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Abstract 

The rapid seismic performance assessment of large structural inventories has become a necessity. 
This is essential for regional seismic risk assessment and management. However, traditional 
approaches for estimating the seismic response of structures are either computationally demanding 
or insufficiently accurate, highlighting the need for new techniques such as data-driven approaches. 
This paper thus aims to provide a systematic review of machine learning applications in seismic 
performance assessment. By synthesizing trends, key challenges, and future opportunities. A 
systematic review of 150 peer-reviewed articles published in scopus indexed journals between 2016 
and 2025 was conducted using a targeted search string, followed by bibliometric analysis to 
highlight the research landscape. A classification of ML techniques is presented, followed by a brief 
overview of the commonly used ML models in seismic performance assessment applications. 
Overall, the analysis of the reviewed papers revealed three primary applications: (i) failure mode 
identification and capacity prediction, (ii) seismic demand and damage state prediction, and (iii) 
seismic response time series prediction. While the findings underscore the potential of ML in 
advancing seismic performance assessment, several challenges persist, including data scarcity, the 
black-box nature of ML models, limited generalization capabilities, and high computational costs. 
Potential pathways forward include integrating physics into ML model training, expanding 
annotated datasets, adapting state of-the-art algorithms for structural engineering applications. 

Keywords: machine learning; seismic performance assessment; surrogate modeling; probabilistic 
fragility analysis; nonlinear structural response 

 

1. Introduction 

Earthquakes are among the most devastating natural disasters in the world. They threaten 
human life, safety, and the national economy [1]. Over the past decades, significant advances, notably 
the shift in the design methodology from code-based to performance-based principles, have 
improved the resilience of structures against seismic events [2]. Nevertheless, conventional methods 
for seismic performance assessment still face critical limitations [3]. High-fidelity numerical 
simulations and detailed analytical evaluations can capture complex structural behavior [4], but they 
are computationally intensive and time-consuming, rendering them impractical for evaluating 
extensive structures inventories in near real-time, such as post-disaster evaluations. On the other 
hand, simplified empirical approaches and code-based prescriptive methods sacrifice accuracy and 
often rely on coarse assumptions that may not generalize well to real-world structures. These 
challenges underscore a pressing need for novel, efficient, and reliable techniques to predict how 
structures will perform during earthquakes. 
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ML methods are generally divided into three large categories: (i) supervised learning, (ii) 
unsupervised learning, and (iii) reinforcement learning (RL) [5]. The hierarchical structure of popular 
ML algorithms, mainly the first two categories, supervised and unsupervised, is illustrated in Figure 
1. Supervised, unsupervised, and reinforcement learning have been increasingly applied in 
earthquake engineering for tasks such as seismic demand prediction, damage state classification, and 
structural control. With increasing computational power and data availability, ML applications in 
seismic performance assessment have grown rapidly, enabling models to capture complex 
relationships between structural features, seismic demands, and damage outcomes. Several review 
studies have summarized ML applications in structural and earthquake engineering, highlighting 
progress across different tasks. Table 1 provides a concise overview of representative surveys: 

Table 1. Representative review studies on ML applications in earthquake engineering. 

References Titles 

Afshar et al. 2024 [6] Machine-Learning Applications in Structural Response Prediction: A Review 

Xie 2024 [7] Deep Learning in Earthquake Engineering: A Comprehensive Review 

Soleimani et al. 2022 [8] 
State-of-the-Art Review on Probabilistic Seismic Demand Models of Bridges: 

Machine-Learning Application 

Sun et al. 2021 [9] 
Machine learning applications for building structural design and performance 

assessment: State-of-the-art review 
Jimenez et al. 2024 [10] Machine Learning for Seismic Vulnerability Assessment: A Review 

Thai 2022 [11] Machine learning for structural engineering: A state-of-the-art review 

Xie et al. 2020 [12] 
The promise of implementing machine learning in earthquake engineering: A state-

of-the-art review 

These studies demonstrate the growing interest in leveraging ML for seismic applications; 
however, they do not provide a holistic view of state-of-the-art ML and deep learning methods across 
all seismic performance assessment tasks, nor do they offer comprehensive bibliometric mapping of 
the field. 

In light of the above, the present review aims to fill this critical gap by providing a 
comprehensive, up-to-date synthesis of ML and DL applications in seismic performance assessment. 
Over 150 peer-reviewed studies published between 2016 and 2025 are reviewed, covering machine 
learning techniques applied to evaluate or predict the seismic performance of structures. To organize 
the discussion, the literature is grouped into three primary application areas: (i) ML models for 
identifying failure modes and predicting structural capacity, (ii) ML-driven prediction of seismic 
demands and damage states, and (iii) data-driven simulation of structural response time series under 
earthquake loading. For each category, we critically examine representative studies, highlighting the 
achievements, limitations, and data requirements of the proposed ML models. We further discuss 
cross-cutting challenges such as limited training data, the “black-box” nature of complex models, and 
issues of generalization and bias that currently hinder broader ML adoption in earthquake 
engineering. In doing so, this review not only summarizes the state-of-the-art but also draws 
attention to knowledge gaps and future research opportunities. 
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Figure 1. Detailed classification of ML techniques. 

2. Research Trend Analysis 

A systematic academic literature review is conducted to thoroughly examine the applications of 
ML in seismic performance assessment of structures and infrastructure. This process involves a 
thorough search and analysis of relevant articles and visualizing them using viewer software [13]. 
The viewer mainly maps scientific knowledge by analyzing large academic datasets, allowing for a 
clear depiction of research impact, citation patterns, and thematic clusters within a given field. For 
this purpose, the Scopus database was selected due to its indexation of a wide range of journals, 
conference proceedings, and books relevant to civil engineering [14]. The search string used was 
[TITLE-ABS-KEY ((“ML” OR “Data-Driven” OR Surrogate OR “Deep Learning”) AND Seismic AND 
(“Performance” OR “Behavior” OR “Response”) AND (“Assessment” OR “Prediction” OR 
“Forecast”))]. The search string was created in such a way that it retrieves all the articles that included 
specific keywords in their titles, abstracts, or keywords. The initial search pulled a total of 2044 
papers. However, it was clear that articles that were out of the scope of this study were present. 
Various filters were applied to refine the search string further to narrow the search area. Only articles 
from 2016 to 2025 were considered in English within the subject area of Engineering, and only papers 
from well-known journals in Structural Earthquake Engineering were targeted. After applying these 
filters and removing duplicates, 288 articles remained. The selected articles were screened carefully 
based on their titles, abstracts, and, when necessary, full-text reviews. 
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After screening, 150 articles were deemed highly relevant and selected for inclusion in the final 
analysis. The detailed process followed is illustrated in Figure 2. This workflow depicts the steps 
involved, from database selection to the final bibliometric analysis. The selected 150 articles were 
processed to perform bibliometric analysis and generate visual maps of the research landscape [13]. 
Author-keyword co-occurrence analysis was conducted to map the relationships between different 
keywords as shown in Figure 3. In this visualization, nodes represent specific keywords depending 
on the type of analysis. The size of each node reflects the frequency of that term within the dataset. 
The connections between nodes indicate the strength. In the analysis of author-keyword co-
occurrence, it shows keyword co-occurrence. The connections in the bibliographic coupling map 
show the number of shared references between documents. The closer the nodes are to each other, 
the stronger the relationship between the concepts. The different colors on each map show different 
groups and clusters within the dataset. 

