

1 *Randomized clinical trial*

2 **The Effect of Educational Intervention on Family 3 Caregivers' Perceived Threat of the Risk of 4 Dependence among Patients with Stroke**

5 **Narjes Deyhoul¹, Parvaneh Vasli^{2*}, Camelia Rohani³, Nezhat Shakeri⁴ and Meimanat Hosseini⁵**

6 1. MSN, School Of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran,
7 Iran; narges.dyhl@gmail.com

8 2. Ph.D., Assistant Professor, School of Nursing and Midwifery, Shahid Beheshti University of
9 Medial Sciences, Tehran, Iran; p-vasli@sbmu.ac.ir

10 3. Ph.D., Assistant Professor, School of Nursing and Midwifery, Shahid Beheshti University of
11 Medial Sciences, Tehran, Iran; cameliarohani@sbmu.ac.ir

12 4. Ph.D., Assistant Professor, School of Paramedical Sciences, Shahid Beheshti University of
13 Medial Sciences, Tehran, Iran; nezhat2000@yahoo.com

14 5. Ph.D., Assistant Professor, School of Nursing and Midwifery, Shahid Beheshti University of
15 Medial Sciences, Tehran, Iran; meimanathosseini@yahoo.com

16 * Correspondence: p-vasli@sbmu.ac.ir; Tel.: +982188566567

17 **Abstract:** 1) Background: The present study aimed to examine the effect of the instructional
18 intervention in family caregivers' perceived threat of stroke patients' dependency risk. 2) Methods:
19 This was a randomized controlled clinical trial in which two patient and family caregiver groups of
20 45 were randomly divided into intervention and control groups based on the inclusion/exclusion
21 criteria. Instructional intervention for family caregivers in the intervention group was in the form
22 of four one-hour sessions. The data were collected before and immediately after instructional
23 intervention at the hospital as well as two weeks and two months following the intervention via
24 postal service. The data analysis was done using SPSS ver.22. 3) Results: The pre-intervention family
25 caregivers' perceived threat was not significantly different in the two groups ($P = 0.591$). However,
26 the family caregivers' perceived threat of the intervention group increased after the intervention
27 compared with the control group ($P < 0.001$). In addition, the family caregivers' perceived threat of
28 the intervention group was significantly different in all post instructional intervention stages
29 compared with pre-intervention ($P < 0.001$), whereas no such difference was observed in the control
30 group ($p = 0.245$). 4) Conclusions: It is recommended that stroke patients' caregivers be provided
31 with instructional programs to enhance their understanding of patient dependency risks and
32 challenges.

33 **Keywords:** instruction; perceived threat; caregivers; stroke; dependency

34 1. Introduction

36 Stroke is a sudden and localized neurological defect due to ischemic/hemorrhagic lesions in the brain
37 that last for over 24 hours partially affecting the body function and altering the physical perception
38 of the body's condition [1]. The global annual incidence of stroke was estimated to fall on a continuum
39 with 41,316, and 139-149 individuals per 100,000 of the populations respectively in Nigeria, Tanzania,
40 and Iran as the populations grow older [2, 3].

41 Stroke is the main cause of adult inability and dependency on caregiver in performing ADLs [4].
42 Despite medical advancements, stroke patients are often in need of significant help from their

43 caregivers in their ADLs [5]. According to estimations, 62% of stroke patients will become dependent
44 on others [6]. Family caregivers constitute a major part of care providers to stroke patients. A family
45 caregiver is regarded as a friend or family member who offers free help to a chronically ill patient. In
46 2009, about 66 million Americans (three out of ten households) reported care provision by at least
47 one family caregiver [7].

48 The majority of Iranian families assume the major caring responsibility for their patients due to high
49 costs of private center/home nursing, inadequate numbers of state-funded rehabilitation centers, and
50 the lack of post-discharge follow-up [8]. These patients are highly dependent on their respective
51 family caregivers for their ADLs [9]. Studies showed that the caregivers of such patients experienced
52 high levels of dependency-induced caring pressure and, consequently, physical-psychological
53 problems [10-12]. Therefore, family caregivers and patients would both benefit from diminished
54 dependency levels. Independent ADLs enhances stroke patients' quality of life [9]. Accordingly,
55 empowering help-seekers to gain independence and strive for non-reliance is part of the caring
56 responsibilities of healthcare providers in modern caring sciences [13].

57 One of the major steps toward achieving greater patient independence and diminished caring
58 pressure on family caregivers is the reinforcement of their perceived threat (PT) compared to the
59 stroke patients' dependency risk in ADLs [14]. According to health behavioral prediction theories,
60 people are capable of preventing health-threatening behaviors when they feel such threats [14, 15].
61 The PT is, in fact, the most basic motivation and driving force for health-related behaviors [16]. As a
62 constituent of health models, PT comprises two components namely perceived sensitivity (PS) and
63 perceived intensity (PI). The PT also involves individual beliefs about a health-threatening problem
64 [17].

