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Abstract: Coordination compounds, characterized by the coordination of metal ions with ligands, represent a 

pivotal area of research in chemistry due to their diverse structures and versatile applications. This review 

delves into the synthesis, characterization, biological evaluation, and practical applications of these 

compounds. A variety of synthetic methodologies (traditional solution-based techniques) are discussed to 

highlight advancements in the field. Investigations into the structural, electronic, and spectral properties of 

coordination compounds are emphasized to provide insights into their functional attributes. The biological 

evaluation section focuses on their roles in antimicrobial, anticancer, and enzyme-inhibitory activities, 

underscoring their potential in therapeutic development. Аttention is paid to nanoparticles, which are 

increasingly used for the treatment of oncological diseases. The metal complexes have been shown to have 

antibacterial, antifungal, antiviral, antioxidant and antiproliferative properties. Additionally, the review 

explores their applications across domains such as catalysis illustrating their multifaceted utility. By 

synthesizing recent findings and trends, this article aims to bridge the gap between fundamental chemistry 

and applied sciences, paving the way for innovative uses of coordination compounds in both biological and 

industrial contexts. 
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1. Introduction 

Coordination compounds, formed by the interaction of metal ions with surrounding ligands, 

have long been a cornerstone of inorganic chemistry. Their structural diversity, arising from 

variations in metal centers, oxidation states, and ligand types, endows these compounds with unique 

physicochemical properties. These features not only provide a deeper understanding of chemical 

bonding and reactivity but also enable a wide range of applications spanning biological, industrial, 

and environmental fields. The synthesis of coordination compounds has evolved significantly, 

leveraging both conventional and modern techniques to optimize their yield, stability, and 

functionality (see Scheme 1–3). Characterization methods, such as spectroscopic, crystallographic, 

and electrochemical analyses, play a critical role in unraveling their structural intricacies and guiding 

their application.   
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Scheme 1. Synthesis of metal complexes without heating. 

 

Scheme 2. Possible synthesis of complexes upon heating. 
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Scheme 3. Synthesis of solid metal(II), (III), (IV) or other oxidation state coordination compounds. 

To date numerous metal complexes of different organic ligands were synthesized by using 

Scheme 1 [1–12] or Scheme 2 [23–27]. The Figure 1 presents the classification of ligands and metal 

complexes. 

 

Figure 1. Flow diagram presenting the classification of ligands and metal complexes (L=Schiff base). 

One of the most intriguing aspects of coordination compounds is their biological relevance. 

Many of these compounds exhibit promising activities, including antimicrobial, anticancer, and 

enzyme-inhibitory properties, positioning them as candidates for therapeutic development. 

Furthermore, their roles in catalysis, molecular sensing, and environmental remediation underscore 

their significance in addressing global challenges.   

This review provides a comprehensive exploration of the synthesis, investigation, biological 

evaluation, and applications of coordination compounds. By integrating insights from recent studies 

and emerging trends, it aims to illuminate the potential of these compounds to advance science and 

technology. 

Key Characteristics of Transition Metals and Their Complexes: 

1. Charge Variation: Transition metals can exist as positively charged species in aqueous 

solutions, with charges adaptable based on their coordination environment. This enables binding to 

negatively charged biomolecules, which is critical in therapeutic applications [28]. 

2. Structural Diversity: Transition metal complexes can adopt a wide range of coordination 

geometries and bond configurations. This flexibility allows for unique shapes and molecular 

interactions, surpassing conventional carbon-based compounds [28–31]. 
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3. Metal-Ligand Interactions: These interactions form unique complexes with distinct 

thermodynamic and kinetic properties, enhancing ligand exchange reactions and biological 

compatibility [28]. 

4. Lewis Acid Properties: The high electron affinity of transition metals facilitates the 

polarization and hydrolysis of coordinated groups, contributing to their catalytic activities [28,29]. 

5.Partially Filled Shells: The electronic configurations of transition metals impact their magnetic 

and electronic properties, which are crucial for biochemical functions [29]. 

6. Redox Activity: Transition metals readily undergo redox reactions, a vital feature in 

biochemical redox catalysis and drug design [29]. 

2. Methods for characterization of coordination compounds 

Characterization of coordination compounds involves determining their chemical composition, 

structural properties, and electronic behavior to understand their reactivity, functionality, and 

applications. Several analytical and spectroscopic methods are employed to explore these aspects. 

Techniques such as X-ray crystallography [32–43] are central to determining the three-dimensional 

arrangement of atoms, providing precise geometrical details about the coordination sphere. UV-Vis 

spectroscopy [44–74] is used to study the electronic transitions within the metal-ligand complexes, 

offering insights into the ligand field and electronic structure. Infrared (IR) spectroscopy identifies 

functional groups and bond vibrations, highlighting the types of ligands present and their binding 

modes [75–85]. Additionally, NMR spectroscopy (solid state or in solution) [86–101] can probe the 

chemical environment of nuclei within the ligands, especially in diamagnetic complexes. Other 

techniques like elemental analysis, mass spectrometry, and thermogravimetric analysis (TGA) 

provide quantitative data on the composition, stability, and thermal properties. Cyclic voltammetry 

and related electrochemical methods help in understanding redox behavior, while magnetic 

susceptibility measurements reveal information about unpaired electrons and the magnetic 

properties of the metal center. These techniques together provide a comprehensive understanding of 

coordination compounds, supporting their design and application in areas such as catalysis, 

medicine, and materials science. Several spectroscopic methods for investigation of coordination 

compounds are given in Scheme 4. 
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Scheme 4. Investigation of coordination compounds. 

To date numerous metal complexes of spirohydantoins [1–5], thiouracils [6–8] and other 

derivatives [10–12,88,89,93] were synthesized and their composition and structure with various 

metals like copper, nickel, zinc, [1,2,12,102], as well as palladium, platinum and gold was studied [6–

9]. Summary data on the structure of the complexes and the donor atoms involved in the coordination 

are given in Table 1.  

