

Article

Not peer-reviewed version

The Weighted Core-EP Inverse and Its Associated Preorder

Huanyin Chen * and Marjan Sheibani

Posted Date: 12 August 2025

doi: 10.20944/preprints202508.0740.v1

Keywords: weighted core preorder; weighted core-EP inverse; weighted core-EP preorder; core-EP inverse; weighted Drazin inverse; *-ring

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

The Weighted Core-EP Inverse and Its Associated Preorder

Huanyin Chen 1,* and Marjan Sheibani 2

- School of Big Data, Fuzhou University of International Studies and Trade, Fuzhou 350202, China
- ² Farzanegan Campus, Semnan University, Semnan, Iran
- * Correspondence: huanyinchenfz@163.com

Abstract

In this paper, we introduce a new preorder derived from the w-core-EP inverse in a *-ring. We characterize this generalized inverse by combining the w-core inverse with nilpotent elements. This characterization allows us to define a new binary relation on w-core-EP invertible elements, based on the w-core preorder. Using the Pierce matrix decomposition for two idempotents as a novel tool, we establish equivalent conditions for the forward and reverse order laws governing w-core-EP invertibility. Furthermore, we extend the *-DMP property to a broader class of elements within the framework of the w-core-EP preorder.

Keywords: weighted core preorder; weighted core-EP inverse; weighted core-EP preorder; core-EP inverse; weighted Drazin inverse; *-ring

MSC: 15A09; 16U90; 06A06

1. Introduction

A ring R is called a *-ring if there exists an involution $*: x \to x^*$ satisfying $(x + y)^* = x^* + y^*$, $(xy)^* = y^*x^*$, $(x^*)^* = x$. An element a in a *-ring R has core inverse if and only if there exist $x \in R$ such that

$$ax^2 = x, (ax)^* = ax, xa^2 = a.$$

If such x exists, it is unique, and denote it by a^{\oplus} (see [34]). An element $a \in \mathcal{A}$ has core-EP inverse (i.e., pseudo core inverse) if there exist $x \in \mathcal{A}$ and $k \in \mathbb{N}$ such that

$$ax^2 = x$$
, $(ax)^* = ax$, $xa^{k+1} = a^k$.

If such x exists, it is unique, and denote it by a^{\oplus} (see [10]). The core and core-EP inverses have been extensively studied by many authors from various perspectives, including, for example, [1,6,22,24,27,32].

Let $a, w \in R$. Following Zhu et al., an element $a \in A$ has w-core inverse if there exist $x \in A$ such that

$$awx^2 = x$$
, $(awx)^* = awx$, $xawa = a$.

Many properties of w-core inverse have been investigated in [36,39]. Recently, Mosić extended the w-core inverse to a new class of weighted generalized inverse. An element $a \in \mathcal{A}$ has w-core-EP inverse if there exist $x \in \mathcal{A}$ such that

$$awx^{2} = x, (awx)^{*} = awx, x(aw)^{k+1}a = (aw)^{k}a.$$

Such x is unique if it exits, and we denote it by $a_w^{\mathbb{O}}$ (see [25]).

In [28], Rakić and Djordjević, introduced the core preorder on a ring with involution. That is, if $a \in R^{\oplus}$, $b \in R$, then a is below b under core preorder (written as $a \leq^{\oplus} b$), if $aa^{\oplus} = ba^{\oplus}$ and $a^{\oplus}a = a^{\oplus}b$. In [9], Dolinar et al. introduced and studied the core-EP preorder. Recently, the w-core preorder, induced by the w-core inverse, has been defined and studied (see [40]). For more papers on various binary relations induced by specific generalized inverses, we refer the reader to [8,9,12,17,19–21,23,37].

The motivation of this paper is to introduce and study a new preorder induced by the w-core-EP inverse. Let $a, b, w \in R$.

Definition 1.1. Let $a \in R_w^{\odot}$. We define a binary relation " \leq_w^{\odot} " on R in the following way: $a \leq_w^{\odot}$ b if and only if

$$awa_w^{\mathbb{O}} = bwa_w^{\mathbb{O}}, a_w^{\mathbb{O}}a = a_w^{\mathbb{O}}b.$$

In Section 2, we characterize the w-core-EP inverse by combining the w-core inverse with nilpotent elements. This characterization establishes a foundation for examining a new binary relation among w-core-EP invertible elements, utilizing the w-core preorder.

In Section 3, we investigate the preorder of w-core-EP inverses, which includes certain self-adjoint elements, thereby extending many established results on Hilbert operators to a more comprehensive class of ring elements.

In Section 4, we apply the method used for the Pierce matrix relative to two idempotents to establish equivalent conditions for the forward and reverse order laws of *w*-core-EP invertibility in a ring setting.

An element a is w-weighted *-DMP if and only if $a \in R_w^{\odot}$ and $wawa_w^{\odot} = wa_w^{\odot}aw$. Finally, in Section 5, we consider w-weighted *-DMP elements, broadening the applicability of the w-core-EP preorder framework. This extends related results on *-DMP elements to a wider class that includes weighted considerations.

Throughout the paper, all *-rings are associative with an identity. $R^{D,w}$, R^{\oplus}_w and R^{\oplus}_w denote the sets of all w-Drazin, w-core invertible and w-core-EP invertible elements in R, respectively.

2. Weighted Core-EP Decomposition

The objective of this section is to characterize the *w*-core-EP inverse by combing the *w*-core inverse and nilpotent within the framework of a *-ring. We begin with

Theorem 2.1. Let $a, w \in R$. Then the following are equivalent:

- (1) $a \in R_w^{\mathbb{O}}$.
- (2) There exists $x \in R$ such that

$$x = awx^{2}, (awx)^{*} = awx, x(aw)^{k+1} = (aw)^{k}$$

for some $k \in \mathbb{N}$.

(3) $a \in R$ has the w-core-EP decomposition, i.e., there exist $x, y \in R$ such that

$$a = x + y, x^*y = ywx = 0, x \in R_w^{\oplus}, y \in R_w^{nil}.$$

In this case, $a_w^{\oplus} = x_w^{\oplus}$.

Proof. (1) \Rightarrow (2) By hypothesis, there exists $x \in R$ such that

$$awx^{2} = x, x(aw)^{k+1}a = (aw)^{k}a \text{ and } (awx)^{*} = awx.$$

Then

$$x(aw)^{k+2} = [x(aw)^{k+1}a]w = [(aw)^k a]w = (aw)^{k+1},$$

as required.

 $(2) \Rightarrow (3)$ By hypotheses, there exists $x \in R$ such that

$$x = awx^{2}, (awx)^{*} = awx, x(aw)^{k+1} = (aw)^{k}$$

for some $k \in \mathbb{N}$. Then

$$xawx = [x(aw)^{k+1}]x^{k+1} = (aw)^k x^{k+1} = awx^2 = x.$$

Set z = awxa and y = a - awxa. We check that

$$ywz = (a - awxa)wawxa = awawxa - awx(aw)^2xa$$
$$= awawxa - aw(awx)a = 0,$$
$$z^*y = (awxa)^*y = a^*(awx)y = a^*(awx)(a - awxa)$$
$$= a^*aw(xa - xawxa) = 0.$$

We claim that $z \in R_w^{\oplus}$ and $z_w^{\oplus} = x$.

Claim 1. $x = zwx^2$. We verify that

$$zwx^2 = awx(awx^2) = awx^2 = x.$$

Claim 2. $(zwx)^* = zwx$. Clearly, we have zwx = aw(xawx) = awx, and then $(zwx)^* = (awx)^* = awx = zwx$.

Claim 3. xzwz = z. One checks that

$$xzwz = (xawx)awawxa = x(aw)^2xa = awxa = z.$$

Therefore $z \in R_w^{\oplus}$. Moreover, we see that

$$(aw)^{n} - awx(aw)^{n} = (a - awxa)w(aw)^{n-1}$$

$$= yw(aw)^{n-1} = ywaw(aw)^{n-2}$$

$$= yw(z+y)w(aw)^{n-2} = (yw)^{2}(aw)^{n-2}$$

$$= \cdots = (yw)^{n}.$$

Therefore

$$\lim_{n\to\infty} (yw)^n = 0,$$

and then $y \in R_w^{nil}$.

 $(3) \Rightarrow (1)$ By hypothesis, there exist $z, y \in R$ such that

$$a = z + y, z^*y = ywz = 0, z \in R_w^{\oplus}, y \in R_w^{nil}.$$

Set $x = z_w^{\#}$. Then

$$\begin{array}{rcl} awx & = & (z+y)wz_w^{\scriptsize\textcircled{\tiny\dag}} = zwz_w^{\scriptsize\textcircled{\tiny\dag}},\\ (awx)^* & = & awx,\\ awx^2 & = & (awx)x = zwz_w^{\scriptsize\textcircled{\tiny\dag}}(z+y) = zwz_w^{\scriptsize\textcircled{\tiny\dag}}z = x. \end{array}$$

It is easy to verify that

$$xawx = z_w^{\text{\tiny{\$}}}(zwz_w^{\text{\tiny{\$}}}) = z_w^{\text{\tiny{\$}}} = x,$$

 $x(aw)^2x = (xaw)(awx) = z_w^{\text{\tiny{\$}}}(z+y)wzwz_w^{\text{\tiny{\$}}} = z_w^{\text{\tiny{\$}}}zwzwz_w^{\text{\tiny{\$}}}$
 $= z_w^{\text{\tiny{\$}}}zwzwz_w^{\text{\tiny{\$}}} = zwz_w^{\text{\tiny{\$}}} = awx.$

Moreover, we have

$$awxa = (awx)a = zwz_w^{\oplus}(z+y) = zwz_w^{\oplus}z = z$$

and so

$$a - awxa = a - z = y \in R_w^{nil}$$
.

Write $(yw)^n = 0$ for some $n \in \mathbb{N}$. Then we verify that

$$(aw)^{n} - awx(aw)^{n} = (a - awxa)w(aw)^{n-1}$$

$$= yw(aw)^{n-1} = ywaw(aw)^{n-2}$$

$$= yw(z+y)w(aw)^{n-2} = (yw)^{2}(aw)^{n-2}$$

$$= \cdots = (yw)^{n} = 0.$$

Accordingly,

$$(aw)^n = awx(aw)^n.$$

As $z \in R_w^{\oplus}$, there exist $s \in R$ such that

$$zws^2 = s$$
, $szwz = z$ and $(zws)^* = zws$.

Then

$$(zw)s^2 = s, s(zw)^2 = zw \text{ and } (zws)^* = zws.$$

Hence, $zw \in R^{\oplus}$. Therefore $zw \in R^D$. Since ywz = 0, it follows by [26, Theorem 3.2] that $aw = zw + yw \in A^D$.

According, we have

$$awx^{2} = x, (awx)^{*} = awx, (aw)^{n} = awx(aw)^{n} = (aw)^{n}x^{n}(aw)^{n}.$$

Let $t = (aw)(aw)^D x$. We claim that $a_w^{\odot} = t$. One directly verifies that

$$awx - awt = [1 - (aw)(aw)^D](aw)x = [1 - (aw)(aw)^D]^n (aw)^n x^n$$
$$= [(aw)^n - (aw)^{n+1} (aw)^D]x^n = 0,$$

Then awt = awx, and so $(awt)^* = (awx)^* = awx = awt$.

$$t - awt^{2} = (1 - awt)t = (1 - awx)(aw)(aw)^{d}x$$

= $(1 - awx)(aw)^{n}[(aw)^{D}]^{n}x$
= $[(aw)^{n} - (aw)^{n}x^{n}(aw)^{n}][(aw)^{D}]^{n}x = 0.$

Hence, $t = awt^2$.

Furthermore, we see that

$$(aw)^{n} - t(aw)^{n+1}$$

$$= [(aw)^{n} - (aw)^{n+1}(aw)^{D}] + [(aw)^{n+1}(aw)^{D} - (aw)(aw)^{D}x(aw)^{n+1}]$$

$$= [(aw)^{n+1}(aw)^{D} - (aw)(aw)^{D}x(aw)^{n+1}]$$

$$= (aw)^{n+1}(aw)^{D} - (aw)^{D}[(aw)x(aw)^{n}](aw)$$

$$= (aw)^{n+1}(aw)^{D} - (aw)^{D}(aw)^{n}(aw) = 0.$$

Then $(aw)^n = t(aw)^{n+1}$, thus yielding the result. \square

Corollary 2.2. Let $a, b \in R_w^{\mathbb{Q}}$. If $a^*b = 0$ and awb = bwa = 0, then $a + b \in R_w^{\mathbb{Q}}$. In this case,

$$(a+b)_{vv}^{\mathbb{O}} = a_{vv}^{\mathbb{O}} + b_{vv}^{\mathbb{O}}.$$

Proof. Case 1. $a, b \in R_w^{\oplus}$. Set $x = a_w^{\oplus} + b_w^{\oplus}$. Then we verify that

$$(a+b)w(x+y) = awx + bwy, ((a+b)w(x+y))^* = (a+b)w(x+y), (a+b)w(x+y)^2 = (awx + bwy)(x+y) = awx^2 + bwy^2 = x + y, (x+y)(a+b)w(a+b) = xawa + ybwb = x + y.$$

Hence $a + b \in R_w^{\oplus}$ and $(a + b)_w^{\oplus} = a_w^{\oplus} + b_w^{\oplus}$.

Case 2. Since $a, b \in R_w^{\odot}$, by virtue of Theorem 2.1, there exist $x, s \in R_w^{\oplus}$ and $y, t \in R_w^{nil}$ such that

$$a = x + y, x^*y = 0, ywx = 0, x \in R_w^{\oplus}, y \in R_w^{nil};$$

 $b = s + t, s^*t = 0, tws = 0, s \in R_w^{\oplus}, t \in R_w^{nil}.$

As in the proof of Theorem 2.1, $x = awa_w^{\odot}a$, $y = a - awa_w^{\odot}a$ and $s = bwb_w^{\odot}b$, $t = b - bwb_w^{\odot}b$. Then a = (x + s) + (y + t). Clearly, $(y + t)w = [(a - awa_w^{\odot}a) + (b - bwb_w^{\odot}b)]w \in R^{nil}$. This implies that $y + b \in R_w^{nil}$. We directly check that

$$(x+s)^*(y+t) = x^*y + s^*t = 0,$$

 $(y+t)w(x+s) = ywx + tws = 0.$

By using Theorem 2.1, $a + b \in R_w^{\mathbb{O}}$. In this case,

$$(a+b)_w^{\mathbb{O}} = x_w^{\#} + y_w^{\#} = a_w^{\mathbb{O}} + b_w^{\mathbb{O}}.$$

Lemma 2.3. *Let* $a, w \in R$. *Then the following are equivalent:*

- (1) $a \in R_{w}^{\mathfrak{D}}$.
- (2) $aw \in R^{\mathbb{O}}$.
- (3) $a \in R^{D,w}$ and there exists $x \in R$ such that

$$x = awx^2, (awx)^* = awx, (aw)^n = awx(aw)^n.$$

In this case, $a_w^{\mathbb{O}} = x = (aw)^{\mathbb{O}}$.

Proof. (1) \Leftrightarrow (2) This is proved in [25, Theorem 2.14].

 $(2) \Rightarrow (3)$ In view of [25, Theorem 2.4], $a \in \mathbb{R}^{D,w}$ and there exists $x \in \mathbb{R}$ such that

$$x = awx^2$$
, $(awx)^* = awx$, $(aw)^n = awx(aw)^n$.

Moreover, we have $(aw)(aw)^Dx = a_w^{\odot}$. Since $x = awx^2$, by induction, we have $x = (aw)^nx^{n+1}$ for any $n \in \mathbb{N}$. Then

$$(aw)(aw)^{d}x = x - (aw)(aw)^{d}x$$

$$= [1 - (aw)(aw)^{D}](aw)^{n}x^{n+1}$$

$$= (aw)^{n} - (aw)^{D}(aw)^{n+1}x.$$

As $(aw)^n = (aw)^D (aw)^{n+1}$, we see that

$$x = (aw)(aw)^D x = 0.$$

and therefore $x = (aw)(aw)^D x = a_w^{\odot}$, as required.

