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Abstract: Cation exchange capacity (CEC) is an important trait related to soil fertility and nutrient 

retention used  for breeding  in agricultural  forage  crops. However,  its genetic background  in oat 

(Avena  sativa L.)  remains poorly understood.  In  this  study,  four genome‐wide association  study 

(GWAS) models—Mixed Linear Model (MLM), FarmCPU, BLINK, and BayesCπ—were considered 

to identify SNPs associated with CEC based on publicly available genotypic and phenotypic data. 

Principal  component analysis  (PCA) was performed  to account  for population  structure, and  the 

models were compared in terms of the number of significant SNPs, their overlap, and visualizations 

(Manhattan and QQ plots). The results showed that FarmCPU provided the highest detection power, 

MLM the highest stringency, BLINK demonstrated the highest analysis speed, and BayesCπ allowed 

to  accurately  estimate  SNP  effects  and  explained  variance.  The  obtained  results  provide  a 

comparative view of the performance of GWAS models in studying complex agronomic traits and 

confirm the need to select the method for specific breeding tasks of oats and other agricultural plants 

in general. 
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Summary 

Genome‐wide association studies play a key role in the selection of agricultural feed crops across 

many parameters,  including  nutrient uptake  and  stress  resistance. The  cation  exchange  capacity 

(CEC) is an important indicator for soil fertility and nutrient uptake, but its genetic nature in the oat 

(Avena sativa L.) studied in this paper is currently poorly understood. Open phenotypic and genotypic 

oat data were used in the study, and four GWAS models (MLM, FarmCPU, BLINK, and BayesCπ) 

were applied to evaluate their effectiveness in detecting SNP associated with CEC. When evaluating 

the results, it can be stated that in this work FarmCPU showed the highest sensitivity, MLM ‐ better 

control of false finds, BLINK ‐ high analysis speed, and BayesCπ gave accurate evaluations of SNP 

effects. These results can help with the selection of the GWAS model depending on the research goals 

and resources for subsequent work. 

Introduction 

Oats (Avena sativa L.) are an important cereal crop that plays a significant role in the production 

of feed and food due to their high nutritional value, resistance to adverse conditions, and ability to 

improve soil structure [1]. In the current conditions of climate change and resource depletion, the 

selection of oats with improved agronomic characteristics is of particular importance. One of these 

characteristics is stress resistance and increased absorption of nutrients from the soil [2,3]. 

One of the key traits associated with plant fertility and the efficiency of element absorption from 

the soil is the cation exchange capacity (CEC) ‐ a measure of the ability to retain ionic nutrients in the 

rhizosphere [4]. A high CEC value promotes better absorption of macro‐ and microelements, such as 

potassium, calcium, and magnesium, and can be considered a promising indicator for the selection 

of more productive oat varieties [5,6]. 
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CEC reflects the ability of the plant and the surrounding soil environment to retain cations, and 

thereby maintain stable and balanced plant nutrition. This  is especially  important under stressful 

conditions  (e.g., drought, soil acidity), where  the availability of nutrients can decrease drastically. 

Plants with high CEC retain elements in the rhizosphere more efficiently, reduce their leaching, and 

improve interactions with the microbiota involved in the mobilization of phosphorus and nitrogen 

[5,6]. In addition, CEC is associated with the morphology of the ion‐transport systems of roots, as 

well as with  the general adaptive capacity of  the crop  to poor soils and extreme conditions  [7,8]. 

Despite such  importance, CEC  is rarely studied as a  target trait  in breeding,  including due  to  the 

complexity of phenotyping and the lack of genetic studies [9]. Given the multifactorial nature of CEC 

and  its  dependence  on  complex  genetic  interactions,  genome‐wide  association  analysis  (GWAS) 

methods are a powerful tool for identifying markers associated with this trait [10]. In recent years, 

GWAS has been widely applied to various traits in oats, from yield to disease resistance, but research 

on traits related to ion exchange and interactions with the soil environment remains limited [11,12]. 

There are many GWAS methods, differing in their approaches to accounting for population structure, 

power, and resistance to false positives. In this paper, four methods were compared: Mixed Linear 

Model, FarmCPU, BLINK, and BayesCπ. MLM (Mixed Linear Model) is a classic model that takes 

into  account  both  genetic  relatedness  and  population  structure  [13].  FarmCPU  is  an  improved 

method that combines fixed and random effects to increase the power of the analysis [14]. BLINK is 

a method that is designed for rapid analysis and increased accuracy by excluding irrelevant markers 

[15]. BayesCπ is an approach based on Bayesian regression that provides accurate identification of 

markers with a strong effect [16]. 