65 The PS refers to an individual belief about the development of a particular disease or suffering a
66 harmful condition due to a specific behavior. The PI is the extent of damage induced by the
67 development of a disease or a harmful condition resulted from a specific behavior [14, 18]. The PT is
68 reinforced when caregivers expand their knowledge and perspective about the causes, symptoms,
69 complications, preventive measures and treatments of a disease, consider the probability of disease
70 development on their part, understand the significance of disease threats and complications, adopt a
71 positive attitude toward disease prevention, and have adequate motivation to participate [19].
72 Accordingly, the PT of the dependency risk for patients can be altered by offering family-oriented
73 counseling and instructional programs to family caregivers contributing to the diminishment of
74 caregiver burden and stress and the facilitation of patient recovery [20].

75 Numerous studies were conducted in Iran on the effect of instructional intervention on PT in various
76 areas such as the understanding of ostomy children's parents, myocardial infarction patients' quality
77 of life [21], the quality of life of asthmatic children's parents [22], self-efficacy and self-esteem of
78 patients undergoing coronary artery bypass surgery [23], and the skill, belief, and knowledge of
79 multiple sclerosis patients' family caregivers [24]. However, the researchers were unable to find any
80 study on the effect of the instructional intervention on family caregivers' PT of stroke patient
81 dependency risk despite the high prevalence of stroke in Iran. The present study was therefore
82 conducted to fill this gap. It is hoped that the study results help to improve the healthcare services
83 and the individual and familial performance of these patients.

84 **2. Materials and Methods**

85 This was a randomized controlled clinical trial in which the effect of the instructional intervention on
86 family caregivers' PT of stroke patient dependency risk was evaluated. Data were collected from July
87 2016 to March 2017 from the departments of neurology in the hospitals of Shahid Beheshti University
88 of Medical Sciences (SBMU) in Tehran, Iran. Based on the study by Azimi R et al. [25], and using the
89 following sample size determination formula:

90

91 Two patient and family caregiver groups of 45 (90 patients and 90 family caregivers in total) were
92 calculated in the study. The inclusion criteria were a minimum 4-day length of stay (LOS) at the
93 departments of neurology following definitive diagnosis of stroke and continuous family care
94 delivery. The exclusion criteria involved post-discharge readmission and demise before final
95 evaluation. The inclusion criteria for family caregivers were lack of a history of care delivery for
96 chronically ill patients, lack of academic instruction in medical sciences, ages over 18, and ability to
97 complete questionnaires and make phone calls. The exclusion criterion was changing the family
98 caregivers. A total of 118 subjects were initially included in both intervention and control groups.
99 Fifteen and twelve subjects were respectively eliminated from the control and intervention groups
100 based on the exclusion criteria. Two patient and family caregiver groups of 45 were finally selected
101 as the study sample. The subjects were randomly assigned to either of intervention and control
102 groups through coin flipping. The subjects in intervention and control groups were homogenized in
103 groups in terms of gender, patient age, and caregiver age.

104 Intervention, in this study, referred to the instructional program offered to stroke patient caregivers
105 in order to alter their PT of patient dependency risk. After the assignment of each patient-family
106 caregiver pair to either of intervention and control groups, the questionnaires were administered to
107 caregivers to be completed as a pretest. Relevant instructional materials to PS and PI and of patient
108 dependency risk were then presented to caregivers in the intervention group including the definition,
109 symptoms, risk factors, prevention, treatment, and complications of stroke as well as the negative
110 impacts of patient family caregiver-dependency such as losing independence in ADLs and physical-
111 psychological stress endured by family caregivers. The presentation was face-to-face and included
112 instructional (PowerPoint) slides and Question & Ask sessions held by the first researcher in the form
113 of four one-hour sessions in four consecutive days. Family caregivers were asked to complete the
114 questionnaires through self-report before and immediately after intervention at the hospital (four
115 days after the pretest, in the control group case) and two weeks and two months after intervention at
116 home and mail them to the first researcher's address in accordance with the pre-planned agreements.
117 It should be noted that the first researcher was assured of the continued presence of intervention and
118 control subjects in the study through a number of phone calls.

119 Research instruments included two researcher-made questionnaires. The first questionnaire included
120 24 items developed to elicit demographic and clinical information. Items 1-8 and 9-24 were related to
121 family caregivers and patients, respectively. The demographic information for patients and
122 caregivers included gender, age, instruction, marital status, job, income adequacy, kinship
123 relationship, and development of chronic diseases.

124 The second questionnaire included 20 items and was related to the PT. Items 1-10 were developed to
125 measure the PS, i.e., family caregivers' mental understanding of the patient dependency risk in ADLs,
126 and items 11-20 were designed to measure the PI, i.e., family caregivers' mental understanding of the
127 extent of damage induced by patient's dependency on family caregiver in ADLs. The items were
128 developed on a 5-point Likert scale ranging from "completely agree" to "completely disagree" and
129 were directly scored on a score range of 1-5. The minimum and maximum scores were 20 and 100,
130 respectively.

131 The face and content validity of the Perceived Threat Questionnaire were measured by distributing
132 it to ten family caregivers and ten faculty members of the School of Nursing and Midwifery as the
133 team of specialists. Necessary modifications were made based on their viewpoint about the clarity
134 and intelligibility of the items. The necessity of (the inclusion of) each item was assessed by CVR,
135 with all items scoring above 0.7. The relevance of the items was verified using CVI, with a calculated
136 mean of 0.8. The internal consistency and test-retest reliability methods were used to examine the
137 reliability of questionnaires. The questionnaire was re-administered to 20 stroke patient caregivers

138 with a 14-day interval, achieving a correlation coefficient of 0.87 ($r=0.87$). The internal consistency
 139 was measured through Cronbach's alpha ($\alpha=0.90$) indicating the adequate reliability of
 140 questionnaires.

