . In the first case, the gains and scaling 

factors are obtained using a PIDF controller. In the Second case, they are obtained using 

a PIDF-PIDF controller. In the third case, they are obtained using an ANF-PIDF-PIDF 

controller. In the fourth case, they are obtained using a PIDF with GRC. In the fifth case, 

they are obtained with a cascaded PIDF with GRC. In the sixth case, they are obtained 

with an ANF-PIDF-PIDF with GRC. Through the results obtained, we can infer that sys-

tem with a conventional PIDF controller performs poorly compared to a cascaded PIDF 

and the optimal Neuro-Fuzzy-cascaded PIDF controller  performs even better than the 

cascaded PIDF controller[60]. For instance, the Ni for PIDF is 49.85,59.571 and 45.679 for 

Area 1,Area 2 and Area 3 respectively. The Ni for cascaded PIDF  is 49.85,57.571 and 

35.679 35.679 for the three areas respectively while it is even lower for ANF-PIDF-PIDF 

with 49.85,57.571, and 35.679 respectively for the three areas. This can also be noticed 

when the controllers are used with GRC. For instance, the Ni for PIDF with GRC is 

96.06,97.7 and 98.97 for Area 1,Area 2 and Area 3 respectively. The Ni for cascaded PIDF 

with GRC is 69.85,57.571 and 55.679 for the three areas respectively while it is even low-

er for ANF-PIDF-PIDF with GRC with 75.11,72.57, and 47.034 respectively for the three 

areas. 
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Table.4: Optimized controller gains and scaling factors values of three unequal areas hydro-

thermal system incorporating wind energy using Skill Optimization Algorithm 

Controllers Gains/scaling factors Area-1 Area-2 Area-3 

 

PIDF 
Kpi

* 0.2062 0.1474 0.261 

KIi
* 0.1489 0.2467 0.2460 

KDi
* 0.0878 0.2837 0.0762 

Ni
* 49.85 59.571 45.679 

 

PIDF-PIDF 
Kpi

* 0.1627 0.1374 0.251 
KIi

* 0.1389 0.2367 0.2560 

KDi
* 0.0878 0.2737 0.0362 

 

 

 

ANF-PIDF-PIDF 

Ni
* 49.85 57.571 35.679 

Kpi
* 0.1627 0.1374 0.251 

KIi
* 0.1389 0.2367 0.2560 

KDi
* 0.0378 0.2737 0.0362 

Ni* 49.85 57.571 35.679 

K1i
* 0.224 0.1940 0.2696 

K2i
* 0.195 0.0185 0.2085 

K3i
* 0.20951 0.2825 0.1931 

 

PIDF with GRC 
Kpi

* 0.231 0.152 0.322 

KIi
* 0.282 0.291 0.0291 

KDi
* 0.0062 0.0025 0.0212 

Ni
* 96.06 97.7 98.97 

 

PIDF-PIDF with 

GRC 

Kpi
* 0.6766 0.698 0.425 

KIi
* 0.442 0.1569 0.271 

KDi
* 0.2486 0.0457 0.0995 

Ni* 69.85 57.571 55.679 

 

 

 

ANF-PIDF-PIDF 

with GRC 

Kpi
* 0.3093 0.2522 0.5966 

KIi
* 0.2735 0.552 0.3548 

KDi
* 0.671 0.565 0.4452 

Ni
* 75.11 72.57 47.034 

K1i
* 0.0324 0.4525 0.0948 

K2i
* 1.19 1.02 1.095 

K3i
* 0.0899 0.0978 0.0877 

 

3.1. System dynamics research using various controllers and modeling 

Figure.13. Shows that the dynamic responses comparison with various controllers 

with and without considering wind power plants (WPP).The optimum plant parameter 

for three areas of the power system is taken from Table 4. The results illustrate that the 

optimal Neuro-Fuzzy-PIDF-PIDF has an excellent dynamic response over the other con-

trollers regarding settling time, overshoot and undershoot as illustrated in Table 5. 6 dif-

ferent frequency deviations are considered. The Undershoot, Overshoot and Settling 

time of 6 different cases of controllers – PIDF without wind, PIDF-PIDF without wind, 