Table 1. Summary data on the structure of the complexes and the donor atoms involved in the coordination. 

technique donor atom metal structure references 
13C CPMAS NMR, IR and FAB-MS 

and theoretical DFT studies 

N3^S4-bridging 

coordination 

Cu(I) and 

Ni(II) 

dimeric 

structures 
[1] 

13C CPMAS NMR and theoretical 

DFT studies 

N3^S2-bridging 

coordination     for L1 

with Cu(I); 

monodentate 

coordination (N3- and 

S2- ) of two non-

equivalent ligand 

molecules for L2 with 

Cu(I); N3^S4- bridging 

way for Ni(II) 

Cu(I) and 

Ni(II) 

dimeric 

 

structure for 

Cu(I) with 

L1; square 

planar for 

Ni(II) with 

L1 and L2 

[2] 

IR and 13C CPMAS NMR and 

theoretical DFT studies 
N and S Pt(II) 

square 

planar 
[3] 

13C-NMR-CP-MAS, EPR, 

IR and 

N for Cu(II) and N3 and 

S2 for Ni(II) 

Cu(II) and 

Ni(II) 

distorted 

tetrahedral 

for Cu(II) 

[4] 
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quantum-chemical (DFT/B3LYP-6-

31G 

(d,p)) methods 

and square 

planar for 

Ni(II) 

13C CPMAS NMR and theoretical 

DFT studies, X-ray 
O, Cl Al(III) 

six-

membered 

chelate 

rings 

[5] 

melting point analysis, MP-AES 

for Cu and Pd, UV-Vis, IR, ATR, 
1H NMR, 13C NMR and Raman, 

Solid-state NMR spectroscopy 

O,S for L1 and S for L2 

with Cu(II); 

N, S, O with Pd(II) 

Cu(II) and 

Pd(II) 

tetrahedral 

for Cu(II) 

with L1 and 

octahedral 

for L2; 

chelate for 

Pd(II) with 

L1 and L2 

 

 

 

[6] 

MP-AES for Cu and Au, ICP-OES 

for S, ATR, solution and solid-

state NMR, and Raman 

spectroscopy 

N,S for Au(III) and O,S 

for Cu(II) 

Au(III) and 

Cu(II) 

chelate 

structure 

 

 

 

[7] 

UV-Vis, IR, ATR, 1H NMR, HSQC, 

and Raman, solid-state NMR 

spectroscopy 

O, S Au(III) tetrahedral 

 

 

[8] 

IR, FAB-MS, XPS, solid-state NMR 

spectroscopy and theoretical DFT 

studies 

N, S Pt(II) 

dimer, 

chelate 

structure 

[9] 

X-ray O, N Ag(I) 

dinuclear 

complex, 

chelate 

structure 

[10] 

X-ray, ESR, MALDI mass-

spectrometry, NMR spectroscopy 
P, O, P 

Ru(II) and 

Ru(III) 

chelate 

structure 

[11] 

 

X-ray and 1H-, 13C-NMR, IR and 

UV-Vis spectroscopy and 

elemental analysis and theoretical 

DFT studies 

O, N 
Cu(II), Fe(II) 

and Zn(II) 

chelate 

structure 
[12] 

elemental analysis, FAAS, FT-IR, 

MS, TG methods and X-ray for C3 

and C4  

N, Cl Zn(II) 

tetrahedral 

geometry, 

dinuclear 

coordinatio

n 

compounds 

[102] 

 Elemental analysis, NMR and 

ESI-MS 
C, Cl 

Rh(I) and 

Ru(II) 

Tetrahedral 

or square 

planar 

[103] 

 

X-ray and 1H-, 13C-NMR, IR and 

UV-Vis spectroscopy and 

elemental analysis 

C, Cl Au(III) 
square 

planar 

[104] 

 

 NMR and mass spectroscopy, X-

ray 
C, Cl 

Au(I) and 

Ag(I) 
Liner  

[105] 

 

The structure of ruthenium and rhodium complexes and Cu(II), Ni(II), Co(II), Zn(II), Cd(II) are 

given in Figures 2–4, respectively. 
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Figure 2. The structure of Rh and Ru complexes [103]. 

 

Figure 3. Ru(II) complex as anticancer agents [106]. 
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Figure 4. Proposed structures of the ligand [H2L] and its metal complexes [107]. 

X-ray analysis for C3 and C4 have been used to established the structure of metal complexes 

with Zn(II) ) [102]. Molecular structures of two complexes are presented in Figure 5.  
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Figure 5.  (a,b) Molecular structures of C3 and C4 with displacement ellipsoids of nonhydrogen atoms plotted 

with 50% probability (a). A comparison of the coordination entity structures (b) [102]. 

Strong stereospecific intramolecular H-bonding between an en NH proton oriented away from 

the arene and the C6O carbonyl of G is present in the crystal structures of Ru–arene adducts of 9-

ethylguanine (9EtG) and guanosine (Figure 6; average N…O distance 2.8 A˚, N–H…O angle 163u). 

[108] 

 

Figure 6. Crystal structures of [(η6 -DHA)Ru(en)(9EtG)]2+ (left) and [(η6 -THA)Ru(en)(9EtG)]2+ (right), showing 

the arene–purine p-stacking and hydrogen bonding between en NH and G C6O [108]. 

Molecular structures of Ru and Au complexes are presented in Figures 7–9, respectively. 

 

Figure 7. Molecular model of [(η6 -Cym)Ru(acac)(9EtA)]+ . The hydrogen bond between acac O and A N6H is 

represented by a dashed line. [109]. 
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Figure 8. ORTEP view of 2 (30% probability). The PF6 counter anion and the H atoms have been omitted for the 

sake of clarity. Key bond lengths (angstroms) and angles (degrees): Au(1)−C(1) = 2.008(5), Au(1)−C(14) = 2.018(5), 

N(1)−C(1) = 1.373(8), N(2)−C(1) = 1.359(7), C(14)−N(4) = 1.354(7), C(14)−N(5) = 1.351(7), C(1)− Au(1)−C(14) = 

176.7(2), N(1)−C(1)−N(2) = 104.1(5), and N(4)− C(14)−C(5) = 103.5(5). Note that two asymmetric units were present 

[104]. 

 

Figure 9. ORTEP view of 3 (30% probability). The H, PF6, and H2O species have been omitted for the sake of 

clarity. Pertinent bond lengths (angstroms) and angles (degrees): Au(1)−C(1) = 1.996(6), Au(1)−C(14) = 2.014(5), 

Au(1)−Cl(1) = 2.2984(16), Au(1)−Cl(2) = 2.3150(16), N(1)−C(1) = 1.360(7), N(2)−C(1) = 1.363(8), C(14)−N(4) = 

1.338(7), C(14)−N(5) = 1.347(7), N(1)−C(1)− N(2) = 105.3(5), N(4)−C(14)−C(5) = 106.2(4), C(1)−Au(1)− C(14) = 

89.9(2), C(1)−Au(1)−Cl(1) = 88.08(17), C(14)−Au(1)− Cl(1) = 177.89(15), C(1)−Au(1)−Cl(2) = 177.91(17), C(14)− 

Au(1)−Cl(2) = 90.22(16), and Cl(1)−Au(1)−Cl(2) = 91.86(7). [104]. 

