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L B O N S

Abstract: Unified Modeling Language (UML) diagrams are essential tools for visualizing system
structure and behavior in software design. With the rise of using Large Language Models (LLMs) in
automating various phases of software development, there is growing interest in automating UML
diagrams generation. To that end, this study presents an empirical investigation into the effectiveness of
LLMs, GPT-4-turbo, in generating structural (Class, Deployment) and behavioral (Use Case, Sequence)
UML diagrams. A rule-based prompt engineering was developed to transform domain scenarios,
extracted from a widely used UML textbook, into optimized prompts fed to LLMs. Then, UML
diagrams were automatically synthesized using PlantUML, and evaluated through a survey of 121
computer science and software engineering students across three U.S. universities. Participants
assessed completeness and correctness for both of LLM-assisted and Human-created diagrams by
checking various elements for each single UML diagram. Statistical analyses, including paired t-tests,
Wilcoxon signed-rank tests, and Pearson correlation, were conducted to validate the results. Findings
revealed that LLM-assisted diagrams achieve completeness and correctness scores of 65%, 61.1% for
Class diagram, 65.9%, 64.3% for Deployment diagram, 67.1%, 64.2% for Use Case diagram, and 67.7%,
66.2% for Sequence diagram. Whereas, the completeness and correctness for human-created diagrams
reported as (79.8%, 76.3%), (70%, 73%), (80.7%, 80.4%), and (73.2%, 72.6%) for Class, Deployment,
Use Case, and Sequence diagrams accordingly. Obviously, Class and Use Case diagrams show less
similarity comparing to human-created models, while Deployment and Sequence diagrams show
stronger alignment.

Keywords: UML; LLMs; completeness; correctness; validation; rules

1. Introduction

The rapid advancement of LLMs has effectively influenced various domains, including software
engineering [1]. LLMs have been effectively utilized in code generation [2] [3], software architec-
ture [4], and software testing [5]. UML [6] has been widely used to help in modeling with a set of
graphical notations to capture structural and behavioral aspects of software systems. Therefore, it is
an essential to explore how LLMs aid to accomplish that. Recent developments in Natural Language
Processing (NLP) have facilitated the integration of LLMs [7] such as GPT-3.5, GPT-4, into UML
diagram generation, enabling the conversion of natural language descriptions into UML models. From
a modeling perspective, UML includes both syntactic and semantic dimensions [8,9]. The syntax
defines the structure and rules of UML elements [10], while semantics explains the intended behavior
and meaning, such as how generalization implies inheritance, or how messages in sequence diagrams
represent method calls or signal exchanges.

Advancements in prompt engineering have further amplified the effectiveness of LLMs for
software-related tasks. For instance, the research [11] introduced the concept of promptware en-
gineering, an approach for integrating LLMs into various phases of the SDLC. Additional studies
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have highlighted how combining fine-tuning and optimized prompting can improve automation in
code generation [12], support safety-critical software development [13], and generate test cases using
intelligent prompt-guided frameworks [14].

Several studies [15,16] have explored the ability of LLMs to generate UML diagrams. Despite
their remarkable ability to convert textual descriptions into UML code, LLMs still struggle with
misunderstandings of all required system’s elements and constraints. To address these challenges,
research studies [17] [18] have dedicated to focus on tuning models with domain scenarios, integrating
validation techniques, and refining prompt engineering approaches to improve UML diagramming
accuracy. Also, the studies [19-21] have focused on improving the accuracy of LLM-assisted UML
diagrams through fine-tuning techniques. This involves adapting pre-trained LLMs to specific tasks
or domains, optimizing performance in understanding, and translating software description into
UML representations. Moreover, researchers [22-26] have explored the integration of domain-specific
knowledge and constraints into the LLM training process, further refining the generated UML diagrams
to meet industry standards and project requirements. There are promising capabilities of LLMs [27,28]
in automating software design. However, in the academic context, incomplete or incorrect modeling
outputs can mislead learners and result in a misunderstanding of the essential parts of UML modeling.
Despite these advancements, the completeness and correctness of LLM-assisted UML diagrams remain
an area that needs further investigation in software engineering education [29,30].