ANF-PIDF-PIDF without wind, PIDF with wind, PIDF-PIDF with wind, ANF-PIDF-

PIDF with wind are presented for each frequency deviation. In Figure 13. (a), the data 

are presented for the deviation in area 1 frequency. In figure 13. (b), the data are present-

ed for the deviation in area 2 frequency. In figure 13. (c), the data are presented for the 

deviation in area 3 frequency. In figure 13. (d), the data are presented for the deviation in 

tie-line power connecting area 1 and area 2. In figure 13. (e), the data are presented for 

the deviation in tie-line power connecting area 2 and area 3. In figure 13. (f), the data are 

presented for the deviation in tie-line power connecting area 1 and area 3. In the cases, 

the load of the hydrothermal system is efficiently shared by integrating wind power 

plant units into hydrothermal units through parallel operation, which also considerably 

enhances the tie line power exchange from one area to another. Overall, it can be in-
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ferred that the ANF-PIDF-PIDF performs way better than the PIDF-PIDF and PIDF con-

trollers. 

 
 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure.13. the dynamic responses comparison with various controllers with and without considering wind power plants. (a) devia-

tion in area-1 frequency , (b) deviation in area-2 frequency, (c) deviation in area-3 frequency (d) deviation in tie line power connect-

ing area-1 and area-2, (e) deviation in tie line power connecting area-2 and area-3, (f) deviation in tie line power connecting area-1 

and area-3  
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The load of the hydrothermal system is efficiently shared by integrating wind power 

plant units into hydrothermal units through parallel operation, which also considerably 

enhances the tie line power exchange from one area to another. In comparison to the on-

ly PIDF controller, the percentage improvement in overshoot (OS) and settling time (TS) 

of Δf1 with the optimal adaptive NF-PIDF-PIDF controller is 69.81% and 48.87%, respec-

tively. Similarly, the suggested adaptive NF-PIDF-PIDF controller improves overshoot 

(OS) and settling time (TS) of Δf2 by 67.65% and 25.47%, respectively, compared to the 

traditional PIDF controller. Similarly, Δf3 improves overshoot (OS) and settling time (TS) 

by 59% and 26.73%, respectively, compared to the traditional PIDF controller. In addi-

tion, as compared to the simple PIDF, classical PIDF controller, and adaptive NF-PIDF-

PIDF controller improves ΔPtie12; ΔPtie23 and ΔPtie13 overshoot (OS) and settling time (TS) 

by (82.85%, 44.58%), (85.26%, 44.78%) and (58.34%, 26%) respectively. As a result of the 

investigation, as mentioned earlier, the SOA-based adaptive NF-PIDF-PIDF controller 

claims to provide significant improvements. Tables also show that the proposed control-

ler performed better in terms of response. The proposed controller's settling time (ts) 

was frequently shorter than that of a PIDF controller. Furthermore, we discovered that 

the oscillation of the proposed controller is appropriate for load frequency management. 

 

Table.5: Performance comparison PIDF, cascaded PIDF and ANF-PIDF-PIDF controllers with and without wind power plants  

Control action Controllers Undershoot Overshoot TS (s) 

 

 

Δf1 (Hz) 

PIDF with wind -6.1𝑥10−3 2.24𝑥10−3 15 

PIDF without wind -5.08𝑥10−3 3.19𝑥10−3 16 

PIDF-PIDF with wind -2.88𝑥10−3 1.06𝑥10−3 14 

PIDF-PIDF without wind -5.48𝑥10−3 1.29𝑥10−3 14.5 

ANF-PIDF-PIDF with wind -3.17𝑥10−3 1.01𝑥10−3 8.5 

ANF-PIDF-PIDF without wind -5.58𝑥10−3 1.3𝑥10−3 13 

 

 

Δf2 (Hz) 