141 The data were analyzed using SPSS ver.22. Descriptive statistics such as mean and standard
 142 deviation, and inferential statistics including the independent-samples t-test, chi-square, Fisher's
 143 exact, Mann-Whitney U, and Friedman tests were used to analyze the data. The data normality was
 144 evaluated using the Kolmogorov-Smirnov test. The significance level of the findings was considered
 145 $P < 0.05$.

146 **Ethical Considerations**

147 This research project was approved by the Ethics Committee of Shahid Beheshti University of
 148 Medical Sciences and the Iranian Registry of Clinical Trials (IRCT) with the codes
 149 IR.SBMU.PHNM.0995.990 and IRCT2017071835170N1, respectively. The data were collected after
 150 presenting the letter of introduction to the authorities of the selected hospitals and explaining the
 151 study objective and design to the respective matrons, the nursing staff at the departments of
 152 neurology, and research departments from which the informed consent form was obtained. In
 153 addition, research departments were informed of the confidentiality of patient information, the
 154 voluntary nature of participation, and the right to leave the study at any time.

155 **3. Results**

156 The mean age of family caregivers in the intervention and control groups was calculated 41.1 ± 11
 157 and 40.6 ± 11.7 years, respectively. The mean age of patients in the intervention and control groups
 158 was calculated 67.2 ± 12.0 and 66.8 ± 11.1 years, respectively. The mean ages of patients and caregivers
 159 were not significantly different in intervention and control groups ($P=0.841$, and $P=0.863$,
 160 respectively). Other demographic characteristics of patients and caregivers are presented in Tables 1
 161 and 2, respectively.

Table 1- Demographic and clinical characteristics of patients with stroke ($n_1=n_2=45$)

Group		Intervention		Control		Test results*
Variable	Condition	Percent (Number)		Percent (Number)		Chi-square (χ^2)
						Mann-whitney (U)
						Fisher's Exact Test (FET)
Sex	Female	23 (51/1)	14 (31/1)	23 (51/1)	$\chi^2=3/717$	
	Male	22 (48/9)	31 (68/9)	22 (48/9)	$p=0/054$	
Education	Illiterate	22 (48/9)	16 (35/6)	22 (48/9)	$U=796/000$	
	Elementary	16 (35/6)	13 (28/9)	16 (35/6)	$p=0/063$	
	High school	6 (13/3)	14 (31/1)	6 (13/3)		
	Academic	1 (2/2)	2 (4/4)	1 (2/2)		
Marital status	Single	0 (0)	2 (4/4)	0 (0)	$FET=4/288$	
	Married	31 (68/9)	35 (77/8)	31 (68/9)	$p=0/175$	
	Divorced	2 (4/4)	0 (0)	2 (4/4)		
	Widowed	12 (26/7)	8 (17/8)	12 (26/7)		
Employment status	Housekeeper	21 (46/7)	14 (31/1)	21 (46/7)	$\chi^2=4/505$	
	Employed	11 (24/4)	9 (20/0)	11 (24/4)	$p=0/342$	
	Retired	9 (20/0)	14 (31/1)	9 (20/0)		

	Unemployed	4	(8/9)	7	(15/6)	
	Other	0 (0)		1 (2/2)		
Income adequacy	Adequate	18	(40/0)	15	(33/3)	$\chi^2=0/431$
	Inadequate	27 (60/0)		30 (66/7)		$p=0/512$
Chronic illness**	Yes	36 (80/0)		37 (82/2)		$\chi^2=0/073$
	No	9 (20/0)		8 (17/8)		$p=0/788$

*Significance level: p<0/05, ** Diabetes, Hypertension, Hypercholesterolemia

162

Table 2- Demographic and clinical characteristics of family caregivers (n₁=n₂=45)