This study introduces an empirical evaluation for the effectiveness of LLM-assisted UML gen-
eration; it integrates scenario-based prompt engineering with cross-diagram evaluation. Specifically,
it conducted a survey with 121 computer science and software engineering students from three U.S.
institutions—Saint Cloud State University, Southern Illinois University Carbondale, and the University
of Wisconsin-Green Bay. The goal is to capture the evaluation from the students centric perspectives.
The survey includes set of investigated elements for completeness and correctness to compare LLM-
assisted UML diagrams (Class, Deployment, Use Case, and Sequence) with human-created ones. The
study addresses the following research questions:

*  RQ1: To what extent do an LLM-assisted class diagram match a human-created diagram in terms
of completeness and correctness?

e RQ2: To what extent do an LLM-assisted deployment diagram match a human-created diagram in
terms of completeness and correctness?

e RQ3: To what extent do an LLM-assisted use case diagram match a human-created diagram in
terms of completeness and correctness?

e RQ4: To what extent do an LLM-assisted sequence diagram match a human-created diagram in
terms of completeness and correctness?

2. Related Work

LLMs have significantly influenced software modeling, particularly in automating the generation
of UML diagrams. Recent studies [15-17,29-31] have addressed a variety of approaches where LLMs
such as GPT-3.5, GPT-4, Gemini, are applied for converting natural language descriptions or user
stories into UML models, extracting UML from textual or visual inputs, and assessing modeling quality
through experimental or prompt engineering. These studies are summarized in Table 1.
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Table 1. Related studies.
Study UML Diagram Purpose
[31] Class Class diagrams generated from images
[30] Class, Use Case, Sequence Stgdents—generated diagrams from re-
quirements
[15] Sequence Generate sequence diagram from SRS
[29] Class Fully automated domain modeling
Understand capabilities of ChatGPT in
[16] Class .
modeling
[17] Use Case Co-prompt engineering approach

This study Class, Deployment, Use Case, Sequence  Students-centric evaluation survey

From the perspective of UML structural diagrams, the study [31] explored the usage of GPT-4V,
Gemini to generate a UML Class model from given images of hand-drawn UML diagrams. Their study
compared GPT-4, Gemini Pro, and Gemini Ultra. Based on their findings, GPT-4 provided the best
results. The research conducted by [29] aimed to provide class diagrams from the NL descriptions
using GPT-3.5 and GPT-4. Also, the study [29] evaluated fully automated domain modeling using, GPT-
3.5/GPT-4, by exploring three types of shots, zero-shot (no examples), N-shot (1-2 labeled examples),
and chain-of-thought (CoT) (step-by-step rationale). Results showed that GPT-4 with 1-shot prompting
performed best for classes and relationships, while 2-shot improved attribute generation. Zero-shot
had lowest recall values (missing elements), and CoT was ineffective for domain modeling. Their
findings reveal that LLMs struggled with relationships and modeling. Another research study by [16]
purposed to explore the current capabilities of ChatGPT in performing modeling tasks and help
software designers identify the syntactic and semantic gaps of UML. Nevertheless, these studies
captured only the Class diagram.

In terms of UML behavioral diagrams, the study [15] applied a qualitative approach by investi-
gating how ChatGPT would assist in producing sequence diagrams from 28 Software Requirements
Specifications (SRS) in various problem domains. In addition, the research work [17] proposed a
co-prompt engineering approach, ECHO, that helped software engineers efficiently use ChatGPT as
an essential LLM to improve the quality of generated Use Case diagrams. Nevertheless, these studies
are limited to Sequence or Use Case diagrams.

Considering the exploration of both structural and behavioral UML diagrams, the study [30]
designed an experiment by involving 45 undergraduate students enrolled in a required modeling
course. The findings showed how GPT-3.5, GPT-4 would significantly assist the students in producing
three UML models: class diagram, use case diagram, and sequence diagram. This study addressed
only correctness evaluation, and it involved students’ feedback from a single University.

This study attempts to capture both completeness and correctness evaluation for structural
(Class and Deployment) and behavioral (Use Case and Sequence) UML diagrams. The proposed
approach uses a survey which is designed to compare LLM-assisted UML diagrams with human-
created diagrams based on students perspectives, across three different U.S. Universities. The proposed
approach employs zero-shot prompts with explicit UML constraints and algorithmic validation, which
essentially aims to test the ability of GPT-4-turbo in assisting the visualization of the investigated
diagrams.

3. Materials and Methods

This section outlines the proposed methodology, it presents a rule-based prompt engineering
framework used to generate UML diagrams from problem domain scenarios, details the validation
algorithms applied to ensure quality of prompts, and explains the empirical data collection process.

Our approach is structured as a pipeline design to evaluate the effectiveness of GPT-4-turbo, in
generating complete and correct UML diagrams given natural language scenarios, as illustrated in
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Figure 1. We selected GPT-4-turbo because it is designed to handle longer natural language text (i.e.
problem domain scenarios), compared to GPT 3.5 and GPT 4.