PIDF with wind -4.9𝑥10−3 2.95𝑥10−3 11.5 

PIDF without wind -5.08𝑥10−3 2.14𝑥10−3 20 

PIDF-PIDF with wind -2.97𝑥10−3 1.15𝑥10−3 12 

PIDF-PIDF without wind -5.18𝑥10−3 1.4𝑥10−3 12.5 

ANF- PIDF-PIDF with wind -3.03𝑥10−3 1.1𝑥10−3 10.5 

ANF- PIDF-PIDF without wind -6𝑥10−3 1.1𝑥10−3 12 

 

Δf3 (Hz) 

PIDF with wind -5.5𝑥10−3 1.7𝑥10−3 13 

PIDF without wind -4.94𝑥10−3 1.89𝑥10−3 19.5 

PIDF-PIDF with wind -2.89𝑥10−3 1.06𝑥10−3 11.5 

PIDF-PIDF without wind -5.88𝑥10−3 1.1𝑥10−3 11.5 

ANF-PIDF-PIDF with wind -3.13𝑥10−3 0.87𝑥10−3 10.5 

ANF-PIDF-PIDF without wind -5.42𝑥10−3 1.47𝑥10−3 11 

 

ΔPtie12 (p.u) 

PIDF with wind -2.18𝑥10−4 2.19𝑥10−4 25 

PIDF without wind -5.66𝑥10−4 3.5𝑥10−4 19 

PIDF-PIDF with wind -9.42𝑥10−5 3.13𝑥10−5 25 

PIDF-PIDF without wind -1.02𝑥10−4 0.59𝑥10−4 27.5 

ANF-PIDF-PIDF with wind -6.7𝑥10−5 4.01𝑥10−5 18.5 

ANF-PIDF-PIDF without wind -6.8𝑥10−5 4.31𝑥10−5 22 

 

ΔPtie23 (p.u) 

PIDF with wind -1.85𝑥10−4 2.42𝑥10−4 19.5 

PIDF without wind -5.66𝑥10−4 3.5𝑥10−4 29.5 

PIDF-PIDF with wind -6.5𝑥10−6 9.78𝑥10−6 28.5 

PIDF-PIDF without wind -6.64𝑥10−4 1.1𝑥10−4 20.5 

ANF- PIDF-PIDF with wind -1.21𝑥10−4 0.84𝑥10−4 17.5 
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ANF-PIDF-PIDF without wind -1.17𝑥10−4 0.96𝑥10−4 18.5 

 

ΔPtie13 (p.u) 

PIDF with wind -1.4𝑥10−4 0.97𝑥10−4 20.5 

PIDF without wind -7.4𝑥10−5 6.82𝑥10−5 29 

PIDF-PIDF with wind -0.25𝑥10−5 3.82𝑥10−5 23.5 

PIDF-PIDF without wind -5.66𝑥10−5 11.3𝑥10−5 20.5 

ANF-PIDF-PIDF with wind -2.3𝑥10−5 0.92𝑥10−5 16.5 

ANF-PIDF-PIDF without wind -4.74𝑥10−5 7.5𝑥10−5 18 

 

3.2. Dynamic system response analysis considering the impact of non-linearity 

Wind energy sources were incorporated into each area using an AGC at normal in-

cidence. The skill optimization technique was used to optimize the suggested controller 

adaptive NF-PIDF-PIDF settings. The non-linearity system constraint in GRC is consid-

ered and optimized using the same control parameters as in the existing models. The 

critical analysis of the dynamic response in Figure.14 (a)-(f) clearly demonstrates that the 

proposed ANF-PIDF-PIDF controller incorporating wind power plants (WPPs) consider-

ing generation rate constraint (GRC) gives improved dynamic performance in terms of 

peak deviation, oscillation, and settling time. Table 6 compares the suggested optimal 

adaptive NF-PIDF-PIDF controller with the traditional cascaded PIDF and simple PIDF 

controller with a wind power plant and displays the percentage improvement in under-

shoot and settling time. In comparison to the only PIDF controller, the percentage im-

provement in overshoot (OS) and settling time (TS) of Δf1 with the optimal adaptive NF-

