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Abstract: D-Aspartate and D-Serine serve as primary agonists at glutamate receptors, playing a crucial role in
modulating synaptic plasticity and cell migration within the central nervous system. The precise regulation of
their levels is essential and intricately linked to the expression of their synthetic and catabolic enzymes, which
are, in turn, primarily influenced by epigenetic modifications. In a comprehensive analysis, we examined the
methylation profiles of the promoters and transcription start sites of critical genes associated with D-Aspartate
and D-Serine metabolism in human post-mortem brain tissues sourced from normal individuals and those
diagnosed with schizophrenia. Our approach involved a qualitative method capable of identifying specific
families of methylated alleles known as epialleles, sharing a common pattern of methylated non-contiguous
CpGs, referred to as cores. These methylated traits exhibit stability and consistency within complex
populations of diverse DNA-methylated molecules. Our findings reveal brain area-specific methylation
signatures to the DDO, DAO and DAOA genes serving as distinctive markers that differentiate normal brain
areas from those affected by schizophrenia. These methylation patterns align with the reported high D-
Aspartate and low D-Serine levels observed in schizophrenic brain areas. The study suggests a potential link
between epigenetic modifications and the dysregulation of these neurotransmitters in schizophrenia.

Keywords: DNA methylation in healthy and disease; methyl-CpG'’s configurations; schizophrenia

1. Introduction

Schizophrenia comprises a group of severe mental disorders affecting about 1% of the
population, with a substantial heritability factor of approximately 80% [1]. Despite extensive
research, a significant portion of the hereditary risk remains unidentified. Several susceptibility genes
have already been found in brain signaling pathways, such as dopamine, glutamate, and D-amino
acid; however, the etiology of schizophrenia is still mostly misunderstood. Susceptibility genes linked
to neurotransmitter signaling pathways, including dopamine, glutamate, and D-amino acid, have
been identified, yet the precise etiology of schizophrenia remains elusive. Emerging evidence
underscores the crucial role of epigenetic alterations, specifically DNA methylation, in the
pathophysiology of schizophrenia, influencing gene expression [2,3].

DNA methylation, an epigenetic modification involving the addition of a methyl group to
cytosine in CpG dinucleotides, regulates cell identity through gene expression [4]. This process
influences gene expression by either restricting access to promoter regions for transcription factors
or affecting mRNA processing. However, DNA methylation profiles, generating epialleles (alleles
differing solely by methylation), display significant heterogeneity and polymorphism due to the
stochastic (as in transcription) or selective (as in gene imprinting) nature of CpG methylation [5-12].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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To address this complexity, we have developed a tool capable of identifying methylated CpGs
under selection, forming a core or nucleus shared by several epialleles in linear DNA sequences [13].
In simpler terms, this tool allows us to track and trace epialleles derived from a single precursor with
common methylation traits in complex DNA sequence populations derived from cells in the brain
and other organs during postnatal differentiation [4,13].

D-amino acids play crucial roles in various physiological processes, especially in the brain, and
their dysregulation has been implicated in psychiatric disorders such as schizophrenia [14]. Notably,
D-Serine and D-Aspartate serve as co-agonists at N-methyl-D-Aspartate receptors (NMDARs),
governing diverse brain activities [15,16]. Altered levels of these D-amino acids have been observed
in schizophrenia patients [17,18], with enzymes like D-Aspartate oxidase (DDO) [19], serine racemase
(SR), D-amino acid oxidase (DAO) and D-amino acid oxidase activator (DAOA) [20] playing crucial
roles in their production and degradation. Since DNA methylation patterns in the brain at CpG sites
are essential for cellular identity during neurodevelopment [21], we hypothesized that their alteration
could contribute to the pathogenesis of schizophrenia through a spatiotemporal alteration of these
genes in the human brain.

Our study, utilizing targeted bisulfite sequencing in post-mortem brains of individuals with
schizophrenia, identified specific methyl-CpG signatures in genes associated with D-Aspartate and
D-Serine metabolism in different brain areas, particularly the enzymes DDO, DAO, and DAOA.

Again, our methylation core analysis may identify brain locations within each individual and be
connected to schizophrenia pathogenesis.

2. Results

2.1. Cerebellum and Hippocampus cells display specific methylation signatures in the D-Aspartate
metabolizing gene, D-Aspartate oxidase (DDO).

D-Aspartate, an atypical amino acid abundant in the embryonic mammalian brain, stimulates
glutamatergic NMDA and mGlu5 receptors at nanomolar concentrations [22]. Free D-Aspartate
levels are high in the embryonic brain of mammals and after birth, rapidly decrease [23,24] due to the
onset of the D-Aspartate oxidase (DDO), which inactivates D-Aspartate by converting it into
oxaloacetate [25,26].