Group		Intervention		Control		Test results*
Variable	Condition	Percent (Number)	Percent (Number)	Percent (Number)	Percent (Number)	Chi-square (χ^2)
						Mann-whitney (U)
						Fisher's Exact Test (FET)
Sex	Female	33 (73/3)	25 (55/6)	25 (55/6)	25 (55/6)	$\chi^2=3/103$
	Male	12 (26/7)	20 (44/4)	20 (44/4)	20 (44/4)	$p=0/078$
Education	Illiterate	8 (17/8)	6 (13/3)	6 (13/3)	6 (13/3)	$U=969/50$
	Elementary	23 (51/1)	29 (64/5)	29 (64/5)	29 (64/5)	$p=0/695$
	High school	14 (31/1)	10 (22/2)	10 (22/2)	10 (22/2)	
	Academic					
Marital status	Single	9 (20/0)	15 (33/3)	15 (33/3)	15 (33/3)	$FET=3/661$
	Married	32 (71/1)	29 (64/4)	29 (64/4)	29 (64/4)	$p=0/283$
	Divorced	2 (4/4)	1 (2/2)	1 (2/2)	1 (2/2)	
	Widowed	2 (4/4)	0 (0)	0 (0)	0 (0)	
Employment status	Housekeeper	31 (68/9)	18 (40/0)	18 (40/0)	18 (40/0)	$FET=3/661$
	Employed	10 (22/2)	22 (48/9)	22 (48/9)	22 (48/9)	$p=0/283$
	Retired	1 (2/2)	3 (6/7)	3 (6/7)	3 (6/7)	
	Unemployed	1 (2/2)	1 (2/2)	1 (2/2)	1 (2/2)	
	Other	2 (4/4)	1 (2/2)	1 (2/2)	1 (2/2)	
Income adequacy	Adequate	23 (51/1)	25 (55/6)	25 (55/6)	25 (55/6)	$\chi^2=0/179$
	Inadequate	22 (48/9)	20 (44/4)	20 (44/4)	20 (44/4)	$p=0/673$
kinship relationship	Sister	0 (0)	1 (2/2)	1 (2/2)	1 (2/2)	$FET=1/955$
	Brother	0 (0)	1 (2/2)	1 (2/2)	1 (2/2)	$p=0/895$
	Son or daughter	36 (80/0)	34 (75/6)	34 (75/6)	34 (75/6)	
	Spouse	9 (20/0)	9 (20/0)	9 (20/0)	9 (20/0)	
Chronic illness**	Yes	12 (26/7)	7 (15/6)	7 (15/6)	7 (15/6)	$\chi^2=1/668$
	No	33 (73/3)	38 (84/4)	38 (84/4)	38 (84/4)	$p=0/197$

*Significance level: p<0/05, ** Diabetes, Hypertension, Hypercholesterolemia

163

164 According to the Tables, the majority of stroke patients were male, married, unlettered, lacked
 165 income adequacy, and suffered from chronic hypertension, diabetes, and hypercholesterolemia. The
 166 majority of caregivers were female, married, housewife, had secondary education and income
 167 adequacy and did not have the abovementioned chronic diseases. According to the results, family

168 caregivers and patients in both intervention and control groups were homogenous in terms of other
 169 demographic characteristics such as gender, education, marital status, job, and income adequacy.

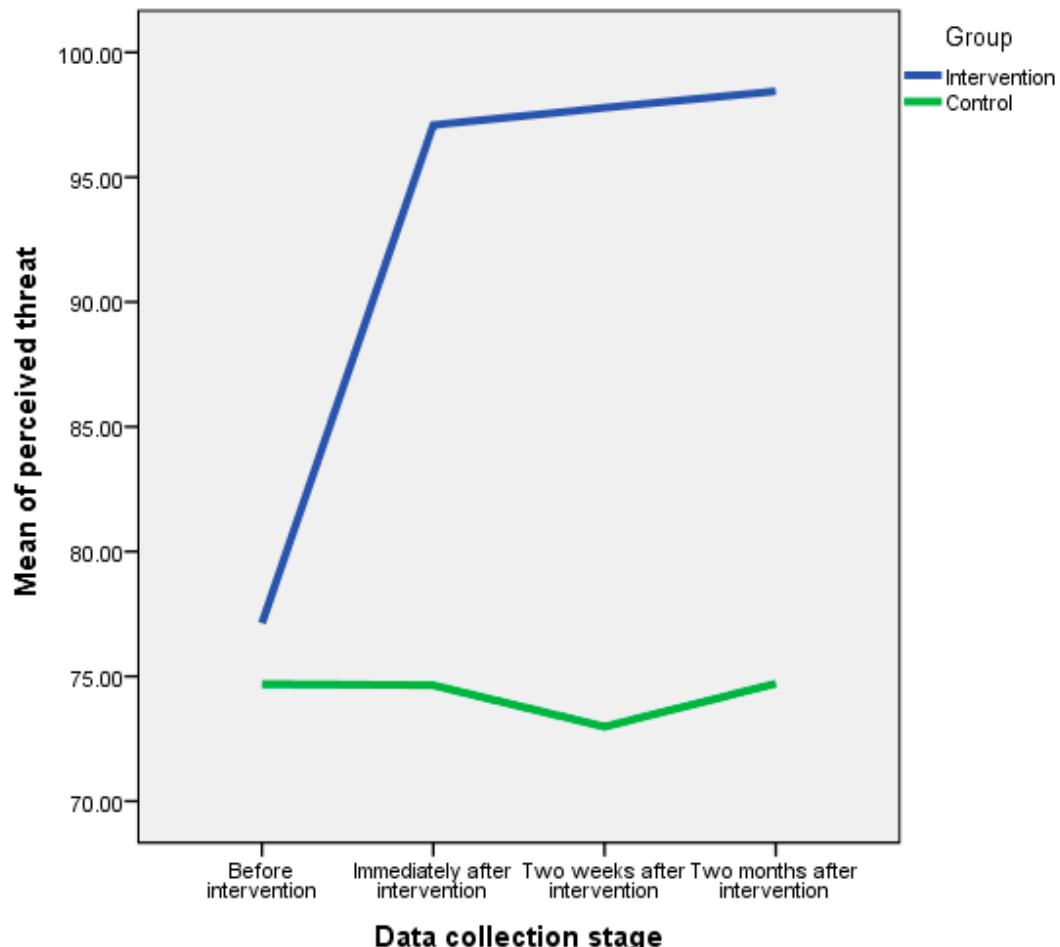

170 Table 3 displays the mean and standard deviation of the PT together with its subscales including
 171 the PS and PI of patients' dependency risk in the family caregivers of intervention and control groups.