PIDF-PIDF controller is 68.21% and 43.88%, respectively. Similarly, the suggested adap-

tive NF-PIDF-PIDF controller improves overshoot (OS) and settling time (TS) of Δf2 by 

65.75% and 23.57%, respectively, compared to the traditional PIDF controller. Similarly, 

Δf3 improves overshoot (OS) and settling time (TS) by 57% and 22.83%, respectively, 

compared to the traditional PIDF controller. In addition, as compared to the simple 

PIDF, classical PIDF controller, and adaptive NF-PIDF-PIDF controller improves ΔPtie12 ; 

ΔPtie23  and ΔPtie13 overshoot (OS) and settling time (TS) by (80.89%, 40.78%), (83.46%, 

40.58%) and (56.24%, 24%) respectively. As a result of the investigation, as mentioned 

earlier, the SOA-based adaptive NF-PIDF-PIDF controller claims to provide significant 

improvements.  

  

(a) (b) 
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(c) (d) 

 
 

(e) (f) 

Figure.14.The dynamic responses comparison with various controllers with and without considering wind power plants (WPP) 

(a) deviation in area-1 frequency , (b) deviation in area-2 frequency, (c) deviation in area-3 frequency (d) deviation in tie line 

power connecting area-1 and area-2, (e) deviation in tie line power connecting area-2 and area-3, (f) deviation in tie line 

power connecting area-1 and area-3  
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Table.6: Performance comparison PIDF, cascaded PIDF and ANF-PIDF-PIDF controller by considering non-linearity (GRC) 

Control action controllers Undershoot Overshoot Settling time(s) 

 

Δf1 (Hz) 
PIDF -4.68𝑥10−3 0.55𝑥10−3 32 

PIDF-PIDF -5.11𝑥10−3 0.54𝑥10−3 27 

ANF-PIDF-PIDF -4.28𝑥10−3 0.21𝑥10−3 19 

 

Δf2 (Hz) 
PIDF -4. 6𝑥10−3 0.50𝑥10−3 24.5 

PIDF-PIDF -5.6𝑥10−3 0.427𝑥10−3 23 

ANF-PIDF-PIDF -4.01𝑥10−3 0.2𝑥10−3 19 

 

Δf3 (Hz) 
PIDF -4.62𝑥10−3 0.54𝑥10−3 22 

PIDF-PIDF -4.48𝑥10−3 0.23𝑥10−3 20.5 

ANF-PIDF-PIDF -3.97𝑥10−3 0.32𝑥10−3 18 

 

ΔPtie12 (p.u) 
PIDF -1. 6𝑥10−4 6.86𝑥10−5 45 

PIDF-PIDF -3.04𝑥10−4 3.7𝑥10−4 40 
ANF-PIDF-PIDF -2.6𝑥10−4 0.14𝑥10−6 28 

 

ΔPtie23 (p.u) 

PIDF -1.73𝑥10−5 9.01𝑥10−5 45 

PIDF-PIDF -6.5𝑥10−5 0.97𝑥10−5 40 

ANF-PIDF-PIDF -8.3𝑥10−6 1.4𝑥10−5 28 

 

ΔPtie13 (p.u) 
PIDF -2.99𝑥10−5 6.01𝑥10−5 48 

PIDF-PIDF -1.5𝑥10−5 3.88𝑥10−4 46 

ANF-PIDF-PIDF -4.65𝑥10−5 2.69𝑥10−5 38 

 

            3.3. Dynamics response performance considering parallel AC-HVDC tie-lines 

The results presented is for the case considering a hydrothermal integrated wind 

farm system that includes a parallel AC-HVDC tie-line, the adaptive Neuro-Fuzzy cas-

caded PIDF controller, and the SOA optimization algorithm. Figure. 15 (a-f) compares 

the parallel AC-HVDC tie-lines’ dynamic response with the existing system for different 

frequency deviations through 6 cases. For improved power transfer among intercon-

nected areas, AC tie-lines are being considered to be replaced by AC/HVDC tie-lines. 