 $(3) \Rightarrow (2)$ Since $a \in \mathbb{R}^{D,w}$, we have $aw \in \mathbb{R}^D$. Let m be the Drazin index of aw. Set k = m + n. Then $(aw)^k x^k = awx$ and $(aw)^k = (aw)^k x^k (aw)^k$. Hence, $(aw)^k \in R^{(1,3)}$. Therefore $aw \in R^{\oplus}$ by [10, Theorem 2.3]. \square

If a and x satisfy the equations a = axa and $(ax)^* = ax$, then x is called (1,3)-inverse of a and is denoted by $a^{(1,3)}$. We use $R^{(1,3)}$ to stand for sets of all (1,3)-invertible elements in R. We now derive

Theorem 2.4. Let $a, w \in R$. Then the following are equivalent:

- $a \in R_w^{\mathbb{O}}$.
- (2) $a \in R^{D,w}$ and $a^{D,w} \in R_w^{\oplus}$. (3) $a \in R^{D,w}$ and $a^{D,w} \in R^{(1,3)}$.

In this case, $a_w^{\oplus} = [(aw)^D]^2 [a^{D,w}]_w^{\oplus} = a^{D,w} w a^{D,w} (a^{D,w})^{(1,3)}$.

Proof. (1) \Rightarrow (2) In view of Lemma 2.3, $aw \in R^{\oplus}$ and $x = (aw)^{\oplus}$. By virtue of [10, Theorem 2.3], $aw \in R^{\oplus}$ R^D . Evidently, $[(aw)^D]^{\oplus} = (aw)^2(aw)^{\oplus}$. Let $x = ((aw)^D)^{\oplus}$. Since $(aw)^D = [(aw)^D]^2aw = a^{D,w}w$, we have $a^{D,w}w \in R^{\oplus}$. We direly check that

$$a^{D,w}wx^2 = x,$$

 $(a^{D,w}wx)^* = a^{D,w}wx,$
 $xa^{D,w}wa^{D,w}w = a^{D,w}w.$

Hence,

$$xa^{D,w}wa^{D,w} = xa^{D,w}w[a^{D,w}wawa^{D,w}]$$

= $[xa^{D,w}wa^{D,w}w]awa^{D,w} = a^{D,w}wawa^{D,w} = a^{D,w}$.

Therefore $a^{D,w} \in R_w^{\oplus}$ and $(a^{D,w})_w^{\oplus} = x$.

Additionally, we have

$$\begin{array}{rcl} a_w^{\oplus} & = & (aw)^{\oplus} \\ & = & [(aw)^D]^2[(aw)^D]^{\oplus} \\ & = & [(aw)^D]^2[a^{D,w}]_w^{\oplus}. \end{array}$$

(2) \Rightarrow (3) Since $a^{D,w} \in R_w^{\oplus}$, by virtue of [39, Theorem 2.6], $a^{D,w} \in R^{(1,3)}$, as required.

(3) \Rightarrow (1) Let $x = a^{D,w}wa^{D,w}(a^{D,w})^{(1,3)}$. Then $x = [(aw)^D]^3a(((aw)^D)^2a)^{(1,3)}$. Let k = i(aw). Then $(aw)^{D}(aw)^{k+1} = (aw)^{k}$.

Claim 1. $awx(aw)^k a = (aw)^k a$.

We verify that

$$awx(aw)^{k}a = aw[(aw)^{D}]^{3}a(((aw)^{D})^{2}a)^{(1,3)}(aw)^{k}a$$

$$= [(aw)^{D}]^{2}a(((aw)^{D})^{2}a)^{(1,3)}[(aw)^{D}]^{2}a[w(aw)^{k+1}a]$$

$$= [(aw)^{D}]^{2}a[w(aw)^{k+1}a]$$

$$= [(aw)^{D}]^{2}(aw)^{2}(aw)^{k}a] = (aw)^{k}a.$$

Step 2. $(aw)^k aR = xR$.

Clearly, $xR \subseteq (aw)^D R \subseteq (aw)^k aR$. Also we see that

$$(aw)^{k}a = (aw)^{D}(aw)^{k+1}a = [((aw)^{D})^{3}a][w(aw)^{k+2}a]$$

$$= [(aw)^{D}]^{3}a(((aw)^{D})^{2}a)^{(1,3)}((aw)^{D})^{2}a][w(aw)^{k+2}a]$$

$$= x((aw)^{D})^{2}a][w(aw)^{k+2}a];$$

hence, $(aw)^k a \subseteq xR$. Therefore $(aw)^k aR = xR$.

Step 3.
$$Rx = R((aw)^k a)^*$$
.

We easily verify that

$$x = [(aw)^{D}]^{3}a(((aw)^{D})^{2}a)^{(1,3)}$$

$$= ([(aw)^{D}]^{3}a(((aw)^{D})^{2}a)^{(1,3)})^{*}$$

$$= ([(aw)^{k}aw((aw)^{D})^{k+1}][(aw)^{D}]^{3}a(((aw)^{D})^{2}a)^{(1,3)})^{*}$$

$$= ([w((aw)^{D})^{k+1}][(aw)^{D}]^{3}a(((aw)^{D})^{2}a)^{(1,3)})^{*}((aw)^{k}a)^{*},$$

and then, $Rx \subseteq R((aw)^k a)^*$. Moreover, we have

$$(aw)^k a = (aw)^D (aw)^{k+1} a = [(aw)^D]^2 aw (aw)^{k+1} a$$

$$= ([(aw)^D]^2 a ([(aw)^D]^2 a)^{(1,3)} [(aw)^D]^2 a) w (aw)^{k+1} a,$$

and then

$$\begin{array}{lcl} \big((aw)^k a\big)^* & = & \big([(aw)^D]^2 aw(aw)^{k+1} a\big)^* [(aw)^D]^2 a([(aw)^D]^2 a)^{(1,3)} \\ & = & \big([(aw)^D]^2 aw(aw)^{k+1} a\big)^* (aw)[(aw)^D]^3 a([(aw)^D]^2 a)^{(1,3)} \\ & = & \big([(aw)^D]^2 aw(aw)^{k+1} a\big)^* (aw) x. \end{array}$$

Hence $R((aw)^k a)^* \subseteq Rx$. Therefore $Rx = R((aw)^k a)^*$. Accordingly, $a \in R_w^{\odot}$ by [25, Theorem 2.4]. \square

Corollary 2.5. *Let* $a, w \in R$. *Then the following are equivalent:*

- (1) $a \in R_w^{\mathbb{O}}$.
- (2) $a \in R^{\widetilde{D},w}$ and $awa^{D,w}w \in R^{(1,3)}$.
- (3) $a \in R^{D,w}$ and there exists a projection $q \in R$ such that $a^{D,w}R = qR$.

In this case, $a_w^{\oplus} = a^{D,w} w a^{D,w} (a^{D,w})^{(1,3)} = a^{D,w} w q$.

Proof. (1) \Rightarrow (3) By virtue of Theorem 2.4, $a^{D,w} \in R^{(1,3)}$ and then

$$a^{D,w} = a^{D,w} (a^{D,w})^{(1,3)} a^{D,w}$$
 and $[a^{D,w} (a^{D,w})^{(1,3)}]^* = a^{D,w} (a^{D,w})^{(1,3)}$.

Let $q = a^{D,w}(a^{D,w})^{(1,3)}$. Then $a^{D,w}R = qR$, $q^2 = q = q^*$, as required. (3) \Rightarrow (2) Let $x = a^{D,w}wq$. Then $awx = awa^{D,w}wq = aw[(aw)^D]^2awq = aw(aw)^Dq = q$, and so $(awx)^* = q^* = q = awx$. Moreover, we have

$$awx^2 = (awx)x = qa^{D,w}wq = a^{D,w}wq = x.$$

Let *n* be the Drazin index of *aw*. Then $(aw)^n = (aw)^D (aw)^{n+1}$. Obviously, $a^{D,w}w(aw) = (aw)a^{D,w}w$, and so

$$(aw)^{n} - x(aw)^{n+1}$$

$$= (aw)^{n} - a^{D,w}wq(aw)^{n+1}$$

$$= (aw)^{n} - (aw)^{D}q(aw)^{n+1} = (aw)^{n} - (aw)^{D}q(aw)^{D}(aw)^{n+2}$$

$$= (aw)^{n} - (aw)^{D}(aw)^{D}(aw)^{n+2} = (aw)^{n} - (aw)^{D}(aw)^{n+1} = 0.$$

Hence $(aw)^n = x(aw)^{n+1}$. Thus $x = a_w^{\oplus}$. In this case, $a_w^{\oplus} = x = a^{D,w}wq = a^{D,w}wa^{D,w}(a^{D,w})^{(1,3)}$. (2) \Rightarrow (1) Let $x = a^{D,w}w(awa^{D,w}w)^{(1,3)}$. Then we verify that

$$awx = awa^{D,w}w(awa^{D,w}w)^{(1,3)} = aw(aw)^{D}(aw(aw)^{D})^{(1,3)},$$

$$(awx)^{*} = awx,$$

$$awx^{2} = aw(aw)^{D}(aw(aw)^{D})^{(1,3)}a^{D,w}w(awa^{D,w}w)^{(1,3)}$$

$$= aw(aw)^{D}(aw(aw)^{D})^{(1,3)}aw[(aw)^{D}]^{2}(awa^{D,w}w)^{(1,3)}$$

$$= (aw)^{D}(awa^{D,w}w)^{(1,3)} = x,$$

Let n be the Drazin index of aw. Then

$$awx(aw)^n = aw(aw)^D(aw(aw)^D)^{(1,3)}(aw)^n$$

= $aw(aw)^D(aw(aw)^D)^{(1,3)}(aw)(aw)^D(aw)^n$
= $aw(aw)^D(aw)^n = (aw)^n$.

Hence, $(aw)^n = awx(aw)^n$. Therefore $a \in R_w^{\mathbb{O}}$ by Lemma 2.3. In this case, $a_w^{\mathbb{O}} = a^{D,w}w(awa^{D,w}w)^{(1,3)}$. \square

Corollary 2.6. *Let* $a \in R$. *Then the following are equivalent:*

- (1) $a \in R^{\mathbb{O}}$.
- (2) $a \in R^D$ and $a^D \in R^{\oplus}$.
- (3) $a \in R^D$ and $a^D \in R^{(1,3)}$. (4) $a \in R^D$ and $aa^D \in R^{(1,3)}$.
- $a \in R^D$ and there exists a projection $q \in R$ such that $a^D R = qR$.

In this case, $a^{\oplus} = (a^D)^2 (a^{D \oplus}) = (a^D)^2 (a^D)^{(1,3)} = a^D q$.

Proof. This is obvious by choosing w = 1 in Theorem 2.4 and Corollary 2.5. \square

3. Weighted Core-EP Orders

Let $a \in R_w^{\oplus}$, $b \in R$. Recall that $a \leq_w^{\oplus} b$ if $awa_w^{\oplus} = bwa_w^{\oplus}$ and $a_w^{\oplus} a = a_w^{\oplus} b$ (see [40]). By employing the w-core-decomposition as a tool, we now characterize the weighted core-EP inverse through the weight core order.

Theorem 3.1. Let $a, b \in R_{\omega}^{\oplus}$. If $a = a_1 + a_2$, $b = b_1 + b_2$ are w-core-EP decompositions of a and b. Then the following are equivalent:

- (1) $a \leq_w^{\mathbb{O}} b$.
- $(aw)^{n+1} = bw(aw)^n$ and $a^*(aw)^n = b^*(aw)^n$ for some $n \in \mathbb{N}$.

Proof. (1) \Rightarrow (2) Since $a \leq_w^{\mathbb{O}} b$, we have $awa_w^{\mathbb{O}} = bwa_w^{\mathbb{O}}$ and $a_w^{\mathbb{O}} a = a_w^{\mathbb{O}} b$. For any $m \in \mathbb{N}$, we derive

$$\begin{array}{lll} a_{1}w(a_{1})_{w}^{\oplus} & = & (a_{1}+a_{2})w(a_{1})_{w}^{\oplus} = awa_{w}^{\oplus} = bwa_{w}^{\oplus} \\ & = & bwaw(a_{w}^{\oplus})^{2} = bw[awa_{w}^{\oplus}]a_{w}^{\oplus} = bw[bwa_{w}^{\oplus}]a_{w}^{\oplus} \\ & = & (bw)^{2}(a_{w}^{\oplus})^{2} = \cdots = (bw)^{m}(a_{w}^{\oplus})^{m}, \\ b_{1}w(a_{1})_{w}^{\oplus} & = & bwb_{w}^{\oplus}bwa_{w}^{\oplus} = bwb_{w}^{\oplus}bwaw(a_{w}^{\oplus})^{2} = bwb_{w}^{\oplus}(bw)^{2}(a_{w}^{\oplus})^{2} \\ & = & \cdots = bwb_{w}^{\oplus}(bw)^{m}(a_{w}^{\oplus})^{m}. \end{array}$$

Thus, we have

$$a_1 w(a_1)_w^{\oplus} - b_1 w(a_1)_w^{\oplus}$$

$$= (bw)^m (a_w^{\oplus})^m - bw b_w^{\oplus} (bw)^m (a_w^{\oplus})^m$$

$$= [(bw)^m - bw b_w^{\oplus} (bw)^m] (a_w^{\oplus})^m.$$

In view of Lemma 2.3,

$$(bw)^m = bwb_{vv}^{\mathbb{Q}}(bw)^m$$
.

Hence,

$$a_1 w(a_1)_w^{\oplus} = b_1 w(a_1)_w^{\oplus}.$$

Since $b_1 = bwb_w^{\oplus} b$, we verify that

$$awa_w^{\mathbb{O}} = a_1w(a_1)_w^{\oplus} = b_1w(a_1)_w^{\oplus} = bwb_w^{\mathbb{O}}bwa_w^{\mathbb{O}} = bwb_w^{\mathbb{O}}awa_w^{\mathbb{O}}.$$

Thus,

$$[awa_w^{\mathbb{Q}}]^* = [bwb_w^{\mathbb{Q}}awa_w^{\mathbb{Q}}]^*,$$

and so

$$awa_w^{\mathbb{O}} = awa_w^{\mathbb{O}}bwb_w^{\mathbb{O}}.$$

Then we see that

$$(a_1)_w^{\oplus} a_1 = a_w^{\textcircled{o}} (awa_w^{\textcircled{o}} a) = a_w^{\textcircled{o}} (awa_w^{\textcircled{o}}) a$$

$$= a_w^{\textcircled{o}} (awa_w^{\textcircled{o}}) b$$

$$= a_w^{\textcircled{o}} (awa_w^{\textcircled{o}} bwb_w^{\textcircled{o}}) b$$

$$= (a_w^{\textcircled{o}} awa_w^{\textcircled{o}}) bwb_w^{\textcircled{o}}) b$$

$$= a_w^{\textcircled{o}} (bwb_w^{\textcircled{o}} b) = (a_1)_w^{\textcircled{o}} b_1.$$

Therefore $a_1 \leq_w^{\oplus} b_1$.