Table 3- Mean and standard deviation of the perceived threat and its subscales in intervention and control groups and divided by each data collection stage (n₁=n₂=45)

Variable	Group	Before intervention	Immediately after intervention	Two weeks after intervention	Two months after intervention
Perceived threat (20-100)	Intervention	77/13±20/49	97/08±6/54	97/77±5/88	98/44±3/77
	Control	74/68±20/06	74/64±20/17	72/97±20/38	74/71±20/55
Perceived sensitivity (20-100)	Intervention	37/93±11/08	48/44±3/16	48/28±4/33	48/77±2/58
	Control	37/42±10/95	37/00±11/21	36/48±11/50	37/62±11/49
Perceived intensity (20-100)	Intervention	39/20±11/68	48/64±4/12	49/48±1/82	49/66±1/65
	Control	37/26±12/31	37/64±11/89	36/48±12/69	37/08±12/48

172

173 The increased PT by family caregivers in the intervention group compared with those of the
 174 control group can be inferred from the mean values represented in Chart 1.

175 Chart (1). Perceived threat in intervention and control groups divided by each data collection stage

176 Table 4 demonstrates the Friedman test results for intervention and control groups divided by
 177 each data collection stage, pointing to the significant relationship between changes in the PT by
 178 family caregivers and its subscales.

Table (4). Friedman test results for perceived threat in intervention and control groups separately and divided by each data collection stage ($n_1=n_2=45$)

Indicator	Mean Rank				$^2\chi$	df	P value
	Before	Immediately	Two weeks	Two months			
	intervention	after	after	after			
Group							
Intervention	1/44	2/82	2/79	2/94	65/989	3	<0/001
Control	2/76	2/47	2/29	2/49	4/154	3	0/245

179 Table 5 compares the PT scores of intervention and control groups in each data collection stage.

Table 5- Mann-Whitney U test results for perceived threat in intervention and control groups compared with each other and divided by each data collection stage ($n_1=n_2=45$)

Stage	Before	Immediately	after	Two weeks	after	Two months	after
Indicator	intervention						
U	946/000	286/000		211/500		215/500	
Z	-0/538	-6/162		-6/794		-6/455	
P value	0/591	<0/001		<0/001		<0/001	

180

181 4.Discussion

182 The present study aimed to examine the effect of the instructional intervention on family caregivers'
 183 PT of stroke patient dependency risk. This study is unique from two perspectives: (1) it is the first
 184 randomized controlled trial (RCT) achieving a high level of evidence (LoE) [26], and (2) this high-LoE
 185 RCT was conducted on the family caregivers' PT of stroke patient dependency risk for the first time
 186 in Iran. Family caregivers indirectly serve as a major component of the official healthcare systems,
 187 and recently, the national public health has made their support and evaluation a priority [27].

188 The results showed that the PT and its dimensions, i.e., the PS and intensity could significantly change
 189 through instruction. As can be seen in Table 3, the mean PS in the intervention group before the
 190 instruction was 37.93 ± 11.08 which saw a significant and persistent increase after the instructional
 191 intervention at all stages, such that the mean PS continued to be high even two months following the
 192 instructional intervention (48.77 ± 2.58). Similar results were obtained for the PI in that the mean of
 193 post-instruction PI increased significantly in the intervention group after two months (from post-
 194 instruction 39.20 ± 11.68 to 49.66 ± 1.65). No changes were observed in the control group which had not
 195 received the instructional intervention. The effect of instruction on the primary variable, i.e., the PT,
 196 was so significant in the intervention group that it remained unaffected by the passage of time. The
 197 Friedman test results pointed to a significant difference between the PT scores of the intervention
 198 group in pre- and all the stages of post-intervention ($P < 0.001$). However, the PT scores of the control

199 group saw a decrease immediately and two weeks after the intervention, in addition to a merely small
200 increase two months after the intervention with no significant difference ($P = 0.245$).

201 The changes in the mean PI could also be viewed from a different perspective. The Mann-Whitney U
202 test results pointed to no significant difference between the intervention and control groups
203 regarding the pre-intervention family caregivers' PT ($P=0.591$). However, a statistically significant
204 increase was observed in the family caregivers' PT immediately, two weeks, and two months
205 following the intervention in the intervention group compared with the control group ($P<0.001$).