The system considered the present controller, whose performance are depicted in Figure 

15 (a)-(f). The response performance comparison reveals that the AC/HVDC tie-lines has 

less settling time, oscillation number, and peak deviations. Moreover the crucial finding 

from Figure 15 (a)–(f) is that the system frequency deviations and inter-area tie-power 

are fast driven back to zero when using the suggested method.  

 In Figure. 15(a), the dynamic response of AC tie-line and parallel AC-HVDC tie-

lines are compared considering deviation in area 1 frequency. In Figure. 15(b), the dy-

namic response of AC tie-line and parallel AC-HVDC tie-lines are compared in area 2 

frequency. In Figure. 15(c), the dynamic response of AC tie-line and parallel AC-HVDC 

tie-lines are compared in area 3 frequency. In Figure. 15(d), the dynamic response of AC 

tie-line and parallel AC-HVDC tie-lines are compared considering deviation in tie line 

power connecting area-1 and area-2. In Figure. 15(e), the dynamic response of AC tie-

line and parallel AC-HVDC tie-lines are compared considering deviation in tie line 

power connecting area-2 and area-3. In Figure. 15(f), the dynamic response of AC tie-line 

and parallel AC-HVDC tie-lines are compared considering deviation in tie line power 

connecting area-1 and area-3. The response performance comparison reveals that the 

AC/HVDC tie-lines have less settling time, peak oscillation, and peak deviations.  
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(a) (b) 

  
(c) (d) 

 
 

(e) (f) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2022                   doi:10.20944/preprints202211.0422.v1

https://doi.org/10.20944/preprints202211.0422.v1


 

Figure.15. The dynamic responses comparison of AC tie-line with parallel AC-HVDC tie-line considering wind power plants 

(WPP). deviation in area-1 frequency , (b) deviation in area-2 frequency, (c) deviation in area-3 frequency (d) deviation in tie line 

power connecting area-1 and area-2, (e) deviation in tie line power connecting area-2 and area-3, (f) deviation in tie line power con-

necting area-1 and area-3 

3.4. Sensitivity analysis of the Proposed Controller 

The dynamic responses for various loading conditions with optimal value and sys-

tem loading situations with optimal nominal conditions are shown in Figures.16 and 17. 

It has been proven that every dynamic response was optimal. A sensitivity analysis of a 

controller is employed to assess its resilience in different perturbing situations, like pa-

rameter changes, system loading variations, and system nonlinearities. The sensitivity 

analysis is examined in this section by adjusting the system loading with various magni-

tudes for each area, ±25% loading systems. The parameters Kpss, Tpss, Bs, Ds, and Tw, devi-

ate from their nominal values as the system loading changes. Those values are given in 

Appendix-A. SOA schemes are used to optimize the controller parameters for this sys-

tem. Table 7 shows the dynamic system responses and compares them to the corre-

sponding 50% loading. Under both loading circumstances, the reactions are almost  

identical. It could be inferred that the presented adaptive Neuro-Fuzzy-cascaded PIDF 

controller's optimal values at nominal loading are reliable and that the controller's set-

tings do not need to be reset for substantial variations in systems loading. 

 
 

(a) (b) 
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(c) (d) 

Figure.16. Comparison of dynamic responses for the proposed controller at 75% loading with optimum values corresponding to 75% 

loading and 50% loading. (a) Frequency deviation in area-1, (b) frequency deviation in area, (c) frequency deviation in area-3 (d) 

deviation in tie line power connecting area-1 and area-2 versus time 

  

(a) (b) 
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(c) (d) 

Figure.17.Comparison of dynamic responses for the proposed controller at 25% loading with optimum values corresponding to 25% 

loading and 50% loading. (a) Frequency deviation in area-1, (b) frequency deviation in area, (c) frequency deviation in area-3 (d) 

deviation in tie line power connecting area-1 and area-2 versus time 

 

 

Table.7: The performance compares the Effect of changing the Gains and time Constant under different loading conditions. 

