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Abstract: This article investigated the Automatic Generation Control (AGC) of multi-area multi-
source interconnected systems with hydropower plants, thermal power plants, and wind energy.
In this paper, A technical novelty is present as well as a software novelty of utilizing a novel algo-
rithm. An Adaptive Neuro-fuzzy controller integrated with the cascaded proportional-integral-
derivative with filter (PIDF-PIDF) is a new cascaded controller (ANF-PIDF-PIDF) that has been
presented as a secondary controller for the applied hybrid power system. In addition to the tech-
nical novelty, there exists a software novelty of utilizing the novel Skill Optimization Algorithm
(SOA) to optimize PIDE- PIDF controller parameter gains and the Adaptive Neuro-Fuzzy control-
ler's input and output scaling factors. SOA is used to update the controller parameters with inte-
gral square error (ISE) employed as the objective function. SOA also outperforms other algorithms
in terms of convergence speed and accuracy. The appropriate generating rate constraints (GRC)
for the thermal and hydro plants have been considered. A 1% step load disturbance was consid-
ered simultaneously in all three areas. The controller's performance is evaluated and compared
with and without considering the effects of wind energy sources and non-linearity for ANF-PIDF-
PIDF, PIDF-PIDF, and PIDF and it is determined that the ANF-PIDF-PIDF was the most efficient.
The dynamic system performance is also compared with parallel high voltage direct current
(HVDC) tie-lines. The investigation clearly shows that incorporating HVDC tie-line with multi-
area, multi-source provides better dynamic performance in terms of maximum amplitude, oscilla-
tion, and settling time. Additionally, sensitivity analysis is done, and the optimum controller gains
do not need to be reset to uncertain values in system loading conditions. All simulation results
were evaluated using MATLAB 2016b.

Keywords: Automatic generation controls (AGC), Adaptive Neuro-Fuzzy controller, cascaded
controller, parallel High voltage direct current (HVDC) tie-lines, Skill Optimization Algorithm
(SOA)

1. Introduction

The power system's augmentation and control action are necessitated by its rapid
expansion. It is necessary to balance energy production and energy consumption [1].
The Automatic Generation Control (AGC) is critical in ensuring that the frequency varia-
tions remain below acceptable bounds. The primary objective of AGC is to maintain the
frequency deviation within acceptable limits and also control the power transfer be-
tween different locations. It is critical for managing the power variations along the tie
lines. An interconnected power system with several producing sources, such as hydro-
power plants, thermal power plants, and renewable energy sources, among others,
could have several generating sources in its control areas. A more complicated control
structure is required when several sources of renewable energy are injected into power
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systems. In multi-source interconnected power systems, frequency variation is, in es-
sence, the leading cause of variation. While maintaining suitable production, distribu-
tion, and customer load requirements, AGC's main objectives are to preserve frequencies
and tie-line power variations within specific limits. In an integrated power system, the
governor regulation and load frequency control cooperate to keep the system frequency
deviation low [2]. The primary goal of lowering the area control error (ACE) is to main-
tain the frequencies and tie-line power within specified bounds [3]. Soft computing
techniques and Artificial intelligence is now widely used in a variety of fields. The opti-
mum fuzzy control strategy governs the power flow in this power system problem. Elec-
tric power systems must now be operated in real-time by intelligent systems that draw
knowledge, skills, and procedures from different sources due to the expanding scale and
complexity of the sector as well as the increase in power consumption.

Many papers look at different areas of AGC design, such as illustrating the effec-
tiveness of power systems' dynamic performance. The earliest test to adjust the power
system's frequency used a flywheel and the power unit's speed governor. However, this
method was insufficient for the power systems to function correctly. As a result, the
power unit's speed governor added a supplementary control method based on the fre-
quency deviation (Af) signal and its integral. Tasnin et al. in [4] has defined the tradi-
tional AGC techniques in power systems. The most popular non-conventional energy
source used to provide consumer electrical energy is wind power plants [5]. Hakimud-
din et al. in [6] investigated the efficacy of AGC in thermal, hydro, and wind power
plants. While changes in the amount of wind energy available to wind turbines can
cause an increase or decrease in the imbalance between generation and load demands,
combining WPPs with traditional power plants causes system instability. AGC is also
used in conventional power plants, but because wind energy is stochastic, WPPs may
cause disturbances [7]. Currently, wind power plants are not used to control and stabi-
lize perturbations in the control region. They may, however, have the potential to partic-
ipate in the design of AGC power systems. Furthermore, wind power plant dynamics
are not included in the power system control regions model [8]. AGC is used to correct
the disturbed problems and restore the frequency of the system. The work done in [9]
shows two components of integrated hydro-thermal systems with a wind farm. The
work done in [10] evaluated system dynamic frequency responses for three-area thermal
systems, one of which incorporated a solar thermal power plant (STPP). Three diverse
area thermal systems namely, hydro, wind, and solar photovoltaic plants were evaluat-
ed in the work done in [11]. Some authors examined the frequency response of various
techniques in AGC investigations. The load-generation imbalance of a practical power
system affects tie-line power flow and the system's nominal frequency [12]. The authors
documented the effects of renewable energy sources such as solar photovoltaic panels,
wind and frequency regulation on automatic load frequency control (ALFC) studies in
the work done in [13]. The authors investigated the synchronous generator excitation is-
sue of two-area reheating thermal systems, such as PV arrays and wind, while taking in-
to account system non-linearity like GRC. The work done in [14] reports some control
algorithms for designing the additional ALFC loop controller. Traditional controllers,
however, might not even react adequately when the operational state of the power sys-
tem changes if they are programmed for a specific ALFC working state. With a typical
controller set to a single functional form, it isn't easy to establish stability across the sys-
tem's whole working range due to its nonlinearity. To solve this problem and efficiently
run the power generating units, frequency, and tie-line power flow, intelligent control
technology such as the FLCis advised over the traditional one [15]. The Fuzzy log-
ic controller increases the traditional controller’s closed-loop effectiveness and can man-
age every variation in operational points by modifying controller parameters live. The
researchers' primary focus in the combined AGC experiments has been designing the
ALFC loop controller. The auxiliary controller of the ALFC loop, like traditional PID,
fuzzy-PID, and Neuro-fuzzy-PID, with HVDC, has been done in the integrated LFC and
automatic voltage regulator (AVR) inner loops in the work done in [15,16]. Abazari et al.
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[17] demonstrated load frequency control Power Systems using a classical PID & Fuzzy
PID controller. They proposed modeling a PID and fuzzy PID-based LFC controller to
reduce the power system's frequency deviation. Furthermore, compared to traditional
PID controllers, it achieves an entire system with a shorter settling time, minimizes the
peak amplitude of the characteristic frequency variations, and minimizes the power of
the exchanged tie line. However, more fine-tuning and simulation are required before it
can be used; issues with locating appropriate membership values for fuzzy systems.
Prakash et al. [18] employed one of the artificial intelligence approaches to investigate
the LFC of interconnected system frameworks. They suggested modeling a PID and an
artificial neural network (ANN) PID-based load frequency control to minimize the pow-
er system's frequency deviation. As a result, the intelligent control strategy based on
ANNSs is faster and more accurate, yielding better results. However, large amounts of
data are required for training; neural networks can only be used if training data is avail-
able, and the learning process can be time-consuming. As a result, load frequency con-
trol research can be investigated by combining the advantages of neural networks and
fuzzy logic controllers with traditional controllers. There has yet to be any prior research
on the optimal Neuro-fuzzy controller integration with adaptive Neuro-Fuzzy cascaded
PIDE-PIDF controller.

Moreover, in the previous research on load frequency control, seven membership
functions with 7*7=49 rules were considered for the fuzzy controller design. However,
more resolution is required to optimize the heavily loaded power system. As a result,
the authors altered the eleven-membership function, resulting in 11¥11=121 Rules for
dealing with the complex dynamic framework. The gain parameters must be carefully
chosen when developing an efficient controller for the area control system; the gain pa-
rameters must be carefully chosen. Different studies have proposed and validated dif-
ferent soft computing strategies for obtaining control parameters for system perfor-
mance optimization. Because of this, making an accurate selection of the controller gain
is quite important for achieving better regulated performance. In recent years, by the
year 2015, many bio-inspired algorithms have been developed to optimise the controller
gain values. These algorithms include: 1) direct synthesis (DS) for tuning of PID control-
ler parameters [21], 2) grey wolf optimizer algorithm for tuning of PI and PID controller
gain values [22], 3) self adaptive modified bat algorithm (SMBA) for tuning of PI control-
ler [23], 4) Cuckoo search (CS) algorithm for tuning of PI controller [24], 5) teaching
learning based optimization [25] 6) hybrid particle swarm optimization (PSO) and pat-
tern search (PS) (hPSO-PS) optimization for tuning of fuzzy PI controller [26], 7) a mi-
nority charge carrier inspired (MCI) method was suggested for tuning the I and PI con-
troller [27], and 8) a modified harmony search algorithm (MHSA) was suggested for ad-
justing the parameters of the PID controller [28]. More recently, the Genetic Algo-
rithm(GA)[29], Tabu Search(TS)[30], Simulated Annealing(SA)[31], Differential Evolu-
tionary Algorithm(DEA)[32], Particle Swarm Algorithm(PSO)[33], Immune Algo-
rithm(IA)[34] were all also utilized for tuning PID controllers. Table 1 presents the ad-
vantages and disadvantages of various metaheuristic algorithms.
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Table 1 : Advantages and Disadvantages of different algorithms

ALGORITHM MAJOR ADVANTAGE MAJOR DISADVANTAGE
GA [29] Simple to understand and put into prac- There is no guarantee of a solution that
tice is optimal
Does not require prior understanding of we are unable to solve a wide variety of
maths different kinds of complicated optimi-

zation issues.
The propensity to converge in the op-
timal solution for the immediate envi-

ronment
TS[30] Escapes from local minima as well by A sluggish pace of convergence
using the "tabu list" The ineffective approach to solving the

high-dimensional problem

SA[31] Can give a solution even in a huge A sluggish pace of convergence a lack
search area. of capacity to find solutions to difficult
Easy to understand and apply multifaceted issues
Provides pretty excellent solutions for ~ Performance decline in big dimension
certain optimization issues issues
DEA[32] Possesses the ability to solve multidi- Difficult to choose the appropriate con-
mensional, non-differential, and non- trol settings

continuous problems; There is no guarantee of the accuracy of

the solution.