Select modeling scenario from-UML Textbook | 4>| Copy UML Code to PlantUML tool |
| Extract Human-created UML diagrams as references | | Generate LLM-assisted UML diagrams |

/;\ _ v

| Combine Human-created & LLM-assisted diagrams |

Identlfy Type of UML d1agm.r11 ¢
\l\ /l/ ‘ Design Survey-based evaluation ‘
T— ¢

Class Deployment Use Case Sequence
Diagram Diagram Diagram Diagram | Collect results from students |

Fstablish elements for Completeness & Correciness | Apply statistical yses |

v v v v

p” N .

Evaluate y
Create LLM-compatible prompts for each diagram performance for | performance for |
Completeness

v v v v
| LLMs generate UML code for each diagram Ii

Figure 1. The proposed methodology.

3.1. Generate UML Diagrams Using GPT-4-Turbo and PlantUML

The iCoot Car Rental system has been chosen to represent a real-world system, which it’s sce-
narios (i.e., natural language) have been taken from one of the most popular object-oriented design
textbooks [28], as described in Appendix A.

To generate a UML diagram from scenarios is a complex process that we formulated into a series of
prompts for LLMs. We started with rule-based prompt engineering, where natural language scenarios
were converted into prompts. The developed prompting strategy guides LLMs through identifying
relevant elements and gathering them into a diagram description (i.e., UML code). The elements
extraction was implemented to detect all relevant components, such as classes, actors, relationships,
multiplicity, nodes, software artifacts, use cases, objects, message types, etc. To develop structured
prompts that direct LLMs in creating UML diagrams from plain-language requirements, we formalize
this work using a set of connected algorithms, including extraction, mapping, constraint enforcement,
optimization, and validation.

3.2. Prompt Engineering Rules

We begin with a high-level overview of the pipeline through Algorithm 1. It describes scenario
requirements and target diagram type to UML model elements for diagrams to be identified in the
domain as software analysts. This procedure encapsulates the transformation from unstructured text to
a well-formed UML diagram prompt, which orchestrates the entire pipeline and ensures that the final
prompt is both structurally complete and semantically valid before it is used for UML generation. Let
SR denote the NLP description of a software system, T € {Class, UseCase, Sequence, Deployment }
be the target UML diagram type, and P be the resulting prompt structure.
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Algorithm 1 Generate UML Prompt

Require: System requirements SR, diagram type T, complexity level L
Ensure: Structured prompt P
1: Initialize empty sets: C (elements), R (relationships), K (constraints)
: C + EXTRACTELEMENTS(SR)
: R <~ MAPRELATIONSHIPS(C)
K < DEFINECONSTRAINTS(C, R)
: if complexity level L is specified then
C < OPTIMIZEELEMENTS(C, L)
R + OPTIMIZERELATIONSHIPS(R, L)
end if
: P < COMPOSEPROMPT(T,C, R, K)
. if prompt passes completeness and correctness validation then
return P
: else
return “Invalid Prompt: Failed Validation”
: end if

I gy S
A O N = O

Algorithm 1 generates valid and complete UML diagram as described in formal prompt engineer-
ing models, which converts unstructured NL scenarios into structured prompts suitable for LLM usage.
It defines a set of sequential computational steps that extract modeling elements, identify relationships,
enforce constraints and validate prompt quality. Each step, as described in the following subsections,
ensures that the final prompts are aligned with UML syntactic rules and domain semantics before
creating UML diagrams.

Elements Extraction. The first step involves identifying the core entities and actions from the re-
quirement specification, which can identify all relevant entities, actors, nodes, and functional elements,
etc. from the scenarios. These become the foundational elements for modeling UML diagrams. This
ensures that all relevant objects and functionalities mentioned in the textual description are captured
and formalized as potential diagram elements as shown in Algorithm 2.

Algorithm 2 Extract Elements

1: function EXTRACTELEMENTS(SR)

2: & + Identify all domain entities (e.g., classes, actors, nodes)
3: A < Identify actions or behaviors (e.g., methods, use cases)
4: return £ U A

5: end function

Relationship Mapping. Once elements are identified, we map the interactions or dependencies
among them to define structural or behavioral relationships, such as associations, generalizations,
message flows, or deployment links, depending on the diagram type. These relationship types vary
based on the type of diagram, either behavioral or structural, as shown in Algorithm 3.