3. Some Aspects of the Biological Significance of Coordination Compounds 

Recently, Soroceanu et al. presented biomedical application of coordination compounds with 

Schiff-base ligands [110]. Raducka et al. provides insight into the structural and biological evaluation 

of zinc-based coordination compounds with benzimidazole derivatives [102]. Ndagi et al. evaluated 

the anticancer therapy with coordination compounds [111]. Possible biological application of 

coordination compounds are given in Figures 10 and 11. 
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Figure 10. Biological application of coordination compounds. 

 

Figure 11. Relationship between chemistry and biology. 

Schiff-base metal complexes have garnered significant attention in the fields of biological and 

inorganic chemistry due to their promising biological activities, particularly in the development of 

therapeutic agents for various bacterial infections. Schiff bases, which are derived from the 

condensation of primary amines with carbonyl compounds, often serve as effective ligands for 

transition metals. These metal complexes mimic biologically relevant species, making them valuable 

models for studying enzyme mechanisms and other biological processes. Many Schiff-base metal 

complexes demonstrate antimicrobial properties, showing efficacy against a wide range of bacterial 

strains, including both Gram-positive and Gram-negative bacteria [102,110,112]. The ability of these 
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complexes to interact with biological molecules, such as enzymes and DNA, enhances their 

therapeutic potential, particularly for the treatment of bacterial diseases. For instance, Schiff-base 

complexes of metals like copper, iron, and zinc have been extensively studied for their antibacterial, 

antifungal, and anticancer activities [102,110,112]. The biological relevance of Schiff-base metal 

complexes also extends to their use as models for metalloenzymes, which are critical in various 

biochemical processes. These complexes can be designed to simulate the active sites of enzymes, 

allowing researchers to investigate the mechanisms behind their biological activity and to develop 

more targeted therapeutic agents. In summary, Schiff-base metal complexes represent a promising 

avenue for the design of new antibiotics and other therapeutic agents due to their biological activity 

and ability to mimic biologically significant species. 

3.1. Anticancer Properties  

Therapeutic Potential in Cancer Treatment: 

Transition metal-based compounds, such as platinum-based drugs (e.g., cisplatin), have 

demonstrated notable success in cancer therapy due to their ability to: 

- Exhibit redox activity. 

- Form complexes targeting specific biomolecules. 

- Disrupt cellular mechanisms of proliferation. 

Emerging research continues to focus on synthesizing new metal-based compounds with 

enhanced selectivity, reduced toxicity, and improved efficacy. These include compounds that 

modulate cellular mechanisms via novel pathways, offering hope for more effective cancer treatments 

(see Figures 12–14). 

 

Figure 12. Biological application of Au(I) complex [104]. 

 

Figure 13. Possible mechanism of action of metal complex [113]. 
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Figure 14. Proposed mechanism of the cytotoxic action of Rh(I) complex [103]. 

Table 1 summarizes the in vitro cytotoxic effects of various metal-based compounds over a 6-year 

period, with a focus on their proposed mechanisms of action and targets. 

Table 2. An update on the anticancer activities of metal-based complexes (2010–2016) [111]. 

Metal  

complexes 

Molecular 

formula 

Proposed 

mechanism of 

action 

Target enzymes/cell 

lines/ therapeutic 

indications 

IC50 range (μM) Reference 

Carbene–metal complexes and related ligands 

Novel gold(I) 

and gold(III) 

NHC complexes 

C52H44Au2N12P

2F12 
Induction of 

apoptosis 

 

Inhibition of 

TrxR 

 

Induction of 

ROS 

TrxR 

 

A549, HCT116, 

HepG2, MCF7 

 

Chemotherapy of 

solid tumors 

C52H44Au2N12P2F1

2 

5.2±1.5 (A549) 

3.6±4.1 HCT-116) 

3.7±2.3 (HepG2) 

4.7±0.8 (MCF7) 

[104] 

C26H24AuCl2O

F6N6P 

C26H24AuCl2OF6N

6P 

5.2±3.0 (A549) 

5.9±3.6 (HCT-

116) 5.1±3.8 

(HepG2) 6.2±1.4 

(MCF7) 

[104] 

 

Caffeine-based 

gold(I) NHCs 

[Au(Caffeine-

2-

yielding)2][BF4 

] 

Inhibition of 

protein PARP-I 

DNA  

A2780, A2780R, 

SKO3, A549 

HK-293T 

0.54–28.4 (A2780) 

17.1–49 

(A2780/R) 0.75–

62.7 (SKO3) 5.9–

90.0 (A549) 0.20–

84 (HK-293T) 

[113] 

 

Ester- and 

amidefunctionali

zed imidazole of 

NHC complexes 

{[ImA]AgCl}  

 

{[ImA]AuCl} 

 

Inhibition of 

tyrosine by 

gold(I) NHC 

ligands, 

TrxR 

 

A375, A549, HCT-15 

and MCF7 

{[ImA]AgCl}  

24.65 (A375) 

22.14 (A549) 

[105] 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 December 2024 doi:10.20944/preprints202412.0830.v1

https://doi.org/10.20944/preprints202412.0830.v1


 14 

 

{[ImB]2AgCl}  

{[ImB]AuCl} 

 

HmACl = [1,3-

bis (2-ethoxy-

2-oxoethyl)-

1Himidazol-3-

ium chloride] 

 HmBCl={1,3-

bis[2(diethyla

mino)-2-

oxoethyl]-1H-

imidazol-3-

ium chloride} 

thereby 

targeting TrxR  

 

CuNHC cell 

cycle arrest 

progression in 

G phase 

 

Anticancer 

activity of Ag1 

NHC is based 

on highly 

lipophilic 

aromaticsubstit

uted carbenes 
 

 

Human colon 

adenocarcinoma 

 

Leukemia and breast 

cancer 

20.32 (HCT-15) 

21.14 (MCF7) 

{[ImA]AuCl} 

44.64 (A375) 

42.37 (A549) 