Despite  significant  progress  in  the  development  of  GWAS models,  questions  about which 

methods  are  most  effective  in  analyzing  CEC‐like  traits  in  the  context  of  crop  plants  remain 

unanswered. This study aims to compare statistical power and robustness to false positives between 

methods, assess the impact of accounting for population structure, and identify optimal approaches 

for further use of GWAS in oat breeding programs. 

Methods 

A publicly available oat  (Avena sativa L.) dataset provided by  the Global Landrace Collection 

Project was  used  for  the  analysis.  Genotypic  and  phenotypic  data were  downloaded  from  the 

Agricultural Research Service repository. This dataset is linked to the study by Maughan et al. (2019) 

published in Nature Communications [17]. 

The genotypic data is in VCF format and contains ~394,000 SNP markers after basic filtering. The 

phenotype was the cation exchange capacity (CEC) extracted from the soil trait table. This continuous 

trait reflects the ability of a plant to interact with the mineral part of the soil and assimilate cations. 

To control population stratification, principal component analysis (PCA) was performed on the 

genotypic data. The  first  two principal  components  (PC1  and PC2) were  included  in  the GAPIT 

models as covariates. This allows us to correct the influence of population structure and reduce the 

probability of false positive associations. 

Four methods of association analysis were tested and compared: MLM, FarmCPU, BLINK, and 

BayesCπ. For the GAPIT models, a common set of SNPs and a single number of PCs (2) were used. 

In the case of BayesCπ, due to the high computational load, the analysis was performed on a subset 

of SNPs, while the following filters were observed: minimum minor allele frequency (MAF) ≥ 0.05; 

exclusion of SNPs with missing values. 

Comparison of the efficiency of the models was carried out by the number of significant SNPs, 

the overlap of the top 100 SNPs between the methods, visualization of the results using Manhattan 

and QQ plots, and for BayesCπ, histograms of SNP effects and plots of the relationship between the 

effect, MAF and the proportion of explained phenotypic variance were additionally constructed. The 

analysis was performed in R 4.x using the following packages: GAPIT v3 for MLM, FarmCPU, and 

BLINK models; BGLR for BayesCπ analysis; ggplot2, VennDiagram, prcomp() and other standard 

visualization tools. 
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Results 

A  comparison of  the number of  significant SNPs  showed different  sensitivity of each of  the 

methods. FarmCPU identified the largest number of significant markers (11), MLM — 7, BLINK — 

4. The BayesCπ method, applied to a subset of SNPs, also identified 10 significant positions. These 

results reflect differences in approaches to controlling type I errors and model sensitivity. Manhattan 

plots (Figures 1–3) show that FarmCPU identified clear peaks, including those with p‐values above ‐

log10(p) > 13, BLINK showed single high signals, but in smaller numbers, MLM gave a more uniform 

distribution of signals, without sharp spikes. 

 

Figure 1. Manhattan plot of GWAS results performed using the BLINK method. The X‐axis shows chromosomes, 

and the Y‐axis shows –log10(p)‐values of association. The horizontal line indicates the significance threshold.

. 

Figure  2.  Manhattan  plot  of  GWAS  results  performed  using  the  FarmCPU  method.  The  X‐axis  shows 

chromosomes,  and  the  Y‐axis  shows  –log10(p)‐values  of  association.  The  horizontal  line  indicates  the 

significance threshold. 

 

Figure 3. Manhattan plot of GWAS results performed using the MLM method. The X‐axis shows chromosomes, 

and  the Y‐axis  shows  the  –log10(p)‐values  of  the  association. The  horizontal  line  indicates  the  significance 

threshold. 
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False positive results and False discovery rate were assessed based on the degree of overlap of 

the top 100 SNPs between three methods. To estimate possible false positives, a Venn diagram of the 

top  100  SNPs  of  each method was  constructed  (Figure  4).  The  overlap  between  the methods  is 

extremely  limited. MLM and FarmCPU do not  share any SNPs, MLM and BLINK share 3 SNPs, 

FarmCPU and BLINK share 6 SNPs. All three methods together identified only 6 SNPs. 