PSO[33] It Converges rapidly; The unfavourable impact on the solu-
It is capable of resolving complicated  tions brought about by the incorrect
optimization issues in a variety of appli- selection of control factors
cation areas. The risk of becoming mired at a particu-

lar region's minimum point
Poor performance in high-dimensional
as well as multimodal optimization

IA[34] It is adept at the search exploration pro- Poor utilisation of the search
cess.
SOA High Convergence rate It is a little complex to understand
Can solve complex multidimensional
problems

It is faster and requires less iterations

We utilize a novel algorithm for the very first time in this application named the
Skill Optimization Algorithm. SOA has been tested on multiple functions and has been
determined to be better than all the above mentioned algorithms in terms of conver-
gence speed. The SOA based ANF-PIDF-PIDF controller is compared with GA and PSO
to show that it is much more efficient than the conventional algorithms. There has been
no research till now conducted by using SOA-based AGC to improve the gains of stand-
ard PIDE-PIDF and the input-output scaling factors of Neuro-Fuzzy controllers.
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The cascade controller improves the dynamics system over a single controller since
it has many configurable parameters. Furthermore, the cascade control technique is re-
nowned in the control system for its quick disturbance rejection before transmission to
other system components. The earlier literature review presents a new hybrid control
structure for the unified ALFC-AVR system, including Fuzzy logic control and the cas-
cades controller PI and PIDF. Frequency variation and ACE are the two input signals
that the controller receives. According to the literature, the ALFC loop and the choice of
controller settings improve the system performance of the researched system in the
combined adaptive Neuro-Fuzzy cascaded PIDF model. Traditional methods may not
deliver the best results for a plan with nonlinear constraints. Different studies have pro-
posed and validated different soft computing strategies for obtaining control parameters
for system performance optimization [20].

The proposed controller must handle small variations in the system's state without
affecting stability. [16] Performed a sensitivity study by altering the amount and position
of the step load disturbance (SLD). The resilience of the 50% loading circumstances, skill
optimization algorithm, enhanced adaptive Neuro-Fuzzy-cascaded PIDF inputs gains,
and Neuro-Fuzzy inputs-output scaling factors and other parameters must be evaluated
against a wide range of systems loading conditions.

Because it has more configurable parameters than a single controller, the cascade
controller improves the dynamics system over a single controller. Furthermore, the cas-
cade control technique is renowned in the control system for its quick disturbance rejec-
tion before transmission to other system components. The research done also explores a
new hybrid control structure for the unified ALFC-AVR system, which includes fuzzy
logic control and the cascades controllers PI and PIDF. Frequency variation and ACE are
the two input signals that the controller receives. According to the literature, the ALFC
loop and the choice of controller settings improve the system performance of the re-
searched system in the combined adaptive Neuro-Fuzzy cascaded PIDF model. Tradi-
tional methods may not deliver the best results for a plan with nonlinear constraints

In addition to the maiden application of the novel optimization algorithm, we have
also incorporated technical novelties with regard to power system stability with the help
of AGC. Many researchers stated that the AGC considers ALFC and AVR loops, focus-
ing on traditional and non-traditional controllers, as demonstrated in the literature re-
view. Little attention was paid to several aspects such as, including source type, control-
lers, optimization techniques, sensitivity analysis using altered generator characteristics,
variation in the water inertia time constant (Tw), the synchronization correlation coeffi-
cient of AC tie lines with system loading conditions, and the effects of a parallel HVDC
tie line for stability analysis. This article investigates the optimal design and implemen-
tation of the cascaded adaptive Neuro-Fuzzy-PIDF-PIDF-based AGC controller for a
three unequal area multi-sources power system network comprising hydro and thermal
power plants and wind power plants (WPPs). The dynamic response of the optimum
AGC controller is measured and compared to that of a PIDF controller. SOA adjusted
conventional AGC controller that has also been built in the research in the presence of a
1% step load perturbation in one of the control areas. Additionally, the effect of wind
energy sources on the AGC scheme has been investigated when the amount of wind en-
ergy to the wind power plants (WPPs) reduces/increases load perturbations in one of the
control areas.

1.1. System Design Challenges

The active power balance in the power system is required for frequency stability.
When a disturbance occurs in the system, such as a short-circuit fault, trip, tie-line break-
ing, system disintegration, etc., the total generation and load power may become imbal-
anced.
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The biggest challenges to fixing this issue are as follows:

1. Using a novel AGC controller, we should effectively reduce changes in system fre-
quency, deviation, and tie-line flows from their specified areas. The developed con-
troller should produce system responses with the least settling time, undershoots,
and overshoots possible.

2.  Finding and implementing the perfect optimization strategy for adjusting the de-
veloped controller's parameters.

3. Finding the perfect performance indices for adjusting the developed controller's pa-
rameters

4. When applied to various power system models, the new modeling technique must
deliver superior results in comparison to conventional systems

5. The design method must be robust.

This article investigates the optimal design and implementation of the SOA optimized
cascaded adaptive Neuro-Fuzzy-PIDF-PIDF-based AGC controller for a three unequal
area multi-sources power system network comprising hydro and thermal power plants
and wind power plants (WPPs). The cascade controller improves the dynamics system
over a single controller since it has many configurable parameters. Furthermore, the cas-
cade control technique is renowned in the control system for its quick disturbance rejec-
tion before transmission to other system components.

1.2. The primary objectives and achievements

The following objectives have still to be examined based on the extensive literature
review.

e To develop three multi-source, unequal-area hydro-thermal systems integrated
with wind turbines in the presence of linearity and non-linearity.

e  For the input and output scaling factors, as well as the system's built-in PIDF gains.
The skill optimization algorithm (SOA) is used to optimize adaptive Neuro-fuzzy
controllers, and the present controllers are acquired by assessing dynamic perfor-
mances of the system.

e  To establish which is best, the dynamic performance of the proposed adaptive Neu-
ro-fuzzy-PIDF-PIDF (NF-PIDF-PIDF) controller is compared to that of the classical
PIDF-PIDF and PIDF controller.

e To evaluate the sensitivity analysis by altering the characteristics of the generators
while accounting for a system loading + 25%.

e Toinvestigate the effects of non-linearity requirements on the system using the pre-
sent adaptive NF-PIDF-PIDF controller.

e To investigate the effects of parallel HVDC tie-line on the system using the present
adaptive NF-PIDF-PIDF controller.

e To demonstrate how the water inertia time constant (T,,) varies in loading systems,
to evaluate the sensitivity analysis by altering the generators' parameters, and to
verify the sensitivity of the present NF-PIDF-PIDF controller.

e To show how the suggested controller outperforms the SOA optimum PIDF-PIDF
and PIDF controllers created for the AGC power system presented in (i).

The primary contribution of this paper is the design of a novel optimal integration Neu-

ro-Fuzzy-PIDF-PIDF (NE-PIDE-PIDF) controller for different power system models that

perform more dynamically than other previously published papers.

The rest of this paper is summarized as the following organization:

Section-2 presents a detailed system design with mathematical equations, system inves-
tigation, modeling of the proposed ANF-PIDF-PIDF controller and optimization tech-
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nique, Section-3 reveals the simulation and discussion of the detailed results. The article
is concluded in Section-4, followed by a list of references and an appendix.

2. Materials and Methods

2.1. Frequency Response Modeling

2.1.1. Reheated thermal power turbine modeling

Each area uses a conventional power system generating plant, as depicted in Figure.2.
Reheated Thermal Power (RTP) is implemented using a speed governor mechanism and
a turbine with a re-heater, as shown in a thorough block diagram.

The following are the transfer function models for the reheated turbine (GTRT) and
speed governing method (GGRT) [11].

1
1+STere

1+sKy Ty
1+sT-

GGRT(s) =

and GTRT(s) = (

)( ) M

1+sTgre

Where T,,.and T, are the governor and turbine time constants, respectively, and K, and
T, are the reheated thermal power plant's re-heater gain and time constant, respectively.

2.1.2. Hydro Power Turbine Modeling

A turbine unit in power systems transforms natural energy, like water energy, into
mechanical power (P,,), which is then delivered to the generator. The authors commonly
utilize a simplified inelastic penstock model without the water hammer effect in power
system analysis. The following transfer function(T.F.) is obtained using a simple prime
mover model with a single water time constant Tw [14].

_— APB,(s) 1-T,S
" AP(s) 1+0S5T,S

2)

The water starting time is Tw in this case, the time it takes for a head Ho to accelerate the
water in the penstock from rest to velocity Vo. It is worth noting that Tw varies depend-

ing on the load lgp;:& is the answer. Tw at full load is usually varied between 0.5 and 4.0
go
seconds. Equation (2) depicts a hydraulic turbine's traditional transfer function. For an

ideal lossless turbine, it depicts how the turbine power output varies in reaction to
changes in gate opening. A simple hydro turbine's block diagram is depicted in Figure 1.

1—T,S
L
AP, (s) 1+ 0.5T, S AP(3)

Figurel. Turbine Block Diagram

Equation (3) states that the hydro turbine head alters the water acceleration in the
penstock.

dAv
(plyAp) — = = Ay(pg)Ahy ®)

Where
e [, is the penstock length.
e v, is water velocity in the penstock.
e A, isthe pip cross-sectional area.
e  pisthe mass density of water.
e  gis the gravity acceleration.
e (pl,A,) is the mass of water in the penstock.
e (pg)Ahy) denotes the incremental pressure varies atthe hydro turbine gate.
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Using equation (3) make normalized by dividing both sides by Apghgovpo, to normalize

the Equation (3), and obtain (4)

lpvpog Av, _ _A_hg @
ghgo dt \ vp, hgo
(©)
— pVpo
W T ghgo

The mass flow rate in the penstock is calculated as qo = Apvpo, where qo is the product of
pipe area and water velocity in the penstock. Inserting vpo into the equation (5) yields the
water's starting time is given by (6).