Algorithm 3 Map Relationships

1: function MAPRELATIONSHIPS(C)

2 Initialize empty relationship set R

3 for all component pairs (c;,¢;) € C do

4 if a logical or functional interaction exists between c; and ¢; then
5: Add directional relationship ¢; — ¢j to R

6 end if

7 end for

8 return R

9: end function
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Constraint Definition. Each element and relationship are then annotated with UML-specific
constraints, such as multiplicity, types, role, attributes, aggregation, composition, inheritance rules,
association, extends, includes, deploys, manifest, artifact mapping, and messages sequences and types.
These constraints ensure that generated prompts yield diagrams that adhere to valid UML syntax and
semantics, reducing ambiguity as shown in Algorithm 4.

Algorithm 4 Define Constraints

1: function DEFINECONSTRAINTS(C, R)

2 Initialize K «+ @

3 forallc € C do

4 forall» € R do

5; Add constraints for attributes and methods to
6

7

8

Add constraints for relationships and multiplicity to K
end for
end for
9: return K
10: end function

3.3. Validation Functions

To prevent the generation of incomplete or incorrect UML prompts, we proposed two scoring
functions that evaluate prompt quality based on completeness and constraint satisfaction. Algo-
rithms 5 and 6 describe the essential validation functions for completeness and correctness, respectively.
They provide the empirical basis for rejecting poorly designed prompts and ensure the reliability of
the generated UML diagrams according to the previously defined rules described in Algorithm 2,
Algorithm 3, and Algorithm 4.

Completeness Validation: It checks whether the prompts include all required elements expected
from the scenarios; it computes a completeness ratio (CR) and rejects prompts below a predefined
threshold 6;.

Algorithm 5 Validate Completeness

function VALIDATECOMPLETENESS(P)
Nrequired <~ Count the number of expected UML elements
Nincluded < Count elements covered by P

1:
2
3
4 CR ¢ Nnduded 5 100
5
6:

N .
required
return True if CR > 64, else False
end function

CR measures how fully a generated diagram covers the required UML elements extracted during
prompt formulation. It is calculated as the proportion of implemented elements as classes, actors,
relationships, etc. to the total expected elements for a given diagram type. Mathematically, CR is
defined as in Equation 1.

CR = |ImplementedElements|
~ |RequiredElements|

x 100 % 1)

Where, the ImplementedElements represents the number of required UML components correctly
generated, and the RequiredElements forms the total number of UML components expected according
to the prompt.

Correctness Validation: It checks each constraint in the prompt. If any constraint is violated—such
as incorrect attribute types or mismatched relationships—the prompt is rejected.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Algorithm 6 Validate Correctness

1: function VALIDATECORRECTNESS(P)
2 for all x € P.Constraints do

3 if P violates x then

4; return False

5: end if

6 end for

7 return True

8: end function

The Constraint Satisfaction Score (CS) measures adherence to UML syntactic and semantic
rules embedded within the prompt, such as multiplicity constraints, relationship types, for example,
aggregation vs. composition, and behavioral accuracy, such as message sequencing in Sequence
diagrams. It is calculated as indicated in Equation 2. Furthermore, a prompt is deemed acceptable if
both scores exceed defined thresholds: ¢; and 6,, which were empirically set to 0.5 in our evaluation.

|SatisfiedConstraints|
CS = :
| TotalConstraints|

% 100 % )

Where the SatisfiedConstraints show the number of rules that the prompt required and the LLM
respected correctly in the diagram as all correct relationships, multiplicities, Actor-use connections,
Sequence message types, etc. While the TotalConstraints represent the total number of all required rules
that the prompt expected the LLM to satisfy. All the calculations for the validation functions (CR and
CS), for both human-created and LLMs-assisted UML diagrams, have been explained in the Appendix
section A.

3.4. Generating UML-Assisted Diagrams

After applying the prompt development strategy, this study constructed textual prompts for all
UML diagrams using scenario descriptions from the textbook. These prompts were processed using
GPT-4 turbo, which then generated the corresponding UML code for each diagram. The generated
code was copied into the PlantUML tool ! to visualize the diagrams, alongside human-created UML
diagrams that were extracted from the same textbook to ensure consistency with the associated
scenarios. The LLM-assisted diagrams were then extracted and included in our survey. All details
regarding the prompt descriptions are provided in Appendix A.