 $(2) \Rightarrow (1)$ Obviously, we have

$$awa_w^{\mathbb{O}} = (a_1 + a_2)wa_1^{\oplus} = a_1wa_1^{\oplus} = b_1wa_1^{\oplus} = bwb_w^{\mathbb{O}}bwa_w^{\mathbb{O}}.$$

Then

$$a_w^{\mathbb{O}} = aw(a_w^{\mathbb{O}})^2 = bwb_w^{\mathbb{O}}bw(a_w^{\mathbb{O}})^2.$$

Since $(bw)^n = bwb_w^{\mathbb{Q}}(bw)^n$ for some $n \in \mathbb{N}$, we derive that

$$bwb_w^{\mathbb{O}}bwa_w^{\mathbb{O}} = bwa_w^{\mathbb{O}}.$$

Then

$$awa_w^{\mathbb{O}} = bwa_w^{\mathbb{O}}.$$

Clearly, $a_w^{\oplus} a_2 = (a_1)_w^{\oplus} a_2 = (a_1)_w^{\oplus} a_1 w (a_1)_w^{\oplus} a_2 = (a_1)_w^{\oplus} (a_1 w (a_1)_w^{\oplus})^* a_2 = (a_1)_w^{\oplus} [w (a_1)_w^{\oplus}]^* (a_1)^* a_2 = 0.$

Moreover, we have

$$awa_{w}^{\mathbb{O}} = bwb_{w}^{\mathbb{O}}bwa_{w}^{\mathbb{O}} = (bwb_{w}^{\mathbb{O}})(awa_{w}^{\mathbb{O}}).$$

Then

$$awa_w^{\mathfrak{D}} = (awa_w^{\mathfrak{D}})^*$$

$$= (awa_w^{\mathfrak{D}})^*(bwb_w^{\mathfrak{D}})^*$$

$$= awa_w^{\mathfrak{D}}bwb_w^{\mathfrak{D}}.$$

Hence, $a_w^{\odot} = a_w^{\odot} aw a_w^{\odot} = a_w^{\odot} aw a_w^{\odot} bw b_w^{\odot} = a_w^{\odot} bw b_w^{\odot}$. Accordingly, $a_w^{\odot} b = a_w^{\odot} bw b_w^{\odot} b = (a_1)_w^{\odot} b_1 = (a_1)_w^{\odot} a_1 = a_w^{\odot} (a_1 + a_2) = a_w^{\odot} a$, as required.

 $(1) \Rightarrow (3)$ Since $awa_w^{\oplus} = bwa_w^{\oplus}$ and $(aw)^{k+1} = (aw)^k$, we see that $(aw)^{k+1} = (aw)(aw)^k = (bw)(aw)^k$. Also we have $a_w^{\oplus}a = a_w^{\oplus}b$. Then $a^*(a_w^{\oplus})^* = b^*(a_w^{\oplus})^*$; hence,

$$a^*(a_w^{\mathfrak{D}})^*(aw)^*(aw)^k = b^*(a_w^{\mathfrak{D}})^*(aw)^*(aw)^k.$$

As $(awa_w^{\mathbb{O}})^* = awa_w$ and $awa_w^{\mathbb{O}}(aw)^{k+1} = (aw)^{k+2}$, we deduce that $a^*(aw)^{k+1} = b^*(aw)^{k+1}$. Choose n = k+1. Then $(aw)^{n+1} = bw(aw)^n$ and $a^*(aw)^n = b^*(aw)^n$, as required.

 $(3) \Rightarrow (1)$ By hypothesis, $(aw)^{n+1} = bw(aw)^n$ and $a^*(aw)^n = b^*(aw)^n$ for some $n \in \mathbb{N}$. Since $(aw)^{n+1} = bw(aw)^n$, we have $(aw)(aw)^n(a_w^{\odot})^{n+1} = (bw)(aw)^n(a_w^{\odot})^{n+1}$. As $aw(a_w^{\odot})^2 = a_w^{\odot}$, we have $(aw)a_w^{\odot} = (bw)a_w^{\odot}$.

Since $a^*(aw)^n = b^*(aw)^n$, we have $((aw)^n)^*a = ((aw)^n)^*b$. Hence,

$$[(a_{vv}^{\mathbb{Q}})^n]^n((aw)^n)^*a = [(a_{vv}^{\mathbb{Q}})^n]^n((aw)^n)^*b.$$

This implies that

$$awa_{w}^{\mathbb{D}}a = awa_{w}^{\mathbb{D}}b.$$

Therefore

$$a_w^{\mathbb{O}}a = a_w^{\mathbb{O}}a = a_w^{\mathbb{O}}[awa_w^{\mathbb{O}}a]$$

= $a_w^{\mathbb{O}}[awa_w^{\mathbb{O}}b] = [aw)^{\mathbb{O}}awa_w^{\mathbb{O}}]b = a_w^{\mathbb{O}}b$,

as required. \square

Corollary 3.2. The relation \leq_w^{\odot} for w-core-EP invertible elements is a preorder on R.

Proof. Step 1. $a \leq_w^{\mathbb{O}} a$. Let $a = a_1 + a_2$ be the *w*-core-EP decomposition. In view of [40, Theorem 2.3], $a_1 \leq_w^{\oplus} a_1$. By using Theorem 3.1, $a \leq_w^{\oplus} a$.

Step 2. Assume that $a \leq_w^{\mathbb{O}} b$ and $b \leq_w^{\mathbb{O}} c$. We claim that $a \leq_w^{\mathbb{O}} c$. Let $a = a_1 + a_2, b = b_1 + b_2$ and $c = c_1 + c_2$ be the w-core-EP decompositions of a, b and c, respectively. By virtue of Theorem 3.1, $a_1 \leq_w^{\oplus} b_1$ and $b_1 \leq_w^{\oplus} c_1$. According to [40, Theorem 2.3], we have $a_1 \leq_w^{\oplus} c_1$. By using Theorem 3.1 again, $a \leq_w^{\mathbb{D}} c$.

Therefore the relation $\leq_w^{\mathbb{O}}$ for *w*-core-EP invertible elements is a preorder. \square

Lemma 3.3. Let $a, b \in R_w^{\mathbb{O}}$ and $a \leq_w^{\mathbb{O}} b$. Then the following hold:

- $awa_w^{\mathbb{O}} = (awa_w^{\mathbb{O}})(bwb_w^{\mathbb{O}}) = (bwb_w^{\mathbb{O}})(awa_w^{\mathbb{O}}).$
- $a_w^{\mathbb{O}} = a_w^{\mathbb{O}}(bwb_w^{\mathbb{O}}) = (bwb_w^{\mathbb{O}})a_w^{\mathbb{O}}.$
- $bwa_w^{\mathbb{O}} = awa_w^{\mathbb{O}} awb_w^{\mathbb{O}}.$ $b_w^{\mathbb{O}} a_w^{\mathbb{O}} = (a_w^{\mathbb{O}})^2.$

Proof. In view of Lemma 2.3, aw, $bw \in R^{\odot}$, $(aw)^{\odot} = a_w^{\odot}$ and $(bw)^{\odot} = b_w^{\odot}$. Since $a \leq_w^{\odot} b$, we have

$$awa_w^{\mathbb{O}} = bwa_w^{\mathbb{O}}, a_w^{\mathbb{O}}a = a_w^{\mathbb{O}}b.$$

Hence, $a_w^{\mathbb{O}} aw = a_w^{\mathbb{O}} bw$. This implies that $aw \leq^{\mathbb{O}} bw$. In view of [7, Lemma 6.2.6], we derive

$$(aw)(aw)^{\textcircled{0}} = [(aw)(aw)^{\textcircled{0}}][(bw)(bw)^{\textcircled{0}}] = [(bw)(bw)^{\textcircled{0}}][(aw)(aw)^{\textcircled{0}}].$$

Therefore

$$awa_w^{\mathbb{O}} = (awa_w^{\mathbb{O}})(bwb_w^{\mathbb{O}}) = (bwb_w^{\mathbb{O}})(awa_w^{\mathbb{O}}).$$

We directly check that

$$\begin{array}{lll} a_w^{\mathbb{O}} & = & a_w^{\mathbb{O}}[awa_w^{\mathbb{O}}] = [a_w^{\mathbb{O}}awa_w^{\mathbb{O}}](bwb_w^{\mathbb{O}}) \\ & = & a_w^{\mathbb{O}}(bwb_w^{\mathbb{O}}) = [awa_w^{\mathbb{O}}]a_w^{\mathbb{O}} \\ & = & (bw)(bw)^{\mathbb{O}}aw[(aw)^{\mathbb{O}}]^2 = (bwb_w^{\mathbb{O}})a_w^{\mathbb{O}}. \end{array}$$

Analogously, (3) and (4) are proved by using [7, Theorem 6.2.7]. \Box

Theorem 3.4. Let $a, b \in R_w^{\mathbb{O}}$. Then the following are equivalent:

- (1) $a \leq_w^{\oplus} b$.
- (2) $a_w^{\mathbb{O}}b = b_w^{\mathbb{O}}awa_w^{\mathbb{O}}a, a_w^{\mathbb{O}} = a_w^{\mathbb{O}}bwa_w^{\mathbb{O}}, bwa_w^{\mathbb{O}} = awa_w^{\mathbb{O}}awb_w^{\mathbb{O}}.$

Proof. $(1) \Rightarrow (2)$ We claim that

$$\begin{array}{rcl} a_w^{\oplus}b & = & [a_w^{\oplus}(bwb_w^{\oplus})]b = a_w^{\oplus}[bwb_w^{\oplus}b] \\ & = & (a_1)_w^{\oplus}b_1 = (a_1)_w^{\oplus}a_1 = (b_1)_w^{\oplus}a_1 \\ & = & b_w^{\oplus}awa_w^{\oplus}a. \end{array}$$

By virtue of Lemma 3.3, $a_w^{\mathbb{O}} = a_w^{\mathbb{O}} bw a_w^{\mathbb{O}}$, $bw a_w^{\mathbb{O}} = aw a_w^{\mathbb{O}} aw b_w^{\mathbb{O}}$.

 $(2) \Rightarrow (1)$ Step 1. By hypothesis, we have

$$(aw)^{\mathbb{O}} = (aw)^{\mathbb{O}}(bw)(aw)^{\mathbb{O}}, (bw)(aw)^{\mathbb{O}} = (aw)(aw)^{\mathbb{O}}(aw)(bw0^{\mathbb{O}}.$$

Since $a_w^{\oplus}b = b_w^{\oplus}awa_w^{\oplus}a$, we get $(aw)^{\oplus}(bw) = (bw)^{\oplus}(aw)(aw)(aw)^{\oplus}(aw)$. According to [7, Proposition 6.2.8], $aw \leq^{\textcircled{o}} bw$. Thus, $(aw)(aw)^{\textcircled{o}} = (bw)(aw)^{\textcircled{o}}$; hence, $awa_w^{\textcircled{o}} = bwa_w^{\textcircled{o}}$.

Step 2. We verify that

$$\begin{array}{lcl} a_{w}^{\mathfrak{D}} a & = & [a_{w}^{\mathfrak{D}}(bwa_{w}^{\mathfrak{D}})]a = [a_{w}^{\mathfrak{D}}b][wa_{w}^{\mathfrak{D}}a] \\ & = & [b_{w}^{\mathfrak{D}}awa_{w}^{\mathfrak{D}}a][wa_{w}^{\mathfrak{D}}a] = b_{w}^{\mathfrak{D}}aw[a_{w}^{\mathfrak{D}}awa_{w}^{\mathfrak{D}}]a \\ & = & b_{w}^{\mathfrak{D}}awa_{w}^{\mathfrak{D}}a = a_{w}^{\mathfrak{D}}b. \end{array}$$

This completes the proof. \Box

Employing the technique of Hilbert operator decomposition, many properties of the core-EP preorder between two Hilbert space operators, grounded in their corresponding self-adjoint operators, were explored in [25]. Through an elementary-wise analysis, we will characterize the preorder of weighted core-EP inverses, which includes certain self-adjoint elements, thereby extending many established results to a more comprehensive class of ring elements.

Theorem 3.5. Let $a, b \in R_w^{\mathbb{Q}}$. Then the following are equivalent:

- (1) $a \leq_w^{\mathbb{O}} b$.
- (2) $bwa_w^{\mathbb{O}}$ is self-adjoint and $a_w^{\mathbb{O}}a = a_w^{\mathbb{O}}b$.
- (3) $bwa_w^{\mathbb{O}}$ is self-adjoint and $awa_w^{\mathbb{O}}a = awa_w^{\mathbb{O}}b$.
- $bwa_w^{\mathbb{O}}$ is self-adjoint and $a^*a_w^{\mathbb{O}} = b^*a_w^{\mathbb{O}}$.
- bwa_w^{\oplus} is self-adjoint and $a^*(aw)^n = b^*(aw)^n$ for some $n \in \mathbb{N}$. bwa_w^{\oplus} is self-adjoint and $a^*a^{D,w} = b^*a^{D,w}$.

Proof. (1) Since $a \leq_w^{\mathbb{O}} b$, we have $awa_w^{\mathbb{O}} = bwa_w^{\mathbb{O}} b$ and $a_w^{\mathbb{O}} a = a_w^{\mathbb{O}} b$. Since $(awa_w^{\mathbb{O}})^* = awa_w^{\mathbb{O}}$, we see that $(bwa_w^{\mathbb{O}})^* = bwa_w^{\mathbb{O}}$. That is, $bwa_w^{\mathbb{O}}$ is self-adjoint, as required.

- $(2) \Rightarrow (3)$ This is obvious.
- $(3) \Rightarrow (1)$ By hypothesis, $(bwa_w^{\mathbb{Q}})^* = bwa_w^{\mathbb{Q}}$. In view of cite[Theorem 2.4]MZ, $a_w^{\mathbb{O}} = a_w^{\mathbb{O}} aw a_w^{\mathbb{O}}$ and $(aw a_w^{\mathbb{O}})^* = aw a_w^{\mathbb{O}}$. Then

$$\begin{array}{lll} bwa_{w}^{\mathfrak{D}} & = & [bw(a_{w}^{\mathfrak{D}}awa_{w}^{\mathfrak{D}})]^{*} \\ & = & (awa_{w}^{\mathfrak{D}})^{*}(bwa_{w}^{\mathfrak{D}})^{*} \\ & = & (awa_{w}^{\mathfrak{D}})(bwa_{w}^{\mathfrak{D}})^{*} \\ & = & [awa_{w}^{\mathfrak{D}}b]wa_{w}^{\mathfrak{D}} \\ & = & [awa_{w}^{\mathfrak{D}}a]wa_{w}^{\mathfrak{D}} \\ & = & aw[a_{w}^{\mathfrak{D}}awa_{w}^{\mathfrak{D}}] \\ & = & awa_{w}^{\mathfrak{D}}, \end{array}$$

as desired.

- $(1) \Rightarrow (4)$ Obviously, $bwa_w^{\mathbb{Q}}$ is self-adjoint and $a_w^{\mathbb{Q}}a = a_w^{\mathbb{Q}}b$. Hence, $awa_w^{\mathbb{Q}}a = awa_w^{\mathbb{Q}}b$. This implies that $(awa_w^{\mathbb{O}})^*a = (awa_w^{\mathbb{O}})^*b$. Hence, $a^*(awa_w^{\mathbb{O}}) = b^*(awa_w^{\mathbb{O}})$. Therefore $a^*a_w^{\mathbb{O}} = [a^*awa_w^{\mathbb{O}}]a_w^{\mathbb{O}} = [a^*awa_w^{\mathbb{O}}]a_w^{\mathbb{O}$ $[b^*awa_w^{\mathbb{Q}}]a_w^{\mathbb{Q}}=b^*a_w^{\mathbb{Q}}$, as required.
 - $(4) \Rightarrow (5)$ Since $a_w^{\mathbb{Q}} a^{n+1} = a^n$ for some $n \in \mathbb{N}$, we have

$$a^*(aw)^n = [a^*a_w^{\odot}]a^{n+1}[b^*a_w^{\odot}]a^{n+1} = b^*(aw)^n,$$

as desired.

 $(5) \Rightarrow (6) \text{ As } a^*(aw)^n = b^*(aw)^n$, we have $a^*(aw)^D = a^*(aw)^n [(aw)^D]^{n+1} = b^*(aw)^n [(aw)^D]^{n+1} = b^*(aw)^n$ $b^*(aw)^D$. Therefore $a^*a^{D,w} = [a^*(aw)^D][(aw)^Da] = [b^*(aw)^D][(aw)^Da] = b^*a^{D,w}$.