Increased D-Aspartate levels have been associated with schizophrenia-like phenotypes in
rodents, characterized by frontal-hippocampal hyper-connectivity and reduced activity of neurons
exposed to phencyclidine [22]. The association between schizophrenia phenotypes and brain D-
Aspartate levels may be mediated by epigenetic modifications of the DDO gene in specific brain areas
that reduce its expression, leading to high D-Aspartate levels in specific brain areas. To test this
association, we have defined the methylation profiles of DDO promoter and the transcription start
site (TSS) (Figure 1A) in the three specific post-mortem brain areas of control (CTRL, n=20) and
schizophrenic (SCZ, n=20): cerebellum (CB), dorsolateral prefrontal cortex (DLPFC) and
hippocampus (HIPP). We found 25% of the molecules analyzed methylated in controls, DLPFC and
HIPP, whereas in CB, the DDO promoter was poorly methylated (Figures 1B and C). The methylated
sequences were highly polymorphic and heterogeneous (Figure 1D). However, the methylation
heterogeneity was apparent because sorting out the methyl-CpG (mCpG) combinations was
statistically significant in the sequence populations we found in CB DDO promoter three methylated
CpG cores. The abundance of these methylated CpGs in the DNA string changes dramatically
compared to CTRL and SCZ. For example, i. the core with mCpGs 33-85-126-219-354-359 is abundant
in CTRL CB. The structure of this core in the CB is peculiar because CpG 50, located at -177 from the
TSS, is never methylated. In SCZ CB, this CpG is methylated and incorporated in the core (Figure 1E,
p<0.01); ii. the CpG core 33-85 is not informative because it is present in both CTRL and SCZ DLPEFC
at the same frequency; iii. the core 33-85-359 CpGs, on the other hand, marks SCZ HIPP (Figures 1E
and 1F).
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Figure 1. Methylation of DDO promoter in control and schizophrenic individuals. (A) Structure of the
DDO promoter. The black lines and circles on the diagram represent each CpG upstream of the
transcription start site (TSS). (B) Average DNA methylation of the seven CpGs shown in (A). CpGs
are shown as color-coded squares. (C) Average CpG methylation is shown in (A). (D) The methylated
molecules” Shannon entropy of the same samples. (E) The methylated cores’” composition and
structure. A color code is used to identify each CpG on the upper side of the panel. (F) Frequency of
the methylated core in the whole population. A pairwise comparison was performed with Student’s
t-test: * p <0.05, ** p <0.01, *** p <0.005, **** p <0.001 versus CTRL.

In conclusion, we have identified 2 methylation cores in the DDO promoter that characterize
distinctively normal and SCZ discrete brain areas: 1. CpGs 33-85-126-219-354-359 in CB CTRL
without CpG 50. This CpG is methylated only in SCZ (Figure 1E); 2. the core with 33-85-359 CpGs,
characterizes HIPP SCZ (Figure 1F).

Moreover, ex-novo searches for the specific HIPP SCZ methylated core in all its configurations
among analyzed areas showed that it increased only in HIPP SCZ (Figure 2A). Furthermore, our
results also showed that CB had lower levels of methylated cores in the DDO promoter than in
analyzed areas (Figure 2B).
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Figure 2. Examination of distinct DDO methylation nuclei in different brain areas. (A) Search for
distinct methylation cores in control and schizophrenic individuals. (B) Comparison of distinct
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methylation nuclei among different brain areas. A pairwise comparison was performed with
Student’s t-test: * p <0.05, ** p < 0.01, *** p <0.005, ***** p <0.001 versus CTRL.

2.2. Methylation signatures in D-Serine metabolizing genes in specific brain areas.

D-Serine is the primary co-agonist that stimulates N-methyl-D-Aspartate (NMDA) receptors in
the forebrain and its levels, like D-Aspartate, in the brain are tightly regulated by several enzymes,
such as serine racemase (SR) (conversion of L to D-Serine) or D amino-oxidase (DAO) or DAO
activator (DAOA) (low D-Serine levels). Lower D-Serine levels have been reported in the brain of
schizophrenic patients and higher D-Serine levels in the brain may be an important adjuvant to
antipsychotic therapy to control schizophrenia phenotypes [27]. To better understand the regulation
of brain levels of D-Serine we looked for methylation signature(s) at the promoters and TSS of these
genes in the three specific post-mortem brain areas of normal/control (CTRL, n=20) and schizophrenic
(SCZ, n=20) human brain areas indicated above.