T - 190
v gAohg, (6)

Equation (6) calculated the hydro turbine time constant or Tw under variable plant load-
ing (PL). I Pan et al. in [35] describes the penstock's hydro turbine gate valve opening
(V,) versus water flow rate. The mathematical description of water flow rate in terms of
V, is given in (7).

a(p-w) = — (%V)? ?)

A change in the plant loading has caused the V, to change. Therefore, equation (7) can be
expressed in plant loading, as illustrated in (8).

1
104

q(p-u) = - (%P)? (8)

Using equation (6) and equation (8)
T, =mx 10™* x (%P,.)? 9)

lpq
Where m = —2=—=
gAphgo

As a result, equation (9) demonstrates that Tw varies with the Pv load levels.

2.1.3. Wind Power Plant Modeling

The wind's kinetic energy is transformed into mechanical energy by rotating ma-
chines known as wind turbines. After that, the electrical grid receives this mechanical
energy and turns it into electricity. The generator and rotor of turbines accomplish these
energy transformations. The rotor is the main part of the turbine which contains the hub
and blades. The turbine's hub rotates as wind strikes the blades due to aerodynamic
forces. This rotation is then sent to the transmission mechanism, which reduces the rota-
tions per minute. The transmission system is composed of the important bearing, high-
speed shaft, gearbox, and low-speed shaft [36]. The pitch angle control system ensures
that the desired pitch angle is maintained regardless of wind speed, allowing wind tur-
bine production to be adjusted regardless of wind speed. The hydraulic pitch actuator
data fit pitch response, and blade characteristics are included in the mathematical analy-
sis of the wind power plant. Modeling the wind farm system, pitch control, hydraulic
pitch actuator, data fit pitch response, and induction generator are all described in detail
below [37].

K 1+ST;
Ge(S) = WP1E1+S) wP1) (10)
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_ _ Kwp2

Gu(S) = (1+STywp2) (11)
__ Kwes

Go(S) = (1+STywp3) (12)
1

Gi(8) = (1+ST,,) (13)

The output of wind power deviation can be written as:

APp = KpcG1(S) (14)

Where Kwp1 and Twp1 are the pitch control systems gain and time constants, Kwp2 and Twp2
are the gains for hydraulic pitch actuator gain and time constant, Kwps, Twps data appro-
priate pitch response gain and time constant, and Kt is fluid coupling.

2.1.3.1. The Effect of Wind Power Integration on Grid Frequency Stability

The active power balance is a prerequisite for the power system's frequency stabil-
ity. The total generation power and the total load power may be out of balance when a
disturbance in the system (such as a short-circuit fault, trip, tie-line breaking, system dis-
integration, etc.) occurs. The system frequency will increase if the total generation power
exceeds the total load power (including grid losses). In contrast, it will decrease if the to-
tal generation power is less than the total load power. The associated steps, mainly regu-
lating the active generator output, disintegrating the generator, disintegrating the load,
and so forth, shall be adopted based on the various frequency variations and the real op-
eration condition of the system. Frequent regulation is essential for the electrical system
to run securely and reliably [38]. In order to maintain frequency security and frequency
stability during continuous operation of the power system once wind power is incorpo-
rated into the grid, it has become one of the main topics in wind power research as wind
power penetration rises. The system inertia will be critical in determining the rate of var-
iation of the system frequency in the event of a fault when the grid frequency is drasti-
cally lowered. The lower the inertia, the quicker the system frequency drops. Any de-
crease in inertia response puts the power system at risk for a significant frequency acci-
dent.
The security of a power system is defined as its capacity to endure disruptions without
experiencing a breakdown. Wind turbines must be able to ramp up and down in order
to prevent insecure power system operation. Wind turbines must be able to avoid exces-
sive fault levels while also assisting with fault identification and also must be able to
contribute to both voltage and frequency control to stabilize the power system following
a disturbance [39].

2.1.4 Governor and Generator Modeling

2.1.4.1 Governor Modeling

In reaction to changes in load, the turbine controlling system's primary goal is to
control turbine speed, which affects the frequency and active power. In power systems,
governors are employed to detect the frequency bias brought on by a change in load and
negate it by adjusting inputs to turbines. The speed governing mechanism can be classi-
fied into two categories namely, Electric Governor and Mechanical Governor[40]. The
transfer of electrical governor is given as -

kdh52+kph5+kih

Kgn Sz+(kph+£)s+kih

Gigg = (15)
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Where Kan, Kph, and Kin electric governor derivative, proportional, and integral gains, respective-
ly

The transfer function of the Mechanical Governor is given as -

— _Ks
ng - Tgs+1 (16)
where kg and T mechanical governor constant gain and governor time constant respec-
tively

2.1.4.2 Generator Modeling

A generator power system converts mechanical energy from a turbine to electrical ener-
gy. The mechanical power conveyed by the turbine is no longer equal to the electrical
power produced by the generator when the load changes. The error is between mechan-
ical (P,) and electrical power (P, is incorporated into the rotor speed variation r, which
could be multiplied by 2m to get the frequency bias Af [41].

2H dAw
We ar = MPn = AP, 17)

In terms of a slight speed difference

AW 1
d(m)dt = ﬁ (APm - APe) (18)

Speed is measured in units per second.

daw 1
~ = 357 @Pn — 4P0) (19)
The LFC closed Loop
2w d
APy — APy = 5= (Af) + DAFMW (20)

The preceding equation, after Laplace transformation, produces

APp(s) — APy (s) = %s% Af(s) + DAf(s)MW

- [Z—Ws + D] Af(s) i.e

fO
1 1)
Af(s) = 537 [APr(s) — APp ()]
o
Af(s) = Gp(s)[  APr(s) — APp(s)] (22)
where
_ 1 _ 1/D _ Kp
Gp(s) = %w - (1+f20_*£ T 14STP (22.1)
1 2H
Ke = 5T = p (22.2)
_f0
f=19+Af (22.3)
D PLpu

0 (22.4)
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Where Pm is mechanical input power in per-unit, Pe. is electrical output power in per-
unit, H is the inertia constant, AW is the synchronous rotor speed, D load damping
constant and f is nominal frequency, fois operating frequency, Af frequency deviation.

2.1.5 AGC of three-area interconnected power system

Multi-control regions are present in any interconnected power network all generators in
power systems are believed to work together an analogous turbine generator and gov-
ernor system can be installed in the proposed research investigated three areas intercon-
nected in a ring topology as illustrated in Figure.2.

Local load Area-2

E‘PEE'E‘E3

Area-1 APiony Area-3

Change

Local loa local load

Figure.2. Three area models were linked by ring topology.

The real power delivered through the tie-line is indicated is given equation (23) during
the regular operation of the power system.

ViV, . B
X1 Sln( 01 62) (23)

P> =

Where 01 and 02 are the respective power angles of machines that are identical and X1z is
the tie-line reactance. At the comparable machines in areas 1 and 2, the voltages are V1
and V2, respectively.

To obtain the tie power deviation as shown in equation (23), the authors reformed equa-
tion (24) for a small tie-line flow P12 around an equilibrium point do: doa.

AP.= P, (481 - 46)) (24)

The synchronizing power coefficient Ps can be calculated using equation (25).

d E1 E
Ps =212 5. 172005 (5,°- 6,°) (25)
dssz X12

When the relationship between speed and area power angle speed is considered, equa-
tion (25) could be expressed as equation (26).

AP, =Psy, (J Aw, — [ Aw,) (26)

where Aw: and Aw: are the speed variations in areas 1 and 2, respectively. The equation
(27) is obtained by taken the Laplace transformation function of equation (26).
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AP15(s) = Ps;,S (| Awy(s) — [ Awa(s)) (27)

Similarly, the difference in tie-line power between areas 1 and 3 is given Eq. (28).
AP15(s) = Psy3S (| Adwi(s)— | Aws(s)) (28)

Equation (27) and equation (28) is used the overall change in tie-line power transfer be-
tween area-1 and the other two areas in equation (29).

1 .
E{ Z Ps,Aw, — Z Pslea)j}

j=2.3 =23 (29)

The load causes the variation in the tie-line transfer power for those areas in the provid-
ed location; the tie-line power deviation (APy;,) could be added to the mechanical power
variation (AP,,) and area load perturbation P, using a relevant sign.
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Figure 3. Three unequal area function models of AGC hybrid power systems under investigation

2.2 Systems Investigated

Figure 3 illustrates a block diagram of the system under investigation. Traditional
interconnected power system (IPS) has three areas with unequal capacity, namely
Pri=2000 MW, P»2=6000 MW, and P:=12000 MW, with wind power plants in areas 1, 2,
and 3, as well as a re-heated thermal power plant (RTPP) and hydropower plant (HPP)
acting as traditional power sources. The three unequal areas' various parameter per-unit
values are compared on a respective basis. Therefore, a parameter ai2 = - Pr1/Pr2, ax = -
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Pr2/Pis, and a1s = -Pr1/Pis are taken into consideration in the three-area system when mod-
eling interconnected areas with varying capabilities. In the system considered, speed
regulation parameters of Ri=4 % (2.4 Hz/pu) and frequency bias parameters of Bi= {3i=
0.425 are chosen. In practice, the rate of change in generating power has a maximum and
a minimum value. In this study, the authors considered appropriate generation rate con-
straints (GRC) for each area for thermal and hydropower plants but not for wind power
plants. The GRC restriction value of 3% per/min took into account the re-heating thermal
system and hydro system 270% per/min for the rising system generation and 360% for
lowering generation [26]. This work's mathematical model of different plants assumed
for an interconnected power system was adapted from. The Appendix contains their
nominal parameter values. Each subsystem is described in detail in the section that fol-
lows. A multi-area power system's frequency is within reasonable bounds, and the tie
line exchange power should maintain within reasonable bounds. In addition, each loca-
tion must absorb its load schedule [34]. In most cases, this is accomplished in the addi-
tional feedback loop by having to add a tie-line power variation to the system frequency
deviation. It is known as tie-line bias control. For area 1, the area control error (ACE) is a
combination of frequency and tie-line power variations. In any domain, Eq. (30) could be
expressed as ACE. The dynamic system performance is evaluated for all areas using 1%
step load perturbation (SLP).

n
ACEi= AP; +K; Ao (30)
j=1
Where Ki is known as area bias, it controls how much interaction occurs when one
region is disturbed by another. When the gains Ki value is selected to equal the frequen-
cy bias factor of that area Bi, which Eq. (31) identifies, a steady-state performance is at-
tained.

