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Abstract: Coordination compounds, characterized by the coordination of metal ions with ligands, represent a
pivotal area of research in chemistry due to their diverse structures and versatile applications. This review
delves into the synthesis, characterization, biological evaluation, and practical applications of these
compounds. A variety of synthetic methodologies (traditional solution-based techniques) are discussed to
highlight advancements in the field. Investigations into the structural, electronic, and spectral properties of
coordination compounds are emphasized to provide insights into their functional attributes. The biological
evaluation section focuses on their roles in antimicrobial, anticancer, and enzyme-inhibitory activities,
underscoring their potential in therapeutic development. Attention is paid to nanoparticles, which are
increasingly used for the treatment of oncological diseases. The metal complexes have been shown to have
antibacterial, antifungal, antiviral, antioxidant and antiproliferative properties. Additionally, the review
explores their applications across domains such as catalysis illustrating their multifaceted utility. By
synthesizing recent findings and trends, this article aims to bridge the gap between fundamental chemistry
and applied sciences, paving the way for innovative uses of coordination compounds in both biological and
industrial contexts.
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1. Introduction

Coordination compounds, formed by the interaction of metal ions with surrounding ligands,
have long been a cornerstone of inorganic chemistry. Their structural diversity, arising from
variations in metal centers, oxidation states, and ligand types, endows these compounds with unique
physicochemical properties. These features not only provide a deeper understanding of chemical
bonding and reactivity but also enable a wide range of applications spanning biological, industrial,
and environmental fields. The synthesis of coordination compounds has evolved significantly,
leveraging both conventional and modern techniques to optimize their yield, stability, and
functionality (see Scheme 1-3). Characterization methods, such as spectroscopic, crystallographic,
and electrochemical analyses, play a critical role in unraveling their structural intricacies and guiding
their application.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Scheme 1. Synthesis of metal complexes without heating.

Scheme 2. Possible synthesis of complexes upon heating.
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Scheme 3. Synthesis of solid metal(II), (III), (IV) or other oxidation state coordination compounds.

To date numerous metal complexes of different organic ligands were synthesized by using
Scheme 1 [1-12] or Scheme 2 [23-27]. The Figure 1 presents the classification of ligands and metal

complexes.
Ligands a. Donor atoms 1. Monodentate
1. Bidentate
iit. Tndentateete,
b. No.of amino groups | 1. Mono amino-aliphatic, aromatic
ii, Diamino- Mono-condensed unsymmetrical
aliphatic, aromatic
Bi-condensed-bis | Symmetncal
1it. Triamino- Unsymmetrical
Complexes a. Binary (ML) . Mononuclear
it. Binuclear Homo- M-L-M
Hetero- M-L-M
iii. Trinuclear

b. Temary (M.L.L")

Figure 1. Flow diagram presenting the classification of ligands and metal complexes (L=Schiff base).

One of the most intriguing aspects of coordination compounds is their biological relevance.
Many of these compounds exhibit promising activities, including antimicrobial, anticancer, and
enzyme-inhibitory properties, positioning them as candidates for therapeutic development.
Furthermore, their roles in catalysis, molecular sensing, and environmental remediation underscore
their significance in addressing global challenges.

This review provides a comprehensive exploration of the synthesis, investigation, biological
evaluation, and applications of coordination compounds. By integrating insights from recent studies
and emerging trends, it aims to illuminate the potential of these compounds to advance science and

technology.

Key Characteristics of Transition Metals and Their Complexes:

1. Charge Variation: Transition metals can exist as positively charged species in aqueous
solutions, with charges adaptable based on their coordination environment. This enables binding to
negatively charged biomolecules, which is critical in therapeutic applications [28].

2. Structural Diversity: Transition metal complexes can adopt a wide range of coordination
geometries and bond configurations. This flexibility allows for unique shapes and molecular
interactions, surpassing conventional carbon-based compounds [28-31].
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3. Metal-Ligand Interactions: These interactions form unique complexes with distinct
thermodynamic and kinetic properties, enhancing ligand exchange reactions and biological
compatibility [28].

4. Lewis Acid Properties: The high electron affinity of transition metals facilitates the
polarization and hydrolysis of coordinated groups, contributing to their catalytic activities [28,29].

5.Partially Filled Shells: The electronic configurations of transition metals impact their magnetic
and electronic properties, which are crucial for biochemical functions [29].

6. Redox Activity: Transition metals readily undergo redox reactions, a vital feature in
biochemical redox catalysis and drug design [29].

2. Methods for characterization of coordination compounds

Characterization of coordination compounds involves determining their chemical composition,
structural properties, and electronic behavior to understand their reactivity, functionality, and
applications. Several analytical and spectroscopic methods are employed to explore these aspects.
Techniques such as X-ray crystallography [32—-43] are central to determining the three-dimensional
arrangement of atoms, providing precise geometrical details about the coordination sphere. UV-Vis
spectroscopy [44-74] is used to study the electronic transitions within the metal-ligand complexes,
offering insights into the ligand field and electronic structure. Infrared (IR) spectroscopy identifies
functional groups and bond vibrations, highlighting the types of ligands present and their binding
modes [75-85]. Additionally, NMR spectroscopy (solid state or in solution) [86-101] can probe the
chemical environment of nuclei within the ligands, especially in diamagnetic complexes. Other
techniques like elemental analysis, mass spectrometry, and thermogravimetric analysis (TGA)
provide quantitative data on the composition, stability, and thermal properties. Cyclic voltammetry
and related electrochemical methods help in understanding redox behavior, while magnetic
susceptibility measurements reveal information about unpaired electrons and the magnetic
properties of the metal center. These techniques together provide a comprehensive understanding of
coordination compounds, supporting their design and application in areas such as catalysis,
medicine, and materials science. Several spectroscopic methods for investigation of coordination
compounds are given in Scheme 4.
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Scheme 4. Investigation of coordination compounds.

