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Abstract: Cation exchange capacity (CEC) is an important trait related to soil fertility and nutrient
retention used for breeding in agricultural forage crops. However, its genetic background in oat
(Avena sativa L.) remains poorly understood. In this study, four genome-wide association study
(GWAS) models—Mixed Linear Model (MLM), FarmCPU, BLINK, and BayesCrt—were considered
to identify SNPs associated with CEC based on publicly available genotypic and phenotypic data.
Principal component analysis (PCA) was performed to account for population structure, and the
models were compared in terms of the number of significant SNPs, their overlap, and visualizations
(Manhattan and QQ plots). The results showed that FarmCPU provided the highest detection power,
MLM the highest stringency, BLINK demonstrated the highest analysis speed, and BayesCm allowed
to accurately estimate SNP effects and explained variance. The obtained results provide a
comparative view of the performance of GWAS models in studying complex agronomic traits and
confirm the need to select the method for specific breeding tasks of oats and other agricultural plants
in general.
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Summary

Genome-wide association studies play a key role in the selection of agricultural feed crops across
many parameters, including nutrient uptake and stress resistance. The cation exchange capacity
(CEC) is an important indicator for soil fertility and nutrient uptake, but its genetic nature in the oat
(Avena sativa L.) studied in this paper is currently poorly understood. Open phenotypic and genotypic
oat data were used in the study, and four GWAS models (MLM, FarmCPU, BLINK, and BayesCm)
were applied to evaluate their effectiveness in detecting SNP associated with CEC. When evaluating
the results, it can be stated that in this work FarmCPU showed the highest sensitivity, MLM - better
control of false finds, BLINK - high analysis speed, and BayesCmt gave accurate evaluations of SNP
effects. These results can help with the selection of the GWAS model depending on the research goals
and resources for subsequent work.

Introduction

Oats (Avena sativa L.) are an important cereal crop that plays a significant role in the production
of feed and food due to their high nutritional value, resistance to adverse conditions, and ability to
improve soil structure [1]. In the current conditions of climate change and resource depletion, the
selection of oats with improved agronomic characteristics is of particular importance. One of these
characteristics is stress resistance and increased absorption of nutrients from the soil [2,3].

One of the key traits associated with plant fertility and the efficiency of element absorption from
the soil is the cation exchange capacity (CEC) - a measure of the ability to retain ionic nutrients in the
rhizosphere [4]. A high CEC value promotes better absorption of macro- and microelements, such as
potassium, calcium, and magnesium, and can be considered a promising indicator for the selection
of more productive oat varieties [5,6].
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CEC reflects the ability of the plant and the surrounding soil environment to retain cations, and
thereby maintain stable and balanced plant nutrition. This is especially important under stressful
conditions (e.g., drought, soil acidity), where the availability of nutrients can decrease drastically.
Plants with high CEC retain elements in the rhizosphere more efficiently, reduce their leaching, and
improve interactions with the microbiota involved in the mobilization of phosphorus and nitrogen
[5,6]. In addition, CEC is associated with the morphology of the ion-transport systems of roots, as
well as with the general adaptive capacity of the crop to poor soils and extreme conditions [7,8].
Despite such importance, CEC is rarely studied as a target trait in breeding, including due to the
complexity of phenotyping and the lack of genetic studies [9]. Given the multifactorial nature of CEC
and its dependence on complex genetic interactions, genome-wide association analysis (GWAS)
methods are a powerful tool for identifying markers associated with this trait [10]. In recent years,
GWAS has been widely applied to various traits in oats, from yield to disease resistance, but research
on traits related to ion exchange and interactions with the soil environment remains limited [11,12].
There are many GWAS methods, differing in their approaches to accounting for population structure,
power, and resistance to false positives. In this paper, four methods were compared: Mixed Linear
Model, FarmCPU, BLINK, and BayesCrt. MLM (Mixed Linear Model) is a classic model that takes
into account both genetic relatedness and population structure [13]. FarmCPU is an improved
method that combines fixed and random effects to increase the power of the analysis [14]. BLINK is
a method that is designed for rapid analysis and increased accuracy by excluding irrelevant markers
[15]. BayesCm is an approach based on Bayesian regression that provides accurate identification of
markers with a strong effect [16].

Despite significant progress in the development of GWAS models, questions about which
methods are most effective in analyzing CEC-like traits in the context of crop plants remain
unanswered. This study aims to compare statistical power and robustness to false positives between
methods, assess the impact of accounting for population structure, and identify optimal approaches
for further use of GWAS in oat breeding programs.