 

Figure 2. Workflow for systematic literature review and bibliometric analysis. 
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Figure 3. Keywords co-occurrence network with the threshold of 3. 

The analysis of viewer-generated maps exhibits key research trends and areas of focus. The most 
prominent keywords are ML, deep learning, seismic performance assessment, seismic response 
prediction, and damage state prediction. These keywords are close to each other. Their proximity on 
the map indicates a strong interconnection between these keywords. It is also evident from the maps 
that seismic performance assessment and various other similar topics, such as seismic response 
prediction and damage state prediction, are intersected with ML and deep learning. The 
bibliographic coupling maps highlight the different research groups present in the dataset. 

The increase in integrating soft computing and advanced ML techniques into seismic 
performance assessment is clear from Figure 4, showing yearly trends in the number of publications 
in this research area from 2016 to 2025. 

 

Figure 4. Yearly trend of document publications related to ML applications in seismic performance assessment. 

3. Overview of ML Models 

This section may be divided by subheadings. It should provide a concise and precise description 
of the experimental results, their interpretation, as well as the experimental conclusions that can be 
drawn. 
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3.1. Regression-Based Algorithms: Linear and Polynomial Regression 

Linear (or simple) regression is the most basic and widely used algorithm in ML and statistics, 
mainly for continuous variable prediction. It models the relationship between independent input 
variables (mixed discrete or continuous) and continuous dependent output variables by fitting a 
linear function to the observed data, as shown in Figure 5a. The model parameters are typically 
optimized by minimizing the mean squared error (MSE) between predicted and actual values, 
making this approach a frequent initial choice for tasks such as structural drift or deformation 
estimation. When the underlying relationship exhibits higher complexity or nonlinearity, polynomial 
regression extends the basic linear approach by adding higher-order terms, thereby capturing more 
complex response trends. In seismic performance assessments, datasets are often high-dimensional 
and prone to multicollinearity. Under these conditions, lasso (L1 regularization) and ridge (L2 
regularization) become essential. By penalizing large coefficients, both forms of regularization reduce 
overfitting and enhance model interpretability [15]. 

Logistic regression is the most widely used algorithm for classification tasks, including both 
binary and multi-class predictions. It employs sigmoid functions, as shown in Figure 5b. This is 
particularly valuable when distinguishing between two classes, such as damaged and undamaged 
structures. or assigning multiple performance categories via one-vs.-all or SoftMax functions. 
Applications in seismic engineering include categorizing structural performance levels or predicting 
failure states. A single linear decision boundary is not enough to model relationships in non-linear 
or extreme datasets. To combat this issue, various regularization techniques (namely L1 and L2) are 
used to regularize the models, improve the generalization, and prevent overfitting, especially in 
feature space on high-dimensional or noisy features [15]. 

  
(a) (b) 

Figure 5. Regression-based algorithms: (a) linear; and (b) logistic regression. 

3.2. Ensemble Learning 

Ensemble techniques combine individual models to improve the model’s stability and predictive 
power. This technique permits higher predictive performance by combining multiple ML models into 
one predictive model. Some models perform well in modeling one aspect of the data, while others 
work well in modeling another aspect. Combining predictions from several simple models reduces 
the individual weaknesses of simple models. This provides a composite prediction where the final 
accuracy is better than the accuracy of the individual models. Ensemble methods can be trained in 
two primary ways: sequentially or in parallel. In sequential ensemble methods, base learners are 
generated consecutively to utilize dependence between the base learners. Parallel ensemble methods 
are applied where base learners are generated independently and in parallel, leveraging the benefits 
of diversity among models to reduce variance. Bagging methods such as RF employ this approach. 
A combination of diverse simple models can be achieved through different strategies: i) averaging, 
ii) weighted averaging, and iii) bagging or bootstrap aggregation. In simple averaging, equal weights 
are assigned to different models despite some models performing better than others. In the weighted 
averaging case, weights are applied to each model based on its performance, allowing stronger 
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models to contribute more significantly to the final prediction. Bagging or bootstrapping reduces 
variance in prediction by taking the mean of multiple estimates. It creates randomly sampled datasets 
of the original training data, trains several ML models for each dataset, and then takes the average of 
all the predictions to make the final predictions [16]. 

RF is the most popular example of an ensemble ML method that combines multiple decision 
trees to produce a more generalized model. The standard decision-tree (DT) models are prone to bias 
and overfitting. RF mitigates these issues by generating de-correlated DT from random subsets of the 
data and averaging their outputs. This process enhances the generalizability of the model. Figure 6a 
depicts a standard DT, while Figure 6b shows the structure of RF [16]. AdaBoost is a boosting 
technique that helps mix multiple weak models into one strong model. It improves the weaknesses 
of previous models iteratively. First, a model that best classifies the training dataset is trained and 
analyzed for its weaknesses. Another model is explicitly trained to counter the weakness of the 
previous model by increasing the weights to misclassified observations. This process continues until 
the complete training data fits without significant error. Figure 7 illustrates this process. 

Gradient boosting trains several models in a gradual, additive, and sequential manner. Using a 
gradient descent procedure minimizes a model’s loss function by iteratively adding weak learners 
that predict the residual errors of previous models. Modeling is stopped when errors do not have any 
pattern that can be modeled [17]. eXtreme Gradient Boosting (XGBoost) is an advanced 
implementation designed for speed and performance. It incorporates regularization techniques to 
prevent overfitting and utilizes second-order derivatives in its optimization process for improved 
accuracy. 

 
(a) 

 
(b) 

Figure 6. Example of ensemble model: (a) Standard decision tree DT, and (b) Random Forest (RF) tree diagram. 
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Figure 7. Graphical representation of the adaptive boosting technique AdaBoost. 

3.3. Support Vector Machine 

Introduced in 1995, the Support Vector Machines (SVMs) are a robust ML technique initially 
developed for classification and regression analysis as a part of the statistical learning theory [18]. 
This ML model is founded on the idea of finding the best hyperplane that separates the classes while 
maximizing the margin between the hyperplane and the nearest data points (support vectors) from 
both classes. This aspect, referred to as structural risk minimization, enables the model to generalize 
well to unseen data, which makes it an attractive method for applications that demand a balance 
between complexity and predictive capability. Figure 8a illustrates the classification decision 
boundary, while Figure 8b demonstrates the regression application of SVMs [19]. 