2.2.1. The Promoter and the TSS Serine Racemase (SR) are undermethylated both in normal and
schizophrenic brain areas.

D-Serine is formed by the racemization of L-serine by the enzyme serine racemase, which under-
expression has been shown to be associated with schizophrenia, especially with the paranoid subtype
[28]. The SR promoter is within a thick CpG island (Figure 3A). Bisulfite sequencing analysis of the
downstream region near TSS (Figure 3A; nucleotides +209 to +522, with 30 CpG sites) revealed that
the region was almost unmethylated with no difference in terms of average methylation, CpG
methylation and Entropy (Figures 3B-3D) [13].
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Figure 3. Methylation of SR promoter in control and schizophrenic individuals. (A) Structure of the
SR promoter. The black lines and circles on the diagram represent CpGs. (B) Average DNA
methylation of the thirty CpGs shown in (A). CpGs are shown as color-coded squares. (C) Average
CpG methylation is shown in (A). (D) The methylated molecules’ Shannon entropy of the same
samples.

2.2.2. Specific methylation signature in DAO gene promoter marks cerebellum in schizophrenic
patients.

D-amino oxidase (DAO) is an oxidoreductase that oxidatively deaminates D-amino acids to the
corresponding alpha-keto acid. Enhanced DAO activity has been reported as a potential cause of
reduced D-Serine and thence impaired NMDAR functioning in schizophrenia [29]. To confirm this
hypothesis, we examined the methylation status of the DAO promoter (Figure 4A) in three different
areas derived from the post-mortem brains of SCZ and CTRL: cerebellum (CB), dorsolateral
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prefrontal cortex (DLPFC) and hippocampus (HIPP). We found no difference in average methylation,
cytosine methylation (Figure 4B) and Entropy (Figure 4D) in DLPFC, HIPP and CB. Using the tool
above (MethCoresProfiler), we found three different cores marking the DAO gene regions: i. core
133-185 marked CB SCZ relative to the CB CTRL (Figure 4F). ii. the original core 114-133-185-256 in
DLPFC CTRL lost 133 and 256 mCpGs in SCZ. iii. the core 114-133-185-256 was stable in HIPP CTRL

and SCZ (Figure 4E).
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Figure 4. Methylation of DAO promoter in control and schizophrenic individuals. (A) Structure of the
DAO promoter. The black lines and circles on the diagram represent each CpG on the transcription
start site (TSS). (B) Average DNA methylation of the ten CpGs shown in (A). CpGs are shown as color-
coded squares. (C) Average CpG methylation is shown in (A). (D) The methylated molecules’
Shannon entropy of the same samples. (E) The methylated cores” composition and structure. A color
code is used to identify each CpG on the upper side of the panel. (F) Frequency of the methylated core
in the whole population. A pairwise comparison was performed with Student’s t-test: * p <0.05, ** p
<0.01, ** p <0.005, **** p <0.001 versus CTRL.

Ex-novo searches for the SCZ methylated core per area showed a significant reduction of
methylated core 133-185 only in the CB SCZ compared to controls (Figure 4F). Moreover, ex-novo
searches for the specific CB SCZ methylated core in all configurations in the various analyzed areas
showed that it decreased specifications in the CB SCZ (Figure 5A). Furthermore, our results also
showed that CB CTRL had higher levels of methylated cores in the DAO promoter than other

analyzed areas (Figure 5B).
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Figure 5. Examination of distinct DAO methylation nuclei in different brain areas. (A) Search for
distinct methylation cores in control and schizophrenic individuals. (B) Comparison of distinct
methylation nuclei among different brain areas. A pairwise comparison was performed with
Student’s t-test: * p <0.05, ** p < 0.01, *** p <0.005, ***** p <0.001 versus CTRL.

2.2.3. Qualitative DNA methylation configuration of the DAOA gene promoter mark schizophrenic

patients.