41.33 (HCT-15) 

38.53 (MCF7) 

 

{[ImB]2AgCl}  

24.46 (A375) 

16.23 (A549) 

14.11 (HCT-15) 

15.31 (MCF7) 

 

Novel Ru(II) 

NHCs83 

η6-p-

cymene)2Ru2(

Cl2)2]NHC 

Mimic iron 

Interact with 

plasmidic DNA 

DNA as target  

 

Caki-1 and MCF7  

 

Chemotherapy of 

solid tumor 

13–500 (Caki-1) 

2.4–500 (MCF7) 
[114,115] 

 

Caffeine-derived 

rhodium(I) NHC 

complexes 

[Rh(I)Cl(COD)

(NHC)] 

complexes 

Inhibition of 

TrxR 

Increase in ROS 

formation 

 

DNA damage 

 

Cell cycle arrest 

 

Decrease in 

mitochondria 

membrane 

potentia 
 

TrXR 

 

MCF7, HepG2 MDA-

MB-231, HCT-116, 

LNCaP, Panc-I and 

JoPaca-I 

 

Chemotherapy of 

solid tumor85 

84 (HepG2)  

20 (HCF-7)  

23 (MDA-MB-

231) 35 (JoPaca-I)  

49 (Panc-I)  

80 (LNCaP)  

9.0 (HCT-116 

[103] 

 

NHC–amine 

Pt(II) complexes 

NHC (PtX2)–

amine 

complexes 

Nuclear DNA 

platination 

Target DNA 

 

KB3-1, SK-O3, OCAR-

8, M-4-11, A2780 and 

A2780/ DPP  

 

Chemotherapy of 

solid and non-solid 

tumors 

2.5 (KB3-1)  

4.33 (SK-O3)  

1.84 (OCAR-8)  

0.60 (M-4-11)  

4.00 (A2780)  

8.5 (A2780/DPP) 

[116] 

 

2-Hydroxy-3-

[(hydroxyimino)

-4- oxopentan-2-

ylidene] 

[(HL)Cu(OAc)

(H2O)2]⋅H2OC1

4H21N3O9Cu 

Bind to DNA 

Target DNA 

 

HepG2  

 

2.24–6.49 

(HepG2) 
[117] 
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benzohydrazide 

derivatives 

Chemotherapy of 

solid tumors 

 

Molybdenum(II) 

allyl dicarbonate 

complexes 

[Mo(allyl)(CO

)2 (N-

N)(py)]PF6 

DNA 

fragmentation 

Induction of 

apoptosis 

Target DNA 

 

NALM-6, MCF7 and 

HT-29  

 

Chemotherapy of 

solid and non-solid 

tumors 

1.8–13 (NALM-6) 

2.1–32 (MCF7) 

1.8–32 (HT-29) 

[118] 

 

Metal-arene complexes and other ligands 

Ru(II)–arene 

complex 

[(η6-

arene)Ru(II)(e

n)Cl]+ 

DNA damage 

 

Cell cycle arrest 

 

Induction of 

apoptosis 

Target DNA  

 

AH54 and AH63  

 

Chemotherapy of 

colorectal cancer 

C15H18ClF6N2PRu 

16.6 (AH54) 

 

C16H2OClF6N2PR

u 10.9 (AH63) 

[119] 

 

Novel 

ruthenium– 

arene pyridinyl 

methylene 

complexes 

[(η6-p-

cymene)RuCl(

pyridinylmeth

ylene)] 

DNA binding 

Target DNA 

 

MCF7 and HeLa  

 

Chemotherapy of 

solid tumor 

07.76–25.42 

(MCF7) 07.10–

29.22 (HeLa) 

[120] 

 

Multi-targeted 

organometallic 

Ru(II)–arene 

[(η6-p-

cymene)RuCl2

]2-PARP and 

PARP-I 

inhibitors 

DNA binding 

 

PARP-I 

inhibition 

 

Transcription 

inhibition 

Target DNA 

 

A549, A2780, HCT-

116, HCC1937 and 

MRC-5  

 

Chemotherapy of 

solid tumors 

85.1–500 (A549) 

38.8–500 (A2780) 

46.0–500 (HCT-

116) 93.3–500 

HCC1937) 143–

500 (MRC-5) 

[121] 

      

Ru(II)–arene 

complexes with 

2-aryldiazole 

ligands 

[(η6-

arene)RuX(k2 -

N,N-L)]Y 

DNA binding 

 

Inhibition of 

CDK1 

Target DNA 

 

A2780, A2780cis, 

MCF7 and MRC-5  

 

Chemotherapy of 

solid tumors 

11–300 (A2780) 

11–34 (A2780cis) 

26–300 (MCF7) 

25–224 (MRC-5) 

[122] 

 

Osmiun(II)–

arene 

carbohydrate 

base anticancer 

compound 

Osmium(II)-

bis 

[dichloride(η6-

p-cymene)] 

DNA binding 

Target DNA 

 

CH1, S480 and A549 

50–746 (CHI) 

215–640 (S480)  

640 (A549) 

[123] 
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Ru(II)–arene 

complexes with 

carbosilane 

metallodendrim

ers 

Gn-

[NH2Ru(η6-p-

cymene)Cl2]m 

Interaction 

with DNA 

 

Interaction 

with HSA94  

 

Inhibition of 

cathepsin B 

Target DNA 

 

HeLa, MCF7, HT-29 

MDAMB-231 and 

HK-239T  

 

Chemotherapy of 

solid and non-solid 

tumors 

6.3–89 (HeLa) 

2.5–56.0 (MCF7) 

3.3–41.7 (HT-29) 

4–74 (MDA-MB-

231) 5.0–51.9 

(HK-239T) 

[106] 

 

Ru(II) complexes 

with 

aroylhydrazone 

ligand 

[Ru(η6-

C6H6)Cl(L)] 

Induction of 

apoptosis 

 

Fragmentation 

of DNA 

Target DNA 

 

MCF7, HeLa, NH-3T3  

 

Chemotherapy of 

solid tumor 

10.9–15.8 

(MCF7)95 34.3–

48.7 (HeLa) 

152.6–192 (NH-

3T3) 

[124] 

 

Cyclopentadienyl complexes and other ligands 

Iridium(III) 

complexes with 

2-

phenylpyridine 

ligand 

[(η5-Cp*)r(2-

(R′-phenyl)-

Rpyridine)Cl] 