3.5. Data Collection

The methodology adopts an empirical evaluation through a survey that collected responses from
about 121 computer science and software engineering students across three different public universities.
The survey includes 8 diagrams, four diagrams for LLM-assisted and four for Human-created diagrams.
The survey captures (6, 6), (4, 4), (5, 4), and (4, 4) elements of (Completeness, Correctness) for Class,
Deployment, Use Case, and Sequence diagrams respectively. The same identical questions have been
given for each single LLM-assisted and human-created diagrams, and each question captures a single
investigated element. To collect and analyze the responses, we used Qualtrics 2. Figure 2 displays the
number of participating students from all universities. In total, there are 80 undergraduate students
and 41 graduate students across all universities. The majority of undergraduate students are Juniors
and Seniors. In terms of their UML modeling skills, the majority of participants have taken software
engineering courses such as, Introduction to Software Engineering, Software Design, and Software
Analysis.

1
2

https:/ /plantuml.com/
https:/ /www.qualtrics.com/
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Figure 2. Number of participating students across universities.

4. Results

This section presents the empirical findings derived from the student evaluation of LLM-assisted
and human-created UML diagrams. It includes descriptive and inferential statistical analyses that
compare performance across diagram types, highlighting differences in completeness and correctness.

4.1. Statistical Analysis

To enable more robust statistical analysis, we mapped the categorical survey responses-assigning
0 for incomplete and incorrect elements and 1 for complete and correct elements. We then calculated
the average score for each element to obtain a value between 0 and 1 that reflected the completeness or
correctness score for the element being measured. As shown in Table 2, the completeness scores of
LLM-assisted UML diagrams consistently fall short of those of their human-created counterparts across
all four diagram types. This gap is most evident in the Class and Use Case diagrams. The human-
created class diagram achieved a mean (X) score of 0.7988 (¢ = 0.0322), while the LLM-assisted version
scored notably lower at 0.6502 (¢ = 0.0457). Similarly, the human-created use case diagram recorded
the highest mean completeness score at 0.8072 (¢ = 0.0087), whereas the LLM-assisted counterpart
attained a mean of 0.6712 (¢ = 0.0300).

Table 2. Summary statistics for completeness scores across UML diagrams.

Sample Size

UML Diagram Source Mean (¥) Std. Dev. (¢c) Min Max

(N)
Class Human 6 0.7988 0.0322 0.7568 (0.8288
LLM 6 0.6502 0.0457 0.5721 0.6982
Deployment Human 4 0.7005 0.0372 0.6577  0.7432
LLM 4 0.6486 0.0362 0.6171  0.6937
Use Case Human 5 0.8072 0.0087 0.7928 0.8153
LLM 5 0.6712 0.0300 0.6351 0.7117
Sequerice Human 4 0.7320 0.0358 0.6847 0.7703
LLM 4 0.6768 0.0174 0.6532  0.6937

4.1.1. Descriptive Statistics

In the remaining two diagram types—Deployment and Sequence—LLM-assisted diagrams came
somewhat closer to human performance but still underperformed. For the deployment diagram, the
human-created diagram had a mean score of 0.7005 (¢ = 0.0372), compared to 0.6486 (¢ = 0.0362) for
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the LLM-assisted diagram. The sequence diagram had the narrowest margin between the two sources,
with human-created diagrams averaging 0.7320 (¢ = 0.0358) and LLM-assisted ones achieving 0.6768
(0 =0.0174).

While the gaps in mean scores ranged from roughly 5 to 15 percentage points, LLM-assisted
diagrams also exhibited greater variability in three of the four diagram types. Specifically, the class
diagram generated by LLMs had a wide score range, from 0.5721 to 0.6982, indicating inconsistent
levels of completeness. In contrast, human-created diagrams not only scored higher but also showed
tighter clustering of scores, particularly in the use case diagram, where scores ranged narrowly between
0.7928 and 0.8153.

As shown in Table 3, LLM-assisted UML diagrams also trail behind human-created diagrams in
terms of correctness scores in the four types of diagram. This disparity is most apparent in the Class
and Use Case diagrams. The human-created class diagram received a mean (¥) score of 0.7635 (o =
0.0220), while the LLM-assisted version scored lower at 0.6111 (o = 0.0854). Similarly, the use case
diagram produced by human participants achieved the highest correctness mean at 0.8041 (¢ = 0.0222),
in contrast to the LLM-assisted counterpart, which had a mean score of 0.6419 (¢ = 0.0298).