 

Figure 4. Venn diagram showing the overlap of the top 100 SNPs between MLM, FarmCPU and BLINK 

methods. 

The QQ plot analysis allows us  to assess  the conformity of  the p‐value distribution with  the 

expected one in the absence of associations, and thus to judge the presence of signals and possible 

inflation of Type I errors. FarmCPU (Figure 5a) shows a noticeable deviation from the diagonal in the 

right part of the plot, which indicates the presence of strong signals and increased sensitivity of the 

method. Despite the small inflation, the deviation starts quite late, which indicates an acceptable level 

of false positives. BLINK (Figure 5b) also shows a pronounced deviation from the null hypothesis in 

the tail of the distribution, but less extensive than that of FarmCPU. This indicates the presence of 

significant associations, but  the number of  strong  signals  is  smaller, which  is  consistent with  the 

number of detected SNPs. MLM  (Figure 5c) gives a distribution close to the expected one, with a 

minimal deviation from the diagonal. This indicates high stringency of the model and a low level of 

inflation, but may also indicate a loss of sensitivity to weak and moderate effects. 

 

Figure 5. QQ plots of p‐value distributions for the three GWAS methods used to analyze the CEC trait in oats. 

a) FarmCPU; b) BLINK; c) MLM. 
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For a more detailed analysis of significant SNPs identified by the FarmCPU method, plots of the 

minor allele  frequency  (MAF) were  constructed  (Figure 6a–c). Most of  the highly  significant and 

large‐effect  SNPs  had  low  MAF,  which  is  typical  for  rare  variants  with  potential  functional 

significance. One of the SNPs explained up to 8% of the phenotypic variance, indicating its possible 

role in the control of CEC. 

 

Figure 6. Analysis of significant SNPs using the FarmCPU method: a) SNP significance vs. MAF; b) Estimated 

SNP effect vs. MAF; c) Explained phenotypic variance (%) vs. MAF. 

The BayesCπ method allowed us to identify the most informative markers potentially involved 

in the formation of the CEC trait. 10 SNPs with the highest contribution were identified, for which 

the effects and the proportion of explained phenotypic variance were calculated (Table 1). The SNP 

effects ranged from 0.0029 to 0.0032, indicating a moderate influence of each individual locus. At the 

same time, each of these markers explained from 10.9% to 12.3% of the phenotypic variance, which 

can be considered highly informative for a complex agronomic factor. 

Table 1. Top 10 SNPs identified by BayesCπ method with estimated effect and explained phenotypic variance 

proportion for CEC trait in oats (Avena sativa L.). 

SNP Index  Effect  Phenotypic Variance Explained (%) 

169477  0,003178171  11,44983 

132785  0,003165221  12,29264 

328532  0,003043769  10,89163 

239964  0,002927365  11,48671 

335052  0,002894788  11,51225 

162400  0,002891  8,422963 

122068  0,002886684  11,29919 

289949  0,002851108  9,980992 

47264  0,002825088  10,47982 

393511  0,002824497  11,13786 

To account  for  the population structure, Principal Component Analysis was performed. The 

scree plot (Figure 7) shows that the first two components explain most of the genetic variance (~23% 

and ~8%, respectively). Based on the results, 2 PCs were included in the model as covariates. 
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Figure 7. Scree plot: percentage of variance explained by the first 10 principal components (PCA). 

A limitation in this work was the use of BayesCπ only on a subset of SNPs due to the method’s 

high  computational  load. Because of  this,  the  analysis was not performed on  the  entire SNP  set 

(~394K), but only on a limited subset. This does not allow for a direct, full comparison with other 

methods on  the  entire dataset.  In addition,  the analysis was performed only  for one  trait  (CEC), 

without testing the results on other phenotypes or samples. In the future, it will be possible to test 

the models on other traits and populations. 

Conclusions 

In  this  study,  four GWAS methods were  compared  to  identify  SNPs  associated with  cation 

exchange capacity (CEC) in oats (Avena sativa L.). 

The results confirm that the choice of method significantly affects the number, reliability, and 

interpretability of  the associations  found. FarmCPU and BayesCπ  showed high  sensitivity, while 

MLM provided strict control of false positive results. BLINK, in turn, showed exceptional speed in 

obtaining results. 

The results of this work will help researchers select suitable GWAS models for the analysis of 

complex traits and contribute to the development of strategies for selecting optimal GWAS models 

for the analysis of agronomically significant traits. 
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