To date numerous metal complexes of spirohydantoins [1-5], thiouracils [6-8] and other
derivatives [10-12,88,89,93] were synthesized and their composition and structure with various
metals like copper, nickel, zinc, [1,2,12,102], as well as palladium, platinum and gold was studied [6—

9]. Summary data on the structure of the complexes and the donor atoms involved in the coordination
are given in Table 1.

Table 1. Summary data on the structure of the complexes and the donor atoms involved in the coordination.

technique donor atom metal structure references
13C CPMAS NMR, IR and FAB-MS N3754-bridging Cu(I) and dimeric 1]
and theoretical DFT studies coordination Ni(II) structures
N3752-bridging
coordination for L1 dimeric
with Cu(l);
monodentate structure for
13C CPMAS NMR and theoretical coordination (N3-and  Cu(l) and  Cu(l) with
DFT studies S2-) of two non- Ni(II) L1; square (21
equivalent ligand planar for
molecules for L2 with Ni(Il) with
Cu(I); N3"S4- bridging L1 and L2
way for Ni(II)
IR and 3C CPMAS NMR and square
theoretical DFT studies Nand$ P ] 8]

planar

PC-NMR-CP-MAS, EPR, N for Cu(Il) and N3 and  Cu(II) and distorted

IR and S2 for Ni(II) Ni(IT) tetrahedral [4]

for Cu(Il)
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quantum-chemical (DFT/B3LYP-6- and square
31G planar for
(d,p)) methods Ni(IT)
six-
13C CPMAS NMR and theoretical membered
DFT studies, X-ray O, Cl Al(TI) chelate (5]
rings
tetrahedral
for Cu(Il)
melting point analysis, MP-AES with L1 and
for Cu and Pd, UV-Vis, IR, ATR, 0,5 for L}ll aCndI? ‘for L2 Cu(ll) and  octahedral
'HNMR, “C NMR and Raman, SW lct) Wir}f P)é " Pd(II) for L2;
Solid-state NMR spectroscopy " chelate for [6]
Pd(IT) with
L1 and L2
MP-AES for Cu and Au, ICP-OES
for S, ATR, solution and solid-  N,S for Au(Ill) and O,S  Au(Ill) and chelate
state NMR, and Raman for Cu(ll) Cu(ll) structure

spectroscopy
UV-Vis, IR, ATR, "H NMR, HSQC,

[7]

and Raman, solid-state NMR O, S Au(III) tetrahedral
spectroscopy [8]
IR, FAB-MS, XPS, solid-state NMR dimer,
spectroscopy and theoretical DFT N, S Pt(II) chelate [9]
studies structure
dinuclear
complex,
X-ray O, N Ag() chelate [10]
structure
X-ray, ESR, MALDI mass- Ru(IT) and chelate [11]
P,O,P
spectrometry, NMR spectroscopy Ru(IIT) structure
X-ray and 'H-, 3C-NMR, IR and
UV-Vis spectroscopy and O N Cu(ll), Fe(ll)  chelate [12]
elemental analysis and theoretical ’ and Zn(II)  structure
DFT studies
tetrahedral
t
elemental analysis, FAAS, FT-IR, %ii?\rl?cieri
MS, TG methods and X-ray for C3 N, Cl Zn(II) . [102]
coordinatio
and C4
n
compounds
Tetrahedral
Elemental analysis, NMR and C cl Rh(I) and srrj sa;j [103]
ESI-MS / Ru(Il) q
planar
X-ray and 'H-, ®C-NMR, IR and square [104]
UV-Vis spectroscopy and cd Au(III) d
. planar
elemental analysis
NMR and mass spectroscopy, X- c cl Au(I) and Liner [105]
ray Ag(D)

The structure of ruthenium and rhodium complexes and Cu(Il), Ni(Il), Co(Il), Zn(II), Cd(Il) are

given in Figures 2—4, respectively.


https://doi.org/10.20944/preprints202412.0830.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 December 2024 d0i:10.20944/preprints202412.0830.v1

(O

Yﬂ;]: ;p_Rh_ §I’ | >—Ru~q_

2
Figure 2. The structure of Rh and Ru complexes [103].
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Figure 3. Ru(II) complex as anticancer agents [106].
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Figure 4. Proposed structures of the ligand [H:L] and its metal complexes [107].

X-ray analysis for C3 and C4 have been used to established the structure of metal complexes
with Zn(Il) ) [102]. Molecular structures of two complexes are presented in Figure 5.
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Figure 5. (a,b) Molecular structures of C3 and C4 with displacement ellipsoids of nonhydrogen atoms plotted
with 50% probability (a). A comparison of the coordination entity structures (b) [102].

Strong stereospecific intramolecular H-bonding between an en NH proton oriented away from
the arene and the C60 carbonyl of G is present in the crystal structures of Ru—arene adducts of 9-
ethylguanine (9EtG) and guanosine (Figure 6; average N...O distance 2.8 A”, N-H...O angle 163u).
[108]

Figure 6. Crystal structures of [(n° -DHA)Ru(en)(9EtG)]** (left) and [(n® -THA)Ru(en)(9EtG)]* (right), showing
the arene—purine p-stacking and hydrogen bonding between en NH and G C60 [108].