 $(6) \Rightarrow (3)$ Since $aw(aw)^D = a^{D,w}waw$, we have $a^*aw(aw)^D = b^*aw(aw)^D$. In view of [10, Theorem 2.3], $(aw)^{\textcircled{o}} \in (aw)^DR$, and then $a^*aw(aw)^{\textcircled{o}} = b^*aw(aw)^{\textcircled{o}}$. Hence $a^*awa_w^{\textcircled{o}} = b^*awa_w^{\textcircled{o}}$. As $(awa_w^{\textcircled{o}})^* = awa_w^{\textcircled{o}}$, we deduce that $awa_w^{\textcircled{o}}a = awa_w^{\textcircled{o}}b$. Therefore

$$a_w^{\mathbb{O}}a = a_w^{\mathbb{O}}[awa_w^{\mathbb{O}}a] = a_w^{\mathbb{O}}[awa_w^{\mathbb{O}}b] = a_w^{\mathbb{O}}a,$$

as asserted. \square

Theorem 3.6. Let $a, b \in R_w^{\odot}$. Then the following are equivalent:

- (1) $a \leq_w^{\mathbb{O}} b$.
- (2) $(awa_w^{\mathbb{Q}}a)^*b$ is self-adjoint and $awa_w^{\mathbb{Q}} = bwa_w^{\mathbb{Q}}$.
- (3) $(awa_w^{\mathbb{O}}a)^*b$ is self-adjoint and $awa_w^{\mathbb{O}}a = bwa_w^{\mathbb{O}}a$.
- (4) $(awa_w^{\mathbb{O}}a)^*b$ is self-adjoint and $a_w^{\mathbb{O}}(aw)^* = a_w^{\mathbb{O}}(bw)^*$.

Proof. $(1) \Rightarrow (2)$ By hypothesis, we have

$$awa_w^{\mathbb{O}} = bwa_w^{\mathbb{O}}, a_w^{\mathbb{O}}a = a_w^{\mathbb{O}}b.$$

Hence,

$$(awa_{w}^{\mathbb{O}}a)^{*}b = a^{*}(awa_{w}^{\mathbb{O}})^{*}b = a^{*}aw[a_{w}^{\mathbb{O}}b] = a^{*}aw[a_{w}^{\mathbb{O}}a] = a^{*}[awa_{w}^{\mathbb{O}}]a.$$

This implies that $(awa_w^{\mathbb{O}}a)^*b$ is self-adjoint.

- $(2) \Rightarrow (3)$ This is obvious.
- $(3) \Rightarrow (1)$ Since $awa_w^{\mathbb{O}}a = bwa_w^{\mathbb{O}}a$, we see that

$$awa_w^{\mathfrak{D}} = aw[a_w^{\mathfrak{D}}awa_w^{\mathfrak{D}}]$$

$$= [awa_w^{\mathfrak{D}}a]wa_w^{\mathfrak{D}}$$

$$= [bwa_w^{\mathfrak{D}}a]wa_w^{\mathfrak{D}}$$

$$= bwa_w^{\mathfrak{D}}.$$

Since $(awa_{vv}^{\mathbb{O}}a)^*b$ is self-adjoint, we verify that

$$\begin{array}{lll} a_{w}^{\mathfrak{D}}b & = & a_{w}^{\mathfrak{D}}(awa_{w}^{\mathfrak{D}})^{*}awa_{w}^{\mathfrak{D}}b \\ & = & a_{w}^{\mathfrak{D}}(wa_{w}^{\mathfrak{D}})^{*}a^{*}(awa_{w}^{\mathfrak{D}})^{*}b \\ & = & a_{w}^{\mathfrak{D}}(wa_{w}^{\mathfrak{D}})^{*}(awa_{w}^{\mathfrak{D}}a)^{*}b \\ & = & a_{w}^{\mathfrak{D}}(wa_{w}^{\mathfrak{D}})^{*}((awa_{w}^{\mathfrak{D}}a)^{*}b)^{*} \\ & = & a_{w}^{\mathfrak{D}}(awa_{w}^{\mathfrak{D}})^{*}(wa_{w}^{\mathfrak{D}})^{*}((awa_{w}^{\mathfrak{D}}a)^{*}b)^{*} \\ & = & a_{w}^{\mathfrak{D}}(wa_{w}^{\mathfrak{D}})^{*}a^{*}(wa_{w}^{\mathfrak{D}})^{*}((awa_{w}^{\mathfrak{D}}a)^{*}b)^{*} \\ & = & a_{w}^{\mathfrak{D}}(wa_{w}^{\mathfrak{D}})^{*}(wa_{w}^{\mathfrak{D}}a)^{*}((awa_{w}^{\mathfrak{D}}a)^{*}b)^{*} \\ & = & a_{w}^{\mathfrak{D}}(wa_{w}^{\mathfrak{D}})^{*}((awa_{w}^{\mathfrak{D}}a)^{*}[bwa_{w}^{\mathfrak{D}}a])^{*} \\ & = & a_{w}^{\mathfrak{D}}(wa_{w}^{\mathfrak{D}})^{*}((awa_{w}^{\mathfrak{D}}a)^{*}[awa_{w}^{\mathfrak{D}}a] \\ & = & a_{w}^{\mathfrak{D}}(wa_{w}^{\mathfrak{D}})^{*}a^{*}(awa_{w}^{\mathfrak{D}})^{*}[awa_{w}^{\mathfrak{D}}a] \\ & = & a_{w}^{\mathfrak{D}}(awa_{w}^{\mathfrak{D}})^{*}(awa_{w}^{\mathfrak{D}})^{*}[awa_{w}^{\mathfrak{D}}a] \\ & = & a_{w}^{\mathfrak{D}}(awa_{w}^{\mathfrak{D}})^{*}(awa_{w}^{\mathfrak{D}})^{*}[awa_{w}^{\mathfrak{D}}a] \\ & = & a_{w}^{\mathfrak{D}}(awa_{w}^{\mathfrak{D}})^{*}(awa_{w}^{\mathfrak{D}})^{*}[awa_{w}^{\mathfrak{D}}a] \\ & = & a_{w}^{\mathfrak{D}}(awa_{w}^{\mathfrak{D}})^{*}(awa_{w}^{\mathfrak{D}})^{*}(awa_{w}^{\mathfrak{D}})^{*}awa_{w}^{\mathfrak{D}}a \\ & = & a_{w}^{\mathfrak{D}}(awa_{w}^{\mathfrak{D}})^{*}(awa_{w}^{\mathfrak{D}})^{*}awa_{w}^{\mathfrak{D}}a \\ & = & a_{w}^{\mathfrak{D}}(awa_{w}^{\mathfrak{D}})^{*}awa_{w}^{\mathfrak{D}}a \\ & = & a_{w}^{\mathfrak{D}}(awa_{w}^{\mathfrak{D}})^{*}awa_{w}^{\mathfrak{D}}$$

Therefore $a \leq_w^{\mathbb{D}} b$.

 $(1) \Rightarrow (4)$ Obviously, $(awa_w^{\mathbb{Q}}a)^*b$ is self-adjoint. Clearly, $awa_w^{\mathbb{Q}}(aw)^2a_w^{\mathbb{Q}} = bwa_w^{\mathbb{Q}}(aw)^2a_w^{\mathbb{Q}}$. Since $a_w^{\mathbb{Q}}(aw)^2a_w^{\mathbb{Q}} = (aw)a_w^{\mathbb{Q}}$, we deduce that $aw(awa_w^{\mathbb{Q}}) = bw(awa_w^{\mathbb{Q}})$. As $(awa_w^{\mathbb{Q}})^* = awa_w^{\mathbb{Q}}$, we have $(awa_w^{\mathbb{Q}})(aw)^* = (awa_w^{\mathbb{Q}})(bw)^*$. Since $a_w^{\mathbb{Q}}(awa_w^{\mathbb{Q}}) = a_w^{\mathbb{Q}}$, we get $a_w^{\mathbb{Q}}(aw)^* = a_w^{\mathbb{Q}}(bw)^*$, as required.

 $(4) \Rightarrow (2)$ Since $a_w^{\mathbb{O}}(aw)^* = a_w^{\mathbb{O}}(bw)^*$, we have $[awa_w^{\mathbb{O}}](aw)^* = [awa_w^{\mathbb{O}}](bw)^*$. As $[awa_w^{\mathbb{O}}]^* = awa_w^{\mathbb{O}}$, we deduce that $aw[awa_w^{\mathbb{O}}] = bw[awa_w^{\mathbb{O}}]$; and then $awa_w^{\mathbb{O}} = aw[aw(a_w^{\mathbb{O}})^2] = [(aw)^2a_w^{\mathbb{O}}]a_w^{\mathbb{O}} = [bwawa_w^{\mathbb{O}}]a_w^{\mathbb{O}} = bw[aw(a_w^{\mathbb{O}})^2] = bwa_w^{\mathbb{O}}$, as desired. \square

Theorem 3.7. Let $a, b \in R_w^{\odot}$. Then the following are equivalent:

- (1) $a \leq_w^{\mathbb{D}} b$.
- (2) $awa_w^{\mathbb{O}}a = bwa_w^{\mathbb{O}}b$ and $awa_w^{\mathbb{O}} = bwa_w^{\mathbb{O}}$.
- (3) $awa_w^{\mathbb{O}}(a bwa_w^{\mathbb{O}}b) = 0 \text{ and } awa_w^{\mathbb{O}} = bwa_w^{\mathbb{O}}.$
- $(4) \quad a_w^{\mathbb{O}}(a bwa_w^{\mathbb{O}}b) = 0 \text{ and } awa_w^{\mathbb{O}} = bwa_w^{\mathbb{O}}.$

Proof. (1) \Rightarrow (2) Since $a \leq_w^{\mathbb{O}} b$, we have $a_w^{\mathbb{O}} a = a_w^{\mathbb{O}} b$ and $awa_w^{\mathbb{O}} = bwa_w^{\mathbb{O}}$. Then $awa_w^{\mathbb{O}} a = bwa_w^{\mathbb{O}} a = bwa_w^{\mathbb{O}} b$, as required.

 $(2) \Rightarrow (3)$ We directly check that

$$awa_w^{\mathbb{O}}(a - bwa_w^{\mathbb{O}}b) = awa_w^{\mathbb{O}}(a - awa_w^{\mathbb{O}}a) = awa_w^{\mathbb{O}}a - aw[a_w^{\mathbb{O}}awa_w^{\mathbb{O}}]a = 0,$$

as desired.

- $(3)\Rightarrow (4) \text{ Since } a_w^{\mathbb{O}}=a_w^{\mathbb{O}} awa_w^{\mathbb{O}} \text{, we conclude that } a_w^{\mathbb{O}}(a-bwa_w^{\mathbb{O}}b)=a_w^{\mathbb{O}}[awa_w^{\mathbb{O}}(a-bwa_w^{\mathbb{O}}b)]=0.$
- $(4) \Rightarrow (1)$ By hypothesis, we have

$$a_w^{\mathbb{O}}a = a_w^{\mathbb{O}}(bwa_w^{\mathbb{O}})b = a_w^{\mathbb{O}}(awa_w^{\mathbb{O}})b = [a_w^{\mathbb{O}}awa_w^{\mathbb{O}}]b = a_w^{\mathbb{O}}b.$$

This completes the proof. \Box

We are ready to prove:

Theorem 3.8. Let $a, b \in R_w^{\odot}$. Then the following are equivalent:

- (1) $a \leq_w^{\oplus} b$.
- (2) $(1 awa_w^{\mathbb{O}})bwa_w^{\mathbb{O}} = 0$ and $a_w^{\mathbb{O}}a = a_w^{\mathbb{O}}b$.
- (3) $(1 awa_w^{\mathbb{O}})bwa_w^{\mathbb{O}}a = 0$ and $awa_w^{\mathbb{O}}a = awa_w^{\mathbb{O}}b$.
- (4) $(1 awa_w^{\mathbb{O}})bwa_w^{\mathbb{O}} = 0$ and $a^*(aw)^n = b^*(aw)^n$ for some $n \in \mathbb{N}$.
- $(5) \quad (1 awa_w^{\mathbb{O}})bwa_w^{\mathbb{O}} = 0, a_w^{\mathbb{O}}a = a_w^{\mathbb{O}}bwa_w^{\mathbb{O}}a \text{ and } a_w^{\mathbb{O}}a(1 wawa_w^{\mathbb{O}}) = a_w^{\mathbb{O}}b(1 wawa_w^{\mathbb{O}}).$
- $(6) \quad (1 awa_w^{\mathbb{O}})bwa_w^{\mathbb{O}}a = 0, a_w^{\mathbb{O}} = a_w^{\mathbb{O}}bwa_w^{\mathbb{O}} \text{ and } awa_w^{\mathbb{O}}a(1 wawa_w^{\mathbb{O}}) = awa_w^{\mathbb{O}}b(1 wawa_w^{\mathbb{O}}).$

Proof. (1) \Rightarrow (2) By hypothesis, we have $awa_w^{\mathbb{O}} = bwa_w^{\mathbb{O}}$ and $a_w^{\mathbb{O}}a = a_w^{\mathbb{O}}b$. Then $(1 - awa_w^{\mathbb{O}})bwa_w^{\mathbb{O}}a = (1 - awa_w^{\mathbb{O}})awa_w^{\mathbb{O}}a = 0$, as required.

- $(2) \Rightarrow (3)$ This is trivial.
- $(3) \Rightarrow (1)$ By hypothesis, we have $bwa_w^{\otimes}a = awa_w^{\otimes}bwa_w^{\otimes}a$ and $awa_w^{\otimes}a = awa_w^{\otimes}b$. Then $bwa_w^{\otimes}a = [awa_w^{\otimes}b]wa_w^{\otimes}a = [awa_w^{\otimes}a]wa_w^{\otimes}a = aw[a_w^{\otimes}a]wa_w^{\otimes}]a = awa_w^{\otimes}a$. Hence, $bwa_w^{\otimes} = [bwa_w^{\otimes}a]wa_w^{\otimes} = [awa_w^{\otimes}a]wa_w^{\otimes} = awa_w^{\otimes}a$. Since $awa_w^{\otimes}a = awa_w^{\otimes}b$, we deduce that $a_w^{\otimes}a = a_w^{\otimes}[awa_w^{\otimes}a] = a_w^{\otimes}[awa_w^{\otimes}b] = a_w^{\otimes}b$, as desired.
- $(1) \Rightarrow (4)$ By the argument above, we have $(1 awa_w^{\mathbb{O}})bwa_w^{\mathbb{O}} = 0$. In view of Theorem 3.1, $a^*(aw)^n = b^*(aw)^n$ for some $n \in \mathbb{N}$.

 $(4) \Rightarrow (1)$ By hypothesis, we verify that

$$(bwa_{w}^{\mathfrak{D}})^{*} = (awa_{w}^{\mathfrak{D}}bwa_{w}^{\mathfrak{D}})^{*}$$

$$= (wa_{w}^{\mathfrak{D}})^{*}b^{*}(awa_{w}^{\mathfrak{D}})^{*}$$

$$= (wa_{w}^{\mathfrak{D}})^{*}b^{*}awa_{w}^{\mathfrak{D}}$$

$$= (wa_{w}^{\mathfrak{D}})^{*}b^{*}(aw)^{n}(a_{w}^{\mathfrak{D}})^{n}$$

$$= (wa_{w}^{\mathfrak{D}})^{*}a^{*}(aw)^{n}(a_{w}^{\mathfrak{D}})^{n}$$

$$= (awa_{w}^{\mathfrak{D}})^{*}awa_{w}^{\mathfrak{D}}$$

$$= aw[a_{w}^{\mathfrak{D}}awa_{w}^{\mathfrak{D}}]$$

$$= awa_{w}^{\mathfrak{D}}.$$

Therefore $bwa_w^{\oplus} = (awa_w^{\oplus})^* = awa_w^{\oplus}$. Obviously, we can find some $n \in \mathbb{N}$ such that $a^*(aw)^n = b^*(aw)^n$ and $a_w^{\oplus}(aw)^{n+1} = (aw)^n$; hence, $bwa_w^{\oplus}(aw)^{n+1} = (awa_w^{\oplus})^* = awa_w^{\oplus}(aw)^{n+1}$. This implies that $bw(aw)^n = awa_w^{\oplus}(aw)^n$. Accordingly, $a \leq_w^{\oplus} b$ by Theorem 3.1.