  
(a) (b) 

Figure 8. Support Vector Machine (SVM) for the following: (a) Classification and (b) Regression. 

SVMs have been applied in many engineering fields, including earthquake engineering, due to 
their ability to model complicated, nonlinear relationships between input variables (e.g., ground 
motion parameters, structural characteristics) and output variables (e.g., damage states, failure 
modes). For example, SVMs have been applied in seismic fragility assessment by classifying the 
damage states of Reinforced Concrete (RC) structures and predicting the backbone curve parameters 
[20] 

In SVMs, kernel functions (for example, radial basis function (RBF), polynomial, and sigmoid) 
inject data into a higher-dimensional space where linear decision boundaries can be applied. This 
gives SVM the ability to capture highly non-linear relationships, which are often present in seismic 
datasets. However, tuning hyperparameters (regularization, gamma, and epsilon) is crucial for 
effective application. SVMs, while advantageous, face challenges such as high computational costs 
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for large datasets, sensitivity to feature scaling requiring preprocessing, and bias risks from 
imbalanced seismic datasets [19]. 

3.4. Artificial Neural Networks (ANNs) and its Variants 

Inspired by biological neural networks’ structure and functioning, ANNs comprise a series of 
interconnected layers of artificial neurons that compute and transfer data inputs, allowing the 
modeling of complicated, nonlinear relationships. As shown in Figure 9, each neuron assigns weights 
and biases to the input values, derives a weighted sum, and then passes the sum through an 
activation function (for example, ReLU, Sigmoid, Tanh). As research progressed, deeper 
architectures, known as Deep Neural Networks (DNNs), were introduced. These networks enable 
the extraction of features at multiple levels across hidden layers. Within this framework, specific 
DNN types have been used to solve problems associated with seismic performance assessment. As 
illustrated in Figure 10, Convolutional Neural Networks (CNNs) are a special type of neural network 
widely used for tasks such as image classification and feature extraction from ground motion data, 
enabling the improved prediction of structural response under seismic loading. The convolution 
layer is the important layer. It extracts features from the input image. After the convolution layer, it 
passes through an activation function, which helps learn complex non-linear relationships. The 
pooling layer reduces the dimensional space of spatial features while retaining critical information. 
After several convolution and pooling layers, the feature maps are reduced into a manageable 1D 
vector. This vector is then passed through a fully connected layer for final prediction. [21] 

Moreover, Recurrent Neural Networks (RNNs), with their improved variants such as Long 
Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs), are primally good at 
tackling sequential data such as time-history seismic responses, capturing long-term dependencies. 
Figure 11a,b illustrates the internal workings of these models. LSTM networks address the vanishing 
gradient problem in standard RNNs, making them effective for long-term sequence data like 
acceleration time series. The LSTM architecture includes a forget gate, which uses a sigmoid function 
to decide which parts of the Long-Term Memory (LTM) to retain or discard. The input gate 
determines what new information to add to the memory. This allows LSTM to store significant 
updates in LTM adaptively. The output gate determines which part of the memory will contribute to 
the final output at the current time step. ANNs and their variants face challenges in seismic 
applications, including overfitting due to limited datasets, high computational costs for training deep 
networks, interpretability issues as “black box” models, and data scarcity. [21] 

 
Figure 9. Illustration of a typical Artificial Neural Networks (ANNs). 
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Figure 10. Example of Convolutional Neural Network (CNNs). 

 
(a) 

 
(b) 

Figure 11. Example of recurrent Long-Short-Term Memory (LSTM) neural network: (a) recurrent and (b) long-
short-term. 

4. Overview of ML Models 

4.1. Failure Mode Identification & Capacity Prediction 

Failure mode identification and capacity prediction of structural components accurately has 
always been acknowledged as the foundation of seismic engineering. Historically, we have 
understood how to forecast the performance of structures by utilizing data gathered from sensors 
and measuring instruments during experimental tests conducted under controlled environments or 
from numerical simulations of specific structural components and systems. Data is then processed 
through statistical models to estimate parameters like stiffness, strength, and deformation capacities. 
Early approaches primarily used simple mathematical formulations to model relationship between 
the parameters. However, due to the evolution of computing power, dataset volume, and analytical 
methods, ML models emerged as a powerful tool capable of capturing complex relationships between 
variables, surpassing the limitations of traditional regression-based models. 

This section reviews studies using experimental and numerical simulation databases of 
structural components as input datasets for various ML models to predict failure modes, strength 
and deformation capacities, and backbone curve model parameters. Figure 12a provides an overview 
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of ML models employed in these studies, revealing a strong dependence on ensemble methods, 
support vector machines (SVM), and artificial neural networks (ANN). On the other hand, Figure 12b 
shows the overview of structural components that have been analyzed in these studies, where a 
majority of the components studied are RC columns, shear walls, and beam-column joints. The list of 
key studies is summarized in Table 2, detailing the datasets, outputs, and ML models utilized. While 
this review focuses on ML applications in seismic performance assessment, mainly studies utilizing 
datasets from experimental tests or numerical simulations are included, it excludes studies 
employing image-based datasets, satellite imagery, UAV data, or similar approaches, as these were 
beyond the scope of this systematic review and did not get pulled by the search string used. This 
explicit exclusion allows us to narrow down the review’s focus to the specific area of interest. It 
provides a well-rounded discussion of the ML methods dedicated to structural performance. 

Traditional regression-based curve fitting techniques are widely used due to their simplicity and 
interpretability. However, they cannot handle complex datasets. On the other hand, ML models 
gained prominence due to their ability to learn complex relationships from raw data. For instance, a 
study by Dabiri et al. [22] compared ML models such as RF, ANN, and SVM against traditional 
regression-based models (Linear and polynomial regression) for predicting the ductility ratio of RC 
beam-column joints. ML models outperformed regression-based models, with RF performing the 
best. Providing the balance between accuracy, computational efficiency, and interpretability. The 
feature importance analysis showed that reinforcement ratio is the most significant predictor for 
ductility ratio. Similarly various studies have utilized a number of ML algorithms along with 
ensemble learning techniques for various tasks, such as predicting the plastic hinge length (PHL) [23], 
failure modes, lateral strength capacity, deformation capacity of columns [24], equivalent damping 
ratios [25][26], etc., for interpreting the model’s prediction SHapley Additive exPlanations (SHAP) 
explanation is used [27]. It was found that most of these studies have reported the superior 
performance of ensemble ML models such as XGBoost (XGB), RF (RF), and Gradient Boosting (GB), 
with XGBoost achieving a 97% success rate in classifying failure modes [28] but were less 
interpretable than simpler models like Lasso Regression. Studies reviewed include various structural 
components such as RC columns [28,29], Beam-Column Joints [30,31], RC shear walls [32], RC 
composite columns (SRC) [33], and bridge pier [34–36]. 