Molecular structures of Ru and Au complexes are presented in Figures 7-9, respectively.

Figure 7. Molecular model of [(n® -Cym)Ru(acac)(9EtA)]* . The hydrogen bond between acac O and A N6H is
represented by a dashed line. [109].
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Figure 8. ORTEP view of 2 (30% probability). The PF¢ counter anion and the H atoms have been omitted for the
sake of clarity. Key bond lengths (angstroms) and angles (degrees): Au(1)-C(1) =2.008(5), Au(1)—-C(14) =2.018(5),
N(1)-C(1) = 1.373(8), N(2)-C(1) = 1.359(7), C(14)-N(4) = 1.354(7), C(14)-N(5) = 1.351(7), C(1)- Au(1)-C(14) =
176.7(2), N(1)-C(1)-N(2) =104.1(5), and N(4)- C(14)—C(5) =103.5(5). Note that two asymmetric units were present
[104].
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cr2 “ NN, \
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Figure 9. ORTEP view of 3 (30% probability). The H, PFs, and H20 species have been omitted for the sake of
clarity. Pertinent bond lengths (angstroms) and angles (degrees): Au(1)-C(1) = 1.996(6), Au(1)-C(14) = 2.014(5),
Au(1)-Cl(1) = 2.2984(16), Au(1)-Cl(2) = 2.3150(16), N(1)-C(1) = 1.360(7), N(2)-C(1) = 1.363(8), C(14)-N(4) =
1.338(7), C(14)-N(5) = 1.347(7), N(1)-C(1)- N(2) = 105.3(5), N(4)-C(14)-C(5) = 106.2(4), C(1)-Au(1)- C(14) =
89.9(2), C(1)~Au(1)-Cl(1) = 88.08(17), C(14)-Au(1)- Cl(1) = 177.89(15), C(1)-Au(1)-Cl(2) = 177.91(17), C(14)-
Au(1)-Cl(2) =90.22(16), and Cl(1)~Au(1)-Cl(2) = 91.86(7). [104].

3. Some Aspects of the Biological Significance of Coordination Compounds

Recently, Soroceanu et al. presented biomedical application of coordination compounds with
Schiff-base ligands [110]. Raducka et al. provides insight into the structural and biological evaluation
of zinc-based coordination compounds with benzimidazole derivatives [102]. Ndagi et al. evaluated
the anticancer therapy with coordination compounds [111]. Possible biological application of
coordination compounds are given in Figures 10 and 11.
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Figure 10. Biological application of coordination compounds.

Figure 11. Relationship between chemistry and biology.

Schiff-base metal complexes have garnered significant attention in the fields of biological and
inorganic chemistry due to their promising biological activities, particularly in the development of
therapeutic agents for various bacterial infections. Schiff bases, which are derived from the
condensation of primary amines with carbonyl compounds, often serve as effective ligands for
transition metals. These metal complexes mimic biologically relevant species, making them valuable
models for studying enzyme mechanisms and other biological processes. Many Schiff-base metal
complexes demonstrate antimicrobial properties, showing efficacy against a wide range of bacterial
strains, including both Gram-positive and Gram-negative bacteria [102,110,112]. The ability of these
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complexes to interact with biological molecules, such as enzymes and DNA, enhances their
therapeutic potential, particularly for the treatment of bacterial diseases. For instance, Schiff-base
complexes of metals like copper, iron, and zinc have been extensively studied for their antibacterial,
antifungal, and anticancer activities [102,110,112]. The biological relevance of Schiff-base metal
complexes also extends to their use as models for metalloenzymes, which are critical in various
biochemical processes. These complexes can be designed to simulate the active sites of enzymes,
allowing researchers to investigate the mechanisms behind their biological activity and to develop
more targeted therapeutic agents. In summary, Schiff-base metal complexes represent a promising
avenue for the design of new antibiotics and other therapeutic agents due to their biological activity
and ability to mimic biologically significant species.

3.1. Anticancer Properties

Therapeutic Potential in Cancer Treatment:

Transition metal-based compounds, such as platinum-based drugs (e.g., cisplatin), have
demonstrated notable success in cancer therapy due to their ability to:

- Exhibit redox activity.
- Form complexes targeting specific biomolecules.
- Disrupt cellular mechanisms of proliferation.

Emerging research continues to focus on synthesizing new metal-based compounds with
enhanced selectivity, reduced toxicity, and improved efficacy. These include compounds that
modulate cellular mechanisms via novel pathways, offering hope for more effective cancer treatments
(see Figures 12-14).

Figure 12. Biological application of Au(I) complex [104].

Healthy cell

Cancer cell
| 4

Figure 13. Possible mechanism of action of metal complex [113].
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Figure 14. Proposed mechanism of the cytotoxic action of Rh(I) complex [103].

Table 1 summarizes the in vitro cytotoxic effects of various metal-based compounds over a 6-year
period, with a focus on their proposed mechanisms of action and targets.

Table 2. An update on the anticancer activities of metal-based complexes (2010-2016) [111].