 $(1) \Rightarrow (5)$ Since $awa_w^{\mathbb{O}} = bwa_w^{\mathbb{O}}$ and $a_w^{\mathbb{O}}a = a_w^{\mathbb{O}}b$. We verify that

$$a_{vv}^{\oplus}a = [a_{vv}^{\oplus}awa_{vv}^{\oplus}]a = a_{vv}^{\oplus}bwa_{vv}^{\oplus}a,$$

as required.

- (5) \Rightarrow (6) Obviously, $a_w^{\mathbb{O}} = [a_w^{\mathbb{O}}a]wa_w^{\mathbb{O}} = [a_w^{\mathbb{O}}bwa_w^{\mathbb{O}}a]wa_w^{\mathbb{O}} = a_w^{\mathbb{O}}bw[a_w^{\mathbb{O}}awa_w^{\mathbb{O}}] = a_w^{\mathbb{O}}bwa_w^{\mathbb{O}}$, as desired.
 - $(6) \Rightarrow (3)$ By hypothesis, we have

$$awa_w^{\mathfrak{D}}bwawa_w^{\mathfrak{D}} = awa_w^{\mathfrak{D}}bw[a_w^{\mathfrak{D}}(aw)^2]a_w^{\mathfrak{D}}$$
$$= aw[a_w^{\mathfrak{D}}bwa_w^{\mathfrak{D}}](aw)^2a_w^{\mathfrak{D}}$$
$$= awa_w^{\mathfrak{D}}(aw)^2a_w^{\mathfrak{D}}.$$

Therefore $awa_w^{\mathbb{O}}a = awa_w^{\mathbb{O}}b$, as asserted. \square

4. Weighted Core-EP Inverse of Product and Difference

Let $p, q \in \mathcal{A}$ be idempotents. Then for any $x \in \mathcal{A}$, we have x = pxq + px(1-p) + (1-p)xq + (1-p)x(1-q). Thus x can be represented in the matrix form $x = \begin{pmatrix} pxp & px(1-p) \\ (1-p)xp & (1-p)x(1-q) \end{pmatrix}_{(p,q)}$.

With respect to the orthogonal sum of a Hilbert space, Stanimirović and Mosić provided conditions for the equivalence between the forward order law and the reverse order law for the core-EP inverse of Hilbert space operators. We will utilize the preceding matrix, in relation to idempotents, to extend the main results in [25] to a broader class of ring elements. The following theorem is crucial.

Theorem 4.1. Let $a \in \mathcal{A}_w^{\odot}$. Then the following are equivalent:

- $(1) \quad a \leq_w^{\mathbb{O}} b.$
- (2) a, w and b are represented as

$$a=\left(\begin{array}{cc} a_1 & a_{12} \\ 0 & a_2 \end{array}\right)_{p imes q}$$
, $w=\left(\begin{array}{cc} w_1 & w_{12} \\ 0 & w_2 \end{array}\right)_{q imes p}$, $b=\left(\begin{array}{cc} a_1 & a_{12} \\ 0 & b_2 \end{array}\right)_{p imes q}$,

where

$$p = awa_w^{\oplus}, q = wa_w^{\oplus}a,$$

$$a_1w_1 \in (p\mathcal{A}p)^{-1}, w_1a_1 \in (q\mathcal{A}q)^{-1},$$

$$a_2w_2 \in ((1-p)\mathcal{A}(1-p))^{qnil},$$

$$w_2a_2 \in ((1-q)\mathcal{A}(1-q))^{qnil},$$

$$w_1a_{12} + w_{12}a_2 = w_1b_{12} + w_{12}b_2.$$

Proof. (1) \Rightarrow (2) Let $p = awa_w^{\odot}$, $q = wa_w^{\odot}a$. Then we verify that

$$\begin{array}{rcl} (1-p)aq & = & [1-awa_w^{@}]awa_w^{@}a \\ & = & awa_w^{@}a - aw[a_w^{@}awa_w^{@}]a \\ & = & 0; \\ (1-q)wp & = & [1-wa_w^{@}a]wawa_w^{@} \\ & = & wawa_w^{@} - wa_w^{@}(aw)^2a_w^{@} \\ & = & 0. \end{array}$$

Moreover, we verify that

$$\begin{array}{rcl} a_{1}w_{1} & = & aw[a_{w}^{@}awa_{w}^{@}](aw)^{2}a_{w}^{@}\\ & = & awa_{w}^{@}(aw)^{2}a_{w}^{@}\\ & = & (aw)^{2}a_{w}^{@}\\ & \in & (p\mathcal{A}p)^{-1};\\ w_{1}a_{1} & = & wawa_{w}^{@}a\\ & \in & (q\mathcal{A}q)^{-1};\\ a_{2}w_{2} & = & [1-awa_{w}^{@}]a[1-wa_{w}^{@}a]w[1-awa_{w}^{@}]\\ & = & aw-awa_{w}^{@}aw\\ & \in & [(1-p)\mathcal{A}(1-p)]^{qnil};\\ w_{2}a_{2} & = & [1-wa_{w}^{@}a]w[1-awa_{w}^{@}]a[1-wa_{w}^{@}a]\\ & = & wa-wawa_{w}^{@}a\\ & \in & [(1-q)\mathcal{A}(1-q)]^{qnil}. \end{array}$$

Write
$$b=\left(\begin{array}{cc} b_1 & b_{12} \\ b_{21} & b_2 \end{array}\right)_{p imes q}$$
 . Clearly, we have

$$\begin{array}{lcl} a_w^{\odot}(1-p) & = & a_w^{\odot}(1-awa_w^{\odot}) = 0, \\ (1-p)a_w^{\odot} & = & (1-awa_w^{\odot})a_w^{\odot} = 0. \end{array}$$

Then

$$a_w^{\odot} = \left(\begin{array}{cc} a_w^{\odot} & 0 \\ 0 & 0 \end{array} \right)_{p \times p}.$$

Since $a \leq_w^{\mathbb{D}} b$, we have

$$\begin{pmatrix} a_1w_1a_w^{\odot} & 0 \\ 0 & 0 \end{pmatrix}_{p\times q}$$

$$= \begin{pmatrix} a_1 & a_{12} \\ 0 & a_2 \end{pmatrix}_{p\times q} \begin{pmatrix} w_1 & w_{12} \\ 0 & w_2 \end{pmatrix}_{q\times p} \begin{pmatrix} a_w^{\odot} & 0 \\ 0 & 0 \end{pmatrix}_{p\times q}$$

$$= (aw)a^{\oplus,w} = (bw)a^{\oplus,w}$$

$$= \begin{pmatrix} b_1 & b_{12} \\ b_{21} & b_2 \end{pmatrix}_{p\times q} \begin{pmatrix} w_1 & w_{12} \\ 0 & w_2 \end{pmatrix}_{q\times p} \begin{pmatrix} a_w^{\odot} & 0 \\ 0 & 0 \end{pmatrix}_{p\times p}$$

$$= \begin{pmatrix} b_1w_1a_w^{\odot} & 0 \\ b_{21}w_1a_w^{\odot} & 0 \end{pmatrix}_{p\times q} .$$

Then $a_1w_1a_w^{\mathbb{O}} = b_1w_1a_w^{\mathbb{O}}$, $b_{21}w_1a_w^{\mathbb{O}} = 0$. Hence, $a_1w_1 = b_1w_1$, and then $a_1 = (a_1w_1)(a_1w_1)a_w^{\mathbb{O}} = (b_1w_1)(a_1w_1)a_w^{\mathbb{O}} = b_1$. Also we have $b_{21}w_1 = 0$, and so $b_{21} = (b_{21}w_1)a_1w_1a_w^{\mathbb{O}} = 0$. Moreover, we have

$$\begin{pmatrix} a_{w}^{\textcircled{@}}w_{1}a_{1} & a_{w}^{\textcircled{@}}w_{1}a_{12} + a_{w}^{\textcircled{@}}w_{12}a_{2} \\ 0 & 0 \end{pmatrix}_{p\times q}$$

$$= \begin{pmatrix} a_{w}^{\textcircled{@}} & 0 \\ 0 & 0 \end{pmatrix}_{p\times q} \begin{pmatrix} w_{1} & w_{12} \\ 0 & w_{2} \end{pmatrix}_{q\times p} \begin{pmatrix} a_{1} & a_{12} \\ 0 & a_{2} \end{pmatrix}_{p\times q}$$

$$= a_{w}^{\textcircled{@}}(wa) = a_{w}^{\textcircled{@}}(wb)$$

$$= \begin{pmatrix} a_{w}^{\textcircled{@}} & 0 \\ 0 & 0 \end{pmatrix}_{p\times q} \begin{pmatrix} w_{1} & w_{12} \\ 0 & w_{2} \end{pmatrix}_{q\times p} \begin{pmatrix} a_{1} & b_{12} \\ 0 & b_{2} \end{pmatrix}_{p\times q}$$

$$= \begin{pmatrix} a_{w}^{\textcircled{@}}w_{1}a_{1} & a_{w}^{\textcircled{@}}w_{1}b_{12} + a_{w}^{\textcircled{@}}w_{12}b_{2} \\ 0 & 0 \end{pmatrix}_{p\times q}.$$

Thus, we have

$$a_w^{\mathbb{O}} w_1 a_{12} + a_w^{\mathbb{O}} w_{12} a_2 = a_w^{\mathbb{O}} w_1 b_{12} + a_w^{\mathbb{O}} w_{12} b_2.$$

Thus $w_1a_{12} + w_{12}a_2 = w_1b_{12} + w_{12}b_2$.

Further, we see that

$$\begin{pmatrix} a_{w}^{\oplus} a_{1} & a_{w}^{\oplus} a_{12} \\ 0 & 0 \end{pmatrix}_{p \times q}$$

$$= \begin{pmatrix} a_{w}^{\oplus} & 0 \\ 0 & 0 \end{pmatrix}_{p \times p} \begin{pmatrix} a_{1} & a_{12} \\ 0 & a_{2} \end{pmatrix}_{p \times q}$$

$$= a_{w}^{\oplus} a = a_{w}^{\oplus} b$$

$$= \begin{pmatrix} a_{w}^{\oplus} & 0 \\ 0 & 0 \end{pmatrix}_{p \times p} \begin{pmatrix} a_{1} & b_{12} \\ 0 & b_{2} \end{pmatrix}_{p \times q}$$

$$= \begin{pmatrix} a_{w}^{\oplus} a_{1} & a_{w}^{\oplus} b_{12} \\ 0 & 0 \end{pmatrix}_{p \times q}.$$

Hence $a_w^{\mathbb{Q}} a_{12} = a_w^{\mathbb{Q}} b_{12}$. Therefore $a_{12} = b_{12}$, as required.

 $(2) \Rightarrow (1)$ By hypothesis, we have

$$a_w^{\mathbb{O}} = \left(egin{array}{cc} a_w^{\mathbb{O}} & 0 \ 0 & 0 \end{array}
ight)_{p imes q}.$$

Moreover, we derive

$$aw = \begin{pmatrix} a_1w_1 & a_1w_{12} + a_{12}w_2 \\ 0 & a_2w_2 \end{pmatrix}_{p \times p}, bw = \begin{pmatrix} a_1w_1 & a_1w_{12} + b_{12}w_2 \\ 0 & b_2w_2 \end{pmatrix}_{p \times p}.$$

Then

$$awa^{\oplus,w} = \begin{pmatrix} a_1w_1a_w^{\oplus} & 0 \\ 0 & 0 \end{pmatrix}_{n \times n} = bwa_w^{\oplus}.$$

Moreover, we have

$$\begin{array}{rcl}
a_{w}^{\mathfrak{D}} a & = & \left(\begin{array}{ccc} a_{w}^{\mathfrak{D}} & 0 \\ 0 & 0 \end{array}\right)_{p \times q} \left(\begin{array}{ccc} a_{1} & a_{12} \\ 0 & a_{2} \end{array}\right)_{p \times q} \\
& = & \left(\begin{array}{ccc} a_{w}^{\mathfrak{D}} & 0 \\ 0 & 0 \end{array}\right)_{p \times q} \left(\begin{array}{ccc} a_{1} & a_{12} \\ 0 & b_{2} \end{array}\right)_{p \times q} \\
& = & a_{w}^{\mathfrak{D}} b.
\end{array}$$

Therefore $a \leq_w^{\oplus} b$, as asserted. \square

Corollary 4.2. *Let* $a, b \in A^{\odot}$. *Then the following are equivalent:*

- (1) $a \leq_w^{\mathbb{D}} b$.
- (2) *a* and *b* are represented as

$$a=\left(\begin{array}{cc}a_1&a_{12}\\0&a_2\end{array}\right)_{p\times p}$$
, $b=\left(\begin{array}{cc}a_1&a_{12}\\0&b_2\end{array}\right)_{p\times p}$,

where $p = aa^{\oplus}$, $a_1 \in (pAp)^{-1}$, $b_1 \in (pAp)^{qnil}$, $a_2 \in ((1-p)A(1-p))^{-1}$ and $b_2 \in ((1-p)A(1-p))^{-1}$ $p))^{qnil}$.

Proof. This is evident by setting w = 1 in Theorem 4.1. \square

We now derive the equivalent conditions for the forward order law of the weighted core-EP inverse.