Methods

A publicly available oat (Avena sativa L.) dataset provided by the Global Landrace Collection
Project was used for the analysis. Genotypic and phenotypic data were downloaded from the
Agricultural Research Service repository. This dataset is linked to the study by Maughan et al. (2019)
published in Nature Communications [17].

The genotypic data is in VCF format and contains ~394,000 SNP markers after basic filtering. The
phenotype was the cation exchange capacity (CEC) extracted from the soil trait table. This continuous
trait reflects the ability of a plant to interact with the mineral part of the soil and assimilate cations.

To control population stratification, principal component analysis (PCA) was performed on the
genotypic data. The first two principal components (PC1 and PC2) were included in the GAPIT
models as covariates. This allows us to correct the influence of population structure and reduce the
probability of false positive associations.

Four methods of association analysis were tested and compared: MLM, FarmCPU, BLINK, and
BayesCmt. For the GAPIT models, a common set of SNPs and a single number of PCs (2) were used.
In the case of BayesCm, due to the high computational load, the analysis was performed on a subset
of SNPs, while the following filters were observed: minimum minor allele frequency (MAF) > 0.05;
exclusion of SNPs with missing values.

Comparison of the efficiency of the models was carried out by the number of significant SNPs,
the overlap of the top 100 SNPs between the methods, visualization of the results using Manhattan
and QQ plots, and for BayesCm, histograms of SNP effects and plots of the relationship between the
effect, MAF and the proportion of explained phenotypic variance were additionally constructed. The
analysis was performed in R 4.x using the following packages: GAPIT v3 for MLM, FarmCPU, and
BLINK models; BGLR for BayesCrt analysis; ggplot2, VennDiagram, prcomp() and other standard
visualization tools.
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Results

A comparison of the number of significant SNPs showed different sensitivity of each of the
methods. FarmCPU identified the largest number of significant markers (11), MLM — 7, BLINK —
4. The BayesCrt method, applied to a subset of SNPs, also identified 10 significant positions. These
results reflect differences in approaches to controlling type I errors and model sensitivity. Manhattan
plots (Figures 1-3) show that FarmCPU identified clear peaks, including those with p-values above -

log10(p) > 13, BLINK showed single high signals, but in smaller numbers, MLM gave a more uniform
distribution of signals, without sharp spikes.
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Figure 1. Manhattan plot of GWAS results performed using the BLINK method. The X-axis shows chromosomes,
and the Y-axis shows —log10(p)-values of association. The horizontal line indicates the significance threshold.
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Figure 2. Manhattan plot of GWAS results performed using the FarmCPU method. The X-axis shows

chromosomes, and the Y-axis shows -loglO(p)-values of association. The horizontal line indicates the
significance threshold.

MLM_CEC.MLM.Trait

7 . e -
& [ ]
5
- ¢ "
=
2 3 9
0
2
1
R R T R L S R L L I B B I T O N O S IR R e L S TR T R L S IR
1A0 1C0 1D0 240 260 200 3A0 3C03C1 3D1 4At 4C_1 4D_1 5A1  5C1  SD_1 6At

6C_1 6D_1 7A1  7C_1 7Dt

Figure 3. Manhattan plot of GWAS results performed using the MLM method. The X-axis shows chromosomes,

and the Y-axis shows the —logl0(p)-values of the association. The horizontal line indicates the significance
threshold.
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False positive results and False discovery rate were assessed based on the degree of overlap of
the top 100 SNPs between three methods. To estimate possible false positives, a Venn diagram of the
top 100 SNPs of each method was constructed (Figure 4). The overlap between the methods is
extremely limited. MLM and FarmCPU do not share any SNPs, MLM and BLINK share 3 SNPs,
FarmCPU and BLINK share 6 SNPs. All three methods together identified only 6 SNPs.

Venn Diagram of Top 100 SNPs by Method
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Figure 4. Venn diagram showing the overlap of the top 100 SNPs between MLM, FarmCPU and BLINK

methods.