Metal Molecular Propo.sed Ta.rget enzymes/c.ell
mechanism of lines/ therapeutic ICso range (UM) Reference
complexes formula . . g .
action indications
Carbene-metal complexes and related ligands
Cs2Has AuzN12P2F1
2
Cs2HausAuaN1P ) 5.2+1.5 (A549)
1
2F12 Ir;d“dioni of TrxR 3.6:41 HCT-116) 1104
pOplosts 3.742.3 (HepG2)
Novel gold(I) o Ab549, HCT116, 4.7+0.8 (MCFE7)
Inhibit f
and gold(IIT) CEONOY HepG2, MCF7  CasHAuCiOFoN
TrxR
NHC complexes 6P
CaoHuAUCHO  Inductionof ~ hemotherapy of - 5.2:3.0 (A549)
FNeD ROS solid tumors 5.9+3.6 (HCT- [104]
o 116) 5.1+3.8
(HepG2) 6.2+1.4
(MCEF?)
0.54-28.4 (A2780)
[Au(Caffeine- DNA 17.1-49
Caffeine-based 2- Inhibition of A2780, A2780R, (A2780/R) 0.75- [113]
gold(I) NHCs yielding):][BFs protein PARP-I SKO3, A549 62.7 (SKO3) 5.9-
1 HK-293T 90.0 (A549) 0.20-
84 (HK-293T)
i A o
.Ester ar}d ' {[Im~]AgCl} Inh1b1‘t10r1 of TrxR ([ImA]AgCl)
amidefunctionali tyrosine by 24.65 (A375) [105]
. . A - :
zed imidazole of {[ImA]AuCl} gold(I) NHC A375, A549, HCT-15 22.14 (A549)

NHC complexes

ligands, and MCF7
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{[ImPl.AgCl} thereby
{[ImPJAuCl} targeting TrxR Human colon
adenocarcinoma
HmACl=[1,3- CuNHC cell

bis (2-ethoxy-
2-oxoethyl)-

cycle arrest  Leukemia and breast

progression in cancer

1Himidazol-3- G phase
ium chloride]
Hms8CI={1,3- Anticancer
bis[2(diethyla activity of Agl
mino)-2-  NHC is based
oxoethyl]-1H-  on highly
imidazol-3- lipophilic

ium chloride} aromaticsubstit
uted carbenes

14

20.32 (HCT-15)
21.14 (MCF7)
{[ImA]AuCl}
44.64 (A375)
42.37 (A549)
41.33 (HCT-15)
38.53 (MCF7?)

{[ImP]2AgCl}
24.46 (A375)
16.23 (A549)
14.11 (HCT-15)
15.31 (MCF?7)

DNA as target
ne-p- Mimic iron . B .
Ni;lgclz:éﬂ) cymene):Ruz( Interact with Caki-1 and MCF7 ;z_z%%(ﬁé};; [114,115]
CL)2]NHC plasmidic DNA '
Chemotherapy of
solid tumor
Inhibition of
TrxR
Inc;‘ease 11T1 ROS TEXR
ormation 84 (HepG2)
DNA d MCF7, HepG2 MDA- 20 (HCF-7)
Caffeine-derived [Rh(I)CI(COD) amage  MB-231, HCT-116, 23 (MDA-MB-
rhodium(I) NHC  (NHC)] Cell cvel LNCaP, Panc-I and 231) 35 (JoPaca-I) [103]
complexes complexes ell cycle arrest JoPaca-I 49 (Panc-I)
D . 80 (LN CaP)
(CCrease M Chemotherapy of 9.0 (HCT-116
mitochondria .
solid tumor85
membrane
potentia
Target DNA
KB3-1, SK-O3, OCAR- 42:;)53 ((I;Ei-)l?)))
NHC-amine e P2~ N dear DNA & Mﬁé%’o‘j‘é?g and 4 84 (OCAR-8) 116]
PH(II) complexes e platination 0.60 (M-4-11)
complexes
Chemotherapy of 400 (A2780)
solid and non-solid 8.5 (A2780/DPP)
tumors
[(iljlijiognio) [(HD)Cu(OA) foreet DA 2.24-6.49
; 4_y iy ynt ) (H:0) H:0C1 Bind to DNA Hen(2 H1epC2) [117]
oxopenta 4sH21N300Cu b b

ylidene]
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benzohydrazide
derivatives

Chemotherapy of
solid tumors

Target DNA

NALM-6, MCF7 and

HT-29

Chemotherapy of
solid and non-solid
tumors

1.8-13 (NALM-6)
2.1-32 (MCF?7)
1.8-32 (HT-29)

Metal-arene complexes and other ligands

DNA
Molybdenum(II) [Mo(allyl)(CO N .
. fragmentation
allyl dicarbonate )2 (N- )
Induction of
complexes N)(py)]PFs .
apoptosis
DNA damage
Ru(Il)-arene [(n®- Cell cycle arrest
arene)Ru(Il)(e
complex n)CI}'
Induction of
apoptosis
Novel
6_p-
ruthenium- C m[efrTl]e)IID{uCI(
arene pyridinyl y ... DNA binding
pyridinylmeth
methylene
ylene)]
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Abbreviations: ICso, half maximal inhibitory concentration; NHC, N-heterocyclic carbene; TrxR,
thioredoxin reductase; ROS, reactive oxygen species; PARP-1,
Poly(ADP-ribose) polymerase-1; CDKI, cyclin-dependent kinase 1; HSA, human serum albumin;
ADP, adenosine diphosphate.

Several metal-based compounds have been synthesized with promising anticancer properties.
Some of these are already used in clinical practice for diagnosis and treatment, while others are still
undergoing clinical trials. Recently, synthesized metal-based compounds are the result of targeted
drug design aimed at achieving specific goals that the original compound could not. These new
compounds display a different spectrum of cytotoxicity. The summary of metal-based compounds
undergoing clinical trials in human [111] are given in Table 3 and evolution of organometallic
complexes in cancer therapy was presented in Figure 15.