Theorem 4.3. Let $a, b, awb \in R_w^{\mathbb{O}}$ and $a \leq_w^{\mathbb{O}} b$. Then the following are equivalent:

- $(awb)_w^{\mathbb{Q}} = a_w^{\mathbb{Q}} b_w^{\mathbb{Q}}.$
- $(awb)_{w}^{\mathbb{Q}}(1-awa_{w}^{\mathbb{Q}})=a_{w}^{\mathbb{Q}}b_{w}^{\mathbb{Q}}(1-awa_{w}^{\mathbb{Q}})=0.$
- $(awb)_w^{\mathbb{O}}(1 awa_w^{\mathbb{O}}) = awa_w^{\mathbb{O}}b_w^{\mathbb{O}}(1 awa_w^{\mathbb{O}}) = 0.$
- $(awb)_{w}^{\oplus} = b_{w}^{\oplus} a_{w}^{\oplus} \text{ and } awa_{w}^{\oplus} b_{w}^{\oplus} (1 awa_{w}^{\oplus}) = 0.$ $(awb)_{w}^{\oplus} = b_{w}^{\oplus} a_{w}^{\oplus} \text{ and } a_{w}^{\oplus} b_{w}^{\oplus} (1 awa_{w}^{\oplus}) = 0.$

Proof. In view of Theorem 4.1, *a*, *w* and *b* are represented as

$$a=\left(\begin{array}{cc} a_1 & a_{12} \\ 0 & a_2 \end{array}\right)_{p imes q}$$
, $w=\left(\begin{array}{cc} w_1 & w_{12} \\ 0 & w_2 \end{array}\right)_{q imes p}$, $b=\left(\begin{array}{cc} a_1 & a_{12} \\ 0 & b_2 \end{array}\right)_{p imes q}$,

where

$$p = awa_w^{\odot}, q = wa_w^{\odot}a,$$

$$a_1w_1 \in (p\mathcal{A}p)^{-1}, w_1a_1 \in (q\mathcal{A}q)^{-1},$$

$$a_2w_2 \in ((1-p)\mathcal{A}(1-p))^{qnil},$$

$$w_2a_2 \in ((1-q)\mathcal{A}(1-q))^{qnil},$$

$$w_1a_{12} + w_{12}a_2 = w_1b_{12} + w_{12}b_2.$$

Then

$$awb = \begin{pmatrix} a_1w_1a_1 & (a_1w_1)a_{12} + (a_1w_{12} + a_{12}w_2)b_2 \\ 0 & a_2w_2b_2 \end{pmatrix}_{p \times q}.$$

$$a_{w}^{\textcircled{\tiny{0}}} = \begin{pmatrix} a_{w}^{\textcircled{\tiny{0}}} & 0 \\ 0 & 0 \end{pmatrix}_{p \times p}, b_{w}^{\textcircled{\tiny{0}}} = \begin{pmatrix} a_{w}^{\textcircled{\tiny{0}}} & -a_{w}^{\textcircled{\tiny{0}}} a_{12} b_{w}^{\textcircled{\tiny{0}}} (1-p) \\ 0 & (1-p) b_{w}^{\textcircled{\tiny{0}}} (1-p) \end{pmatrix}_{(p,p)},$$

$$(awb)_{w}^{\textcircled{\tiny{0}}} = \begin{pmatrix} (a_{w}^{\textcircled{\tiny{0}}})^{2} & -(a_{w}^{\textcircled{\tiny{0}}})^{2} [(a_{1}w_{1})a_{12} + (a_{1}w_{12} + a_{12}w_{2})b_{2}] (awb)_{w}^{\textcircled{\tiny{0}}} (1-p) \\ 0 & (1-p)(awb)_{w}^{\textcircled{\tiny{0}}} (1-p) \end{pmatrix}_{(p,p)}.$$

$$a_w^{\mathbb{O}}b_w^{\mathbb{O}} = \begin{pmatrix} (a_w^{\mathbb{O}})^2 & -(a_w^{\mathbb{O}})^2 a_{12}b_w^{\mathbb{O}}(1-p) \\ 0 & 0 \end{pmatrix}_{(p,p)}.$$

$$(1) \Rightarrow (2)$$
 Since $(awb)_w^{\mathbb{O}} = a_w^{\mathbb{O}} b_w^{\mathbb{O}}$, we see that $a_w^{\mathbb{O}} b_w^{\mathbb{O}} (1 - awa_w^{\mathbb{O}}) = 0$. Moreover, we have

$$p(awb)_w^{\odot}p = (1-p)(awb)_w^{\odot}(1-p),$$

and then $(awb)_w^{\mathbb{O}}(1 - awa_w^{\mathbb{O}}) = 0$.

- $(2) \Rightarrow (3)$ This is trivial.
- $(3) \Rightarrow (1)$ Since $awa_w^{\mathfrak{O}}b_w^{\mathfrak{O}}(1-awa_w^{\mathfrak{O}})=0$, we see that

$$b_w^{\mathbb{O}} = \left(egin{array}{cc} a_w^{\mathbb{O}} & 0 \ 0 & (1-p)b_w^{\mathbb{O}}(1-p) \end{array}
ight)_{(p,p)}.$$

Hence,

$$a_w^{\mathbb{O}}b_w^{\mathbb{O}} = \left(\begin{array}{cc} (a_w^{\mathbb{O}})^2 & 0 \\ 0 & 0 \end{array} \right)_{(p,p)}.$$

Therefore $a_w^{\mathbb{O}} b_w^{\mathbb{O}} = (awb)_w^{\mathbb{O}}$, as required.

 $(3) \Leftrightarrow (4) \Leftrightarrow (5)$ By the preceding argument, we have

$$a_{w}^{\textcircled{\tiny{0}}} = \begin{pmatrix} a_{w}^{\textcircled{\tiny{0}}} & 0 \\ 0 & 0 \end{pmatrix}_{p \times p}, b_{w}^{\textcircled{\tiny{0}}} = \begin{pmatrix} a_{w}^{\textcircled{\tiny{0}}} & -a_{w}^{\textcircled{\tiny{0}}} a_{12} b_{w}^{\textcircled{\tiny{0}}} (1-p) \\ 0 & (1-p) b_{w}^{\textcircled{\tiny{0}}} (1-p) \end{pmatrix}_{(p,p)},$$

$$(awb)_{w}^{\textcircled{\tiny{0}}} = \begin{pmatrix} (a_{w}^{\textcircled{\tiny{0}}})^{2} & -(a_{w}^{\textcircled{\tiny{0}}})^{2} [(a_{1}w_{1})a_{12} + (a_{1}w_{12} + a_{12}w_{2})b_{2}](awb)_{w}^{\textcircled{\tiny{0}}} (1-p) \\ 0 & (1-p)(awb)_{w}^{\textcircled{\tiny{0}}} (1-p) \end{pmatrix}_{(p,p)}.$$

Then

$$b_w^{\mathfrak{D}} a_w^{\mathfrak{D}} = \left(\begin{array}{cc} a_w^{\mathfrak{D}} & -a_w^{\mathfrak{D}} a_{12} b_w^{\mathfrak{D}} (1-p) \\ 0 & (1-p) b_w^{\mathfrak{D}} (1-p) \end{array} \right)_{(p,p)} \left(\begin{array}{cc} a_w^{\mathfrak{D}} & 0 \\ 0 & 0 \end{array} \right)_{p \times p} = \left(\begin{array}{cc} (a_w^{\mathfrak{D}})^2 & 0 \\ 0 & 0 \end{array} \right)_{p \times p}.$$

Then $(awb)_w^{\mathbb{O}} = b_w^{\mathbb{O}} a_w^{\mathbb{O}}$ if and only if $(awb)_w^{\mathbb{O}} (1 - awa_w^{\mathbb{O}}) = 0$, as required. \square

As an immediate consequence of Theorem 4.3, we extend [29, Theorem 3.2] from the core-EP preorder for Hilbert space operators to that for elements of a ring with involution.

Corollary 4.4. *Let* $a, b, ab \in R^{\oplus}$ *and* $a \leq^{\oplus} b$. *Then the following are equivalent:*

- $(ab)^{\oplus} = a^{\oplus}b^{\oplus}.$ (1)
- $(ab)^{\odot}(1 aa^{\odot}) = a^{\odot}b^{\odot}(1 aa^{\odot}) = 0.$
- (3) $(ab)^{\oplus}(1 aa^{\oplus}) = aa^{\oplus}b^{\oplus}(1 aa^{\oplus}) = 0.$
- $(ab)^{\mathbb{O}} = b^{\mathbb{O}}a^{\mathbb{O}}$ and $aa^{\mathbb{O}}b^{\mathbb{O}}(1 aa^{\mathbb{O}}) = 0$.
- $(ab)^{\oplus} = b^{\oplus}a^{\oplus}$ and $a^{\oplus}b^{\oplus}(1 aa^{\oplus}) = 0$.

Lemma 4.5. Let $a, b \in R_w^{\mathbb{Q}}$ and $a \leq_w^{\mathbb{Q}} b$. Then the following are equivalent:

- (1) $a_w^{\odot} \leq^{\odot} b_w^{\odot}$. (2) $a_w^{\odot} b_w^{\odot} = b_w^{\odot} a_w^{\odot}$. (3) $a_w^{\odot} b_w^{\odot} = (a_w^{\odot})^2$.

Proof. By virtue of Theorem 4.1, *a*, *w* and *b* are represented as

$$a=\left(egin{array}{cc} a_1 & a_{12} \ 0 & a_2 \end{array}
ight)_{p imes q}$$
 , $w=\left(egin{array}{cc} w_1 & w_{12} \ 0 & w_2 \end{array}
ight)_{q imes p}$, $b=\left(egin{array}{cc} a_1 & a_{12} \ 0 & b_2 \end{array}
ight)_{p imes q}$,

where $p = awa_w^{\mathbb{O}}$, $q = wa_w^{\mathbb{O}}a$.

As in the proof of Theorem 4.3, we have

Then

$$\begin{array}{lll} a_{w}^{\textcircled{\scriptsize{0}}}b_{w}^{\textcircled{\scriptsize{0}}} & = & \left(\begin{array}{cc} a_{w}^{\textcircled{\scriptsize{0}}} & 0 \\ 0 & 0 \end{array}\right)_{p\times p} \left(\begin{array}{cc} a_{w}^{\textcircled{\scriptsize{0}}} & -a_{w}^{\textcircled{\scriptsize{0}}}a_{12}b_{w}^{\textcircled{\scriptsize{0}}}(1-p) \\ 0 & (1-p)b_{w}^{\textcircled{\scriptsize{0}}}(1-p) \end{array}\right)_{(p,p)} \\ & = & \left(\begin{array}{cc} (a_{w}^{\textcircled{\scriptsize{0}}})^{2} & -(a_{w}^{\textcircled{\scriptsize{0}}})^{2}a_{12}b_{w}^{\textcircled{\scriptsize{0}}}(1-p) \\ 0 & 0 \end{array}\right)_{p\times p}, \\ b_{w}^{\textcircled{\scriptsize{0}}}a_{w}^{\textcircled{\scriptsize{0}}} & = & \left(\begin{array}{cc} a_{w}^{\textcircled{\scriptsize{0}}} & -a_{w}^{\textcircled{\scriptsize{0}}}a_{12}b_{w}^{\textcircled{\scriptsize{0}}}(1-p) \\ 0 & (1-p)b_{w}^{\textcircled{\scriptsize{0}}}(1-p) \end{array}\right)_{(p,p)} \left(\begin{array}{cc} a_{w}^{\textcircled{\scriptsize{0}}} & 0 \\ 0 & 0 \end{array}\right)_{p\times p} \\ & = & \left(\begin{array}{cc} (a_{w}^{\textcircled{\scriptsize{0}}})^{2} & 0 \\ 0 & 0 \end{array}\right)_{p\times p}. \end{array}$$

 $(1) \Leftrightarrow (2)$ Obviously,

$$[a_w^{\odot}]^{\odot} = (aw)^2 a_w^{\odot} = \begin{pmatrix} (aw)^2 a_w^{\odot} & 0 \\ 0 & 0 \end{pmatrix}_{p \times p}.$$

Then $a_w^{\mathbb{O}} \leq^{\mathbb{O}} b_w^{\mathbb{O}}$ if and only if the following hold:

$$\begin{aligned} a_w^{\mathfrak{D}}[a_w^{\mathfrak{D}}]^{\mathfrak{D}} &= \begin{pmatrix} (aw)^2 a_w^{\mathfrak{D}} & 0 \\ 0 & 0 \end{pmatrix}_{p \times p} = b_w^{\mathfrak{D}}[a_w^{\mathfrak{D}}]^{\mathfrak{D}}, \\ [a_w^{\mathfrak{D}}]^{\mathfrak{D}} a_w^{\mathfrak{D}} &= \begin{pmatrix} aw a_w^{\mathfrak{D}} & 0 \\ 0 & 0 \end{pmatrix}_{p \times p} \\ &= \begin{pmatrix} aw a_w^{\mathfrak{D}} & -p a_{12} b_w^{\mathfrak{D}} (1-p) \\ 0 & 0 \end{pmatrix}_{p \times p} \\ &= [a_w^{\mathfrak{D}}]^{\mathfrak{D}} b_w^{\mathfrak{D}}. \end{aligned}$$

i.e., $pa_{12}b_w^{\mathbb{Q}}(1-p)=0$.

On the other hand, $a_w^{\mathbb{O}}b_w^{\mathbb{O}}=b_w^{\mathbb{O}}a_w^{\mathbb{O}}$ if and only if $-a_w^{\mathbb{O}}a_{12}b_w^{\mathbb{O}}(1-p)=0$. Clearly, $a_w^{\mathbb{O}}=a_w^{\mathbb{O}}p$. Then

$$pa_{12}b_w^{\oplus}(1-p) = 0 \text{ if and only if } -a_w^{\oplus}a_{12}b_w^{\oplus}(1-p) = 0. \text{ Clearly, } a_w = a_w p. \text{ Then } pa_{12}b_w^{\oplus}(1-p) = 0 \text{ if and only if } -a_w^{\oplus}a_{12}b_w^{\oplus}(1-p) = 0, \text{ as required.}$$

$$(1) \Leftrightarrow (3) \text{ Since } (a_w^{\oplus})^2 = \begin{pmatrix} (a_w^{\oplus})^2 & 0 \\ 0 & 0 \end{pmatrix}_{p \times p}, \text{ we see that } a_w^{\oplus}b_w^{\oplus} = (a_w^{\oplus})^2 \text{ if and only if } -(a_w^{\oplus})^2a_{12}b_w^{\oplus}(1-p) = 0.$$

Since $p = aw(a_w^{\odot})^2$ and $(a_w^{\odot})^2 = a_w^{\odot}p$, we have $-(a_w^{\odot})^2a_{12}b_w^{\odot}(1-p) = 0$ if and only if $pa_{12}b_w^{\odot}(1-p) = 0$ p) = 0. By the argument above, we complete the proof. \square

Theorem 4.6. Let $a, b, awb \in R_w^{\oplus}$ and $a \leq_w^{\oplus} b$. Then $(awb)_w^{\oplus} = a_w^{\oplus} b_w^{\oplus}$ if and only if

- (1) $a_w^{\oplus} \leq^{\oplus} b_w^{\oplus};$ (2) $(awb)_w^{\oplus} (1 awa_w^{\oplus}) = 0.$

Proof. \Longrightarrow Since $a \leq_w^{\mathbb{O}} b$, by using Theorem 4.3 and Lemma 4.5, $a_w^{\mathbb{O}} \leq_w^{\mathbb{O}} b_w^{\mathbb{O}}$. According to Theorem 4.3, $(awb)_{w}^{\oplus}(1 - awa_{w}^{\oplus}) = 0$, as required.

 \Leftarrow By virtue of Lemma 4.5, $a_w^{\odot}b_w^{\odot}=b_w^{\odot}a_w^{\odot}$. This completes the proof by Theorem 4.3. \square

Corollary 4.7. Let $a, b, ab \in R^{\oplus}$ and $a \leq^{\oplus} b$. Then $(ab)^{\oplus} = a^{\oplus}b^{\oplus}$ if and only if

(1) $a^{\mathbb{O}} <^{\mathbb{O}} b^{\mathbb{O}}$;

(2)
$$(ab)^{\oplus}(1 - aa^{\oplus}) = 0.$$

Proof. This is obvious by choosing w = 1 in Theorem 4.6. \square

Dually, we derive the equivalent conditions for the reverse order law of the weighted core-EP inverse.