Table 3. Summary statistics for correctness scores across UML diagrams

Sample Size

UML Diagram Source Mean (¥) Std. Dev. (¢) Min Max

(N)
Class Human 6 0.7635 0.0220 0.7342  0.7928
LLM 6 0.6111 0.0854 0.4865 0.6847
Deployment Human 4 0.7309 0.0174 0.7207  0.7568
LLM 4 0.6430 0.0279 0.6126  0.6802
Use case Human 4 0.8041 0.0222 0.7793  0.8288
LLM 4 0.6419 0.0298 0.6036 0.6757
Sequerice Human 4 0.7264 0.0245 0.6937 0.7523
LLM 4 0.6622 0.0337 0.6261 0.7072

In the Deployment and Sequence diagrams, the performance gap narrowed slightly but still
favored the human-created diagrams. For the deployment diagram, human-created versions attained a
mean correctness score of 0.7309 (o = 0.0174), whereas LLM-assisted diagrams scored a mean of 0.6430
(0 =0.0279). The sequence diagram showed the smallest difference, with human-created diagrams
averaging 0.7264 (o = 0.0245) and LLM-assisted ones scoring 0.6622 (¢ = 0.0337).

LLM-assisted diagrams also exhibited greater inconsistency in correctness scores-similar to what
was observed in the completeness scores-particularly in the class diagram category, where scores
ranged from 0.4865 to 0.6847, a considerably wider spread than the human-created range of 0.7342 to
0.7928. Human-created diagrams also consistently showed tighter clustering, with smaller standard
deviations and more stable minimum and maximum values. For example, the correctness scores
for human-generated deployment diagrams ranged narrowly from 0.7207 to 0.7568, while the LLM
equivalents varied more broadly from 0.6126 to 0.6802.

4.1.2. Inferential Statistics

To assess how differently participants evaluated LLM-assisted diagrams compared to human-
created ones, we conducted both paired t-tests and Wilcoxon signed-rank tests. These tests compared
human and LLM scores given by the same group of participants for each UML diagram type. Although
our survey collected 121 individual responses, the aggregated scores were calculated for each element
(e.g., Methods, Notations, Classes, Inheritance, etc.). Since the number of elements per diagram was
relatively small (N = 4-6), we combined the correctness and completeness scores to increase power
and perform an overall comparison between human-created and LLM-assisted diagrams. The resulting
sample sizes still remained modest (N = 8-12), limiting the reliability of the t-test alone due to the
assumption of normality. To address this, we include a supplementary test-the Wilcoxon signed-rank
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test. It is a nonparametric alternative that does not assume normality and is therefore more robust for
small samples or when the normality assumption may be violated.

Tables 4 and 5 show the results of these tests. We also include the standardized effect sizes (Cohen’s
d) to assess the size of the difference between the human and LLM completeness and correctness scores.
The larger the value, the greater the difference between their standardized means.

Table 4. Paired t-test results across UML diagram types.

Sample Size Degrees of

UML Diagram (N) Freedom (df) t-statistic (t) p-value Cohen’s d
Class 12 11 10.2576 < 0.001 29617
Deployment 8 7 8.5979 < 0.001 3.0393
Use Case 9 8 14.0198 < 0.001 4.6764
Sequence 8 7 6.3026 < 0.001 2.1703

Table 5. Wilcoxon signed-rank test results across UML diagram types.
UML Diagram Sample Size (N) Wilcoxon T-statistic (W) p-value
Class 12 0.0000 < 0.001
Deployment 8 0.0000 0.0078
Use Case 9 0.0000 0.0039
Sequence 8 0.0000 0.0078

Across the four types of UML diagrams, LLM-assisted diagrams received significantly lower
scores than their human-created counterparts. The most pronounced difference appeared in the Use
Case diagram. The average completeness and correctness scores for the LLM-assisted version was
considerably lower, with a very large effect size (d = 4.68) and a Wilcoxon test result of W = 0.0000
(p = 0.0039), meaning that almost every participant rated the LLM version lower than the human one.

A similar pattern was found in the Class diagram, where LLM-assisted UML output received
lower average scores and had higher variability. The paired t-test indicated a strong effect (d = 2.96,
p < 0.001), while the Wilcoxon test again yielded W = 0.0000 (p < 0.001), reflecting unanimous lower
scores for the LLM-assisted diagram.

In the case of the Deployment diagram, the LLM version was also consistently scored lower
(d = 3.04, p < 0.001), though the magnitude of difference was slightly less than in the previous two
types. The Wilcoxon test still confirmed this pattern (p = 0.0078), indicating a clear preference for the
human-created version.

Even in the Sequence diagram, where the performance gap was smallest, the LLM-assisted
diagram lacked in terms of matching the quality of the human one. The effect size remained large
(d = 2.17), and the Wilcoxon test again reported W = 0.0000 (p = 0.0078), showing that all participants
favored the human diagram.