1
Bi=—+D; (31)

Where B;, is frequency bias factor of area i, Ri governor speed regulation parameter of
area i.

When a steady state is attained, this control can immediately modify the reference pow-
er set point (APref).

2.3. The proposed optimal Adaptive Neuro-Fuzzy-PIDF-PIDF controller (NF-PIDF-PIDF) mod-
eling

2.3.1. Fuzzy logic controller (FLC)

In 1965, FLC theory was introduced as a theoretical idea that advances convention-
al control theories. FLC is a crucial instrument for mathematical methods for resolving
power system issues. In order to increase the reliability and resilience of power system
control, a sizable body of literature has been documented on FLC applications. A robust
fuzzy logic-based tuning strategy for AGC regulators in a multi-area power grid is de-
scribed, along with a design process and numerical validation. However, extreme cau-
tion must be exercised when designing, tweaking, and deploying these systems. FLC
includes fuzzification, rule-based fuzzy inference systems, and Defuzzification [42].

Fuzzification changes a crisp quantity (set) into a fuzzy quantity (set). It is necessary to
admit the utter no determinism and uncertainty of the different known crisp and deter-
ministic quantities. This uncertainty may have developed due to fuzziness and impreci-
sion, leading to the variables' capacity to be represented by a membership function. The
rule base explains the entire control scheme and is essentially an if-then rule [43]. The
Membership functions and rule foundation must be tuned to create a well-structured
Fuzzy controller. Because these rules have been converted into fuzzy forms, using the
fuzzy inference system is impractical. This study used a well-known "center of gravity"
Defuzzification approach, and Mamdani FIS was used to increase the firing power of the


https://doi.org/10.20944/preprints202211.0422.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2022 d0i:10.20944/preprints202211.0422.v1

rule base [32]. Additionally, seven membership functions with 7*7=49 criteria were con-
sidered in the earlier literature on AGC for the fuzzy controller design. However, it is in-
sufficient to optimize the heavy-loading power system. The authors updated the eleven
membership functions to adapt to the intricate dynamic framework, resulting in
11*11=121 Rules.

Defuzzification is converting fuzzy values into crisp values that plants can use. The
Fuzzy logic controller takes two Scaling Factors, Kit and Kiz, as inputs and outputs, Kos.
An equal representation of input and output membership functions is required to ensure
exceptional computing performance and memory utilization [44]. According to the liter-
ature review, triangular membership functions are preferred because they are simple to
develop in real-time applications, consume less memory, and are simple to run through
a fuzzy interfacing system (FIS). As a result, eleven MFs are considered for both outputs
and inputs. All MFs have a value between -1 and 1, [45- 48]. Mamdani, obtain the value
for each membership function output. The logic of the fuzzy interface system generates.
The Mamdani Fuzzy interface system logic generates the output from each rule basis.
PV stands for "positive very high," PL for "positive large," PB for "positive big," PM for
"positive medium," PS for "positive small," ZR for "zero," NS for "negative small,"” NM
for "negative medium," NB for "negative big," NL for "negative large," and NV for "nega-
tive very high" (negative very high). Figure 4 depicts the basic block diagram of fuzzy
logic controller. The range of all membership operations is from -1 to 1, as illustrated in
Figure. 5 (a)-(c).

Knowledge
Base
y Y
Controller Y Fuzy Fuzzy —— Controller
oUts Fuzzification | inputs Interf_ace outputs Def_u22|f|cat|on outputs
P interface >  Engine » interface | >
Figure 4. Block diagram of fuzzy logic controller
NV NL NB NM NS ZR PS PM PB PL PV

[y

0.5

0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 04 08 1
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Figure 5. Fuzzy logic control membership functions. (a) Error input signal (e), (b) Error derivative
input signal (de), (c) error output signal (u)

2.3.2. Artificial Neural Network (ANN)

Artificial neural networks' best approximation of arbitrary non-linear functions and

application to parallel processing and multivariable systems are particularly interesting
to researchers. A neural network may learn in a sophisticated multi-layer network, mim-
icking the human brain, and respond intelligently. The ANN in deep learning algo-
rithms used with supervised and unsupervised learning methods can have a variety of
topologies. Additionally, ANN's recently developed reinforcement learning algorithms
are gaining popularity in practical applications. Researchers’ offer and use ANN
schemes throughout AGC systems' building [49]. An ANN-based AGC for a three-area
integrated power grid network is proposed to achieve the minimum acceptable regula-
tion in the area frequency and eliminate the disturbance's effect during heavy loading
conditions and line disturbances [50].
Artificial intelligence techniques use the human nervous system's ability to adapt and
learn. An artificial neural network is a structure of artificial neurons used in artificial in-
telligence. The ANN basic model is depicted in Figure.6. Neuron Structure comprises
the following elements: xp stands for Inputs, wikp stands for Weights, pni (¢) stands for ac-
tivation function, and out stands for output. The net input of the activation function is
diminished using the threshold [43-50].
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Figure 6. Non-linear model of a neuron

2.3.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Adaptive Neuro-fuzzy inference is used to modify the membership function parameters
of fuzzy inference systems of the Mamdani type (ANFIS). Using test data alters the
structure of the inference system and assesses the tuned system's propensity for general-
ization. The ANFIS is one approach for constructing a fuzzy inference system given in-
put/output data pairs. The fuzzy logic controller and neural network used in the ANFIS
enable the controller to be self-tuning and adaptive. If we combine these two cutting-
edge strategies, we will produce high-quality and quantity reasoning. The related FIS
can track the input/output data with the help of this system's fuzzy logic capability,
which can be used to adjust the membership function parameters. The parameters of the
ANFIS model will be changed using the information collected from the FIS controller. It
is essential to modify the typical neural network structure to build a fuzzy rule using
neural networks [50].

Figure 7 depicts the block diagram of the hybrid neuro fuzzy controller. The architecture
of this model is depicted in Figure. 8 and can be used to train and change the fuzzy in-
terfaces system design uploaded to the ANFIS. The first layer's black circles represent
the inputs, the second layer's white circles the input membership functions, the third
layer's blue circles the rules, the fourth layer's white circles the output membership func-
tion, and the fifth layer's white circles the tuned output.

Fuzzification changes a crisp quantity (set) into a fuzzy quantity (set). It is necessary to
admit the utter no determinism and uncertainty of the different known crisp and deter-
ministic quantities. Defuzzification is converting fuzzy values into crisp values that
plants can use. Fuzzy inference uses fuzzy logic to formulate the mapping from a given
input to an output. The knowledge base is represented in rules, and Mamdani's most
common rule structure involves linguistic variables. Hence, when dealing with multiple
inputs-single output (MISO) systems. The knowledge base comprises two parts: a data-
base and a rule base. The database contains information about domain boundaries, do-
main transformations, and fuzzy sets with corresponding linguistic terms. 126 The rule
base contains linguistic control rules. Modern, sophisticated knowledge-based systems
are robust because they integrate databases, knowledge bases, inference, and conven-
tional numerical and algorithmic approaches effectively and efficiently. The authors
provide an overview of handling imprecision in these three domains using fuzzy logic in
general and fuzzy query, fuzzy rule-based inference, and fuzzy optimization in particu-
lar. This is in conjunction with soft computing and new technology requirements. Im-
precise data transfer, cooperative techniques, and recurrent utilization integration prob-
lems are also addressed.
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Figure 7. Block diagram of hybrid Neuro-fuzzy controller

trnf

Figure 8. Adaptive Neuro-Fuzzy interface system structure

The adaptive network can be converted into traditional feed-forward neural network architecture.
This suggested network performs similarly to the Mamdani fuzzy controllers' adaptive network
simulator. A 2-input ANFIS with 121 rules is depicted in Figure 8. Each input has a corresponding
set of eleven membership functions, resulting in 121 subspaces subdivided according to fuzzy if-
then rules. The consequent part of a rule specifies the output within the fuzzy subspace defined by
the premise. The function family listed below corresponds to the node functions in the same layer.
The first layer is the input layer. Crisp external signals are transmitted to Layer 2 by neurons in
this layer. The second layer is the fuzzification layer. Fuzzification is carried by neurons in this
layer using the triangle membership function. The third layer is the ruling layer. A single fuzzy
rule of the Mamdani type corresponds to each neuron in this layer. A rule neuron calculates the
rule's firing strength using input from the corresponding fuzzification neurons. The operator
product in an ANFIS assesses the conjunction of the rule antecedents. The fourth layer is the nor-
malization layer. Each neuron in this layer processes information from every neuron in the rule
layer to determine the normalized firing strength of a specific rule. The ratio of a given rule's firing
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strength to the total firing strength of all rules is known as the normalized firing strength. It shows
how a particular rule affected the result. The fifth layer is the Defuzzification layer. This layer's
normalization neurons serve as the initial inputs for each neuron and are coupled to them. Here,
the maximum membership value of each function in the output is weighted, forming the weighted
average Defuzzification approach. Layer 6 is represented by the neuron that calculates the sum of
outputs of all Defuzzification neurons and produces the overall ANFIS output.