Theorem 4.8. Let $a, b, bwa \in R_w^{\oplus}$ and $a \leq_w^{\oplus} b$. Then the following are equivalent:

- (1) $(bwa)_w^{\mathbb{O}} = b_w^{\mathbb{O}} a_w^{\mathbb{O}}.$
- $(bwa)_w^{\mathbb{O}}(1-awa_w^{\mathbb{O}})=awa_w^{\mathbb{O}}b_w^{\mathbb{O}}(1-awa_w^{\mathbb{O}})=0.$
- $\begin{array}{l} (bwa)_{w}^{\otimes}(1-awa_{w}^{\otimes})=a_{w}^{\otimes}b_{w}^{\otimes}(1-awa_{w}^{\otimes})=0.\\ (bwa)_{w}^{\otimes}=a_{w}^{\otimes}b_{w}^{\otimes}\text{ and }awa_{w}^{\otimes}b_{w}^{\otimes}(1-awa_{w}^{\otimes})=0.\\ (bwa)_{w}^{\otimes}=a_{w}^{\otimes}b_{w}^{\otimes}\text{ and }a_{w}^{\otimes}b_{w}^{\otimes}(1-awa_{w}^{\otimes})=0. \end{array}$

Proof. By virtue of Theorem 4.1, *a*, *w* and *b* are represented as

$$a = \begin{pmatrix} a_1 & a_{12} \\ 0 & a_2 \end{pmatrix}_{p \times q}, w = \begin{pmatrix} w_1 & w_{12} \\ 0 & w_2 \end{pmatrix}_{q \times p}, b = \begin{pmatrix} a_1 & a_{12} \\ 0 & b_2 \end{pmatrix}_{p \times q},$$

where $p = awa_w^{\odot}$, $q = wa_w^{\odot}a$. Then a_w^{\odot} and b_w^{\odot} can be written in the matrix forms as in the proof of Theorem 4.3. Moreover, we check that

$$b_w^{\mathfrak{D}} a_w^{\mathfrak{D}} = \left(\begin{array}{cc} (a_w^{\mathfrak{D}})^2 & 0 \\ 0 & 0 \end{array} \right)_{(p,p)}.$$

 $(1)\Rightarrow (2)$ Since $(bwa)_w^{\mathbb{O}}=b_w^{\mathbb{O}}a_w^{\mathbb{O}}$, we have $(bwa)_w^{\mathbb{O}}(1-awa_w^{\mathbb{O}})=b_w^{\mathbb{O}}a_w^{\mathbb{O}}(1-awa_w^{\mathbb{O}})=0$. Moreover, we have

$$p(awb)_w^{\mathbb{Q}}p = (1-p)(awb)_w^{\mathbb{Q}}(1-p),$$

and then $(awb)_w^{\mathbb{O}}(1-awa_w^{\mathbb{O}})=0.$

- $(2) \Rightarrow (3)$ This is trivial
- $(3) \Rightarrow (1)$ Since $awa_w^{\mathbb{O}}b_w^{\mathbb{O}}(1-awa_w^{\mathbb{O}})=0$, we see that

$$b_w^{\mathbb{O}} = \left(egin{array}{cc} a_w^{\mathbb{O}} & 0 \ 0 & (1-p)b_w^{\mathbb{O}}(1-p) \end{array}
ight)_{(p,p)}.$$

Hence,

$$a_w^{\mathbb{O}}b_w^{\mathbb{O}} = \left(\begin{array}{cc} (a_w^{\mathbb{O}})^2 & 0 \\ 0 & 0 \end{array} \right)_{(p,p)}.$$

Therefore $a_w^{\mathbb{O}} b_w^{\mathbb{O}} = (awb)_w^{\mathbb{O}}$, as required.

 $(3) \Leftrightarrow (4) \Leftrightarrow (5)$ By the preceding argument, we have

$$a_{w}^{\mathfrak{D}} = \begin{pmatrix} a_{w}^{\mathfrak{D}} & 0 \\ 0 & 0 \end{pmatrix}_{p \times p}, b_{w}^{\mathfrak{D}} = \begin{pmatrix} a_{w}^{\mathfrak{D}} & -a_{w}^{\mathfrak{D}} a_{12} b_{w}^{\mathfrak{D}} (1-p) \\ 0 & (1-p) b_{w}^{\mathfrak{D}} (1-p) \end{pmatrix}_{(p,p)},$$

$$(awb)_{w}^{\mathfrak{D}}$$

$$= \begin{pmatrix} (a_{w}^{\mathfrak{D}})^{2} & -(a_{w}^{\mathfrak{D}})^{2} [(a_{1}w_{1})a_{12} + (a_{1}w_{12} + a_{12}w_{2})b_{2}](awb)_{w}^{\mathfrak{D}} (1-p) \\ 0 & (1-p)(awb)_{w}^{\mathfrak{D}} (1-p) \end{pmatrix}_{(p,p)}.$$

Then

$$b_w^{\textcircled{0}} a_w^{\textcircled{0}} = \left(\begin{array}{cc} a_w^{\textcircled{0}} & -a_w^{\textcircled{0}} a_{12} b_w^{\textcircled{0}} (1-p) \\ 0 & (1-p) b_w^{\textcircled{0}} (1-p) \end{array} \right)_{(p,p)} \left(\begin{array}{cc} a_w^{\textcircled{0}} & 0 \\ 0 & 0 \end{array} \right)_{p \times p} = \left(\begin{array}{cc} (a_w^{\textcircled{0}})^2 & 0 \\ 0 & 0 \end{array} \right)_{p \times p}.$$

Then $(awb)_w^{\mathbb{Q}} = b_w^{\mathbb{Q}} a_w^{\mathbb{Q}}$ if and only if $(awb)_w^{\mathbb{Q}} (1 - awa_w^{\mathbb{Q}}) = 0$, as required. \square

We now explore the equivalent conditions for $(b-a)_w^{\mathbb{O}} = b_w^{\mathbb{O}} - a_w^{\mathbb{O}}$.

Theorem 4.9. Let $a, b, b - a \in R_w^{\odot}$ and $a \leq_w^{\odot} b$. Then the following are equivalent:

- $(b-a)_{w}^{\mathbb{O}} = b_{w}^{\mathbb{O}} a_{w}^{\mathbb{O}}.$
- $(b-a)_w^{\mathfrak{D}} = b_w^{\mathfrak{D}}(1 awa_w^{\mathfrak{D}}).$
- $(b-a)_w^{\oplus} = (1-awa_w^{\oplus})b_w^{\oplus} \text{ and } a_w^{\oplus}b_w^{\oplus} = (a_w^{\oplus})^2.$ $(b-a)_w^{\oplus} = (1-awa_w^{\oplus})b_w^{\oplus} \text{ and } a_w^{\oplus}b_w^{\oplus}(1-awa_w^{\oplus}) = 0.$

Proof. By virtue of Theorem 4.1, we have

$$a=\left(egin{array}{cc} a_1 & a_{12} \ 0 & a_2 \end{array}
ight)_{p imes q}$$
 , $w=\left(egin{array}{cc} w_1 & w_{12} \ 0 & w_2 \end{array}
ight)_{q imes p}$, $b=\left(egin{array}{cc} a_1 & a_{12} \ 0 & b_2 \end{array}
ight)_{p imes q}$,

where $p = awa_w^{\mathbb{Q}}$, $q = wa_w^{\mathbb{Q}}a$.. Moreover, we compute that

$$a_{w}^{\mathbb{O}} = \begin{pmatrix} a_{w}^{\mathbb{O}} & 0 \\ 0 & 0 \end{pmatrix}_{p \times p}, b_{w}^{\mathbb{O}} = \begin{pmatrix} a_{w}^{\mathbb{O}} & -a_{w}^{\mathbb{O}} a_{12} b_{w}^{\mathbb{O}} (1-p) \\ 0 & (1-p) b_{w}^{\mathbb{O}} (1-p) \end{pmatrix}_{(p,p)},$$
$$(b-a)_{w}^{\mathbb{O}} = \begin{pmatrix} 0 & 0 \\ 0 & (1-p)(b-a)_{w}^{\mathbb{O}} (1-p) \end{pmatrix}_{(p,p)}.$$

(1) \Leftrightarrow (2) Obviously, $-a_w^{\mathbb{O}}a_{12}b_w^{\mathbb{O}}(1-p)=pb_w^{\mathbb{O}}(1-p)$. Then $(b-a)_w^{\mathbb{O}}=b_w^{\mathbb{O}}-a_w^{\mathbb{O}}$ if and only if $(1-p)(b-a)_w^{\textcircled{o}}(1-p) = (1-p)b_w^{\textcircled{o}}(1-p), pb_w^{\textcircled{o}}(1-p) = 0$, i.e., $(b-a)_w^{\textcircled{o}} = (1-p)(b-a)_w^{\textcircled{o}}(1-p) = 0$ $b_w^{\mathbb{O}}(1-awa_w^{\mathbb{O}}).$

 $(2) \Rightarrow (3)$ By the argument above, we have

$$a_w^{\mathbb{O}} = \left(egin{array}{cc} a_w^{\mathbb{O}} & 0 \\ 0 & 0 \end{array}
ight)_{p imes p}$$
 , $b_w^{\mathbb{O}} = \left(egin{array}{cc} a_w^{\mathbb{O}} & 0 \\ 0 & (1-p)b_w^{\mathbb{O}}(1-p) \end{array}
ight)_{(p,p)}$.

Then
$$a_w^{\mathbb{O}}b_w^{\mathbb{O}} = \begin{pmatrix} (a_w^{\mathbb{O}})^2 & 0 \\ 0 & 0 \end{pmatrix}_{(p,p)} = (a_w^{\mathbb{O}})^2$$
. Accordingly, $(b-a)_w^{\mathbb{O}} = b_w^{\mathbb{O}} - a_w^{\mathbb{O}} = b_w^{\mathbb{O}} - aw(a_w^{\mathbb{O}})^2 = b_w^{\mathbb{O}} - awa_w^{\mathbb{O}}b_w^{\mathbb{O}} = (1 - awa_w^{\mathbb{O}})b_w^{\mathbb{O}}$.

- $(3) \Rightarrow (4)$ This is obvious as $a_w^{\mathbb{Q}} b_w^{\mathbb{Q}} (1 awa_w^{\mathbb{Q}}) = (a_w^{\mathbb{Q}})^2 (1 awa_w^{\mathbb{Q}}) = 0.$
- $(4) \Rightarrow (1)$ Since $a \leq_w^{\odot} b$, we have $b_w^{\odot} a = a_w^{\odot} a$. By hypothesis, $a_w^{\odot} b_w^{\odot} = a_w^{\odot} b_w^{\odot} a w a_w^{\odot}$, and then

$$\begin{array}{rcl} (b-a)_{w}^{\oplus} & = & b_{w}^{\oplus} - aw(a_{w}^{\oplus}b_{w}^{\oplus}) \\ & = & b_{w}^{\oplus} - aw(a_{w}^{\oplus}b_{w}^{\oplus}awa_{w}^{\oplus}) \\ & = & b_{w}^{\oplus} - awa_{w}^{\oplus}(b_{w}^{\oplus}a)wa_{w}^{\oplus} \\ & = & b_{w}^{\oplus} - awa_{w}^{\oplus}(a_{w}^{\oplus}a)wa_{w}^{\oplus} \\ & = & b_{w}^{\oplus} - [aw(a_{w}^{\oplus})^{2}]awa_{w}^{\oplus} \\ & = & b_{w}^{\oplus} - a_{w}^{\oplus}awa_{w}^{\oplus} \\ & = & b_{w}^{\oplus} - a_{w}^{\oplus}, \end{array}$$

as asserted. \square

5. Weighted *-DMP Elements

The aim of this section is to characterize the weighted *-DMP element using a specific weighted core-EP decomposition. Subsequently, we will investigate the weighted core-EP order involving the weighted *-DMP element in a ring. An element a is w-weighted EP if and only if $a \in R_w^{\oplus}$ and

 $wawa_w^{\oplus} = wa_w^{\oplus} aw$. We now express the weighted core-EP element by combining the weighted EP element with a nilpotent element in a ring.

Theorem 5.1. *Let* $a \in R$. *Then the following are equivalent:*

- (1) a is w-weighted *-DMP.
- (2) There exist $x, y \in R$ such that

$$a = x + y, x^*y = ywx = 0, x \in R$$
 is w-weighted EP, $y \in R_w^{nil}$.

Proof. (1) \Rightarrow (2) Since a is a w-weighted *-DMP element, $a \in R_w^{\oplus}$. By virtue of Theorem 2.1, There exist $x, y \in R$ such that

$$a = x + y, x^*y = ywx = 0, x \in R_w^{\#}, y \in R_w^{nil}.$$

Evidently, $a_w^{\mathbb{O}} = x_w^{\oplus}$. Since $wawa_w^{\mathbb{O}} = wa_w^{\mathbb{O}} aw$, we check that

$$\begin{array}{rcl} wx_{w}^{\oplus}xw & = & wx_{w}^{\oplus}xw + wx_{w}^{\oplus}[wx_{w}^{\oplus}]^{*}(x^{*}y)w \\ & = & wx_{w}^{\oplus}xw + wx_{w}^{\oplus}[xwx_{w}^{\oplus}]yw = wx_{w}^{\oplus}xw + w[x_{w}^{\oplus}xwx_{w}^{\oplus}]yw \\ & = & wx_{w}^{\oplus}xw + wx_{w}^{\oplus}yw = wx_{w}^{\oplus}(x+y)w = wa_{w}^{\oplus}aw \\ & = & awa_{w}^{\oplus} = w(x+y)wx_{w}^{\oplus} = wxwx_{w}^{\oplus}. \end{array}$$

Therefore *x* is a *w*-EP element, as required.

(2) \Rightarrow (1) By virtue of Theorem 2.1, $a \in R_w^{\odot}$. Since x is a w-EP element, we see that $wx_w^{\oplus}xw = wxwx_w^{\oplus}$. Hence, we have

$$\begin{array}{lll} wa_{w}^{\oplus}aw & = & wx_{w}^{\oplus}xw + wx_{w}^{\oplus}yw \\ & = & wx_{w}^{\oplus}xw + w[x_{w}^{\oplus}xwx_{w}^{\oplus}]yw \\ & = & wx_{w}^{\oplus}xw + w[x_{w}^{\oplus}(wx_{w}^{\oplus})^{*}](x^{*}y)w \\ & = & wx_{w}^{\oplus}xw = w(x+y)wx_{w}^{\oplus} = wawa_{w}^{\oplus}. \end{array}$$

Therefore *a* is *w*-weighted *-DMP, as asserted. \Box

Corollary 5.2. *Let* $a \in R$. *Then the following are equivalent:*

- (1) a is *-DMP.
- (2) There exist $x, y \in R$ such that

$$a = x + y, x^*y = ywx = 0, x \in R \text{ is EP}, y \in R_w^{nil}.$$

Proof. This is obtained by choosing w = 1 in Theorem 5.1. \square

Theorem 5.3. *Let* $a \in R$. *Then the following are equivalent:*

- (1) $a \in R$ is w-weighted *-DMP.
- (2) $(aw)^D \in R^{\oplus}$ and $(aw)^D[(aw)^D]^{\oplus}a$ is w-weighted EP.

Proof. (1) \Rightarrow (2) Obviously, $a \in R_w^{\oplus}$; and so $aw \in R^{\oplus}$. In light of [4, Theorem 4.1], $(aw)^D \in R^{\oplus}$. By virtue of Theorem 5.1, there exist $x, y \in R$ such that

$$a = x + y, x^*y = ywx = 0, x \in R$$
 is w-weighted EP, $y \in R_w^{nil}$.

Evidently, $x = awa_w^{\oplus}a$. By using Theorem 2.4, we have $x = awa_w^{\oplus}a = aw[(aw)^D]^2[(aw)^D]^{\oplus}a = (aw)^D[(aw)^D]^{\oplus}a$. This implies that $(aw)^D[(aw)^D]^{\oplus}a$ is w-weighted EP.