The QQ plot analysis allows us to assess the conformity of the p-value distribution with the
expected one in the absence of associations, and thus to judge the presence of signals and possible
inflation of Type I errors. FarmCPU (Figure 5a) shows a noticeable deviation from the diagonal in the
right part of the plot, which indicates the presence of strong signals and increased sensitivity of the
method. Despite the small inflation, the deviation starts quite late, which indicates an acceptable level
of false positives. BLINK (Figure 5b) also shows a pronounced deviation from the null hypothesis in
the tail of the distribution, but less extensive than that of FarmCPU. This indicates the presence of
significant associations, but the number of strong signals is smaller, which is consistent with the
number of detected SNPs. MLM (Figure 5c) gives a distribution close to the expected one, with a
minimal deviation from the diagonal. This indicates high stringency of the model and a low level of
inflation, but may also indicate a loss of sensitivity to weak and moderate effects.

a)  FarmCPU_CEC.FarmCPU.Trait b) BLINK_CEC.BLINK.Trait Cc) MLM_CEC.MLM.Trait
<4 ° o~ oo = 0 °
oo _ _— &
] s | =
_QE: o | °© '%' . O 2 -
o o > © - o 2
R & 3 T
3 o- § § “ § R
§ - g 7 8~
o
[} 8 - 5 .|
S o o)
4l o 4
=l T T T T T T ° T T T T T T T T T T T T
o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5
Expected -logsolp) Expected —logsolp) Expected =logsolp)

Figure 5. QQ plots of p-value distributions for the three GWAS methods used to analyze the CEC trait in oats.
a) FarmCPU; b) BLINK; ¢) MLM.
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For a more detailed analysis of significant SNPs identified by the FarmCPU method, plots of the
minor allele frequency (MAF) were constructed (Figure 6a—c). Most of the highly significant and
large-effect SNPs had low MAF, which is typical for rare variants with potential functional
significance. One of the SNPs explained up to 8% of the phenotypic variance, indicating its possible
role in the control of CEC.
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Figure 6. Analysis of significant SNPs using the FarmCPU method: a) SNP significance vs. MAF; b) Estimated
SNP effect vs. MAF; c) Explained phenotypic variance (%) vs. MAF.

The BayesCmt method allowed us to identify the most informative markers potentially involved
in the formation of the CEC trait. 10 SNPs with the highest contribution were identified, for which
the effects and the proportion of explained phenotypic variance were calculated (Table 1). The SNP
effects ranged from 0.0029 to 0.0032, indicating a moderate influence of each individual locus. At the
same time, each of these markers explained from 10.9% to 12.3% of the phenotypic variance, which
can be considered highly informative for a complex agronomic factor.

Table 1. Top 10 SNPs identified by BayesCrt method with estimated effect and explained phenotypic variance
proportion for CEC trait in oats (Avena sativa L.).

SNP Index Effect Phenotypic Variance Explained (%)
169477 0,003178171 11,44983
132785 0,003165221 12,29264
328532 0,003043769 10,89163
239964 0,002927365 11,48671
335052 0,002894788 11,51225
162400 0,002891 8,422963
122068 0,002886684 11,29919
289949 0,002851108 9,980992

47264 0,002825088 10,47982
393511 0,002824497 11,13786

To account for the population structure, Principal Component Analysis was performed. The
scree plot (Figure 7) shows that the first two components explain most of the genetic variance (~23%
and ~8%, respectively). Based on the results, 2 PCs were included in the model as covariates.
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Scree Plot: Variance Explained by Top 10 PCs

20

£
g
c15
[u]
=3
=
1
8 10
C
@
@ ™
= c Y
N,
0
25 5.0 75 10.0

Principal Component

Figure 7. Scree plot: percentage of variance explained by the first 10 principal components (PCA).

A limitation in this work was the use of BayesCrmt only on a subset of SNPs due to the method’s
high computational load. Because of this, the analysis was not performed on the entire SNP set
(~394K), but only on a limited subset. This does not allow for a direct, full comparison with other
methods on the entire dataset. In addition, the analysis was performed only for one trait (CEC),
without testing the results on other phenotypes or samples. In the future, it will be possible to test
the models on other traits and populations.

Conclusions

In this study, four GWAS methods were compared to identify SNPs associated with cation
exchange capacity (CEC) in oats (Avena sativa L.).

The results confirm that the choice of method significantly affects the number, reliability, and
interpretability of the associations found. FarmCPU and BayesCmt showed high sensitivity, while
MLM provided strict control of false positive results. BLINK, in turn, showed exceptional speed in
obtaining results.

The results of this work will help researchers select suitable GWAS models for the analysis of
complex traits and contribute to the development of strategies for selecting optimal GWAS models
for the analysis of agronomically significant traits.
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