Control action Loading conditions Undershoot Overshoot Settling time(s) 

 

Δf1 (Hz) 

50% -3.154𝑥10−3 1.222𝑥10−3 13.5 

75% -3.164𝑥10−3 1.183𝑥10−3 15.5 

25% -3.115𝑥10−3 1.074𝑥10−3 11.5 

 

Δf2 (Hz) 

50% -3.154𝑥10−3 1.174𝑥10−3 11 

75% -3.163𝑥10−3 1.126𝑥10−3 11 

25% -3.115𝑥10−3 0.997𝑥10−3 10.5 

Δf3 (Hz) 50% -3.153𝑥10−3 0.947𝑥10−3 11 

75% -3.162𝑥10−3 0.85𝑥10−3 11 

25% -3.115𝑥10−3 0.847𝑥10−3 9.5 

 

ΔPtie12 (p.u) 

50% -1. 049𝑥10−4 3.86𝑥10−4 23 

75% -1.337𝑥10−4 0.421𝑥10−5 27 

25% -1.088𝑥10−4 0.346𝑥10−4 18 

 

ΔPtie23 (p.u) 

50% -5.93𝑥10−5 3.44𝑥10−5 20.5 

75% -6.37𝑥10−5 3.58𝑥10−5 22 

25% -4.97𝑥10−5 2.575𝑥10−5 15.5 

 

ΔPtie13 (p.u) 

50% -2.94𝑥10−5 6.14𝑥10−5 17 

75% -3.02𝑥10−5 6.95𝑥10−5 18.5 

25% -2.28𝑥10−5 5.52𝑥10−5 16.5 
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Table 5 the performance compares the Effect of changing the Gains and time Constant 

under different loading condition. According to numerical evaluation the result   shows 

the dynamic system responses compared to the corresponding 50% loading. Under both 

loading circumstances, the reactions are almost to be identical. Tables also show that 

25% loading condition the settling time (ts) was shorter than that of 75% loading. 

4. Conclusion 

In this research, a software novelty is presented through the maiden application of the 

skill optimization for the gains of the scaling factors of controller for AGC applications. 

The SOA is shown to be better in terms of convergence speed. The comparison of the 

SOA with other optimization algorithms for unimodal functions is presented to demon-

strate this. Apart from this software novelty, a technical novelty is presented through the 

use of an adaptive Neuro-Fuzzy cascaded PIDF-AGC for improving the performances of 

a hybrid hydrothermal power system incorporated with wind energy sources. The pre-

sent adaptive Neuro-Fuzzy cascaded PIDF controller's input-output scaling factors and 

gains are efficiently optimized using the novel Skill optimization Algorithm (SOA). Re-

garding efficiency, the current SOA- adaptive Neuro-Fuzzy cascaded PIDF controller is 

shown to be more efficient than the classic SOA-PIDF and cascaded PIDF controller. Fur-

thermore, many scenarios are built to test the proposed controller's resilience and sensi-

tivity to different loading situations, system parameter fluctuations, and nonlinearity. 

According to the simulation outcomes, the proposed SOA- adaptive Neuro-Fuzzy cas-

caded PIDF controller is more effective than traditional controllers. The simulation re-

sults demonstrate that the optimized adaptive Neuro-Fuzzy cascaded PIDF controller 

assures the least amount of damping oscillation with a better settling time compared to a 

simple PIDF controller response with and without addressing the effects of nonlinearity. 

Furthermore, the impact of the parallel AC-HVDC tie-line system on the dynamic sys-

tem is compared to that of the conventional AC tie-line system, and better dynamic per-

formances are obtained. The effectiveness of the proposed controller was evaluated us-

ing a sensitivity analysis by changing the system parameters by ± 25% loading. The load 

of the hydrothermal system is efficiently shared by integrating wind power plant units 

into hydrothermal units through parallel operation, which also considerably enhances 

the tie line power exchange from one area to another. As a result, in the case of a multi-

area multi-source AGC power system, the skill optimization algorithm-based adaptive 

Neuro-Fuzzy cascaded PIDF controller may be utilized to manage hydrothermal power 

frequency and tie-line power efficiently. The optimized adaptive Neuro-Fuzzy cascaded 