206 In general, results demonstrated that the PT of stroke risks and its dimensions could be changed for
207 the better through effective instruction, which corresponds to the results of the previous studies. The
208 results of a study on the empowerment of stroke patients' family caregivers demonstrated that giving
209 information about the disease and patient care skills would lead to an enhanced understanding about
210 the patient's dependency and care needs [27]. Another study was also conducted by offering an
211 instruction package to stroke patients' family caregivers at the hospital. Follow-up results up to three
212 months after discharge indicated an improved understanding about the disease, patient's
213 dependency risk, and a sense of satisfaction on the part of patients and family caregivers [28]. The
214 effect of instructional short message service, based on the health belief model (HBM), on improving
215 adherence to medication in stroke patients was investigated in another randomized controlled
216 interventional study. The results suggested increasing adherence to medication and PT (PS and PS)
217 of stroke risks [29]. The results of a study based on early problem-solving intervention for stroke
218 caregivers through a one-year follow-up program demonstrated alleviated depression, lifestyle
219 alteration, and enhanced health for family caregivers in the intervention group. The curve modeling
220 results indicated that reinforced PT and rational problem-solving had mediatory effects on alleviating
221 caregiver depression [30].

222 The effect of the instructional intervention on improving the PT of other disease risks was established
223 in other studies. The results of an RTC indicated the positive effect of Health Belief Model-based
224 instruction on improving type 2 diabetic patients' PT of the risks associated with not controlling this
225 disease [31]. The HBM-based instructional intervention improved housewives' PT of gastric cancer
226 risks and associated preventive behaviors [32]. The peer-assisted nutrition health instructional
227 intervention based on HBM positively affected students' PT of unhealthy nutrition risks [33]. The
228 findings analysis of HBM-based instructional interventions and the theory of planned behavior
229 indicated an increase in the PT of the risks associated with not using condoms and risky sexual
230 behaviors [34]. The results of an interventional study revealed that the HBM-based nursing
231 intervention could enhance the PT of the risks of lack of disease management and its complications
232 in the inability to perform ADLs in patients with chronic obstructive pulmonary disease (COPD) [35].
233 The comparison of an HBM-based RCT with the findings of a knowledge-based intervention in
234 American men showed significant positive changes in the HBM-based instructional intervention
235 group including the PT of the risks associated with not injecting the human papillomavirus vaccine
236 (HPV) [36].

237 The results of the current study correspond to other studies conducted in Iran adopting the family-
238 centered empowerment model (FCEM) to improve the awareness and PT of the non-professional
239 caregivers. In the study by Alhani, increased knowledge and awareness of the disease as well as its
240 complications and treatments enhanced the PT of the risk of iron deficiency in thalassemic children
241 and their parents [19]. The study by Hakim et al., demonstrated the efficacy of FCEM on the
242 understanding and the PT of the parents of infants undergoing ostomy surgery [20]. The study by
243 Vahedian-Azimi et al., the implementation of FCEM increased the PT by family caregivers of
244 myocardial infarction complications [21]. The implementation of FCEM increased the understanding
245 and PT of the risks associated with asthma in parents of asthmatic children [22]. In addition, the
246 implementation of FCEM positively affected the understanding and PT of multiple sclerosis patients'
247 family caregivers [24].

248 **5. Conclusions**

249 The results showed that the PT and its dimensions, i.e., PS and PI could be changed through
250 instruction. In other words, the PS, i.e., family caregiver's mental understanding of the risk of
251 patient's dependency on family caregiver in ADLs, and the PI, i.e., family caregiver's mental
252 understanding of the extent of damage induced by patient's dependency on the caregiver could be
253 enhanced by instructing family caregivers. This may reduce patients' reliance and promote
254 independence in their ADLs. It should not be overlooked that, although pre-discharge instructional
255 interventions can help family caregivers assume new responsibility, they cannot address the various
256 care needs of stroke patients single-handedly. Therefore, the development of affordable occupational
257 therapy and rehabilitation centers and the support of relevant organizations can help these patients
258 restore their independence.

259 It is the researchers' view that healthcare providers can benefit from the findings of this study in their
260 instructional programs to improve the health of patients and family caregivers and promote the
261 independence level of patients in their ADLs. In addition, it is recommended that further studies be
262 conducted on the efficacy of PT in achieving patient independence and alleviating caring pressure.
263 Some of the study limitations included the high vulnerability of stroke patients and the subsequent
264 high attrition rate as well as the high anxiety levels of family caregivers in the hospitals disturbing
265 their concentration on instructional materials to some extent.

266 **Acknowledgments:** The researchers feel obliged to express their gratitude to the Shahid Beheshti University of
267 Medical Sciences' Vice-Chancellery of Research Affairs, the esteemed faculty members of the School of Nursing
268 and Midwifery, and all stroke patients and their caregivers who cooperated with us in the data collection stage.

269 **Author Contributions:** P.V. conceived and designed the experiments; N.D. performed the experiments and
270 wrote the paper; N.Sh. analyzed the data; C.R. and M.H. contributed analysis tools.

271 **Conflicts of Interest:** The researchers deny any conflict of interest and maintain that they all collaborated in the
272 implementation and writing of this study.