These results are visually summarized in Figure 3. In each UML diagram type, scores for the
LLM-assisted diagrams are lower and more spread out. This pattern is most evident in the Class
and Use Case diagrams, where a large visual difference can be observed and the box plots for the
LLM-assisted diagrams have much longer tails.
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Figure 3. Score distribution by UML diagram.

4.2. Comparing LLM-Assisted Diagrams to Human-Created Diagrams

To further explore how LLM-assisted diagrams underperformed, and to more comprehensively
answer our research questions, we visualized completeness and correctness scores within each UML
diagram. Figures 4-7 show a side-by-side comparison of completeness and correctness scores for each
element for each UML diagram type. The x-axis represents the elements, and y-axis represents the
completeness or correctness score for all diagrams in this section.
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Figure 4. Human and LLM scores for the Class Diagram.

4.2.1. Class Diagram

Addressing RQ1, Figure 4 shows that LLM-assisted Class diagrams demonstrated moderately
close performance to human-created diagrams, particularly in representing basic classes and inher-
itance. However, noticeable gaps emerged in methods (0.77 vs. 0.57) and visibility (0.73 vs. 0.49),
suggesting that while LLMs could model structural elements reasonably well, they had greater dif-
ficulty capturing functional behaviors and access control. Overall, the results show that LLMs can
approximate human-created Class diagrams to a meaningful degree but still fall short on more nuanced
features.
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4.2.2. Deployment Diagram

Figure 5 answers RQ2 and shows that LLMs achieved relatively strong performance on De-
ployment diagrams. Scores for core elements such as nodes and artifacts were only 5-6 percentage
points below human-created diagrams, indicating that the LLM could effectively replicate the main
architectural aspects of this diagram. Some differences remained in modeling relationships and com-
munication paths, where correctness scores were lower (0.64 and 0.61, respectively), suggesting that
while LLMs closely approximate human deployment modeling in terms of static elements, further
improvements are needed to holistically capture dynamic elements.
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Figure 5. Human and LLM scores for the Deployment Diagram.

4.2.3. Use Case Diagram

To answer RQ3, Figure 6 shows that the Use Case diagram posed the greatest challenge for
LLMs. Although they were able to approximate basic actor and use case labeling to some extent,
larger discrepancies appeared in links (0.78 vs. 0.60) and generalized relationship structures (0.82 vs.
0.64). These results suggest that LLMs have more difficulty modeling hierarchical relationships and
interaction flows.

Completeness
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Use Cases Interactions Generalization Relationships
Correctness

Score
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Figure 6. Human and LLM scores for the Use Case Diagram.

4.2.4. Sequence Diagram

As relating to RQ4, the Sequence diagram results (Figure 7) showed the highest degree of align-
ment between LLM-assisted and human-created diagrams. Completeness scores for key elements like
actors and messages differed by as little as 5 percentage points, suggesting that LLMs were highly
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capable of capturing the basic interaction structure. Minor gaps remained in correctness, particularly
in message order (0.73 vs. 0.63) and notations (0.75 vs. 0.66). The results demonstrate that LLMs can
closely replicate human-created Sequence diagrams better than other types.
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Figure 7. Human and LLM scores for the Sequence Diagram.

Importantly, from the structural perspectives of UML modeling, the consistent patterns in student
feedback imply that deployment diagrams are interpreted as architectural manifestations of the class
structure. This relationship is pedagogically relevant and statistically supported, emphasizing that
effective UML modeling requires coherence between the internal structure of a system, class diagram,
and its physical realization, the deployment diagram. Furthermore, from the behavioral perspectives
of UML modeling, these findings indicate that learners inherently recognize the functional linkage
between use case scenarios and their realization in sequence diagrams, as it concretizes the temporal
interactions and message flows required to fulfill the abstract functionalities captured in the Use Case
diagram. Thus, the sequence diagrams serve as operational extensions of use case diagrams, and this
relationship is both learning-centered and grounded in statistical data.

4.3. Validation of the Proposed Approach

To validate the proposed approach, we benchmark our findings against those reported in the
recent study by Wang et al. [30], which involved 45 undergraduate students, in one institution, using
GPT-3.5/GPT-4 to generate UML diagrams for a predefined scenario. Notably, their study limited
to assess correctness. In contrast, our study aims to evaluate both completeness and correctness
through a survey conducted with 121 undergraduate and graduate students, across three Universities,
who had completed one or more software engineering courses. With respect to the adapted type
of shots in training LLMs. The study [30] used few-shots example-based prompting (3 examples
for each modeling task) for GPT-3.5/GPT-4 combined with template-based dynamic prompting for
iterative refinement by students. In contrast, this study considers single zero-shot prompt that feds to
GPT-4-turbo to visualize single problem domain (iCoot Car Rental System). The observed differences
in correctness values stems from the variation in the number of shots for prompts and evaluation
method. Comparing to the approach [30], our findings show correctness scores as (61.1% vs 64.4%) for
Class diagrams, (66.2% vs 74.8%) for Sequence diagrams, and (64.2% vs 59.4%) for Use Case diagrams.