Interaction 

with DNA 

nucleobases 

 

Catalysis of 

NADH 

oxidation 

Target DNA 

 

A2780, HCT-116, 

MCF7 and A549  

 

Chemotherapy of 

solid tumor 

1.18–60 (A2780) 

3.7–57.3 (HCT-

116) 4.8–28.6 

(MCF7) 2.1–56.67 

(A549) 

[125] 

 

New iron(II) 

cyclopentadienyl 

derivative 

complexes 

[Fe(η5-

C5H5)(dppe)L]

[X] 

Interaction 

with DNA 

 

Induction of 

apoptosis 

Target DNA  

 

HL-60  

 

Chemotherapy of 

non-solid tumors 

0.67–5.89 (HL-60) [126] 

 

Ru(II) 

cyclopentadienyl 

complexes with 

carbohydrate 

ligand 

[Ru(η5-

C5H5)(PP)(L)][

X] 

Induction of 

apoptosis 

 

Activation of 

caspase-3 and -

7 activity 

HCT116CC, HeLa 

 

Chemotherapy of 

solid tumors 

0.45 (HCT116CC) 

3.58 (HeLa) 
[127] 

 

Ru(II) 

cyclopentadienyl 

complexes with 

phosphane co-

ligand 

[Ru(η5-

C5H5)(PP)(L)][

X] 

Induction of 

apoptosis 

HeLa  

 

Chemotherapy of 

solid tumo 

2.63 (HeLa) [128] 

 

Organoiridium 

cyclopentadienyl 

complexes 

[(η5-

Cpx)r(L^L′)Z] 

Intercalation of 

DNA 

 

Coordination 

with DNA 

guanine 

HeLa  

 

Chemotherapy of 

solid tumor 

0.23 (HeLa) [129] 
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Abbreviations: IC50, half maximal inhibitory concentration; NHC, N-heterocyclic carbene; TrxR, 

thioredoxin reductase; ROS, reactive oxygen species; PARP-1, 

Poly(ADP-ribose) polymerase-1; CDK1, cyclin-dependent kinase 1; HSA, human serum albumin; 

ADP, adenosine diphosphate. 

Several metal-based compounds have been synthesized with promising anticancer properties. 

Some of these are already used in clinical practice for diagnosis and treatment, while others are still 

undergoing clinical trials. Recently, synthesized metal-based compounds are the result of targeted 

drug design aimed at achieving specific goals that the original compound could not. These new 

compounds display a different spectrum of cytotoxicity. The summary of metal-based compounds 

undergoing clinical trials in human [111] are given in Table 3 and evolution of organometallic 

complexes in cancer therapy was presented in Figure 15. 

Table 3. Summary of metal-based compounds undergoing clinical trials in human [111]. 

Drug name  Developers  

Phase of 

clinical 

trial  

Indications Reference 

Picoplatin (JM473)  Pionard Phase I 

Treatment of colorectal 

cancer in combination 

with 5-FU and 

leucovorin 

[129] 

Lipoplatin™ 

(Nanoplatin™, Oncoplatin) 
Regulon 

Phase II 

and phase 

III clinical 

in different 

cancer cells 

Treatment of locally 

advanced gastric 

cancer/ squamous cell 

carcinoma of head and 

nec 

[129] 

ProLindac™ (AP5046) Access Pharm 
Phase I, II 

ad III trials 

Advanced ovarian 

cancer68 and head and 

neck cancers 

[129] 

Satraplatin (JM216) 
Spectrum Pharm 

and Agennix AG 

Phase I, II 

ad III trials 

Treatment of colorectal 

cancer in combination 

with 5-FU and 

leucovorin, treatment 

of prostate cancer in 

combination with 

docetaxel and 

treatment of a patient 

with progressive or 

relapse NSCLC68 

[129] 

NAMIA-A – Phase I 

Metastatic tumor (lung, 

colorecta, melanoma, 

ovaria and pancreatic) 

[130] 

KP1019   – Phase II 
Advanced colorecta 

cancer 
[130] 

 

64Cu-ATSM 

 

– 

 

Phase II 

PET/CT monitoring 

therapeutic progress in 

patient 

with cervica1 

 

[131] 

Abbreviations: FU, fluorouracil; NSCLC, non-small-cell lung cancer; 64Cu-ATSM, 64Cu-diacetyl-bis(N4 -

methylthiosemicarbazone); PET, positron emission tomography; CT, computed tomography. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 December 2024 doi:10.20944/preprints202412.0830.v1

https://doi.org/10.20944/preprints202412.0830.v1


 18 

 

 

Figure 15. Evolution of organometallic complexes in cancer therapy Abbreviation: FDA, US Food and Drug 

Administration [111]. 

The cytotoxic efefct of the newly developed compounds, assessed as potential anticancer agents, 

was evaluated against adenocarcinoma (A549), neuroblastoma (SK-N-AS), glioblastoma (T98G) and 

lung cell cultures, along with normal human skin fibroblasts (CCD-1059Sk) [102]. The prediction 

results for the free ligand L3 and L4 are given in Table 4 and cytotoxic effect of metal complexes are 

presented in Table 5. 

Table 4. Cancer cell line prediction results for the ligand—Pa (probability “to be active”), Pi (probability “to be 

inactive”) [102]. 

Ligan

d 
Pa Pi Cell-Line Name Tissue Tumor Type 

L3  0.587  0.029  Oligodendroglioma  Brain  Glioma  

L3  0.538  0.010  Colon adenocarcinoma  Colon   
Adenocarcinom

a 

L3  0.490  0.022  
Non-small-cell lung 

carcinoma 
Lung  Carcinoma 

L3  0.475  0.009  Pancreatic carcinoma  Pancreas  Carcinoma 

L3  0.439  0.043  Pancreatic carcinoma  Pancreas  Carcinoma 

L4  0.559  0.006  Pancreatic carcinoma  Pancreas  Carcinoma 
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L4  0.554  0.009  Colon adenocarcinoma  Colon  
Adenocarcinom

a 

L4  0.415  0.038  Cervical adenocarcinoma  Cervix  
Adenocarcinom

a 

L4  0.426  0.099  Oligodendroglioma  Brain  Glioma 

Table 5. Cytotoxic effect of the metal complexes against glioblastoma (T98G), neuroblastoma (SK-N-AS), lung 

adenocarcinoma (A549) cell lines and human normal fibroblasts (CCD-1059Sk) determined by MTT assay after 

24 h incubation. IC50 ± SD (µg/mL) [102]. 