Recent studies have implemented deep neural networks (DNNs) for modeling hysteresis 
behavior and backbone curves, demonstrating their ability to generalize complex cyclic response 
patterns. such as Djerrad et al. [37] developed three DNN architectures, Bi-LSTM (Bidirectional long 
short-term memory), LSTM-AE (LSTM-based autoencoder), and CNNs (Convolutional neural 
networks) for predicting hysteresis loops under cyclic loading and pushover curves under monotonic 
loading conditions for RC shear walls. Horton et al. [38] Employed Deep Learning Neural Networks 
(DNNs) to predict parameters of the modified-Ibarra–Krawinkler (mIK) model for Reduced Beam 
Section (RBS) connections using a database of 1,480 finite element (FE) models. Their two-step 
approach first classified the failure mode and then followed by the prediction of the parameters, 
which achieved 96% accuracy, highlighting the effectiveness of DNNs for cyclic loading scenarios. A 
significant challenge in utilizing advanced ML techniques, like deep neural networks (DNN), for 
structural engineering applications is their data dependency and black-box nature. To address these 
limitations, Genetic programming (GP) approaches have been introduced as interpretable 
frameworks to overcome the black-box nature and data dependency of advanced ML models in 
structural engineering. These approaches have been utilized for various tasks, such as predicting 
backbone curves of RC block shear walls [39], shear capacity of exterior beam-column connections 
under cyclic loading [40], and deriving explicit mathematical expressions for backbone curves using 
Symbolic Regression (GP-SR) [41]. Empirical-based Support Vector Machine (SVM) models have also 
been proposed, these models are incorporating parameter sensitivity analysis into the training 
process ensuring, outputs align with empirical knowledge by rejecting physically inconsistent 
models and select the best-performing ones [42]. However, a limitation of traditional SVMs is their 
design for generating single-output predictions. In seismic performance assessment, where multiple 
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backbone curve parameters must be predicted simultaneously, retraining SVMs for each parameter 
is computationally inefficient. Luo et al. [43] addressed this issue by enhancing SVMs to predict 
multiple outputs in a single training process, thereby reducing computational overhead. Deger et al. 
[44] utilized the Gaussian process regression GPR for its ability to output multiple parameters at once. 
In addition to this, unlike traditional ML models, GPR adopts a probabilistic framework, allowing 
for estimation of uncertainty in predictions. Addressing limited dataset availability, Chen et al. [45] 
proposed an active-learning framework to reduce the exhaustive manual labeling process required 
in supervised ML tasks. This framework dynamically selects the most informative data points for 
labeling, optimizing model training efficiency. Aging and degradation of buildings causes a shift in 
the statistical properties of the input data, leading to a mismatch between training and real-world 
data [46]. In seismic datasets, there is frequently an uneven distribution, where cases of undamaged 
conditions outnumber those with damage, resulting in a risk of overfitting. Xu et al. [47] in his 
research on the effects of corrosion on failure modes dealt with a problem of data imbalance and 
demonstrated that ensemble machine-learning models can handle uneven datasets while 
maintaining reasonable accuracy. 

 

 

(a) (b) 

Figure 12. Model Distribution and Application Frequency: (a) Distribution of ML and DL Models used in 
Failure Mode Identification & strength/capacity prediction; (b) Frequency of Applications in Different 

Structural Components. 

Table 2. List of key Studies. 

Reference Data Samples Output ML Model 

Deger and Taskin [25] 384 RC Shear walls 
backbone curve model 

parameters 
GPR 

Nguyen et al [48] 369 RC Shear walls Prediction of shear capacity ANN 

Zhang et al. [24] 429 RC Shear walls 
Prediction of failure modes 
and associated capacities  

XGBoost, GB, RF 

Horton et al. [38] 
1480 FE beam-column 

joints 

Prediction of parameters in 
the modified Ibarra–

Krawinkler (mIK) model 
for hysteresis. 

DNN 

Gao et al. [41] 388 RC walls 
Prediction of piecewise 
linear backbone curve 

Genetic Programming-
based symbolic regression 

(GP-SR) 

Chen et al. [49] 475 RC Columns 
Prediction of backbone and 

cyclic deterioration 
parameters. 

RF with Active Learning 

Ma et al. [50] 452 RC beams 
Prediction of performance 

level limits considering 
crack development. 

Seven Regression ML 
models 
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Haggag et al. [28]  486 RC columns 
Prediction of failure mode 

and ultimate capacity. 
Decision Trees and 

Ensemble Techniques 

Elgamel et al. [39] 
74 cyclically loaded 

(RCBSWs) 
Prediction of the backbone 

curve of RCBSWs 
Multigene Genetic 

Programming (MGGP) 

Anwar et al. [40] 216 cyclically loaded BCJs 
Prediction of seismic shear 
strength of exterior beam-

column joints (BCJs) 

Mechanics guided data-
driven model MGGP 

Mangalathu and Jeon [31] 536 RC BCJs 
failure modes identification 

and shear strength 
prediction of BCJs. 

Lasso Regression and RF 

Mangalathu et al. [32] 393 RC Shear Walls 
To classify failure modes of 

RC shear walls 

Naïve Bayes, K-NN, DT, 
RF, AdaBoost, XGBoost, 

LightGBM, and CatBoost. 

Yaghoubi et al. [26] 
161 rectangular shear 

walls. 
To predict the equivalent 

damping ratio 
LR, K-NN, Kernel Ridge 

Regression, SVR, and GPR 

4.2. Seismic Demand and Damage State Prediction 

This section reviews studies that employ surrogate models and other ML approaches to predict 
seismic demands and classify structural damage states. Figure 13a summarizes the distribution of 
ML and DL models utilized for demand and damage prediction, highlighting the dominance of 
probabilistic and deep learning frameworks. Figure 13b presents the application frequency across 
different structural systems, indicating that RC and steel moment-resisting frames have been most 
widely studied. A detailed list of representative studies is provided in Table 3, which outlines the 
class of structures investigated, the outputs predicted, and the ML models applied. Unlike Section 
4.1, which focused on experimental and numerical component-level data, this section emphasizes 
surrogate-based approaches that enable regional or large-scale seismic assessments. 