PIDF-based AGC controller integrating wind energy sources reduces oscillation ampli-

tude on average by 70%, significantly less than the solely conventional controllers. 
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Appendix A 

Table A1. Abbreviations and Nomenclature 

Acronyms Definition 

AGC    Automatic Generation Control 

PIDF    proportional-integral-derivative with filter 

ANN    Artificial Neural Network 

GRC    Generation Rate Constant 

SOA    Skill Optimization Algorithm 

ISE    integral square error 

HVDC    high voltage direct current 

ACE    area control error 

AVR    automatic voltage regulator 

ANF    Adaptive Neuro-fuzzy controller 

STPP    Solar Thermal Power Plant 

ALFC    automatic load frequency control 

SLD    Step Load Disturbance 

ITAE    Integral of the time weighted absolute error 

ITSE    Integral time square error 

IAE    Integral absolute error 

WPPs    Wind Power Plants 

RTP    Reheated Thermal Power 

GTRT    Reheated Turbine 

GGRT    Speed Governing method 

HPP    Hydro power plant 

SLP    Step Load Perturbations 

FIS    Fuzzy Interfacing System 

FLC    Fuzzy Logic Control 

Nomenclature Definition  

f 

i 

Pri 

Hi 

T12, T23, T13 

Ri 

Tgi 

Kri 

Tri 

Tti 

Bi 

Tpi 

Kpi 

Bi 

Tw 

∆fi 

∆Pgi 

nominal system frequency (Hz) 

subscript referred to area i (1–3)⁄ superscript denotes optimum value 

rated power of area i (MW) 

inertia constant of area i (s) 

synchronizing coefficients 

governor speed regulation parameter of area i (Hz/p.u MW) 

steam governor time constant of area i (s) 

steam turbine reheat coefficient of area i 

steam turbine reheat time constant of area i (s) 

steam turbine time constant of area i (s) 

frequency bias constant of area i 

2Hi/(f _ Di) 

1/Di (Hz/p.u) 

area frequency response characteristics of area i  (=Di + 1/Ri) 

water starting time for hydro turbine (s) 

incremental change in frequency of area i (Hz) 

incremental generation of area i (p.u) 
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∆Ptie i_j 

Di 

Kp, KI,KD 

N 

J 

* 

incremental change in tie line power connecting between area i and area j (p.u) 

∆PDi/∆fi (p.u/Hz) 

The gains of proportional, integral, derivative respectively  

Low pass filter coefficient  

cost index 

superscript denotes optimum value 

 

Appendix B 

                                System data at nominal condition:  

Pr1 = 2000MW, Pr2 = 6000MW, Pr3 = 12000MW, Assume Initial loading = 50%, f = 60Hz, B1 

= B2 = R3 = 0.4250 p.u.MW/Hz, Ri = 2.40 Hz/per unit MW, Tg = 0.080 s, Ptie,max = 200 

MW, Tr = 10s, Kr = 0.5 Hi = 5s, Tt = 0.3s,  , Di = 8.33∗10-3 p.u. MW/Hz, a12= −1/3, a23= 

−1/2, a13= −1/6, T12 = T23 = T13= 0.0866 p.u.MW/rad, TR = 5s, Kp1 = Kp2 = Kp3 = 120 

Hz/p.u.MW, Tp1 = Tp2 = Tp3 = 20s. Wind power: 50*2MW, Kw1=1.4, Kw2=1.25, 

Kw3=0.080, Tw1=0.6sec, Tw2=0.040sec. Hydro plant:  Electrical governor parameters, 

kdh = 0.270, kph = 1.0, kih = 2.40, Tw = 1.0s.  

                              HVDC: KDC = 0.5, TDC=0.03s 

 

                        Table B1. Variation of parameters with varying system loading 
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 System Loading KpsinHz/ p.u.MW Tps, in sec. D,  in p.u. MW/Hz 

50% 120.0 20.0 8.3310-3 

75% 80 13.33 0.0125 

25% 240 40 0.004167 
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