Complex  T98G  SK-N-AS  A549  CCD-1059-Sk 

L1  41.25 ± 2.30 >100 >100 >100 

C1  

 
32.22 ± 0.92 35.59 ± 1.03 33.51 ± 1.29 18.42 ± 0.37 

L2  

 
34.98 ± 1.44 81.35 ± 3.31 43.08 ± 2.17 >100 

C2  

 
24.29 ± 0.11 33.72 ± 0.39 34.44 ± 0.75 27.27 ± 1.05 

L3 >100 >100 >100 >100 

C3  

 
46.54 ± 1.86 41.60 ± 1.93 41.34 ± 2.17 30.84 ± 1.11 

L4 >100 >100 >100 >100 

C4   

 
30.05 ± 1.81 36.17 ± 0.44 35.01 ± 0.86 33.62 ±0.85 

Etoposide   

 
>100 67.83 ± 2.03 >100  >100 

Recently, Nandaniya et al. presented a mini review with biological application of Schiff base 

metal complexes [132]. The text explores both the challenges and advancements related to the safety 

and efficacy of metal complexes in cancer therapy and the innovative role of nanotechnology in 

addressing these issues. Here's a summary of the main points: 

Safety Issues with Metal Complexes 

1. Toxicity Challenges: Despite their effectiveness, metal-based cancer drugs like cisplatin are 

associated with severe side effects, including nephrotoxicity, neurotoxicity, and ototoxicity [133]. 

These challenges have spurred the development of derivatives such as carboplatin, which, while 

promising, still face regulatory hurdles due to adverse effects. 

2. Examples of Failed Derivatives: Several platinum-based drugs (e.g., JM-11, ormaplatin, 

zeniplatin, and spiroplatin) failed to gain market approval due to severe or unpredictable toxicities 

[129]. 

3. Gold and Copper Complexes: Gold(III) complexes, while studied for anticancer applications, 

can cause toxicity, particularly affecting skin and mucous membranes [134]. Elevated copper levels 

have been linked to cancer progression, further underscoring safety concerns [135]. 

4. Strategies to Mitigate Toxicity: Structural modifications of metal complexes aim to improve 

their selectivity for cancer cells and reduce adverse effects on healthy tissues. 

Nanoparticles in Cancer Therapy 

1. Advantages of Nanotechnology: Nanoparticles (NPs) offer targeted drug delivery, improving 

therapeutic index and reducing off-target effects [136]. They enhance bioavailability, solubility, and 

stability while facilitating sustained release and selective targeting of cancer cells. 

2.Metal-Based Nanoparticles: Metal-based NPs (e.g., nickel, gold, silver, iron oxide, 

gadolinium) provide significant advantages in drug delivery and diagnosis due to their large surface 

area, which can carry higher drug loads. 

3. Tumor-Specific Targeting:  NPs can be functionalized with peptides, proteins, nucleic acids, 

or small molecules to target tumor-specific receptors or biomarkers, ensuring precise delivery [137]. 

This reduces toxicity in non-cancerous tissues. 

4. Imaging and Therapeutic Applications: NP-based platforms are used for advanced optical 

imaging and therapeutic delivery. Their multifunctional nature enables combined diagnostic and 
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therapeutic applications, paving the way for synergistic effects when combined with multidrug 

regimens. 

While metal complexes remain a cornerstone of cancer treatment, their clinical use is often 

limited by toxicity and side effects. Innovations in nanotechnology provide a promising pathway to 

enhance the safety, efficacy, and specificity of metal-based cancer therapies, offering a brighter future 

for targeted and less toxic treatments. 

3.2. Antimicrobial Activity (Antibacterial and Antifungal)  

In recent years, particularly from 2015 onwards, Schiff-base metal complexes have garnered 

significant interest due to their noteworthy biological properties. Numerous studies have been 

published highlighting their applications in biological sciences [138,139]. Schiff-bases have 

demonstrated potential as antibacterial agents, with their metal complexes exhibiting superior 

antibacterial activity compared to the free ligands themselves [140–145]. Recent literature 

underscores the promising antimicrobial potential of Schiff-base metal complexes and highlights 

progress in the study of other intriguing topoisomerase inhibitors [146]. For instance, the Cu(II)-

picolinic acid complex has been shown to act as a significant inhibitor in gel electrophoresis 

experiments [147]. Additionally, thiosemicarbazone derivatives of copper(II) have exhibited strong 

antibacterial activity, effectively targeting pathogens such as S. aureus, S. typhimurium, and K. 

pneumoniae after just six hours of incubation [148]. Literature reviews show that Schiff bases with 

antibacterial properties can be synthesized from coordination compounds with different ligands such 

as indole [149,150], pyridine [151–153], isatin [154,155], hydrazide [156,157], benzimidazole [158,159], 

thiazolidiones [160,161], thiazole [162], thiosemi-carbazone [163,164], lysine/curcumin [165,166], and 

siloxane [167]. Further examination of the literature reveals a significant rise in systemic fungal 

infections, which can be life-threatening [168]. Numerous studies highlight that Candida species 

(both albicans and non-albicans) and Aspergillus species (Asp.) are responsible for causing the most 

severe fungal infections [169–173]. Consequently, the development of new antifungal agents with 

reduced resistance and increased effectiveness has become a priority [174,175]. Extensive and 

meticulous research has been conducted, with several Schiff ligands identified as highly effective 

antifungal agents [176,177]. Researchers have also pointed out that specific groups, such as methoxy, 

halogen, and naphthyl, enhance the fungicidal activity of these ligands [178,179]. While still 

widespread, recent literature strongly emphasizes the promising potential of metal complex-based 

antifungal drug development [180,181]. In another study, Schiff base ligands and their mononuclear 

chelate complexes, incorporating metals like Cr(III), Fe(III), Mn(II), Cu(II), Zn(II), Ni(II), and Cd(II), 

were synthesized from the 4-((1-5-acetyl-2,4-dihydroxyphenyl)ethylidene) amino)-1,5-dimethyl-2-

phenyl-1H-pyrazol-3(2H)-one ligand, a tridentate ligand. These complexes were used for in vitro 

tests to assess their antimicrobial activity against both Gram-negative and Gram-positive bacteria, as 

well as fungal organisms. In this research, the MOE 2008 software was used for drug screening by 

molecular docking at protein sites of the novel coronavirus, and the study included molecular 

docking validation through MD simulations [182]. The antimicrobial potential of zinc complexes, 

their unbound ligands, and standard drugs was examined against six strains of Gram-positive 

bacteria, five Gram-negative bacterial strains, and three yeast strains [102]. The minimum inhibitory 

concentrations (MICs) of the tested derivatives were determined against a panel of reference 

microorganisms from the American Type Culture Collection (ATCC). The panel included Gram-

negative bacteria such as Escherichia coli (ATCC 25922), Salmonella Typhimurium (ATCC 14028), 