The DAO activator (DAOA) gene product has been shown to affect DAO activity positively [30]
or negatively [31]. The methylation analysis of the 434 bp (nucleotides -330 to +104) fragment
spanning the DAOA promoter and the TSS shows only 3 CpGs (-301, -26, +75), which was examined
for DNA methylation (Figure 6A). We observed no significant alterations when we analyzed
methylation status at single CpG sites between CTRL and SCZ in all brain regions (Figure 6B). The
DAOA promoter region has exceptionally high average CpG methylation in CTRL and SCZ groups
across all studied brain regions. Data analysis of average methylation, like single CpGs, revealed no
statistically significant variations between CTRL and SCZ in all brain regions (Figure 6C) or Entropy

(Figure 6D).
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Figure 6. Methylation of DAOA promoter in control and schizophrenic individuals. (A) Structure of
the DAOA promoter. The black lines and circles on the diagram represent each CpG upstream of the
transcription start site (TSS). (B) Average DNA methylation of the three CpGs shown in (A). CpGs
are shown as color-coded squares. (C) Average CpG methylation is shown in (A). (D) The methylated
molecules” Shannon entropy of the same samples. (E) The methylated cores’” composition and
structure. A color code is used to identify each CpG on the upper side of the panel. (F) Frequency of
the methylated core in the whole population. A pairwise comparison was performed with Student’s
t-test: * p <0.05, ** p < 0.01, *** p <0.005, ***** p <0.001 versus CTRL.

Using the tool above (MethCoresProfiler), we identified two methylated cores in the DAOA
promoter: i. the core 29-404 marked CB and DLFPC CTRL that was also stable in SCZ. ii. the core 29-
304-404 marked HIPP CTRL that became 29-404 in HIPP SCZ with high frequency (Figure 6E).
However, this qualitative change of the CTRL HIPP core was insignificant in the areas analyzed for
ex-scale research (Figure 6F, 7A-B).
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Figure 7. Examination of distinct DAOA methylation nuclei in different brain areas. (A) Search for
distinct methylation cores in control and schizophrenic individuals. (B) Comparison of distinct
methylation nuclei among different brain areas. A pairwise comparison was performed with
Student’s t-test: * p <0.05, ** p < 0.01, *** p <0.005, ***** p <0.001 versus CTRL.

3. Discussion

The most extensively studied epigenetic modification, cytosine methylation in DNA, is
intricately linked to gene transcription, nuclear architecture, and cell activity. Various factors,
including transcription factor binding, can influence DNA methylation. Alterations in DNA
methylation patterns are common in many human illnesses, making it a promising clinical diagnostic
marker due to the physical stability of DNA and methylated DNA. Despite this, few DNA
methylation-based markers, aside from some in cancer, have transitioned into clinical practice. Here,
we present evidence supporting DNA methylation as a clinical marker for study and potential use in
schizophrenia.

D-Aspartate and D-Serine, acting as NMDAR co-agonists and agonists, have been implicated in
the pathophysiology of schizophrenia. Genetic investigations have identified specific SNPs within
SR, DAO, and DAOA linked to schizophrenia [32]. However, the relationship between the DNA
methylation state of genes regulating D-Aspartate and D-Serine and schizophrenia has been
minimally explored [3]. This study employs a novel, ultradeep approach to comprehensively analyze
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the CpG methylation status of DDO, SR, DAO, and DAOA genes in post-mortem brain areas of
patients with schizophrenia and non-psychiatric controls from different brain banks [33,34].

Despite no significant differences between diagnostic groups, our findings reveal brain area-
specific methylation patterns that distinguish schizophrenia patients. The CpG methylation analysis
of DDO and DAO genes, in particular, showcases the power of the proposed technique in detecting
cell-to-cell methylation changes. The DDO promoter exhibited higher methylation levels in HIPP and
DLPFC than CB, revealing tissue heterogeneity. However, distinct methylation patterns (methylated
cores) were identified, differentiating CTRL and SCZ. The same approach on the DAO promoter
showed qualitative and quantitative differences between CTRL and SCZ, marking distinct
methylation nuclei in all explored regions.

Exploring the DAOA promoter, nearly complete methylation at few CpG sites was observed
universally, explaining the gene's repression [35]. However, HIPP exhibited qualitative changes
between CTRL and SCZ. Analyzing SR, identified as a schizophrenia risk gene, revealed an entirely
unmethylated CpG island in all analyzed areas, explaining the gene's activity [36].

Our results demonstrate brain area-specific methylation signatures in DDO and DAO genes,
suggesting a unique functional state in schizophrenia patients. The observed methylated cores in
gene promoters between patients and controls may be associated with metabolic adaptation in
response to persistent DNA damage reported in schizophrenic patients [37,38]. We propose a model
linking high DDO methylation in SCZ HIPP to increased D-Aspartate levels stimulating NMDAR
receptors. In contrast, low DAO methylation correlates with low D-Serine levels, potentially
influencing metabolic pathways associated with schizophrenia [39,40]. This study underscores the
role of altered brain bioenergetics in cognitive and functional deficits in schizophrenia.