Table 3. Summary of metal-based compounds undergoing clinical trials in human [111].

Phase of
Drug name Developers clinical Indications Reference
trial
Treatment of colorectal
cancer in combination
Pi lati 47 Pi Ph I 12
icoplatin (JM473) ionard ase with 5-FU and [129]
leucovorin
PhaseIl =~ Treatment of locally
h .
Lipoplatin™ and phase advanced gastric
(Nanoplatin™, Oncoplatin) Regulon III clinical ~cancer/ squamous cell [129]
P ! P in different carcinoma of head and
cancer cells nec
Phase L, II Advanced ovarian

ProLindac™ (AP5046) Access Pharm ancer68 and head and [129]
neck cancers

Treatment of colorectal

cancer in combination
with 5-FU and

leucovorin, treatment

ad III trials ¢

Spectrum Pharm Phase I, I  of prostate cancer in
and Agennix AG ad Ill trials  combination with
docetaxel and
treatment of a patient
with progressive or
relapse NSCLC68
Metastatic tumor (lung,
NAMIA-A - PhaseI  colorecta, melanoma, [130]
ovaria and pancreatic)
KP1019 ~ Phase II Advanced colorecta [130]
cancer
PET/CT monitoring
therapeutic progress in
64Cu-ATSM - Phase II patient [131]
with cervical

Abbreviations: FU, fluorouracil;, NSCLC, non-small-cell lung cancer; *Cu-ATSM, ®*Cu-diacetyl-bis(N4 -
methylthiosemicarbazone); PET, positron emission tomography; CT, computed tomography.

Satraplatin (JM216) [129]
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Figure 15. Evolution of organometallic complexes in cancer therapy Abbreviation: FDA, US Food and Drug
Administration [111].

The cytotoxic efefct of the newly developed compounds, assessed as potential anticancer agents,
was evaluated against adenocarcinoma (A549), neuroblastoma (SK-N-AS), glioblastoma (T98G) and
lung cell cultures, along with normal human skin fibroblasts (CCD-1059Sk) [102]. The prediction
results for the free ligand L3 and L4 are given in Table 4 and cytotoxic effect of metal complexes are
presented in Table 5.

Table 4. Cancer cell line prediction results for the ligand —Pa (probability “to be active”), Pi (probability “to be
inactive”) [102].

Llian Pa Pi Cell-Line Name Tissue Tumor Type
L3 0.587 0.029 Oligodendroglioma Brain Glioma
L3 0.538 0.010 Colon adenocarcinoma Colon Adenocaarcmom
L3 0.490 0.022 Non-small-cell lung Lung Carcinoma
carcinoma
L3 0.475 0.009 Pancreatic carcinoma Pancreas Carcinoma
L3 0.439 0.043 Pancreatic carcinoma Pancreas Carcinoma

L4 0.559 0.006 Pancreatic carcinoma Pancreas Carcinoma
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. Adenocarcinom
L4 0.554 0.009 Colon adenocarcinoma Colon a
. . . Adenocarcinom
L4 0.415 0.038 Cervical adenocarcinoma Cervix a
L4 0.426 0.099 Oligodendroglioma Brain Glioma

Table 5. Cytotoxic effect of the metal complexes against glioblastoma (T98G), neuroblastoma (SK-N-AS), lung
adenocarcinoma (A549) cell lines and human normal fibroblasts (CCD-1059Sk) determined by MTT assay after
24 h incubation. IC50 + SD (ug/mL) [102].

Complex T98G SK-N-AS A549 CCD-1059-Sk
L1 4125+230 >100 >100 >100
1 32.22+0.92 3559+1.03 3351+129 18.42+0.37
L2
34.98 +1.44 8135+331 43.08+2.17 >100
2
2429 +0.11 3372+039 3444+075 27.27+1.05
L3 >100 >100 >100 >100
<3 46.54 +1.86 4160+193 4134+217 30.84+1.11
L4 >100 >100 >100 >100
4 30.05 + 1.81 36.17+044 3501+086  33.62 +0.85
Etoposide >100 67.83 +2.03 >100 >100

Recently, Nandaniya et al. presented a mini review with biological application of Schiff base
metal complexes [132]. The text explores both the challenges and advancements related to the safety
and efficacy of metal complexes in cancer therapy and the innovative role of nanotechnology in
addressing these issues. Here's a summary of the main points:

Safety Issues with Metal Complexes

1. Toxicity Challenges: Despite their effectiveness, metal-based cancer drugs like cisplatin are
associated with severe side effects, including nephrotoxicity, neurotoxicity, and ototoxicity [133].
These challenges have spurred the development of derivatives such as carboplatin, which, while
promising, still face regulatory hurdles due to adverse effects.

2. Examples of Failed Derivatives: Several platinum-based drugs (e.g., J]M-11, ormaplatin,
zeniplatin, and spiroplatin) failed to gain market approval due to severe or unpredictable toxicities
[129].

3. Gold and Copper Complexes: Gold(IlI) complexes, while studied for anticancer applications,
can cause toxicity, particularly affecting skin and mucous membranes [134]. Elevated copper levels
have been linked to cancer progression, further underscoring safety concerns [135].

4. Strategies to Mitigate Toxicity: Structural modifications of metal complexes aim to improve
their selectivity for cancer cells and reduce adverse effects on healthy tissues.

Nanoparticles in Cancer Therapy

1. Advantages of Nanotechnology: Nanoparticles (NPs) offer targeted drug delivery, improving
therapeutic index and reducing off-target effects [136]. They enhance bioavailability, solubility, and
stability while facilitating sustained release and selective targeting of cancer cells.