Klebsiella pneumoniae (ATCC 13883), Pseudomonas aeruginosa (ATCC 9027), and Proteus mirabilis (ATCC 

12453). Gram-positive bacteria tested included Staphylococcus aureus (ATCC 25923), Staphylococcus 

epidermidis (ATCC 12228), Micrococcus luteus (ATCC 10240), Enterococcus faecalis (ATCC 29212), 

Bacillus subtilis (ATCC 6633), and Bacillus cereus (ATCC 10876). The antifungal activity was assessed 

against Candida albicans (ATCC 10231), Candida parapsilosis (ATCC 22019), and Candida glabrata (ATCC 

90030). The antibacterial and antifungal efficacy was quantified using the minimum inhibitory 

concentration (MIC), expressed in milligrams per liter. The activity of zinc complexes was compared 

to the antimicrobial profiles of their corresponding ligands. Vancomycin (Van), ciprofloxacin (Cip), 

and nystatin (Nys) were employed as reference standards. The evaluated compounds demonstrated 

no activity against Gram-negative bacteria and yeasts. However, against Gram-positive 
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bacteria, moderate activity was observed, with a slight enhancement in bioactivity for the zinc 

complexes [102]. 

3.2. Antioxidant Activity 

There has been considerable interest in discovering compounds with antioxidant properties (see 

Figure 16). While natural antioxidants are typically the most costly, researchers have turned to 

synthetic antioxidants as a more cost-effective and efficient alternative. As a result, various metal 

complexes have been studied for their ability to act as effective scavengers of reactive oxygen species 

(ROS), functioning as antioxidants [183]. 

 

Figure 16. Summary of the Mechanism of Action of Metal-Based Drugs [178]. 

In a study by Devi and colleagues [184], 16 novel Ni(II), Cu(II), Co(II), and Zn(II) metal 

complexes were synthesized starting from four Schiff-base ligands. These ligands were created 

through a condensation reaction involving 4-(benzyloxy)-2-hydroxybenzaldehyde and various 

aminophenol derivatives. The antioxidant properties of these metal(II) complexes were evaluated in 

vitro, and the results revealed that the complexes exhibited notable potential (see Figure 17). 

Particularly, the Cu(II) complexes displayed excellent antioxidant activity, significantly decolorizing 

the purple DPPH solution, with an IC50 value ranging from 2.98 to 3.89 µM, which was more effective 

compared to the free ligands. 

 

Figure 17. Possible mechanism of action of metal complex [184]. 
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A range of Schiff-base compounds, derived from diamine, sulfanilamide, hydroxyquinoline, 

thiocarbohydrazide, and benzohydrazide, with substituted ketone or aldehyde groups, as well as 

their Co(II), Zn(II), Cu(II), Fe(II), Ni(II), Pd(II), Cd(II), and Ru(II) metal complexes, have been 

examined for their antioxidant potential. Compounds with methyl and nitro groups exhibited 

stronger antioxidant activity compared to those with 4-hydroxy groups, leading to an enhancement 

in antioxidant performance [185,186]. 

A study conducted by Inan et al. demonstrated the antioxidant activity of these complexes using 

the L-ascorbic acid-standard method (DPPH) [187]. The complexes showed greater activity than the 

ligands themselves, likely due to the coordination of the metal ion with the organic ligand. 

Specifically, [Cu(II)-(furfural-MAP)2Cl2] and [Ni(II)-(furfural-MAP)2Cl2] showed significant 

antimicrobial activity, while [Zn(II)-(furfural-MAP)2Cl2] displayed moderate activity. The variance in 

antioxidant activity among the complexes was attributed to differences in their coordination sphere 

and redox properties [187]. Kizilkaya et al. explored the antioxidant capabilities of Schiff-bases 

synthesized using ABTS radical scavenging and DPPH free radical scavenging methods [188]. The 

synthesized compounds demonstrated good antioxidant activity, suggesting their potential as 

synthetic antioxidant agents. 

3.4. Enzyme-Inhibitory Activities 

Che et al. presented the metal complexes in medicine with a focus on enzyme inhibition [189]. 

Metal complexes containing labile ligands have long been recognized for their ability to undergo 

ligand-substitution reactions with biomolecular targets (see Figure 18).  

 

Figure 18. Fragment-based drug discovery (FBDD) is a powerful strategy for the identification of new bioactive 

molecules [179]. 

These metal ions interact with nitrogen, sulfur, or selenium atoms in histidine, cysteine, or 

selenocysteine residues found in proteins, often resulting in therapeutic effects. Some notable 

examples include: 

Gold: Auranofin, a gold(I) phosphine complex (illustrated in Figure 19), is an established drug 

for managing rheumatoid arthritis. Recent findings indicate that gold from auranofin can transfer to 

the selenoprotein thioredoxin glutathione reductase, producing therapeutic effects against parasitic 

diseases. Additionally, auranofin demonstrated tumor cell growth inhibition in vitro [190]; however, 

its high reactivity with protein thiols limits its antitumor efficacy in vivo [191]. New research 

highlights a gold(I) phosphine complex with a naphthalimide ligand as a potent thioredoxin 

reductase inhibitor with significant antiproliferative and anti-angiogenic activities [192]. 

Furthermore, studies on a gold(III) dithiocarbamate complex (depicted in Figure 19) identified the 

proteasome as its main target [193], showing promise in therapeutic applications. 
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Figure 19. Examples of metal-based drugs with enzyme inhibitory effects [189]. 

Platinum: Selenoenzyme thioredoxin reductase has been identified as a target effectively 

inhibited by (2,2′:6′,2′′-terpyridine)platinum(II) complexes (shown in Figure 19) with IC50 values at 

the nanomolar level [194]. Recently, research by Lo et al. employed X-ray crystallography and mass 

spectrometry to demonstrate that aromatic thiolato platinum(II)-terpyridine complexes inhibit 

human thioredoxin reductase 1 by blocking its C-terminal active-site selenocysteine [195]. 