2.3.4. Cascaded Proportional-Integration-Derivative with Filter Coefficient (PIDF-PIDF)
Controller

The Proportional-Integral-Derivative with filter coefficient (PIDF) control is the most
common control algorithm used in industry and has been universally accepted in indus-
trial control. The popularity of PID controllers can be attributed partly to their robust
performance in a wide range of operating conditions and partly to their functional sim-
plicity, which allows engineers to operate them in a simple, straightforward manner.
However, the performances of conventional controllers are not so promising in a higher-
order system with non-linearity. Most of the time, classical techniques diverge from op-
timal solutions, are time-consuming, and suffer from premature convergence.

Improved stability and quicker controller response can be attained using conventional
PID control. However, due to the derivative mode, the plant receives excessively high
levels of meaningful control inputs. The noise already presents in the control signals is
the primary culprit in this issue. The injected noise is removed by including a filtering
portion in the derivative part. The noise chattering can be decreased by fine-tuning the
pole. Therefore, in the cascaded controller, the PIDF-PIDF is chosen.

To enhance the effectiveness of the control, it combines the PID-PID with the derivative
filter. The developed controller's primary objective is to control the frequency response
in each area during load fluctuations, renewable energy source changes, and unpredict-
able power system conditions. To reduce the disturbance effects that enter the secondary
loop from the primary loop using the cascaded structure of AGC. As a result, it can de-
liver more incredible performance compared to architectures with a single control loop.
They can lessen the effects of gain changes on system performance, which is an addi-
tional benefit.

G.(s) =K, +ﬁ+ Kys 1
S

1S @
N

The output of one control serves as an input set point for the other control in the cas-
caded control structure being used. The set point for the second stage is provided by the
ANFIS, which is used as the primary external control loop or master controller. The sec-
ondary controller of the slave controller, which is part of the inner control loop, uses the
PIDE-PIDEF. Figure.9 depicts the generalized cascade controller structure. Where c(s) is
the adaptive Neuro-fuzzy controller, c(s) is the PIDF-PIDF controller, g(s) is the first-
order transfer function of the system, and g(s) is the power system's first-order transfer
faction.

The output of one control serves as an input set point for the other control in the cascad-
ed control structure being used. The set point for the second stage is provided by the
ANFIS, which is used as the primary external control loop or master controller. The sec-
ondary controller of the slave controller, which is part of the inner control loop, uses the
ANE-PIDF-PIDF. Figure. 10 depict the physical layout of the proposed cascaded ANF-
PIDF-PIDF controller [48-51].

The cascade control can be thought of as a feedback-combining method. In this control
method, the inner loop controller would get its set point from an outer-loop control. So
there would be two controllers in this control system, and the output of one is the input
of the other. As a result, in this controller, the secondary controller works in tandem
with the primary controller to improve control of the primary process variable.
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A second measurement and secondary feedback would be included in the cascade loop.
A cascade control system would consist of two controllers, with the output of one driv-
ing the set point of the other. This structure has multiple loops, and the principal output
of the controller in the outer loop corresponds to the controller's set point in the inner
loop. Because the process is divided into two and one process variable will be changed,
two controllers are utilized in cascade control [51].

as)

X

sk as) v 68) P &)
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Figure 9. Generalized cascade controller structure
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Figure 10. Block diagram of the proposed control using hybrid Neuro-Fuzzy-PIDN controller for
AGC

2.4. Skill Optimization Algorithm

Metaheuristic algorithms are widely used in solving optimization problems. This paper
proposed a recent metaheuristic algorithm called the Skill optimization Algorithm
(SOA) to solve optimization problems. The real inspiration for designing SOA is human
efforts to acquire and improve skills [52]. To choose the best response, the SOA starts by
creating a random population of different strings. The fitness value of each agent for the
present population's next generation is determined at each stage. Fitness is the encoded
value of the objective function's solution with appropriate performance indices, which
must be optimized. The procedure is repeated until the ideal and worldwide answer has
been identified. The SOA is used to determine the values of the best PIDN gain parame-
ters, including fuzzy scaling factors (Ki, Kz, and Ks) controllers for AGC and Kp, Ki, Kb,
and N. Figure.11. depicts the SOA flow chart for determining the appropriate optimiza-
tion parameter values [47-48]. Before creating the Neuro-fuzzy logic-based PIDN con-
troller, selecting the target function with the requirements and limits is more important.
The benchmarks determine which goal function is used to optimize the controller gain
settings. Performance criteria are assessed using time-domain specifications for peak
overshoots undershoots, settling time, and steady-state error.
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The number of search agents (n) = 30, the population size (n) = 100, the problem dimen-
sion (d) = 21, the damping coefficient (d) = 0.7, and the maximum number of iterations
(N) = 50 are all taken into account in this simulation. The constraint in equation (37) is
applied to the cost function values in this optimization.

2.4.1. The Proposed Optimization Process

The optimization procedure is driven by minimizing the fitness function that has been
selected. The frequency deviations in area 1, 2 and 3, (AF1, AF2, AFs), and the variation in
the tie-line power between the three areas (Ptiew, Ptiezs, and Ptieis) are the six key met-
rics for the optimization process. Due to the inclusion of p.u. measurements, the objec-
tive function in the suggested optimization approach contains all six measures without
weighing considerations. The suggested optimization procedure will make use of four
primary representations of objective functions.

The frequency and tie-line power deviations were minimized in the suggested optimiza-
tion technique in order to estimate the aforementioned objective functions. Additionally,
the measures are applied during simulations while considering the various current con-
straints. The two areas' targeted control objectives and the four objective functions can
be described as follows [55]:

ISE = (f Afy” + AR + Afs® + Ap,,,° + AP, 0s° + Apyeps”)dt (33)
ITSE = (f Af;® + Af,” + Af;® + APgier2” + APtiezs” + APiers”) t.dt (34)
IAE = ([ abs (Af;® + Af,? 4 Af3? + Apgie1z” + APtiezs” + APtiers”))dt (35)
ITAE = ([ abs(Af,® + Af,? + Afs* + APgie12” + APriezs” + APriers”)) t.dt (36)

Figure.9 depicts the essential steps of the SOA-based parameter tuning for the proposed
controller, with the different parameters in areas 1, 2 and 3. The following is an expres-
sion for the control parameters' considered limits: Under the following constraints, skill
optimization algorithms are used to tune controller parameters [56].

Kp, min < Kp < Kp, max
Ki,min < Ki < Ki, max
Kd, min <Kd < Kd, max
Nmin < N < Nmax (37)
K1, min < K1 < k1, max
K2, min < K2 < k2, max
K3, min < K3 < K3, max
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Figure.11.The flow chart of Skill Optimization Algorithm

The SOA is a population-based method, and its participants are actual individuals who
are continuously striving to increase their knowledge and skills. In actuality, members of
the SOA population are candidates for solving the optimization issue at hand. Based on
the positions of these members in the search space, the values of the problem decision
variables may be derived. The first placements of SOA members are decided by a ran-
dom method at the start of the algorithm. A mathematical model of the SOA population
may be developed using a matrix (Eq. 32)
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X1,1 X1,d X1,m
X = = xill xi‘d xi‘m (32)
XN,1 XN,d XN,m

In this case, X is the population matrix for the SOA, Xi is the ith candidate solution, xi, d
is the value of the dt variable that was suggested by the i population member, N is the
number of members of the SOA, and m is the number of variables.

Each member of the population has the potential to contribute to the issue's resolution.
In other words, a value for the target function is determined by putting each component
into the corresponding variable in the problem.

A F(X)
F- H = | (33)
Py

Nx1 F(XN) Nx1

The target function values can be formally described using a vector according to Eq (33).
F is a vector holding all objective function values, and Fi is the i*" candidate solution's ob-
jective function value. The best objective function value indicates the best member,
whereas the worst value identifies the worst member. Since the goal function and popu-
lation are modified on each iteration, the best and worst members of the population also
vary.

SOA's population is updated by exploration and exploitation. In the exploring phase,
you'll imitate learning from a pro. During the exploitation phase, you'll emulate indi-
vidual users' skill improvement. The update process in SOA design involves two phases:
exploration and exploitation. Exploration is a global search, while exploitation is a local
search. During the exploratory phase, SOA members followed the instructions of other
members rather than following the best member. This increases the algorithm's explora-
tion capability, allowing it to better scan the search space and find the optimum spot. In
the exploitation phase, the algorithm converges to improved likely solutions owing to
local search near each population member.

5.1 The First Phase: Learning from Experienced Individuals (Exploration)

During the initial phase, each member of the SOA acquires a talent under the supervi-
sion of an expert member of the community. The value of an individual's objective func-
tion is exactly proportionate to his or her contribution to the population as a whole. An
SOA member is considered to have an expert member when that member's conditions
are assessed to be superior to those of the other members based on the value of the ob-
jective function. If a member of the SOA has a higher objective function value than any
other member of the SOA, then the members with the highest objective function values
are included in the "experts set" for that member. After being selected at random, one of
these individuals will act as a mentor to the individual in question. Therefore, the chosen
specialist to lead the SOA member may not always be the best selection. In reality, the
best potential solution is a non-rotating member of the ex-experts set that applies to all
SOA members. Learning the skill, which refers to the algorithm's capacity for both glob-
al search and exploration, directs the population to various locations inside the search
space. This is the expert member's responsibility. If the new location estimated for each
member of the population increases the goal function's value, it may be deemed ac-
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ceptable. Consequently, the first phase of the update may be characterised using Equa-
tions (34) and (35) in line with the previously given concepts.