2.Metal-Based Nanoparticles: Metal-based NPs (e.g., nickel, gold, silver, iron oxide,
gadolinium) provide significant advantages in drug delivery and diagnosis due to their large surface
area, which can carry higher drug loads.

3. Tumor-Specific Targeting: NPs can be functionalized with peptides, proteins, nucleic acids,
or small molecules to target tumor-specific receptors or biomarkers, ensuring precise delivery [137].
This reduces toxicity in non-cancerous tissues.

4. Imaging and Therapeutic Applications: NP-based platforms are used for advanced optical
imaging and therapeutic delivery. Their multifunctional nature enables combined diagnostic and
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therapeutic applications, paving the way for synergistic effects when combined with multidrug
regimens.

While metal complexes remain a cornerstone of cancer treatment, their clinical use is often
limited by toxicity and side effects. Innovations in nanotechnology provide a promising pathway to
enhance the safety, efficacy, and specificity of metal-based cancer therapies, offering a brighter future
for targeted and less toxic treatments.

3.2. Antimicrobial Activity (Antibacterial and Antifungal)

In recent years, particularly from 2015 onwards, Schiff-base metal complexes have garnered
significant interest due to their noteworthy biological properties. Numerous studies have been
published highlighting their applications in biological sciences [138,139]. Schiff-bases have
demonstrated potential as antibacterial agents, with their metal complexes exhibiting superior
antibacterial activity compared to the free ligands themselves [140-145]. Recent literature
underscores the promising antimicrobial potential of Schiff-base metal complexes and highlights
progress in the study of other intriguing topoisomerase inhibitors [146]. For instance, the Cu(II)-
picolinic acid complex has been shown to act as a significant inhibitor in gel electrophoresis
experiments [147]. Additionally, thiosemicarbazone derivatives of copper(Il) have exhibited strong
antibacterial activity, effectively targeting pathogens such as S. aureus, S. typhimurium, and K
pneumoniae after just six hours of incubation [148]. Literature reviews show that Schiff bases with
antibacterial properties can be synthesized from coordination compounds with different ligands such
as indole [149,150], pyridine [151-153], isatin [154,155], hydrazide [156,157], benzimidazole [158,159],
thiazolidiones [160,161], thiazole [162], thiosemi-carbazone [163,164], lysine/curcumin [165,166], and
siloxane [167]. Further examination of the literature reveals a significant rise in systemic fungal
infections, which can be life-threatening [168]. Numerous studies highlight that Candida species
(both albicans and non-albicans) and Aspergillus species (Asp.) are responsible for causing the most
severe fungal infections [169-173]. Consequently, the development of new antifungal agents with
reduced resistance and increased effectiveness has become a priority [174,175]. Extensive and
meticulous research has been conducted, with several Schiff ligands identified as highly effective
antifungal agents [176,177]. Researchers have also pointed out that specific groups, such as methoxy,
halogen, and naphthyl, enhance the fungicidal activity of these ligands [178,179]. While still
widespread, recent literature strongly emphasizes the promising potential of metal complex-based
antifungal drug development [180,181]. In another study, Schiff base ligands and their mononuclear
chelate complexes, incorporating metals like Cr(Ill), Fe(Ill), Mn(II), Cu(Il), Zn(II), Ni(Il), and Cd(II),
were synthesized from the 4-((1-5-acetyl-2,4-dihydroxyphenyl)ethylidene) amino)-1,5-dimethyl-2-
phenyl-1H-pyrazol-3(2H)-one ligand, a tridentate ligand. These complexes were used for in vitro
tests to assess their antimicrobial activity against both Gram-negative and Gram-positive bacteria, as
well as fungal organisms. In this research, the MOE 2008 software was used for drug screening by
molecular docking at protein sites of the novel coronavirus, and the study included molecular
docking validation through MD simulations [182]. The antimicrobial potential of zinc complexes,
their unbound ligands, and standard drugs was examined against six strains of Gram-positive
bacteria, five Gram-negative bacterial strains, and three yeast strains [102]. The minimum inhibitory
concentrations (MICs) of the tested derivatives were determined against a panel of reference
microorganisms from the American Type Culture Collection (ATCC). The panel included Gram-
negative bacteria such as Escherichia coli (ATCC 25922), Salmonella Typhimurium (ATCC 14028),
Klebsiella pneumoniae (ATCC 13883), Pseudomonas aeruginosa (ATCC 9027), and Proteus mirabilis (ATCC
12453). Gram-positive bacteria tested included Staphylococcus aureus (ATCC 25923), Staphylococcus
epidermidis (ATCC 12228), Micrococcus luteus (ATCC 10240), Enterococcus faecalis (ATCC 29212),
Bacillus subtilis (ATCC 6633), and Bacillus cereus (ATCC 10876). The antifungal activity was assessed
against Candida albicans (ATCC 10231), Candida parapsilosis (ATCC 22019), and Candida glabrata (ATCC
90030). The antibacterial and antifungal efficacy was quantified using the minimum inhibitory
concentration (MIC), expressed in milligrams per liter. The activity of zinc complexes was compared
to the antimicrobial profiles of their corresponding ligands. Vancomycin (Van), ciprofloxacin (Cip),
and nystatin (Nys) were employed as reference standards. The evaluated compounds demonstrated
no activity against Gram-negative bacteria and yeasts. However, against Gram-positive

d0i:10.20944/preprints202412.0830.v1


https://doi.org/10.20944/preprints202412.0830.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 December 2024 d0i:10.20944/preprints202412.0830.v1

21

bacteria, moderate activity was observed, with a slight enhancement in bioactivity for the zinc
complexes [102].