Furthermore, a series of platinum(II)-terpyridine complexes exhibited inhibitory activity against 

topoisomerase II (top2). The mechanisms of top2 inhibition are diverse, involving DNA intercalation, 

enzyme binding, and modification of enzyme thiol groups. As such, these platinum(II)-terpyridine 

complexes are thought to inhibit topoisomerase II by ligand exchange reactions with the thiol groups 

of enzymes [195]. Additionally, a series of platinum(II) complexes with two or three labile ligands 

(PtCl2(smp), Figure 19) demonstrated inhibitory effects on matrix metalloproteinase-3 (MMP-3) [196].  

Ruthenium: A novel class of glutathione transferase inhibitors (denoted as Ru–EA, shown in 

Figure 1) was synthesized by coupling ethacrynic acid (EA), a potent glutathione transferase 

inhibitor, with a ruthenium complex [197]. Analysis using mass spectrometry and X-ray 

crystallography revealed that the Ru–EA complex initially loses two chloride ligands, followed by 

cleavage to release a ruthenium-containing fragment (Figure 19). Overall, metal complexes with labile 
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ligands predominantly target proteins featuring selenocysteine or cysteine in their active sites, such 

as thioredoxin glutathione reductase, thioredoxin reductase, and glutathione transferase. 

 

Figure 20. Ruthenium-based enzyme inhibitors [189]. 

 

Figure 21. Ruthenium complex as glutathione transferase inhibitor [197]. 

A notable limitation of the metal complexes mentioned earlier is their lack of selectivity. These 

complexes often interact with human serum albumin or other proteins that have potential metal-

binding sites, such as histidine, cysteine, or selenocysteine. Such interactions make it challenging to 

deliver metal complexes to specific biomolecular targets. For instance, while auranofin is known to 

inhibit thioredoxin glutathione reductase and suppress tumor cell growth in vitro [190], its strong 

reactivity with protein thiols significantly reduces its antitumor efficacy in vivo [191]. To address this, 

Berners-Price and Filipovska developed a series of gold(I) complexes engineered to preferentially 

target proteins containing selenocysteine while avoiding cysteine, achieved by optimizing ligand 

exchange reactions at the gold(I) center [198].  

 

Figure 22. Gold(I) complex inhibit the activity of thioredoxin reductase (TrxR) but not the closely related and Se-

free enzyme glutathione reductase [198]. 
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Figure 23. A 3D structure of the TrxR reductase homodimer (PDB entry 2J3N), with two chains in green and 

purple. Note: The active site residues CYS 59.B, CYS 64.B, HIS 472.A and GLU 477.A represent the possible 

binding site for the gold(III) compou Abbreviations: TrxR, thioredoxin reductase; PDB, Protein Data Bank; CYS, 

cysteine; HIS, histidine; GLU, glutamate [104]. 

Additionally, the role of labile ligands or leaving groups in metal complexes has been rigorously 

investigated [199]. Efforts are ongoing to enhance the stability of metal complexes under 

physiological conditions to discover unique anticancer properties in substitution-inert complexes. 

4. Schiff-Base Complexes as Catalysts 

Schiff-base complexes with transition metals have become highly sought-after co-catalysts due 

to their accessibility and the versatility of metal centers that can be integrated into the N2O2 

coordination sphere [200,201]. Their structure allows for a wide range of substituents, enabling 

chemical flexibility and covalent stability, which is crucial when such catalysts are used on supports 

[202,203]. Numerous studies have demonstrated that Schiff-base metal complexes possess excellent 

catalytic activity, which can enhance product selectivity and yield in various processes [204–206]. The 

synthesis methods and thermogravimetric stability of these complexes play a key role in their 

performance as metal catalysts. 
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Figure 23. Application of metal complexes as catalysts [206]. 

These complexes, formed from transition metal ions, are effective in both homogeneous and 

heterogeneous catalytic processes. Their catalytic activity depends on factors like the type of metal 

ion, ligands, and coordination sites. Schiff-bases are particularly useful because they can coordinate 

a variety of metals at different oxidation states, enhancing the metal ions' catalytic performance across 

various reactions [207]. For example, the catalytic activity of Congo red (CR) in photodecomposition 

under natural light was assessed using a Co-complex of CX and EBPy, showing a discoloration 

efficiency of nearly 82% after 80 minutes of exposure to sunlight [208]. 

 

Figure 24. Different coordination compounds used in catalysis [207]. 

Schiff-base complexes with metals like V, Mn, Fe, Co, Ni, Cu, and Zn have also been studied as 

catalysts for alkene peroxidation reactions, such as those involving limonene, cyclohexene, and 

styrene [209]. These polymer-supported complexes have shown promising catalytic properties when 

compared to unsupported catalysts, offering unique advantages in material science and catalysis.  

The average particle size of the prepared nanofilms, derived from the organic ligand  and its 

chromium(III) complex, were 94 nm and 98 nm, respectively [210]. Optical properties revealed that 

the direct energy gaps of the nanoparticles (L and M) were 2.6 eV and 3.2 eV, respectively. These 

results can be attributed to the quantum size effect. X-ray diffraction (XRD) data confirmed the 

polycrystalline nanostructures of (L and M), with no other phases detected. The efficiency of the 

fabricated inorganic silicon solar cell (M/Si) was found to be higher than that of the organic solar cell 

(L/Si). 

5. Conclusions 
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Coordination compounds have demonstrated unparalleled versatility due to their structural 

diversity and range of applications. The synthesis of these compounds has progressed significantly, 

incorporating both conventional techniques and innovative approaches to achieve desired properties. 

Their structural and spectroscopic investigations reveal insights into their reactivity and stability, 

underpinning their functional potential. 

Biologically, coordination compounds stand out for their significant roles as antimicrobial 

agents, anticancer drugs, and enzyme inhibitors. These properties underscore their potential in 

therapeutic development and biomedical applications. Beyond biology, their applications in catalysis 

and advanced material science illustrate their broad utility across various fields. 

By bridging fundamental inorganic chemistry with applied sciences, coordination compounds 

hold promise for addressing some of the most pressing global challenges. The continued exploration 

of novel synthetic methods, coupled with detailed biological and structural evaluations, will pave the 

way for innovative solutions in healthcare and technology. 
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