273 **References**

1. Zorowitz, R.; Brainin, M. Advances in brain recovery and rehabilitation. *Stroke*. **2011**, *42*, 294-297, 10.1161/STROKEAHA.110.605063.
2. Thrift, A.G.; Cadilhac, D.A.; Thayabaranathan, T.; Howard, V.J.; Rothwell, P.M.; Donnan, G.A. Global stroke statistics. *Int J Stroke*. **2014**, *9*, 6-18. 10.1111/ijjs.12245.
3. Salman-Roghani, R.; Delbari, A.; Tabatabaei, S.S. Stroke rehabilitation: Principles, advances, early experiences, and realities in Iran. *Journal of Sabzevar University of Medical Sciences*. **2013**, *19*, 96-108. (Persian)
4. Philp, I.; Brainin, M.; Walker, M.F.; Ward, A.B.; Gillard, P.; Shields, A.L.; Norrving, B.; Global Stroke Community Advisory Panel. Development of a post stroke checklist to standardize follow-up care for stroke survivors. *J Stroke Cerebrovasc Dis.* **2013**, *22*, 173-80, 10.1016/j.jstrokecerebrovasdis.2012.10.016.
5. Rigby, H.; Gubitz, G.; Phillips, S. A systematic review of caregiver burden following stroke. *Int J Stroke*. **2009**, *4*, 285-92, 10.1111/j.1747-4949.2009.00289.x.
6. Mendis, S.H. Stroke disability and rehabilitation of stroke: World Health Organization perspective. *Int J Stroke*. **2013**, *8*, 3-4, 10.1111/j.1747-4949.2012.00969.x.
7. Collins, L.G.; Swartz, K. Caregiver Care. *Am Fam Physician*. **2011**, *83*, 1309-1317.
8. Dehghan-Nayeri, N.; Mohamadi, M.; Pedram-Razi, S.H.; Arazi, T.M.; Kazem-Nezhad, A. The effect of family empowerment program on adherence to the treatment Regime of patients with stroke. *Journal of Evidence-Based Care*. **2014**, *5*, 57-66, 10.22038/EBCJ.2015.4072. (Persian)
9. Hsueh, I.P.; Wang, C.H.; Liou, T.H.; Lin, C.H.; Hsieh, C.L. Test-retest reliability and validity of the comprehensive activities of daily living measure in patients with stroke. *J Rehabil Med*. **2012**, *44*, 637-41. 10.2340/16501977-1004
10. Hung, J.W.; Huang, Y.C.; Chen, J.H.; Liao, L.N.; Lin, C.J.; Chuo, C.Y. Factors associated with strain in informal caregivers of stroke patients. *Chang Gung Med J*. **2012**, *35*, 392-401.

297 11. Miller, E.L.; Murray, L.; Richards, L.; Billinger, S.A; American Heart Association Council on Cardiovascular
298 Nursing and the Stroke Council. Comprehensive overview of nursing and interdisciplinary rehabilitation
299 care of the stroke patient: a scientific statement from the American Heart Association. *Stroke*. **2010**, *41*, 2402-
300 2448, 10.1161/STR.0b013e3181e7512b.

301 12. Baumann, M.; Lurbe-Puerto, K.; Alzahouri, K.; Aïach, P. Increased residual disability among post stroke
302 survivors and the repercussions for the lives of informal caregivers. *Top Stroke Rehabil*. **2011**, *18*, 162-171,
303 10.1310/tsr1802-162.

304 13. Moeini, B.; Barati, M.; Jaliliyan, F. Factors associated with physical activity of functional independence in
305 the elderly. *Medical Journal of Hormozgan University*. **2011**, *15*, 318-26. (Persian)

306 14. Saffari, M.; Shojaeizadeh, D.; Ghofranipour, F.; Heydarnia, A.; Pakpour, A.H. *Health Education and Promotion
307 Theories, Models and Methods*, 2nd ed.; Sobhan: Tehran, Iran, 2012; pp. 53-63; 97-964-2580-47-7. (Persian)

308 15. Glanz, K.A.; Rimer, B.A.; Viswanath, K. *Health Behavior and Health Education Theory, Research and Practice*, 4th
309 ed.; Josey-Bass Publisher: San Francisco, USA, 2008; pp. 45-50; 8-30. 978-0787996147.

310 16. DiClemente, R.J.; Salazar, L.F.; Crosby, R.A. *Health Behavior Theory for Public Health*, 1st ed.; Jones & Bartlett
311 Learning: Burlington, USA, 2013; pp. 83-86; 978-0763797539.

312 17. O'Toole, M.T. *Mosby's Medical Dictionary*; 9th ed.; Elsevier Mosby: Missouri, USA, 2009; pp. 53; 978-
313 0323085410

314 18. Schmid, K.; Muldoon, O.T. Perceived threat, social identification, and psychological well-being: The effects
315 of political conflict exposure. *Polit Psychol*. **2013**, *36*, 1-18, 10.1111/pops.12073.