Predicting seismic demands (e.g., peak drifts, accelerations, or member forces) and seismic 
damage states is of vital importance in improving the resilience of structures and maximizing the 
benefits of seismic design. Conventional methods, e.g., non-linear time history analyses (NLTHA), 
while providing accurate predictions, are computationally cumbersome and not ideal for larger 
applications such as regional simulations or post-earthquake rapid assessments. To mitigate these 
issues, recent investigations focus on surrogate models, which can map ground motion 
characteristics (e.g., PGA, PGV, source-to-site distance, Magnitude) and structural parameters (e.g., 
geometric properties, material properties, etc.) to engineering demand parameters (EDPs) (e.g., 
MIDR, lateral displacement), for various classes of structures enabling cost-effective and scalable 
evaluations. Many of the reviewed studies have developed surrogate prediction models. Table 3 
presents a list of key studies focused on surrogate modeling for nonlinear seismic demand prediction. 
Responses from these models are then used to develop probabilistic seismic demand models 
(PSDMs) and later combined with threshold capacities to get fragility curves [51–54]. Further, 
improving upon traditional logistic regression (LR), Maximum Likelihood estimate (MLE), and 
Monte Carlo Simulation (MCS) based fragility curves. The adaptive fragility curves [55] directly 
predict the fragility curve parameters (e.g., α, β), providing adaptive curves to specific ground 
motion. Another group of researchers directly used classification algorithms to classify damage 
states. Instead of predicting continuous demand values, these models output a discrete damage 
category (e.g., none, slight, moderate, extensive, collapse) given input features [56,57]. 

While useful, deterministic predictions from these studies fail to account for aleatoric 
uncertainty related to input variables (e.g., seismic excitation and structural properties) and the 
epistemic uncertainty associated with modeling. To address these issues, Ding et al. [58] introduced 
an innovative framework for seismic fragility assessment that combines natural gradient boosting 
(NGBoost), a probabilistic ML technique utilizing predefined distributions (such as Gaussian), with 
time-series K-means (TK-means) clustering to effectively capture the variability in ground motion 
data, as well as Latin Hypercube Sampling (LHS) for sampling structural model parameters, allowing 
for a direct calculation of the conditional probability that structural damage will exceed a specific 
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threshold. In a similar vein, Rayjada et al [59] accounted for record-to-record RTR variability in 
ground motion along with uncertainty in lumped plasticity beam-column backbone model 
parameters through the use of the Gaussian process regression (GPR) model. The overall impact of 
these uncertainties on fragility curves was evaluated using an LHS-based Monte Carlo simulations 
strategy (MCS). Gao et al. [60] took another approach by kriging-based nonlinear autoregressive with 
exogenous (NARX) model to convey the uncertainties. They employed the generalized hysteretic 
Bouc-Wen model with internal uncertainties to simulate stiffness and strength degradation. A 
probabilistic stochastic ground motion model was introduced to depict the external uncertainties. 
The overarching terms of the NARX model were identified through a least-angle regression 
algorithm, and the kriging model was used to substitute uncertain parameters into their respective 
NARX model coefficients, demonstrating that the kriging NARX model serves as an effective and 
efficient meta-model method better than MCS for quantifying uncertainty in systems. Similarly, 
Kundu et al. [61] developed an LSTM-based deep learning algorithm for quantifying stochastic 
earthquake loading and structural design parameter uncertainty in seismic response prediction. 
Alternatively, Noureldin et al. [62] introduced a probabilistic framework using a Quality-Driven 
Neural Network (QDN) to provide distribution-free prediction intervals (PI) for seismic structural 
responses. This approach directly models the bounds of the responses using a flexible and non-
parametric approach. The QDN directly learns to predict the lower bound (L) and upper bound (U) 
of the response for a given confidence level (e.g., 95%) without assuming any underlying distribution. 
The model is trained to ensure that the true response (y) lies within the interval [L, U] with a high 
probability (e.g., 95%). These methodologies highlight the increasing use of probabilistic ML models 
to address the uncertainties in seismic response evaluation, enabling robust and reliable frameworks 
for diverse applications, as explored in studies [59,62–68]. 

Recent studies have emphasized incorporating time-frequency domain features to enhance 
prediction accuracy further, as these allow models to capture both the temporal (dynamic) 
progression and spectral (non-stationary) characteristics of ground motions. For example, wavelet 
transforms, or Fourier spectra of ground motions have been used as inputs to ML models so that 
frequency content and duration effects are accounted for in demand prediction [69]. Zhang et al. 
(2023) [70] developed a neural network that takes time-frequency characteristics (via wavelet-based 
features) of ground motions to predict building response, resulting in better performance than using 
scalar IMs alone. Lu et al. (2021) [71] similarly leveraged time-frequency distributions in a deep 
learning model for rapid regional damage. Park et al. (2024) [72] compared using time-domain versus 
combined time-and-frequency-domain data for predicting nonlinear structural response and found 
that including frequency-domain information improved the predictions significantly. Tang et al. [73] 
developed custom loss function that utilize frequency domain information: i) a pure frequency 
domain loss function and ii) a combination of frequency and time-domain loss functions using 
Fourier transforms. The performances of these loss functions were evaluated against those achieved 
with the traditional mean squared error (MSE) loss function, demonstrating that the frequency 
domain loss function delivered improved results. Dang-Vu et al. [74] proposed a frequency-based 
data-driven model that predominantly uses the frequency spectrum of earthquakes as input data. 
Results showed good agreements with the conventional fragility curves. 

One practical use-case for ML surrogates is regional seismic risk assessment. Traditional regional 
loss estimation (e.g., in FEMA P-58 or HAZUS methodologies) can be very computationally 
expensive if using NLTHA for each building. ML models, once trained, can instantly predict building 
damage or loss, enabling near-real-time regional damage maps after an earthquake. [75] . Xu et al [76] 
proposed a real-time regional seismic damage assessment framework based on a Long Short-Term 
Memory (LSTM) neural network architecture. This framework bypasses the dependence on fragility-
based damage models due to their reliance on ground motion characteristics, soil conditions, and 
structural geometric properties. Extending rapid response prediction for post-event assessments to 
early warning applications or real-time regional seismic damage assessment, Wang et al. [69,77] 
proposed a framework to predict the PGA by using P-wave data, which arrives earlier than more 
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destructive S-wave ground motions. early predicted PGA and fragility curves can then be used to 
estimate seismic damage. Some studies have extended ML demand predictions to support decision-
making for example, Hu et al. (2022), [64] developed a machine-learning-driven approach for residual 
displacement-based design of steel frames with self-centering braces, effectively using ML to invert 
the performance assessment problem and identify optimal design parameters that achieve desired 
performance. Falcone et al. (2022) [78] trained an ANN to predict the feasibility of certain retrofit 
techniques for RC buildings given their characteristics. Identifying a feasible and cost-effective 
seismic retrofit configuration for vulnerable structures is computationally intensive. ML-based 
surrogate models can provide approximate solutions, thereby reducing the solution’s space and 
computational burden. 