 $(2) \Rightarrow (1)$ Let $x = (aw)^D[(aw)^D]^{\oplus}a$ and $y = a - (aw)^D[(aw)^D]^{\oplus}a$. Then a = x + y. Let n be the Deazin index of aw. Then $(aw)^D(aw)^{n+1} = (aw)^n$. Obviously, we have

$$aw - [(aw)^{D}]^{n}[(aw)^{D}]^{\oplus}(aw)^{n}$$

$$= aw - [(aw)^{D}]^{n}[(aw)^{D}]^{\oplus}(aw)^{D}(aw)^{n+1}$$

$$= aw - [(aw)^{D}]^{n-1}((aw)^{D}[(aw)^{D}]^{\oplus}(aw)^{D})(aw)^{n+1}$$

$$= aw - [(aw)^{D}]^{n-1}(aw)^{D}(aw)^{n+1}$$

$$= aw - [(aw)^{D}]^{n-1}(aw)^{n} = aw - (aw)^{D}(aw)^{2}.$$

Hence, $aw - [(aw)^D]^n[(aw)^D]^{\oplus}(aw)(aw)^{n-1}$ is nilpotent. Since $yw = aw - (aw)^D[(aw)^D]^{\oplus}aw = aw - (aw)^{n-1}[(aw)^D]^n[(aw)^D]^{\oplus}aw$, we show that $yw \in R$ is nilpotent. One easily checks that

$$\begin{array}{rcl} x^*y & = & \left((aw)^D[(aw)^D]^{\circledast}a\right)^*[a-(aw)^D[(aw)^D]^{\circledast}a] \\ & = & a^*\big((aw)^D[(aw)^D]^{\circledast}\big)^*[1-(aw)^D[(aw)^D]^{\circledast}]a \\ & = & a^*(aw)^D[(aw)^D]^{\circledast}[1-(aw)^D[(aw)^D]^{\circledast}]a = 0, \\ ywx & = & [a-(aw)^D[(aw)^D]^{\circledast}a]w(aw)^D[(aw)^D]^{\circledast}a \\ & = & [1-(aw)^D[(aw)^D]^{\circledast}]aw(aw)^D[(aw)^D]^{\circledast}a \\ & = & [1-(aw)^D[(aw)^D]^{\circledast}][(aw)^D]^{\circledast}a \\ & = & [0. \end{array}$$

Therefore $a \in R$ is *w*-weighted *-DMP by Theorem 2.1. \square

As an immediate consequence of Theorem 5.3, we derive

Corollary 5.4. *Let* $a \in R$. *Then the following are equivalent:*

- (1) $a \in R$ is *-DMP.
- (2) $a^D \in R^{\oplus}$ and $a^D(a^D)^{\oplus}a$ is EP.

Lemma 5.5. Let $a \in R$ be w-weighted *-DMP. If $a \leq_w^{\mathbb{O}} b$, then $(awa_w^{\mathbb{O}})bw = bw(awa_w^{\mathbb{O}})$ and $a_w^{\mathbb{O}}b_w^{\mathbb{O}} = b_w^{\mathbb{O}}a_w^{\mathbb{O}}$.

Proof. Since a is w-weighted *-DMP, we have $w(awa_w^{\textcircled{o}}) = w(a_w^{\textcircled{o}}aw)$. Assume that $a \leq_w^{\textcircled{o}} b$. Then $awa_w^{\textcircled{o}} = bwa_w^{\textcircled{o}}$ and $a_w^{\textcircled{o}}a = a_w^{\textcircled{o}}b$. We check that

$$\begin{array}{lcl} (awa_w^{\textcircled{\tiny 0}})bw & = & aw(a_w^{\textcircled{\tiny 0}}b)w = aw(a_w^{\textcircled{\tiny 0}}a)w \\ & = & (awa_w^{\textcircled{\tiny 0}})aw = (bwa_w^{\textcircled{\tiny 0}})aw \\ & = & bw(a_w^{\textcircled{\tiny 0}}aw) = bw(awa_w^{\textcircled{\tiny 0}}). \end{array}$$

Since $(awa_w^{\mathbb{Q}})^* = (awa_w^{\mathbb{Q}})$, we deduce that $(awa_w^{\mathbb{Q}})(bw)^* = (bw)^*(awa_w^{\mathbb{Q}})$. In view of [3, Theorem 15.2.12], $(awa_w^{\mathbb{Q}})(bw)^{\mathbb{Q}} = (bw)^{\mathbb{Q}}(awa_w^{\mathbb{Q}})$. Thus we have

$$\begin{array}{lll} (awa_{w}^{\oplus})b_{w}^{\oplus} & = & b_{w}^{\oplus}(awa_{w}^{\oplus}) = b_{w}^{\oplus}(bwa_{w}^{\oplus}) \\ & = & b_{w}^{\oplus}(bw)(awa_{w}^{\oplus})a_{w}^{\oplus} = b_{w}^{\oplus}(bw)^{2}(a_{w}^{\oplus})^{2} \\ & \vdots \\ & = & b_{w}^{\oplus}(bw)^{k+1}(a_{w}^{\oplus})^{k+1} = (bw)^{k}(a_{w}^{\oplus})^{k+1} = a_{w}^{\oplus}. \end{array}$$

Therefore

$$\begin{array}{lll} a_{w}^{\mathbb{O}}b_{w}^{\mathbb{O}} & = & [a_{w}^{\mathbb{O}}awa_{w}^{\mathbb{O}}]b_{w}^{\mathbb{O}} = a_{w}^{\mathbb{O}}[(awa_{w}^{\mathbb{O}})b_{w}^{\mathbb{O}}] \\ & = & (a_{w}^{\mathbb{O}})^{2} = [b_{w}^{\mathbb{O}}(awa_{w}^{\mathbb{O}})]a_{w}^{\mathbb{O}} = b_{w}^{\mathbb{O}}[aw(a_{w}^{\mathbb{O}})^{2}] = b_{w}^{\mathbb{O}}a_{w}^{\mathbb{O}}, \end{array}$$

as desired. \square

We are ready to prove:

Theorem 5.6. Let $a \in R$ be w-weighted *-DMP. If $a \leq_w^{\mathbb{O}} b$, then $bw(1 - awa_w^{\mathbb{O}}) \in \mathcal{R}^{\mathbb{O}}$.

Proof. Since $a \leq_w^{\mathbb{O}} b$, we have

$$awa_{vv}^{\mathbb{O}} = bwa_{vv}^{\mathbb{O}}, a_{vv}^{\mathbb{O}}a = a_{vv}^{\mathbb{O}}b.$$

Since *a* is *w*-weighted *-DMP, by virtue of Lemma 5.5, we have

$$(awa_w^{\mathbb{O}})bw = bw(awa_w^{\mathbb{O}}).$$

We claim that $[bw(1-awa_w^{\mathbb{Q}})]^{\mathbb{Q}}=b_w^{\mathbb{Q}}-a_w^{\mathbb{Q}}$. Since b is w-weighted *-DMP, we have $wbwb_w^{\mathbb{Q}}=wb_w^{\mathbb{Q}}bw$. In light of Lemma 4.5 and Lemma 5.5, we have $a_w^{\mathbb{Q}}b_w^{\mathbb{Q}}=(a_w^{\mathbb{Q}})^2$. Then

$$\begin{split} &[bw(1-awa_{w}^{\textcircled{\tiny 0}})][b_{w}^{\textcircled{\tiny 0}}-a_{w}^{\textcircled{\tiny 0}}]\\ &= &[b(w-wawa_{w}^{\textcircled{\tiny 0}})]b_{w}^{\textcircled{\tiny 0}}-[b(w-wawa_{w}^{\textcircled{\tiny 0}})]a_{w}^{\textcircled{\tiny 0}}\\ &= &bwb_{w}^{\textcircled{\tiny 0}}-bwaw[a_{w}^{\textcircled{\tiny 0}}b_{w}^{\textcircled{\tiny 0}}]-bwa_{w}^{\textcircled{\tiny 0}}+bw[aw(a_{w}^{\textcircled{\tiny 0}})^{2}]\\ &= &bwb_{w}^{\textcircled{\tiny 0}}-bw[aw(a_{w}^{\textcircled{\tiny 0}})^{2}]-bwa_{w}^{\textcircled{\tiny 0}}+bw[aw(a_{w}^{\textcircled{\tiny 0}})^{2}]\\ &= &bwb_{w}^{\textcircled{\tiny 0}}-awa_{w}^{\textcircled{\tiny 0}}; \end{split}$$

Since $(bwb_w^{\mathbb{O}})^* = bwb_w^{\mathbb{O}}$ and $(awa_w^{\mathbb{O}})^* = awa_w^{\mathbb{O}}$, we have $([bw(1 - awa_w^{\mathbb{O}})][b_w^{\mathbb{O}} - a_w^{\mathbb{O}}])^* = [bw(1 - awa_w^{\mathbb{O}})][b_w^{\mathbb{O}} - a_w^{\mathbb{O}}]$. Moreover, we check that

$$\begin{split} &[bw(1-awa_{w}^{\textcircled{@}})][b_{w}^{\textcircled{@}}-a_{w}^{\textcircled{@}}]^{2}\\ &= [bwb_{w}^{\textcircled{@}}-awa_{w}^{\textcircled{@}}][b_{w}^{\textcircled{@}}-a_{w}^{\textcircled{@}}]\\ &= bw(b_{w}^{\textcircled{@}})^{2}-bwb_{w}^{\textcircled{@}}a_{w}^{\textcircled{@}}-awa_{w}^{\textcircled{@}}b_{w}^{\textcircled{@}}+aw(a_{w}^{\textcircled{@}})^{2}\\ &= b_{w}^{\textcircled{@}}-[bwa_{w}^{\textcircled{@}}]b_{w}^{\textcircled{@}}=b_{w}^{\textcircled{@}}-[awa_{w}^{\textcircled{@}}]b_{w}^{\textcircled{@}}\\ &= b_{w}^{\textcircled{@}}-aw(a_{w}^{\textcircled{@}})^{2}=b_{w}^{\textcircled{@}}-a_{w}^{\textcircled{@}};\\ &[b_{w}^{\textcircled{@}}-a_{w}^{\textcircled{@}}][bw(1-awa_{w}^{\textcircled{@}})]^{k+1}\\ &= [b_{w}^{\textcircled{@}}-a_{w}^{\textcircled{@}}](bw)^{k+1}(1-awa_{w}^{\textcircled{@}})=b_{w}^{\textcircled{@}}((bw)^{k+1}(1-awa_{w}^{\textcircled{@}}))^{k}. \end{split}$$

This completes the proof. \Box

References

- O.M. Baksalary and G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra, 58(2010), 681–697.
- 2. R. Behera; G. Maharana and J.K. Sahoo, Further results on weighted core-EP inverse of matrices, *Result. Math.*, **75**(2020), Paper No. 174, 20 p.
- 3. H. Chen and M. Sheibani, Theory of Clean Rings and Matrices, World Scientific, Hackensack, NJ, 2023.
- 4. H. Chen and M. Sheibani, Generalized weighted core inverse in Banach *-algebras, *Filomat*, **38**(2024), 3691–3706
- 5. H. Chen and M. Sheibani, Properties of generalized weighted core inverses in Banach *-algebras, *J. Algebra Appl.*, (2025) 2550358 (20 pages). http://dx.doi.org/10.1142/S021949882550358X.
- 6. J. Chen; H. Zhu; P. Patricio and Y. Zhang, Characterizations and representations of core and dual core inverses, *Canad. Math. Bull.*, 2016, http://dx.doi.org/10.4153/CMB-2016-045-7.
- 7. X. Chen, New Types of Generalized Inverses and Related Partial Orders, Ph.D. Thesis, Southeast University, Nanjing, 2021.
- 8. X. Deng; C. Lin and C. Deng, Remark on the core-EP pre-order of Hilbert space operators, *Linear Multilinear Algebra*, **69**(2021), 2006–2011.
- 9. G. Dolinar; B. Kuzma; J. Marovt and B. Ungor, Properties of core-EP order in rings with involution, *Front. Math. China*, **14**(2019), 715–736.
- 10. Y. Gao and J. Chen, Pseudo core inverses in rings with involution, Commun. Algebra, 46(2018), 38-50.
- 11. Y. Gao and J. Chen and Y. Ke, *-DMP elements in *-semigroups and *-rings, Filomat, 32(2018), 3073–3085.
- 12. Y. Gao; J. Chen and P. Patrício, Weighted binary relations involving core-EP inverse, *Front. Math. China*, **15**(2020), 685–699.
- 13. Y. Gao; J. Chen and P. Patrício, Representations and properties of the W-weighted core-EP inverse, *Linear Multilinear Algebra*, **68**(2020), 1160–1174.

- 14. T. Jin; H. Zhu and L. Wu, New characterizations for *w*-core inverses in rings with involution, *Filomat*, 37(2023), 2131–2139.
- 15. T. Li, Characterizations of weighted core inverse in rings with involution, *J. Algebra Appl.*, 2022, https://dx.doi.org/10.1142/S021949882350216X.
- 16. T. Li and M. Zhou, The absorption laws for the weighted core inverse in rings, *Linear Multilinear Algebra*, 71(2023), 480–495.
- 17. J. Marovt and Mosić, On some orders in *-rings based on the core-EP decompositions, *J. Algebra Appl.*, **21**(2022). https://doi.org/10.1142/S0219498822500104.
- 18. D. Mosić, Weighted generalized Drazin inverse in rings, Georgian Math. J., 23(2016), 587–594.
- 19. D. Mosić, Weighted binary relations for operators on Banach spaces, Aequat. Math., 90(2016), 787–798.
- 20. D. Mosić, Weighted pre-orders in a Banach algebra, Linear Algebra Appl., 533(2017), 161–185.
- 21. D. Mosić, Core-EP pre-order of Hilbert space operators, Quaest. Math., 41(2018), 585–600.
- 22. D. Mosić, Core-EP inverses in Banach algebras, Linear Multilinear Algebra, 69(2021), 2976–2989.
- 23. D. Mosić, Weighted core-EP inverse and weighted core-EP pre-orders in a *C**-algebra, *J. Aust. Math. Soc.*, **111**(2021), 76–110.
- 24. D. Mosić; G. Dolinar and J. Marovt, EP-quasinilpotent decomposition and its applications, *Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat.*, **115**(2021), No. 4, Paper No. 188, 25 p.
- 25. D. Mosić; H. Zhu and L. Wu, The *w*-core-EP inverse in rings with involution, *Revista de la Unión Matemática Argentina*, **67**(2024), 545–565.
- 26. P. Patricioa and R.E. Hartwig, Some additive results on Drazin inverses, *Appl. Math. Compt.*, **215**(2009), 530–538.
- 27. K.M. Prasad and K.S. Mohana, Core-EP inverse, Linear Multilinear Algebra, 62(2014), 792–802.
- 28. D.S. Rakić and D. S. Djordjević, Star, sharp, core and dual core partial order in rings with involution, *Appl. Math. Compt.*, **259**(2015), 800–818.
- 29. O. Stanimirovića and D. Mosić, New properties of the core-EP pre-order, Filomat, 39(2025), 743-754.
- 30. I. Stanisev; J. Visnjić and D.S. Djordjević, Equivalence relations based on (*b*, *c*)-inverses in rings, *Mediterr. J. Math.*, **21**(2024). https://doi.org/10.1007/s00009-023-02545-5.
- 31. C. Wang; H. Zhu and J. Bunítez, Commutant properties of w-core inverses, Kuwait J. Sci., 52 (2025), 100390.
- 32. H. Wang, Core-EP decomposition and its applications, Linear Algebra Appl., 508 (2016), 289–300.
- 33. S. Xu; J. Chen and J. Benítez, EP elements in rings with involution, *Bull. Malays. Math. Sci. Soc.*, **42**(2019), 3409–3426.
- 34. S. Xu; J. Chen and X. Zhang, New characterizations for core inverses in rings with involution, *Front. Math. China*, 2017. https://dx.doi.org/10.1007/s11464-016-0591-2.
- 35. Y. Yang and H. Zhu, The w-core inverse of a product and its applications, Filomat, 37(2023), 4587–4601.
- 36. Q. Zhang; C. Wang and H. Zhu, Characterizations and representations of *w*-core inverses in rings, *Filomat*, 37(2023), 3183–3190.
- 37. Q. Zhang; H. Zhu and H. Zou, Left and right *w*-core partial orders in rings, *Acta Math. Hung.*, **169**(2023), 432–446.
- 38. H. Zhu and P. Patricio, Characterizations for pseudo core inverses in a ring with involution, *Linear Multilinear Algebra*, **67**(2019), 1109–1120.
- 39. H. Zhu; L. Wu and J. Chen, A new class of generalized inverses in semigroups and rings with involution, *Commun. Algebra*, **51**(2023), 2098–2113.
- 40. H. Zhu and L. Wu, A new class of partial orders, Algebra Collog., 30(2023), 585–598.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.