3.2. Antioxidant Activity

There has been considerable interest in discovering compounds with antioxidant properties (see
Figure 16). While natural antioxidants are typically the most costly, researchers have turned to
synthetic antioxidants as a more cost-effective and efficient alternative. As a result, various metal
complexes have been studied for their ability to act as effective scavengers of reactive oxygen species

(ROS), functioning as antioxidants [183].
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Figure 16. Summary of the Mechanism of Action of Metal-Based Drugs [178].

In a study by Devi and colleagues [184], 16 novel Ni(ll), Cu(ll), Co(ll), and Zn(II) metal
complexes were synthesized starting from four Schiff-base ligands. These ligands were created
through a condensation reaction involving 4-(benzyloxy)-2-hydroxybenzaldehyde and various
aminophenol derivatives. The antioxidant properties of these metal(Il) complexes were evaluated in
vitro, and the results revealed that the complexes exhibited notable potential (see Figure 17).
Particularly, the Cu(Il) complexes displayed excellent antioxidant activity, significantly decolorizing
the purple DPPH solution, with an ICso value ranging from 2.98 to 3.89 uM, which was more effective
compared to the free ligands.
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Figure 17. Possible mechanism of action of metal complex [184].
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A range of Schiff-base compounds, derived from diamine, sulfanilamide, hydroxyquinoline,
thiocarbohydrazide, and benzohydrazide, with substituted ketone or aldehyde groups, as well as
their Co(Il), Zn(Il), Cu(Il), Fe(Il), Ni(Il), Pd(Il), Cd(Il), and Ru(Il) metal complexes, have been
examined for their antioxidant potential. Compounds with methyl and nitro groups exhibited
stronger antioxidant activity compared to those with 4-hydroxy groups, leading to an enhancement
in antioxidant performance [185,186].

A study conducted by Inan et al. demonstrated the antioxidant activity of these complexes using
the L-ascorbic acid-standard method (DPPH) [187]. The complexes showed greater activity than the
ligands themselves, likely due to the coordination of the metal ion with the organic ligand.
Specifically, [Cu(Il)-(furfural-MAP):Clz] and [Ni(Il)-(furfural-MAP):Clz] showed significant
antimicrobial activity, while [Zn(II)-(furfural-MAP).Cl:] displayed moderate activity. The variance in
antioxidant activity among the complexes was attributed to differences in their coordination sphere
and redox properties [187]. Kizilkaya et al. explored the antioxidant capabilities of Schiff-bases
synthesized using ABTS radical scavenging and DPPH free radical scavenging methods [188]. The
synthesized compounds demonstrated good antioxidant activity, suggesting their potential as
synthetic antioxidant agents.

3.4. Enzyme-Inhibitory Activities

Che et al. presented the metal complexes in medicine with a focus on enzyme inhibition [189].
Metal complexes containing labile ligands have long been recognized for their ability to undergo
ligand-substitution reactions with biomolecular targets (see Figure 18).

Linear/Flat Organic 3D Metallofragment
Fragment Libraries - Library

e,

fa——2%

Flat/Linear
Inhibitor

Figure 18. Fragment-based drug discovery (FBDD) is a powerful strategy for the identification of new bioactive
molecules [179].

These metal ions interact with nitrogen, sulfur, or selenium atoms in histidine, cysteine, or
selenocysteine residues found in proteins, often resulting in therapeutic effects. Some notable
examples include:

Gold: Auranofin, a gold(I) phosphine complex (illustrated in Figure 19), is an established drug
for managing rheumatoid arthritis. Recent findings indicate that gold from auranofin can transfer to
the selenoprotein thioredoxin glutathione reductase, producing therapeutic effects against parasitic
diseases. Additionally, auranofin demonstrated tumor cell growth inhibition in vitro [190]; however,
its high reactivity with protein thiols limits its antitumor efficacy in vivo [191]. New research
highlights a gold(I) phosphine complex with a naphthalimide ligand as a potent thioredoxin
reductase inhibitor with significant antiproliferative and anti-angiogenic activities [192].
Furthermore, studies on a gold(Ill) dithiocarbamate complex (depicted in Figure 19) identified the
proteasome as its main target [193], showing promise in therapeutic applications.
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Figure 19. Examples of metal-based drugs with enzyme inhibitory effects [189].

Platinum: Selenoenzyme thioredoxin reductase has been identified as a target effectively
inhibited by (2,2":6,2"-terpyridine)platinum(Il) complexes (shown in Figure 19) with ICso values at
the nanomolar level [194]. Recently, research by Lo et al. employed X-ray crystallography and mass
spectrometry to demonstrate that aromatic thiolato platinum(ll)-terpyridine complexes inhibit
human thioredoxin reductase 1 by blocking its C-terminal active-site selenocysteine [195].
Furthermore, a series of platinum(Il)-terpyridine complexes exhibited inhibitory activity against
topoisomerase II (top2). The mechanisms of top2 inhibition are diverse, involving DNA intercalation,
enzyme binding, and modification of enzyme thiol groups. As such, these platinum(Il)-terpyridine
complexes are thought to inhibit topoisomerase II by ligand exchange reactions with the thiol groups
of enzymes [195]. Additionally, a series of platinum(Il) complexes with two or three labile ligands
(PtClz(smp), Figure 19) demonstrated inhibitory effects on matrix metalloproteinase-3 (MMP-3) [196].