These predictive models usually are black boxes and rely on the large quantity and quality of 
the dataset for their training, which is scarce. Researchers have adopted innovative strategies to 
reduce data dependence without sacrificing accuracy. One such approach is the integration of physics 
principles within ML models, for e.g., [79–81]. Physics-based ML models are trained in various ways. 
For example, Chen et al. [82] utilized a simplified lumped-mass model instead of a detailed FEM, 
reducing computational load while capturing essential dynamics. Data from these models is then 
applied in pretraining to produce approximate responses with minimal simulation requirements. 
Then, few-shot incremental learning refines the model using a limited set of full NLTHA simulations, 
enhancing accuracy without extensive computational costs. Zhang and Xiong et al. [79,83] used 
another way of implementing PINNs by combining “Data Loss with Physics Loss” with the state 
space model (SSM) for smooth integration. Guo et al. [84] incorporated deep neural networks (DNNs) 
into a classical numerical integration, e.g., Newmark’s beta method, by using an exponential 
integration time-stepper. The integration stepper calculates the state variables (e.g., displacement, 
velocity, and restoring forces) and feeds its prediction into the physics loss function to verify whether 
its prediction values satisfy the underlying physical laws. Mokhtari et al. [85] developed a global 
frame structure model with Buckling-Restrained Braces (BRBs) that combines physics-based 
modeling for linear components with a physics-informed data-driven surrogate model for nonlinear 
components. The global response is obtained by solving the coupled equations of motion, integrating 
the contributions from both the physics-based and ML models. Although Physics-Informed Neural 
Networks (PINNs) have shown considerable promise in scenarios with scarce labeled data, 
numerous current neural network surrogate models face challenges in generalization. These models 
are frequently customized for particular tasks and excel only on datasets that resemble the ones used 
for their initial training. Consequently, they fail to provide precise predictions for related instances 
where data is limited. Hu et al. [86] introduced a hybrid framework known as physics knowledge-
based transfer learning (Phy-KTL) neural networks. The effectiveness of Phy-KTL in predicting 
seismic responses between specific structures is numerically validated when compared to data-
driven neural networks, PINNs, and data-based transfer learning (Data-KTL). An application in the 
real world illustrates how Phy-KTL can transfer features obtained from a numerical model to a 
physical structure tested on a shaking table, confirming that Phy-KTL is both resilient and efficient 
in improving the prediction of seismic responses for target buildings with a limited amount of labeled 
data. Various physics-based ML models are here [80,81,87–91]. 

For areas with low-to-moderate seismicity, strong ground motion GM data with enough 
destructive power is not available. Developing an ML model for rapid seismic risk assessment 
requires a high-quality dataset. The dataset must represent a complete range of scenarios in an 
equally distributed manner. The limited availability of strong GM data will lead to an imbalance in 
the dataset which leads to biased models. To overcome this, researchers have explored different data 
augmentation techniques [92]. The spectrum-compatible ground motion GM data-augmentation 
method demonstrated improved accuracies in predictions that surpassed those of the traditional 
amplitude scaling-based data-augmentation method [93]. Another strategy proposed by Martakis et 
al. [94] is using planned demolitions. They give engineers a chance to utilize stronger vibrations 
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produced during demolition work to gain deeper insights into the dynamic behavior of current 
structures. 

Sparse instrumentation in buildings is a critical problem in structural health monitoring or un-
instrumented buildings in post-earthquake assessment. Seismic Response Reconstruction (SRR) is 
crucial. Ghahari et al. [95] proposed a two-step hybrid model combining a physics-based shear-
flexural beam model with Gaussian process regression (GPR) to predict responses at non-
instrumented floors while quantifying uncertainties. Abdelmalek-Lee et al. [96] introduced a dual 
model that uses kriging combined with the extreme gradient boosting (XGBoost) algorithm to 
reconstruct seismic response demands in un-instrumented buildings using the response 
measurements from those that are equipped with strong motion sensors. 

Several researchers have adopted deep learning models, primarily end-to-end long short-term 
memory networks, to predict structural seismic responses in a data-driven manner and have 
achieved remarkable improvements. However, further research is required to reduce the training 
cost and complexity while maintaining the prediction accuracy of end-to-end models. Ahmed et al. 
[97,98] introduced a generalized Overlapping stacked LSTM framework to reduce the training time 
for damage assessment for ductile RC buildings and RC structures of varying heights, geometric 
properties, and material characteristics. They combined ground motion time-history data with scalar 
input features. Similarly, Tang et al. [99] developed a pre-training strategy to reduce training costs 
and complexity. Zhong et al. [100] introduced probabilistic learning on manifold (PLoM), a novel 
surrogate modeling technique. It combines diffusion maps for nonlinear dimension reduction with 
Markov chain Monte Carlo (MCMC) to identify localized data clusters and efficiently generate new 
data samples for high-dimensional problems. Instead of developing a functional (parametric) 
mapping from the vector-valued input parameters to output responses, it learns a probabilistic 
mapping between the joint distributions of input parameters and output responses. 

Incremental dynamic analysis (IDA) of complex structures is of great significance for seismic 
analysis and design but is often constrained by computational cost. Jiao et al. [101] proposed the 
Kriging model and entropy-based sequential sampling, a concept from information theory to 
adaptively select the IMs to improve IDA’s computational efficiency. 

  
(a) (b) 

Figure 13. Model Distribution and Application Frequency: (a) Distribution of ML and DL Models used in 
Failure Mode Identification & strength/capacity prediction; (b) Frequency of Applications in Different 

Structural Components. 

Table 3. Representative review studies on ML applications in earthquake engineering. 

References Class of Structures 
Kazemi et al [53], Zhang et al [102], Hwang et al [103], Chen & Guan [49], 

Aloisio et al [104] 
RC MRFs 

Nguyen et al [105], Bond et al [81], Kazemi et al [52], Samadian et al [106], 
Liu et al [107] 

Steel MRFs 

Coskun et al [108], Aloisio et al [104], Chalabi et al [109] Masonry buildings 
Nguyen et al [110], da Silva et al [111], Liao et al [112] Base isolated buildings 
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Hu et al. [64] Zhang et al. [113] Zhang et al. [114] Hu et al.[115] Hu et al. [116] Self-Centering Components 
Yazdanpanah et al [117], Yi et al [118], Liao et al [119], Dai et al [120], Rezaei 

et al [121], Li et al [122], Todorov & Muntasir [123], Pang et al [124] 
Bridges 

Xing et al [125], Zhang et al [126], Wei et al [127], Zhao et al [128], Zhang et al 
[129], Xiang et al [130] 

High-Speed Railway Bridges 

4.3. Seismic Response Time Series Prediction 

Predicting time-history seismic response reveals the complete picture of structural behavior 
during earthquakes, going beyond peak demand and damage state measures. It enlightens temporal 
and spectral characteristics of dynamic responses, such as transients, frequency contents, and 
nonlinear interactions, and allows realistic response analysis and cumulative damage estimation. 
This approach gives more profound insights into displacement, velocity, and acceleration over time. 
This has implications for performance-based design, structural health monitoring, and real time 
response prediction. Traditionally, getting the time-series response requires solving the equations of 
motion with a numerical integration scheme (like Newmark’s method) given a model of the structure 
(e.g., a finite element model or a simplified nonlinear oscillator model). ML approaches, by contrast, 
attempt to learn the input-output mapping from ground motion to structural response directly from 
data (which could be simulation data or real recordings). Essentially, the ML model acts as a 
surrogate for the structural system’s differential equations. Studies in this section include a variety of 
ML models used for different aspects of seismic response prediction. 