Hippocampus Cerebellum

D-Aspartate D-Serine

|00 mANA %\ NMDA ‘// *bA0 mRNA

receptor

Pyruvate===p | actic Acid
Oxalacetate

Figure 8. Proposed model of altered brain bioenergetics in schizophrenia.

Persistent DNA damage in schizophrenic individuals altered DNA methylation [37,38]. In the
Hippocampus, hypermethylation of DDO promoter inhibits D-Aspartate metabolism, increasing D-
Aspartate-stimulated NMDAR receptors. In contrast, in the Cerebellum, hypomethylation of DAO
promoter increases D-Serine metabolism, potentially influencing metabolic pathways with the
production of Pyruvate and Lactic Acid [39]. Lactate levels in schizophrenia may be elevated due to
increased anaerobic glycolysis, which might be caused by mitochondrial malfunction [40].

4. Materials and Methods

The datasets used in this study were obtained from the European Nucleotide Archive (ENA).
The public accession number is PRJEB24382. An overview of sample collection and DNA extraction
is provided below. A detailed description of all the samples is reported in [2,3]. Following that, both
homemade sequence management and methylation analysis are explained.
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Collection of Human Tissue Samples.

The human dorsolateral prefrontal cortex and hippocampus samples from post-mortem brains
derived from the Human Brain and Spinal Fluid Resource Center, Los Angeles Healthcare Center,
Los Angeles, CA, USA (Brain Bank 1, BB1, [3], DLFPC CTRL=20 and DLFPC SCZ=20; HIPP CTRL=20
and HIPP SCZ=20).

The human cerebellum samples from post-mortem brains derived from the MRC London
Neurodegenerative Disease Brain Bank at King's College London's Institute of Psychiatry (Brain Bank
2, BB2, [2], CB CTRL=10 and CB SCZ=7). SCZ was clinically diagnosed using DSMIII-R criteria. For
subsequent usage, frozen tissues were pulverized in liquid nitrogen and stored at 80 °C.

DNA extraction.

The Dneasy Blood & Tissue Kit was used to recover DNA from a portion of liquid nitrogen
pulverized post-mortem brain tissues (Qiagen, Hilden, Germany). Using the EZ DNA Methylation
Kit (Zymo Research), sodium bisulfite was used to converter the isolated genomic DNA. The PCR
procedures were carried out using the bisulfite-specific primers described in [3]. Following the PCR
steps, AMPure purification magnetic beads (Beckman-Coulter, Brea, CA) were used to eliminate
primer dimers. A library of bisulfite-treated amplicons was generated by pooling amplicons at an
equimolar ratio. The amplicon library was sequenced using V3 reagent kits on an Illumina MiSeq
system (Illumina).

Sequence handling and methylation analysis.

Paired-end reads in FASTQ format from the ENA database (accession number: PRJEB24382)
were merged using the PEAR (paired-end read merger) tool, setting a minimum of 40 nucleotides as
the overlapping region. We retained only those reads with a mean quality score (Phred) >33 and a
length between 400 and 500 nucleotides. The resulting reads were then converted in FASTA format
using the PRINSEQ (preprocessing and information of sequence) tool. To extract methylated CpG
configurations in single DNA molecules, reads in FASTA format were processed using
ampliMethProfiler (available at https://sourceforge.net/projects/amplimethprofiler/), applying
several quality filters. We retained only reads characterized by (i) length +50% compared with the
reference length, (ii) at least 80% sequence similarity of the primer with the corresponding gene, (iii)
at least 98% bisulfite efficiency, and (iv) alignment of at least 60% of their bases with the reference
sequences. The methylation status of all cytosines in the CpG sequence context is coded as methylated
(1) or unmethylated (0). Reads with ambiguous calls (including gaps or A or G) at the CpG
dinucleotide were removed. The data, in binary formats, were successively analyzed with the
MethCoresProfiler [13].

Statistical analysis

Methylation average data are expressed as means + standard deviation. Comparisons between
2 groups were performed using the unpaired Student t-test. Multiple comparisons were made using
1-way ANOVA followed by Tukey’s post-hoc test. A p-value < 10"-10 was considered statistically
significant. All statistical analyses were performed using JMP software (SAS, Cary, NC) and R
software.

5. Conclusions

Evaluation of CpG combinations (methylated cores) may be more informative than classical
methylation analyses. It may be effectively used in various applications, including in-depth
determination of the epigenetic etiology of brain illnesses. Furthermore, if these analyses can be
effectively transferred to peripheral cells, they can be used for diagnostic and clinical purposes.

doi:10.20944/preprints202312.0923.v1
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