Ruthenium: A novel class of glutathione transferase inhibitors (denoted as Ru-EA, shown in
Figure 1) was synthesized by coupling ethacrynic acid (EA), a potent glutathione transferase
inhibitor, with a ruthenium complex [197]. Analysis using mass spectrometry and X-ray
crystallography revealed that the Ru-EA complex initially loses two chloride ligands, followed by
cleavage to release a ruthenium-containing fragment (Figure 19). Overall, metal complexes with labile
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ligands predominantly target proteins featuring selenocysteine or cysteine in their active sites, such
as thioredoxin glutathione reductase, thioredoxin reductase, and glutathione transferase.
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Figure 20. Ruthenium-based enzyme inhibitors [189].
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Figure 21. Ruthenium complex as glutathione transferase inhibitor [197].

A notable limitation of the metal complexes mentioned earlier is their lack of selectivity. These
complexes often interact with human serum albumin or other proteins that have potential metal-
binding sites, such as histidine, cysteine, or selenocysteine. Such interactions make it challenging to
deliver metal complexes to specific biomolecular targets. For instance, while auranofin is known to
inhibit thioredoxin glutathione reductase and suppress tumor cell growth in vitro [190], its strong
reactivity with protein thiols significantly reduces its antitumor efficacy in vivo [191]. To address this,
Berners-Price and Filipovska developed a series of gold(I) complexes engineered to preferentially
target proteins containing selenocysteine while avoiding cysteine, achieved by optimizing ligand
exchange reactions at the gold(I) center [198].
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Figure 22. Gold(I) complex inhibit the activity of thioredoxin reductase (TrxR) but not the closely related and Se-
free enzyme glutathione reductase [198].
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Figure 23. A 3D structure of the TrxR reductase homodimer (PDB entry 2J3N), with two chains in green and
purple. Note: The active site residues CYS 59.B, CYS 64.B, HIS 472.A and GLU 477.A represent the possible
binding site for the gold(Ill) compou Abbreviations: TrxR, thioredoxin reductase; PDB, Protein Data Bank; CYS,
cysteine; HIS, histidine; GLU, glutamate [104].

Additionally, the role of labile ligands or leaving groups in metal complexes has been rigorously
investigated [199]. Efforts are ongoing to enhance the stability of metal complexes under
physiological conditions to discover unique anticancer properties in substitution-inert complexes.

4. Schiff-Base Complexes as Catalysts

Schiff-base complexes with transition metals have become highly sought-after co-catalysts due
to their accessibility and the versatility of metal centers that can be integrated into the N202
coordination sphere [200,201]. Their structure allows for a wide range of substituents, enabling
chemical flexibility and covalent stability, which is crucial when such catalysts are used on supports
[202,203]. Numerous studies have demonstrated that Schiff-base metal complexes possess excellent
catalytic activity, which can enhance product selectivity and yield in various processes [204-206]. The
synthesis methods and thermogravimetric stability of these complexes play a key role in their
performance as metal catalysts.
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Figure 23. Application of metal complexes as catalysts [206].

These complexes, formed from transition metal ions, are effective in both homogeneous and
heterogeneous catalytic processes. Their catalytic activity depends on factors like the type of metal
ion, ligands, and coordination sites. Schiff-bases are particularly useful because they can coordinate
a variety of metals at different oxidation states, enhancing the metal ions' catalytic performance across
various reactions [207]. For example, the catalytic activity of Congo red (CR) in photodecomposition

under natural light was assessed using a Co-complex of CX and EBPy, showing a discoloration
efficiency of nearly 82% after 80 minutes of exposure to sunlight [208].
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Figure 24. Different coordination compounds used in catalysis [207].

Schiff-base complexes with metals like V, Mn, Fe, Co, Ni, Cu, and Zn have also been studied as
catalysts for alkene peroxidation reactions, such as those involving limonene, cyclohexene, and
styrene [209]. These polymer-supported complexes have shown promising catalytic properties when
compared to unsupported catalysts, offering unique advantages in material science and catalysis.

The average particle size of the prepared nanofilms, derived from the organic ligand and its
chromium(IIl) complex, were 94 nm and 98 nm, respectively [210]. Optical properties revealed that
the direct energy gaps of the nanoparticles (L and M) were 2.6 eV and 3.2 eV, respectively. These
results can be attributed to the quantum size effect. X-ray diffraction (XRD) data confirmed the
polycrystalline nanostructures of (L and M), with no other phases detected. The efficiency of the

fabricated inorganic silicon solar cell (M/Si) was found to be higher than that of the organic solar cell
(L/Si).

5. Conclusions
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Coordination compounds have demonstrated unparalleled versatility due to their structural
diversity and range of applications. The synthesis of these compounds has progressed significantly,
incorporating both conventional techniques and innovative approaches to achieve desired properties.
Their structural and spectroscopic investigations reveal insights into their reactivity and stability,
underpinning their functional potential.

Biologically, coordination compounds stand out for their significant roles as antimicrobial
agents, anticancer drugs, and enzyme inhibitors. These properties underscore their potential in
therapeutic development and biomedical applications. Beyond biology, their applications in catalysis
and advanced material science illustrate their broad utility across various fields.

By bridging fundamental inorganic chemistry with applied sciences, coordination compounds
hold promise for addressing some of the most pressing global challenges. The continued exploration
of novel synthetic methods, coupled with detailed biological and structural evaluations, will pave the
way for innovative solutions in healthcare and technology.
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