Earthquake response is inherently sequential (the response at time t+Δt depends on the state at 
time t), Therefore sequential models such as recurrent neural networks (RNNs) are used to predict 
the response of hysteretic single degree of freedom (SDOF) system [131]. Variants like Long Short-
Term Memory (LSTM) networks [97,132] and Gated Recurrent Units (GRUs) [133] have been 
extensively used because of their ability to learn long-term dependencies in sequences, which is 
crucial for structural responses that involve stiffness degradation, cyclic accumulation of damage, 
and other history-dependent effects. Recent studies scaled this up Kundu et al. (2022) [61] developed 
an LSTM-based deep learning algorithm to predict the nonlinear seismic response of structures with 
uncertainty quantification. Their model took as input not just the raw ground motion but also 
randomly sampled structural properties (to represent uncertainty) and produced a distribution of 
response histories. This approach effectively combined time-series prediction with the probabilistic 
aspect, yielding a tool that can do stochastic response simulation quickly. 

However, CNNs [134] have been adapted to extract features from ground motion data and 
predict structural responses, leveraging their ability to model relationships in sequential data. 
Furthermore, hybrid models such as ConvLSTM-based spatiotemporal frameworks [135] have 
shown promise in structural response prediction by capturing both spatial correlations and temporal 
dependencies in structural response data in SHM applications. The spatiotemporal approach 
outperforms traditional LSTM and AR models, particularly in scenarios with strong spatial 
correlations. 

Peng et al. [136] compared three distinct models: Piecewise Linear Least Squares (PLLS), a 
traditional regression-based method; Fully Connected Neural Network (FCNN), and LSTM Neural 
Network (LSTMNN). under three loading conditions (periodic, impact and seismic). They 
highlighted that LSTMNN performed better in terms of accuracy, robustness, and noise resistance 
but required more computational effort. To reduce the computational cost Kundu et al. used stacked 
LSTM to predict seismic responses of bridge columns. Several works introduced Bi-directional 
LSTMs (BiLSTMs), which process the sequence forward and backward. For example, Yazdanpanah 
et al. (2022) [137] employed a BiLSTM to predict seismic response of bridge piers, harnessing the idea 
that reading the time series in both directions (though not causal for real-time prediction) can 
improve learning of features that are salient over the whole duration. The BiLSTM indeed showed 
improved accuracy over a standard LSTM in capturing complex hysteresis, by effectively reducing 
overfitting and better learning long-term dependencies. Attention mechanisms have also been 
introduced. Liao et al. (2023) [138] proposed an Attention-enhanced LSTM (AttLSTM) model in 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 August 2025 doi:10.20944/preprints202508.1719.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1719.v2
http://creativecommons.org/licenses/by/4.0/


 18 of 29 

 

contrast to conventional LSTM models, AttLSTM that learns to weight the most critical time 
steps/features in the sequence when making predictions. By doing so, it can focus on significant 
response phases (e.g., peaks or phase shifts) and ignore redundant parts. Liao’s AttLSTM improved 
prediction accuracy and resilience especially for subtle or long-duration responses, by effectively 
telling the model “Where to look” in the time series. 

5. Challenges and Opportunities 

Machine Learning is rapidly becoming disruptive across sectors, and its applications in seismic 
performance evaluation offer benefits over traditional approaches. However, much change is still 
needed to overcome challenges. A considerable issue in applying ML to seismic performance 
assessment is the lack of high-quality, diverse datasets. Effective training of ML models requires large 
data, and in areas such as seismic performance assessment obtaining diverse high-quality data 
requires high-fidelity simulations or field tests which are either difficult or impossible. Various 
studies have developed their own dataset by conducting nonlinear analysis or by collecting data from 
previous research. A comprehensive list of datasets that were made available in the reviewed studies 
and ML models has been compiled in Table 4. The table includes details on the ML model used, a 
variable to be predicted, and hyperlinks to the sources for the reader’s reference. When it comes to 
the ML models, there are equally significant challenges. Many advanced ML approaches, particularly 
those relying on deep learning, operate as “black boxes,” producing results without offering clear 
insight into how those results were derived. This lack of transparency makes engineers wary of using 
such models for critical safety decisions. Another frequent pitfall is overfitting, while ML models can 
achieve excellent performance on training data, they often fail to generalize well to unseen data due 
to overfitting. This is a significant concern in seismic performance assessment, where datasets are 
often small and specific, making the models prone to overfitting. ML models require further fine-
tuning by adjusting the size or content of the training, validating, and testing data and architecture 
of the algorithm e.g., (layers/neurons in the neural network, hyper-parameter tuning, etc.,) automated 
hyper-parameter tuning can be done using Bayesian updating and other optimization techniques 
[57]. Then, there is the issue of computational requirements. Training large-scale ML models is 
expensive in terms of computing resources [97]. Furthermore, many models yield deterministic 
results, unable to account for the uncertainties in the seismic performance evaluation problem, such 
as variability in the seismic occurrences, material characteristics, and structural responses. Lastly, the 
absence of practical applications in seismic evaluation highlights another major challenge. 

Given that issues around data deficiency are so prominent, research should focus on developing 
reliable transfer learning techniques in which knowledge can be transferred across models, 
maximizing the benefits of the available data [86]. Establishment of strong data-sharing platforms for 
researchers and organizations to share valuable datasets. Moreover, prioritizing new solutions, such 
as data augmentation techniques [92,139], is important. Where the data gets altered and used to 
synthetically expand the available training data set size and synthetic data generation in which new 
data are artificially generated based on the features of existing real datasets. Blending ML with 
physics-based approaches is a potential avenue on the modeling side. By embedding the physical 
laws directly into the design, the models become not just more accurate but also far more 
interpretable [80,140]. Another important aspect is dealing with uncertainty. More recently, 
researchers have started to incorporate probabilistic methodologies into ML models in order for them 
to adapt to the variable and unpredictable nature of earthquake engineering [61,68,141]. Also, 
continuous management and improvement of these trained models are essential. These models can 
be updated like software updates by the researchers as more data becomes available. Lastly, detailed 
reliability analysis of these models can support and expedite the adoption of ML in practical 
engineering applications. 
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Table 4. Compilation of Trained ML and DL models from various sources. 