XPr: XP = x4+ X (Epg — 1 X x4), E; = Xy,

(34)
Where F, < F;and k is randomly selected from {1,2,...,N}, k= i
_ (XY FPY < F
i = { X;, else (35)

Here, X" is the newly calculated status of the i* candidate solution based on the first
phase, xr1 is its 1 i,d d* dimension, F™ is the value of its objective function, Ei is the ex-
pert who has been chosen to guide and train the it member of the population, Eiad de-
notes its d dimension, r is a random number in the range [0 1], and I is a random num-
ber that is chosen at random from

5.2 The second phase focuses on improving one's skills via individual effort and practise
(Exploitation)

During the second phase, every member of the population engages in autonomous
study and practise to further enhance the skills acquired in the previous phase. This no-
tion is modelled as local search in SOA in order to increase exploitation such that each
member in the vicinity of its position seeks better circumstances to increase the value of
its goal function. This is done with the intention of increasing exploitation as a whole
(which indicates the level of skill). Similar to the previous step, the newly computed lo-
cation in this phase is deemed acceptable if it increases the value of the objective func-
tion. Egs. (3) and (367) are utilised to offer a mathematical representation of the ideas

1-2r
Xig +—— X X0, 7 < 0.5

P2, ..P2_
Xi i xiq= b 4y cubj—1b ) (36)
jHrubj—lb;
Xig t . X x; 4, else

_ {Xiplf F' < F; 37)

X, =
: X;, else

Here, X2 denotes the newly computed status of the ith candidate solution based on the
second phase, x*? denotes its d* dimension, F2 denotes the value of its objective func-
tion, t denotes the iteration counter, and Ibj and ubj denote the lower and upper bounds
of the jt variable, respectively.

5.3 The Sequential Object Architecture's Repetition Process

After all SOA members have been brought up to date in accordance with the first and
second phases, the first iteration of SOA is complete. The algorithm will then proceed to
the next iteration, at which point the updating procedure will be carried out in line with
Equations (33) to (37). When the SOA has been fully implemented, the output will in-
clude the optimal solution. Figure 5 displays the flowchart for the SOA.

Table2 displays the mean value of the assessment findings of Unimodal functions of var-
ious techniques compared to SOA, as presented in [46]. In terms of optimization, it is ev-
ident from the mean values of evaluation results for unimodal functions that SOA is bet-
ter to any other approach. Multimodal functions have a comparable pattern. In Table 3,
the mean values for unimodal functions F1 through F4 demonstrating the superiority of
SOA are provided, although a similar pattern is observed for higher levels of function
beyond F4.
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Table 2 : Mean values of Evaluation results of Unimodal functions

GA

PSO GSA TLBO | GWO MVO WOA TSA | MPA | RFO | SOA

21.2698
1

0.00051 | 7.68E-17 | 4.29E | 1.3E- | 0.20712 | 6.5E-82 | 3.21E | 5.99E | 6.46E 0
-61 100 5 -82 -86 -84

1.56953
1

0.59116 | 3.95E-08 | 4.47E | 1.8E- | 0.30035 | 2.2E-175 | 1.82E | 2.67E | 6.78E | 4.6E
1 -32 58 4 -48 -47 -46 -191

2081.24
5

1393.67 | 185.062 | 1.03E | 6.47E | 21.4485 | 6629.85 | 3.65E | 7.73E | 4.67E 0
2 -19 -29 4 6 -21 -23 -58

S T TN TR T

2.69652

4.39557 | 1.05E-08 | 3.98E | 9.73E | 0.62842 | 35.2111 | 1.01E | 1.23E | 1.34E | 1.9E
-25 -25 1 7 -05 -32 -35 -181

2.4.2. Implementation of AGC scheme

The objective function must be carefully chosen for the controller to operate at its best.
AGC's (Afi) and APse goals enhance post-disturbance system responsiveness. In compari-
son; an ISE-tuned controller can generate a strong control signal that could be hazardous
in the event of an unexpected imbalance. A smaller initial weight can be offered since
the error signal generated at the time of the load imbalance has a larger magnitude.
While ITAE functions, which check the system's transient response, can severely punish
errors that happen late. Additionally, ISE and ITSE offer outstanding step responses and
can settle more quickly due to the greater weight given to time parameters. Since ISE
provides the response with the least amount of oscillation and overshoot [53].

The SOA technique covered in the previous part is used in AGC, and the procedures are
carried out under the flowchart in Figure. 10. Here, a population size of 100 and a max-
imum number of iterations of 50 have been taken into account. The outer and inner
loops for the thermal, hydro, and wind power sources are the primary controller param-
eters for the cascaded ANF-PIDF-PIDF controller. Table.3 shows the comparative per-
formance for different indices criteria considering various optimization techniques such
as SOA, PSO, and GA with the proposed controller. The results show that the SOA tech-
nique-based present controller performs better than the GA and PSO technique-based
present controller when all four performance indices ISE, IAE, ITSE, and ITAE are con-
sidered. Figure.12 clearly reveals that the integral squared error (ISE) is a better perfor-
mance index than others [57-59].

Table3.Comparative performance for different indices criteria

Objective function

Controller with techniques ISE ITSE ITAE IAE

(x107%) (x107%) (x107%) (x107%)

SOA-ANF-PIDF-PIDF 1.4770 1.575 2.939 1.148
PSO-ANF-PIDF-PIDF 1.6670 1.7635 5.225 1.3750
GA-ANF-PIDF-PIDF 2.0690 1.9610 8.360 1.7270

do0i:10.20944/preprints202211.0422.v1
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Figure.12. Various performance indices comparison considering proposed SOA

3. Results and Discussion

The AGC problems of three unequal-area interconnected power systems are con-
sidered with the linearity and non-linearity systems. A hybrid combination of adaptive
Neuro-Fuzzy and cascaded PIDF is used to evaluate multi-area multi-source power sys-
tems' frequency and tie-line responses. The simulations were carried out with PIDF,
PIDF-PIDF, and adaptive Neuro-Fuzzy, controllers, and the results have been compared.
Table 4 shows optimized controller gains and scaling factor values of three unequal are-
as of the hydro-thermal system incorporating wind energy using Skill Optimization Al-
gorithm and considering traditional PIDF cascaded PIDF, and optimal Neuro-Fuzzy cas-
caded PIDF controller We have shown the Scaling Factors -Kpi, Kii, Kpias well as Ni for
Area 1,Area 2 and Area 3 for six different cases. In the first case, the gains and scaling
factors are obtained using a PIDF controller. In the Second case, they are obtained using
a PIDF-PIDF controller. In the third case, they are obtained using an ANF-PIDF-PIDF
controller. In the fourth case, they are obtained using a PIDF with GRC. In the fifth case,
they are obtained with a cascaded PIDF with GRC. In the sixth case, they are obtained
with an ANF-PIDF-PIDF with GRC. Through the results obtained, we can infer that sys-
tem with a conventional PIDF controller performs poorly compared to a cascaded PIDF
and the optimal Neuro-Fuzzy-cascaded PIDF controller performs even better than the
cascaded PIDF controller[60]. For instance, the Nifor PIDF is 49.85,59.571 and 45.679 for
Area 1,Area 2 and Area 3 respectively. The Ni for cascaded PIDF is 49.85,57.571 and
35.679 35.679 for the three areas respectively while it is even lower for ANF-PIDF-PIDF
with 49.85,57.571, and 35.679 respectively for the three areas. This can also be noticed
when the controllers are used with GRC. For instance, the Ni for PIDF with GRC is
96.06,97.7 and 98.97 for Area 1,Area 2 and Area 3 respectively. The Ni for cascaded PIDF
with GRC is 69.85,57.571 and 55.679 for the three areas respectively while it is even low-
er for ANF-PIDF-PIDF with GRC with 75.11,72.57, and 47.034 respectively for the three
areas.
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Table.4: Optimized controller gains and scaling factors values of three unequal areas hydro-
thermal system incorporating wind energy using Skill Optimization Algorithm

Controllers Gains/scaling factors Area-1 Area-2 Area-3
Kpi~ 0.2062 0.1474 0.261

PIDF Kii* 0.1489 0.2467 0.2460

Kpi® 0.0878 0.2837 0.0762

N;™ 49.85 59.571 45.679

Kpi~ 0.1627 0.1374 0.251

PIDF-PIDF Kii" 0.1389 0.2367 0.2560
Kpi" 0.0878 0.2737 0.0362

N;i* 49.85 57.571 35.679

Kpi~ 0.1627 0.1374 0.251

ANF-PIDE-PIDF Kn* 0.1389 0.2367 0.2560
Kpi 0.0378 0.2737 0.0362

Ni* 49.85 57.571 35.679

Ky 0.224 0.1940 0.2696

Ko™ 0.195 0.0185 0.2085

Kasi® 0.20951 0.2825 0.1931

Kpi™ 0.231 0.152 0.322

PIDF with GRC Kii* 0.282 0.291 0.0291
Kpi® 0.0062 0.0025 0.0212

N;* 96.06 97.7 98.97

Kpi™ 0.6766 0.698 0.425

PIDF-PIDF with Kii® 0.442 0.1569 0.271
GRC Kpi" 0.2486 0.0457 0.0995

Ni* 69.85 57.571 55.679

Kpi® 0.3093 0.2522 0.5966

Kii" 0.2735 0.552 0.3548

Kpi" 0.671 0.565 0.4452

ANF-PIDF-PIDF N;* 75.11 72.57 47.034
with GRC Kyi" 0.0324 0.4525 0.0948
Kai® 1.19 1.02 1.095