316 19. Alhani, F. Evaluating of Family-Centered Empowerment Model on Preventing Iron Deficiency Anemia.
317 Ph.D Dissertation, Tarbiat Modares University, Tehran, Iran, 2003. (Persian)

318 20. Hakim, A.; Palizban, E.; Ahmadi-Angali, K. The effect of family-centered empowerment model on the level
319 of parents' knowledge of children with ostomy. *Iran J Pediatr*. **2015**, *4*, 22-31. (Persian)

320 21. Vahedian-azimi, A.; Alhani, F.; Gohari-mogaddam, K.; Madani, S.J.; Naderi, A.; Hajiesmaeli, M. Effect of
321 family-centered empowerment model on the quality of life in patients with myocardial infarction: a clinical
322 trial study. *Journal of Nursing Education*. **2015**, *4*, 8-22. (Persian)

323 22. Teymouri, F.; Alhani, F.; Kazemnejad, A. The effect of the family-centered empowerment model on the
324 quality of life in parents of children with asthma. *Sci J Hamadan Nurs Midwifery Fac*. **2014**, *22*, 5-14. (Persian)

325 23. Sanaie, N.; Nejati, S.; Zolfaghari, M.; Alhani, F.; Kazem-Nezhad, A. The effect of family-centered
326 empowerment in self efficacy and self-esteem in patients undergoing coronary bypass graft surgery. *Journal
327 of Research Development in Nursing & Midwifery*. **2014**, *11*, 44-53. (Persian)

328 24. Masoodi, R.; Alhani, F.; Moghadassi, J.; Ghorbani, M. The effect of family-centered empowerment model on
329 skill, attitude, and knowledge of multiple sclerosis caregivers. *Journal of Birjand University of Medical Sciences*.
330 **2011**, *17*, 97-87. (Persian)

331 25. Azimi, R.; Mohammadi, F.; Hosseini, M.A.; Farzi, M. The impact of home-based rehabilitation on the quality
332 of life of patients with stroke and their family caregiver's burden of care. *Evidence Based Care Journal*. **2013**,
333 *3*, 85-77, 10.22038/EBCJ.2013.729. (Persian)

334 26. Polit, D.F.; Beck, C.T. *Nursing Research Generating and Assessing Evidence for Nursing Practice*. 9th ed.; Wolters
335 Kluwer Health: Lippincott Wiliams & Wilkins, 2012; pp. 20-28; 978-1605477084.

336 27. Bakas, T.; Farran, C.J.; Austin, J.K.; Given, B.A.; Johnson, E.A.; Williams, L.S. Stroke caregiver outcomes
337 from the telephone assessment and skill-building it (TASK). *Top Stroke Rehabil*. **2009**, *16*, 105-121,
338 10.1310/tsr1602-105.

339 28. Eames, S.; Hoffmann, T.; Worrall, L.; Read, S.; Wong, A. Randomised controlled trial of an education and
340 support package for stroke patients and their carers. *BMJ Open*. **2013**, *3*, e002538, 10.1136/bmjopen-2012-
341 002538.

342 29. Kamran-Kamal, A.; Shaikh, Q.; Pasha, O.; Azam, L.; Islam, M.; Memon, A.A; Rehman, H.; Ahmed-Akram,
343 M.; Affan, M.; Nazir, S.; et al. A randomized controlled behavioral intervention trial to improve medication
344 adherence in adult stroke patients with prescription tailored Short Messaging Service (SMS)-SMS4Stroke
345 study. *BMC Neurol*. **2015**, *15*, 1-11, 10.1186/s12883-015-0471-5.

346 30. King, R.B.; Hartke, R.J.; Houle, T.; Lee, J.; Herring, G.; Alexander-Peterson B.S.; Raad, J. A problem-solving
347 early intervention for stroke caregivers: One year follow-up. *Rehabil Nurs*. **2012**, *37*, 231-243, 10.1002/rnj.039.

348 31. Bayat, F.; Shojaeizadeh, D.; Baikpour, M.; Heshmat, R.; Baikpour, M. The effects of education based on
349 extended health belief model in type 2 diabetic patients: a randomized controlled trial. *J Diabetes Metab
350 Disord*. **2013**, *12*, 3-6, 10.1186/2251-6581-12-45.

351 32. Alidosti, M.; Sharifirad, G.R.; Golshiri, P.; Azadbakht, L.; Hasanzadeh, A.; Hemati, Z. An investigation on
352 the effect of gastric cancer education based on Health Belief Model on knowledge, attitude and nutritional
353 practice of housewives. *Iran J Nurs Midwifery Res.* **2012**, *17*, 256-262.

354 33. Lotfi-Mainbolagh, B.; Rakhshani, F.; Zareban, I.; Montazerifar, F.; Alizadeh-Sivaki, H.; Alizadeh-Sivaki, H.;
355 Parvizi, Z. The effect of peer education based on health belief model on nutrition behaviors in primary
356 school boys. *J Res Health Sci.* **2012**, *2*, 1-4.

357 34. Montanaro, E.A.; Bryan, A.D. Comparing theory-based condom interventions: health belief model versus
358 theory of planned behavior. *Health Psychol.* **2014**, *33*, 1251-1260, 10.1037/a0033969.

359 35. Wang, Y.; Zang, X.Y.; Bai, J.; Liu, S.Y.; Zhao, Y.; Zhang, Q. Effect of a Health Belief Model-based nursing
360 intervention on Chinese patients with moderate to severe chronic obstructive pulmonary disease: a
361 randomized controlled trial. *J Clin Nurs.* **2014**, *23*, 1342-1353, 10.1111/jocn.12394.

362 36. Mehta, P.; Sharma, M.; Lee, R. Designing and evaluating a health belief model-based intervention to increase
363 intent of HPV vaccination among college males. *Int Q Community Health Educ.* **2014**, *34*, 101-117,
364 10.2190/IQ.34.1.h.