References ML Models Links 

Xu et al. 2022 [142] RecursiveLSTM 
https://github.com/xzk8559/RecursiveLST

M/tree/main/data 

Chou et al. 2024 [143] GraphLSTM 
https://github.com/CMMAi/GraphLSTM-

nonlinear-dynamic-analysis/tree/main/Data 
Zhang et al. 2024 [144] 
Wen et al. 2022 [145] 

DNN 
CNN 

https://github.com/wenwp/StruNet_TH/tre
e/main/data 

Mangalathu et al. 2020 [146] 
Various ML Models with Active 

Learning 
https://shorturl.at/79eyG 

Zhang et al. 2020 [147] PhyCNN 
https://github.com/zhry10/PhyCNN/tree/m

aster/data 

Liu et al. 2025 [148] rcGAN 
https://github.com/Liujiming20/rcGAN/tre

e/main/NSGA 

Tang et al. 2024 [149] XGBoost 
https://github.com/alan-

dut/ResSMRF/blob/main/model.pkl 
Kuo et al. 2024 [150] GNN-LSTM-based Fusion Model https://shorturl.at/jwq19 

Guo et al. 2023 [84] 
Physics-DNN Hybridized Time-

Stepper 
https://github.com/JiaGuoLab/pdhi/tree/ma

in 
Zhong et al. 2023 [151] EE-UQ software https://shorturl.at/TP7UK 

Zhang et al. 2019 [152] DeepLSTM 
https://github.com/zhry10/DeepLSTM/tree/

master/data 

Gentile et al. 2022 [153] Gaussian process regression 
https://github.com/robgen/surrogatedPSD

M/tree/main 

Mangalathu et al. 2020 [32] 
KNN, DT, RF, AdaBoost, XGBoost, 

Light GBM, CatBoost 
https://github.com/sujithmangalathu/Shear

-Wall-Failure-Mode/tree/master 
AswinVishnu ANN https://shorturl.at/3PYA8 

Sheny RF, AdaBoost, XGBoost, Light GBM https://shorturl.at/HPtd9 

Eugene Denteh XGBOOST, Light GBM, RF, AdaBoost 
https://github.com/EugeneDenteh/Machine
_Learning_model_for_the_failure_mode_cl

assification_of_R.C_columns/tree/main 

Angarita et al. 2024 [154] RF, ANN 
ML-Pushover/ML_Models at main · 
carlosantr/ML-Pushover · GitHub 

Yaghoubi et al. 2023 [26] GPR 
https://github.com/SiamakTY/ML-for-

Equivalent-Damping-Ratio 

Rayjada et al. 2023 [59] GPR 
https://github.com/Satwikpr/Backbone_GP

R 

Kourehpaz et al. 2022 [75] 
K-Nearest neighbor, Decision Tree, 

RF, AdaBoost, GBM 
https://shorturl.at/JIo9u 

6. Conclusions 

ML has become recognized as an influential technique in evolving seismic performance 
assessment that can overcome significant limitations of conventional methods. To this end this study 
conducted a systematic review of studies on ML applications in seismic performance assessment. 
Presented a detailed research trend analysis to highlight the intersection between ML techniques and 
Seismic performance assessment. The analysis reveals that ML application studies have broadly 
evolved into three interconnected domains i) Failure mode and capacity prediction, ii) Seismic 
demand and damage state prediction, and iii) Seismic response time series prediction. Findings 
highlights that surrogate assisted seismic assessment methodologies have the potential to reduce the 
computational burden and enable real-time decision-making for emergency response and large-scale 
regional risk assessments. Furthermore, the integration of uncertainty quantification through 
probabilistic ML frameworks addresses a fundamental limitation of traditional deterministic 
approaches, enabling risk-informed decision-making that is essential for performance-based seismic 
design and retrofit prioritization strategies. Ensemble ML models such as XGBoost (XGB), Random 
Forests (RF), Gradient Boosting (GB) and support vector machines demonstrating superior 
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performance in classifying failure modes of RC shear walls, beam-column joints and columns. The 
integration of physics-guided features has particularly enhanced model interpretability and 
generalization capabilities with studies achieving classification accuracies exceeding 90% for well-
represented failure modes. 

Deep neural networks and Gaussian process regression have emerged as powerful tools for 
probabilistic seismic demand modeling, effectively capturing aleatory and epistemic uncertainties. 
The introduction of probabilistic ML frameworks, such as Natural Gradient Boosting (NGBoost) and 
Quality-Driven Neural Networks (QDN), represents a significant advancement in providing 
distribution-free prediction intervals and uncertainty quantification. Long Short-Term Memory 
(LSTM) networks and their variants (BiLSTM, AttLSTM) have revolutionized time-dependent 
response prediction, with attention mechanisms enabling models to focus on critical response phases. 
The development of physics-informed neural networks (PINNs) and hybrid approaches combining 
mechanistic models with data-driven components shows promise for maintaining physical 
consistency while leveraging computational efficiency. 

It was found that ML models can effectively predict failure modes, seismic demands, and time-
dependent structural responses. Data scarcity, model interpretability, and computational demands 
are still significant barriers to its adoption. Physics-based insights, transfer learning, and the 
development of probabilistic ML frameworks appear to be three viable paths forward in addressing 
these issues. Table 4 provides a comprehensive list of available datasets and trained models from 
various sources. 

Abbreviations 

The following abbreviations are used in this manuscript: 

ANN Artificial neural network 
MLP-NN Multi-Layer Perceptron neural network 
MDOF Multi-degree of freedom system 
GP-SR Gaussian process-symbolic regression 
ML Machine Learning 
DNN Deep learning 
LSTM Long short-term memory 
RNN Recurrent neural network 
GRU Gated recurrent unit 
CNN Convolutional neural network 
XGBoost eXtreme gradient boost 
AdaBoost Adaptive Boosting 
RF RF 
DT Decision Tree 
SVM Support Vector Machines 
GPR Gaussian process regression 
MGGP Multi-gene gaussian process 
MSE Mean squared error 
MAE Mean absolute error 
DoF Degree of freedom 
3D Three dimensional 
UD Uniform dimensional 
MAPE Mean absolute percentage error 
FCNN Fully connected neural network 
SHAP sHapley additive explanation 
GNN Graph neural network 
SRR Seismic response reconstruction 
SMA Shape memory alloy 
QDN Quality-driven neural networks 
MLS-SVMR Multioutput-least squares support vector machine regression 
RBS Reduced beam section 
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DW-SVTR Double-weighted support vector transfer regression 
MIDR Maximum inter-story drift 
NLTHA Nonlinear time history analysis 
LHS Latin hypercube sampling 
PLLS Piecewise linear least squares 
FEM Finite element modeling 
NARX-NN Nonlinear autoregressive exogenous neural network 
m-BWBN Modified bouc-wen-baber-noori model 
rcGAN Recurrent conditional generative adversarial network 
RMSE Root mean-squared error 
RC COL Reinforce Concrete Column 
RC SW Reinforce Concrete Shear wall 
BCJ Beam-Column Joint 
RBS Reduced Beam Section 
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