Kasi® 0.0899 0.0978 0.0877

3.1. System dynamics research using various controllers and modeling

Figure.13. Shows that the dynamic responses comparison with various controllers
with and without considering wind power plants (WPP).The optimum plant parameter
for three areas of the power system is taken from Table 4. The results illustrate that the
optimal Neuro-Fuzzy-PIDE-PIDF has an excellent dynamic response over the other con-
trollers regarding settling time, overshoot and undershoot as illustrated in Table 5. 6 dif-
ferent frequency deviations are considered. The Undershoot, Overshoot and Settling
time of 6 different cases of controllers — PIDF without wind, PIDF-PIDF without wind,
ANE-PIDF-PIDF without wind, PIDF with wind, PIDF-PIDF with wind, ANF-PIDE-
PIDF with wind are presented for each frequency deviation. In Figure 13. (a), the data
are presented for the deviation in area 1 frequency. In figure 13. (b), the data are present-
ed for the deviation in area 2 frequency. In figure 13. (c), the data are presented for the
deviation in area 3 frequency. In figure 13. (d), the data are presented for the deviation in
tie-line power connecting area 1 and area 2. In figure 13. (e), the data are presented for
the deviation in tie-line power connecting area 2 and area 3. In figure 13. (f), the data are
presented for the deviation in tie-line power connecting area 1 and area 3. In the cases,
the load of the hydrothermal system is efficiently shared by integrating wind power
plant units into hydrothermal units through parallel operation, which also considerably
enhances the tie line power exchange from one area to another. Overall, it can be in-
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ferred that the ANF-PIDF-PIDF performs way better than the PIDF-PIDF and PIDF con-

trollers.
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Figure.13. the dynamic responses comparison with various controllers with and without considering wind power plants. (a) devia-
tion in area-1 frequency , (b) deviation in area-2 frequency, (c) deviation in area-3 frequency (d) deviation in tie line power connect-
ing area-1 and area-2, (e) deviation in tie line power connecting area-2 and area-3, (f) deviation in tie line power connecting area-1

and area-3
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The load of the hydrothermal system is efficiently shared by integrating wind power
plant units into hydrothermal units through parallel operation, which also considerably
enhances the tie line power exchange from one area to another. In comparison to the on-
ly PIDF controller, the percentage improvement in overshoot (OS) and settling time (Ts)
of Afi with the optimal adaptive NF-PIDF-PIDF controller is 69.81% and 48.87%, respec-
tively. Similarly, the suggested adaptive NF-PIDF-PIDF controller improves overshoot
(OS) and settling time (Ts) of Af2 by 67.65% and 25.47%, respectively, compared to the
traditional PIDF controller. Similarly, Afs improves overshoot (OS) and settling time (Ts)
by 59% and 26.73%, respectively, compared to the traditional PIDF controller. In addi-
tion, as compared to the simple PIDF, classical PIDF controller, and adaptive NF-PIDF-
PIDF controller improves A Pyes; A Priezs and A Prie1z overshoot (OS) and settling time (Ts)
by (82.85%, 44.58%), (85.26%, 44.78%) and (58.34%, 26%) respectively. As a result of the
investigation, as mentioned earlier, the SOA-based adaptive NF-PIDF-PIDF controller
claims to provide significant improvements. Tables also show that the proposed control-
ler performed better in terms of response. The proposed controller's settling time (ts)
was frequently shorter than that of a PIDF controller. Furthermore, we discovered that
the oscillation of the proposed controller is appropriate for load frequency management.

Table.5: Performance comparison PIDF, cascaded PIDF and ANF-PIDF-PIDF controllers with and without wind power plants

Control action Controllers Undershoot Overshoot Ts(s)
PIDF with wind -6.1x1073 2.24x1073 15
PIDF without wind -5.08x1073 3.19x1073 16
Afy (Hz) PIDF-PIDF with wind -2.88x1073 1.06x1073 14
PIDF-PIDF without wind -5.48x1073 1.29x1073 14.5
ANF-PIDF-PIDF with wind -3.17x1073 1.01x1073 8.5
ANF-PIDF-PIDF without wind -5.58x1073 1.3x1073 13
PIDF with wind -4.9x1073 2.95x1073 11.5
PIDF without wind -5.08x1073 2.14x1073 20
Af, (Hz) PIDF-PIDF with wind -2.97x1073 1.15x1073 12
PIDF-PIDF without wind -5.18x1073 1.4x1073 12.5
ANF- PIDF-PIDF with wind -3.03x1073 1.1x1073 105
ANF- PIDF-PIDF without wind -6x1073 1.1x1073 12
PIDF with wind -5.5x1073 1.7x1073 13
Af; (Hz) PIDF without wind -4.94x1073 1.89x1073 19.5
PIDF-PIDF with wind -2.89x1073 1.06x1073 11.5
PIDF-PIDF without wind -5.88x1073 1.1x1073 11.5
ANF-PIDF-PIDF with wind -3.13x1073 0.87x1073 105
ANF-PIDF-PIDF without wind -5.42x1073 1.47x1073 11
PIDF with wind -2.18x107* 2.19x107* 25
APgier2 (p.U) PIDF without wind -5.66x107* 3.5x107* 19
PIDF-PIDF with wind -9.42x107° 3.13x1075 25
PIDF-PIDF without wind -1.02x107* 0.59x107* 275
ANF-PIDF-PIDF with wind -6.7x107° 4.01x107° 18.5
ANF-PIDF-PIDF without wind -6.8x107° 4.31x107° 22
PIDF with wind -1.85x107* 2.42x107* 195
APyies (p.U) PIDF without wind -5.66x10~* 3.5x107* 29.5
PIDF-PIDF with wind -6.5x107° 9.78x107° 28.5
PIDF-PIDF without wind -6.64x107* 1.1x107* 20.5

ANF- PIDF-PIDF with wind -1.21x107* 0.84x10~* 175


https://doi.org/10.20944/preprints202211.0422.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2022 d0i:10.20944/preprints202211.0422.v1

ANF-PIDF-PIDF without wind -1.17x10~* 0.96x10~* 185
PIDF with wind 1.4x107% 0.97x10~* 20.5
APyer3 (p.U) PIDF without wind -7.4x1075 6.82x10°5 29
PIDF-PIDF with wind -0.25x1075 3.82x1075 235
PIDF-PIDF without wind -5.66x1075 11.3x1075 20.5
ANF-PIDF-PIDF with wind -2.3x1078 0.92x1075 16,5
ANF-PIDF-PIDF without wind -4.74x1075 7.5x1075 18

3.2. Dynamic system response analysis considering the impact of non-linearity

Wind energy sources were incorporated into each area using an AGC at normal in-
cidence. The skill optimization technique was used to optimize the suggested controller
adaptive NF-PIDF-PIDF settings. The non-linearity system constraint in GRC is consid-
ered and optimized using the same control parameters as in the existing models. The
critical analysis of the dynamic response in Figure.14 (a)-(f) clearly demonstrates that the
proposed ANF-PIDE-PIDF controller incorporating wind power plants (WPPs) consider-
ing generation rate constraint (GRC) gives improved dynamic performance in terms of
peak deviation, oscillation, and settling time. Table 6 compares the suggested optimal
adaptive NF-PIDF-PIDF controller with the traditional cascaded PIDF and simple PIDF
controller with a wind power plant and displays the percentage improvement in under-
shoot and settling time. In comparison to the only PIDF controller, the percentage im-
provement in overshoot (OS) and settling time (Ts) of Afl with the optimal adaptive NF-
PIDE-PIDF controller is 68.21% and 43.88%, respectively. Similarly, the suggested adap-
tive NF-PIDEF-PIDF controller improves overshoot (OS) and settling time (Ts) of Af2 by
65.75% and 23.57%, respectively, compared to the traditional PIDF controller. Similarly,
Af3 improves overshoot (OS) and settling time (Ts) by 57% and 22.83%, respectively,
compared to the traditional PIDF controller. In addition, as compared to the simple
PIDF, classical PIDF controller, and adaptive NF-PIDF-PIDF controller improves A Pyess ;
APtiezz and A Pie1z overshoot (OS) and settling time (Ts) by (80.89%, 40.78%), (83.46%,
40.58%) and (56.24%, 24%) respectively. As a result of the investigation, as mentioned
earlier, the SOA-based adaptive NF-PIDF-PIDF controller claims to provide significant
improvements.
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Figure.14.The dynamic responses comparison with various controllers with and without considering wind power plants (WPP)
(a) deviation in area-1 frequency , (b) deviation in area-2 frequency, (c) deviation in area-3 frequency (d) deviation in tie line
power connecting area-1 and area-2, (e) deviation in tie line power connecting area-2 and area-3, (f) deviation in tie line

power connecting area-1 and area-3
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Table.6: Performance comparison PIDF, cascaded PIDF and ANF-PIDF-PIDF controller by considering non-linearity (GRC)

Control action controllers Undershoot Overshoot Settling time(s)

PIDF -4.68x1073 0.55x1073 32
Afy (Hz) PIDF-PIDF 5.11x1073 0.54x1073 27
ANF-PIDF-PIDF -4.28x1073 0.21x1073 19

PIDF -4.6x1073 0.50x1073 245
Af; (Hz) PIDF-PIDF 5.6x1073 0.427x103 23
ANF-PIDF-PIDF -4.01x1073 0.2x1073 19
PIDF -4.62x1073 0.54x1073 22

Afs (Hz) PIDF-PIDF -4.48x1073 0.23x1073 20.5
ANF-PIDF-PIDF -3.97x1073 0.32x1073 18
PIDF -1.6x107* 6.86x1075 45
APyie1 (p.u) PIDF-PIDF -3.04x107* 3.7x107* 40
ANF-PIDF-PIDF -2.6x107* 0.14x10°¢ 28
PIDF -1.73x107° 9.01x107° 45
APtiezs (p.U) PIDF-PIDF -6.5x1075 0.97x107° 40
ANF-PIDF-PIDF -8.3x1076 1.4x1075 28
PIDF -2.99x107° 6.01x10°5 48
APiers (p.u) PIDF-PIDF 15x10°° 3.88x10~* 46
ANF-PIDF-PIDF -4.65x107° 2.69x1075 38

3.3. Dynamics response performance considering parallel AC-HVDC tie-lines

The results presented is for the case considering a hydrothermal integrated wind
farm system that includes a parallel AC-HVDC tie-line, the adaptive Neuro-Fuzzy cas-
caded PIDF controller, and the SOA optimization algorithm. Figure. 15 (a-f) compares
the parallel AC-HVDC tie-lines’ dynamic response with the existing system for different
frequency deviations through 6 cases. For improved power transfer among intercon-
nected areas, AC tie-lines are being considered to be replaced by AC/HVDC tie-lines.
The system considered the present controller, whose performance are depicted in Figure
15 (a)-(f). The response performance comparison reveals that the AC/HVDC tie-lines has
less settling time, oscillation number, and peak deviations. Moreover the crucial finding
from Figure 15 (a)—(f) is that the system frequency deviations and inter-area tie-power
are fast driven back to zero when using the suggested method.

In Figure. 15(a), the dynamic response of AC tie-line and parallel AC-HVDC tie-
lines are compared considering deviation in area 1 frequency. In Figure. 15(b), the dy-
namic response of AC tie-line and parallel AC-HVDC tie-lines are compared in area 2
frequency. In Figure. 15(c), the dynamic response of AC tie-line and parallel AC-HVDC
tie-lines are compared in area 3 frequency. In Figure. 15(d), the dynamic response of AC
tie-line and parallel AC-HVDC tie-lines are compared considering deviation in tie line
power connecting area-1 and area-2. In Figure. 15(e), the dynamic response of AC tie-
line and parallel AC-HVDC tie-lines are compared considering deviation in tie line
power connecting area-2 and area-3. In Figure. 15(f), the dynamic response of AC tie-line
and parallel AC-HVDC tie-lines are compared considering deviation in tie line power
connecting area-1 and area-3. The response performance comparison reveals that the
AC/HVDC tie-lines have less settling time, peak oscillation, and peak deviations.
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Figure.15. The dynamic responses comparison of AC tie-line with parallel AC-HVDC tie-line considering wind power plants
(WPP). deviation in area-1 frequency , (b) deviation in area-2 frequency, (c) deviation in area-3 frequency (d) deviation in tie line
power connecting area-1 and area-2, (e) deviation in tie line power connecting area-2 and area-3, (f) deviation in tie line power con-
necting area-1 and area-3

3.4. Sensitivity analysis of the Proposed Controller

The dynamic responses for various loading conditions with optimal value and sys-
tem loading situations with optimal nominal conditions are shown in Figures.16 and 17.
It has been proven that every dynamic response was optimal. A sensitivity analysis of a
controller is employed to assess its resilience in different perturbing situations, like pa-
rameter changes, system loading variations, and system nonlinearities. The sensitivity
analysis is examined in this section by adjusting the system loading with various magni-
tudes for each area, +25% loading systems. The parameters Kpss, Tpss, Bs, Ds, and Tw, devi-
ate from their nominal values as the system loading changes. Those values are given in
Appendix-A. SOA schemes are used to optimize the controller parameters for this sys-
tem. Table 7 shows the dynamic system responses and compares them to the corre-
sponding 50% loading. Under both loading circumstances, the reactions are almost
identical. It could be inferred that the presented adaptive Neuro-Fuzzy-cascaded PIDF
controller's optimal values at nominal loading are reliable and that the controller's set-
tings do not need to be reset for substantial variations in systems loading.
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deviation in tie line power connecting area-1 and area-2 versus time

Table.7: The performance compares the Effect of changing the Gains and time Constant under different loading conditions.

Control action Loading conditions Undershoot Overshoot Settling time(s)

50% -3.154x1073 1.222x1073 13.5
Afi (Hz) 75% -3.164x1073 1.183x1073 15.5
25% -3.115x1073 1.074x1073 11.5

50% -3.154x1073 1.174x1073 11

Af, (H2) 75% -3.163x1073 1.126x1073 11
25% -3.115x1073 0.997x1073 10.5

Afs (H2) 50% -3.153x1073 0.947x1073 11
75% -3.162x1073 0.85x1073 11

25% -3.115x1073 0.847x1073 9.5

50% -1.049x10~* 3.86x10~* 23

APiie12 (p.U) 75% -1.337x107* 0.421x1075 27
25% -1.088x10~* 0.346x10~* 18
50% -5.93x10°° 3.44x1075 20.5

APiiez3 (p-u) 75% -6.37x10°5 3.58x10°5 22
25% -4.97x107° 2.575x1075 15.5

50% -2.94x10"° 6.14x1075 17
APiie1s (p.U) 75% -3.02x1075 6.95x1075 18.5
25% -2.28x107° 5.52x1075 16.5
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Table 5 the performance compares the Effect of changing the Gains and time Constant
under different loading condition. According to numerical evaluation the result shows
the dynamic system responses compared to the corresponding 50% loading. Under both
loading circumstances, the reactions are almost to be identical. Tables also show that
25% loading condition the settling time (ts) was shorter than that of 75% loading.

4. Conclusion

In this research, a software novelty is presented through the maiden application of the
skill optimization for the gains of the scaling factors of controller for AGC applications.
The SOA is shown to be better in terms of convergence speed. The comparison of the
SOA with other optimization algorithms for unimodal functions is presented to demon-
strate this. Apart from this software novelty, a technical novelty is presented through the
use of an adaptive Neuro-Fuzzy cascaded PIDF-AGC for improving the performances of
a hybrid hydrothermal power system incorporated with wind energy sources. The pre-
sent adaptive Neuro-Fuzzy cascaded PIDF controller's input-output scaling factors and
gains are efficiently optimized using the novel Skill optimization Algorithm (SOA). Re-
garding efficiency, the current SOA- adaptive Neuro-Fuzzy cascaded PIDF controller is
shown to be more efficient than the classic SOA-PIDF and cascaded PIDF controller. Fur-
thermore, many scenarios are built to test the proposed controller's resilience and sensi-
tivity to different loading situations, system parameter fluctuations, and nonlinearity.
According to the simulation outcomes, the proposed SOA- adaptive Neuro-Fuzzy cas-
caded PIDF controller is more effective than traditional controllers. The simulation re-
sults demonstrate that the optimized adaptive Neuro-Fuzzy cascaded PIDF controller
assures the least amount of damping oscillation with a better settling time compared to a
simple PIDF controller response with and without addressing the effects of nonlinearity.
Furthermore, the impact of the parallel AC-HVDC tie-line system on the dynamic sys-
tem is compared to that of the conventional AC tie-line system, and better dynamic per-
formances are obtained. The effectiveness of the proposed controller was evaluated us-
ing a sensitivity analysis by changing the system parameters by + 25% loading. The load
of the hydrothermal system is efficiently shared by integrating wind power plant units
into hydrothermal units through parallel operation, which also considerably enhances
the tie line power exchange from one area to another. As a result, in the case of a multi-
area multi-source AGC power system, the skill optimization algorithm-based adaptive
Neuro-Fuzzy cascaded PIDF controller may be utilized to manage hydrothermal power
frequency and tie-line power efficiently. The optimized adaptive Neuro-Fuzzy cascaded
PIDF-based AGC controller integrating wind energy sources reduces oscillation ampli-
tude on average by 70%, significantly less than the solely conventional controllers.
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Appendix A

Table Al. Abbreviations and Nomenclature

Acronyms Definition
AGC Automatic Generation Control
PIDF proportional-integral-derivative with filter
ANN Artificial Neural Network
GRC Generation Rate Constant
SOA Skill Optimization Algorithm
ISE integral square error
HVDC high voltage direct current
ACE area control error
AVR automatic voltage regulator
ANF Adaptive Neuro-fuzzy controller
STPP Solar Thermal Power Plant
ALFC automatic load frequency control
SLD Step Load Disturbance
ITAE Integral of the time weighted absolute error
ITSE Integral time square error
IAE Integral absolute error
WPPs Wind Power Plants
RTP Reheated Thermal Power
GTRT Reheated Turbine
GGRT Speed Governing method
HPP Hydro power plant
SLP Step Load Perturbations
FIS Fuzzy Interfacing System
FLC Fuzzy Logic Control
Nomenclature Definition
f nominal system frequency (Hz)
i subscript referred to area i (1-3)/ superscript denotes optimum value
Pri rated power of area i (MW)
Hi inertia constant of area i (s)
T12, T23, T13 synchronizing coefficients
Ri governor speed regulation parameter of area i (Hz/p.u MW)
Tgi steam governor time constant of area i (s)
Kxi steam turbine reheat coefficient of area i
Tri steam turbine reheat time constant of area i (s)
Ta steam turbine time constant of area i (s)
Bi frequency bias constant of area i
Tpi 2Hi/(f _ Di)
Kopi 1/Di (Hz/p.u)
Bi area frequency response characteristics of area i (=Di + 1/Ri)
Tw water starting time for hydro turbine (s)
Afi incremental change in frequency of area i (Hz)

APgi incremental generation of area i (p.u)
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APtieij incremental change in tie line power connecting between area i and area j (p.u)
Di APDi/Afi (p.u/Hz)

K, Ki,Kp The gains of proportional, integral, derivative respectively

N Low pass filter coefficient

] cost index

* superscript denotes optimum value

Appendix B

System data at nominal condition:

Pr1 =2000MW, Pr2= 6000MW, P:s = 12000MW, Assume Initial loading = 50%, f = 60Hz, B1
=B2=R3=0.4250 p.uMW/Hz, Ri = 2.40 Hz/per unit MW, Tg = 0.080 s, Ptie,max =200
MW, Tr =10s, Kr=0.5 Hi = 5s, Tt = 0.3s, , Di = 8.33%10-3 p.u. MW/Hz, al12=-1/3, a23=
-1/2, al3=-1/6, T12 = T2s= T13= 0.0866 p.u.MW/rad, TR =5s, Kp1 = Kp2 = Kp3 =120
Hz/p.uMW, Tpl = Tp2 = Tp3 = 20s. Wind power: 50*2MW, Kw1=1.4, Kw2=1.25,
Kw3=0.080, Tw1=0.6sec, Tw2=0.040sec. Hydro plant: Electrical governor parameters,
kdh =0.270, kph = 1.0, kih = 2.40, Tw = 1.0s.

HVDC: KDC = 0.5, TDC=0.03s

Table B1. Variation of parameters with varying system loading

System Loading KpsinHz/ p.u.MW Thps, iN Sec. D, inp.u. MW/Hz
50% 120.0 20.0 8.3310°°
75% 80 13.33 0.0125
25% 240 40 0.004167
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