5. Discussion

This study introduces an empirical evaluation to investigate the capabilities of GPT-4-turbo in
assisting UML modeling with involvement of students in the educational environment. The survey
results reflect subjective student evaluations based on their prior UML modeling skills and background.
The use of zero-shot prompts along within the problem domain influenced the evaluation results of
UML diagrams. As both types of diagrams provided for students in the survey, students will only
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evaluate those diagrams without any involvement in the prompt. This approach increased cognitive
load by requiring them to assess LLMs-assisted diagrams without prior examples, depending on their
existing UML knowledge and skills. Such evaluation eliminates variability from iterative refinements,
and also highlighted gaps in their evaluation.

The findings highlight the critical insights of current and potential drawbacks of LLMs-assisted
UML modeling. The results clearly demonstrate that GPT-4-turbo exhibits superior ability to translate
the textual descriptions into UML codes. Nevertheless, after converting such codes to visual models,
the resulting diagrams vary in matching the completeness and correctness comparing to human-
created UML diagrams. This referring to differences in diagram type and the complexity of system
requirements. For example, Class and Use Case diagrams show less similarity to human-created ones
because they require deeper domain logic modeling, as well as they involve complex relationships as
(inheritance, aggregation, composition, and multiplicities) in Class diagram, and (includes and extends
relationships) in Use Case diagram. Consequently, LLMs struggle with such precise relationships,
leading to miss capturing that or even provide incorrect representation. In contrast, Deployment
and Sequence diagrams show stronger alignment since such diagrams focus more on flow based
structure, and they show linear interactions among objects as in Sequence diagram, or mapping
between software artifacts and hardware nodes as in Deployment diagram. Quantitatively, such
gaps were validated through statistical differences in completeness and correctness scores of LLMs-
assisted and human-created diagrams, as proved by both paired t-test and Wilcoxon signed-rank
test. The significant findings carry notable academic and practical significance in the era of software
engineering. In educational contexts, LLMs can act as essential learning tool to help learners in
understanding the basic UML modeling. But, it requires post-generation validation for the intended
prompts. Consequently, this emphasizes the essential need of hybrid human with LLMs collaboration
in educational and practical applications.

6. Conclusions

In conclusion, this study provides a comprehensive evaluation of LLMs, particularly GPT-4-turbo,
in generating UML diagrams. Empirical findings, supported by participant surveys and rigorous
statistical analyses, highlight the pedagogical potential of LLMs as supplementary tools in software
engineering education but emphasize the need for human intervention to address such limitations.
Particularly, LLM-assisted generated diagrams achieved completeness and correctness scores of 65%,
61.1% for Class diagram, 65.9%, 64.3% for Deployment diagram, 67.1%, 64.2% for Use Case diagram,
and 67.7%, 66.2% for Sequence diagram. Across all explored diagram types, LLM-assisted unperformed
the human-created diagrams, with statistically significant differences confirmed by paired t-tests and
Wilcoxon signed-rank tests p < 0.001, and effect sizes > 2.0.

The most limitations were observed in Class and Use Case diagrams, reflecting challenges in
modeling complex relationships and semantic structures. The proposed rule-based prompt engineering
framework and evaluation elements provide a replicable methodology for further research of LLMs
in software design. As future work, this study will be expanded to cover others LLM as Gemini and
Copilot, and compared the output with the current outcomes. Also, we plan to extend this study
by involving the software engineering professionals in industry, their feedback will be beneficial to
observe the evaluation of LLM-assisted UML modeling from different perspectives. This expansion
will help to bridge the gaps between the academic environment and software ithe software One
important direction is to apply the same methodology on different problem domain scenarios in health,
education, and commerce. Expanding Prompt optimization is another future step. Finally, as another
significant future direction is to expand the proposed approach to capture another shot types rather
than zero-shot and compare the current output with the upcoming results to explore how changing the
type of shot in training of GPT-4- turbo might impact the completeness and correctness evaluations.
Future work will address these extensions.
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Appendix A. Class Diagram
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Figure A1. Human-created Class diagram.
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Figure A2. LLM-assisted Class diagram.

Class Diagram Prompt: iCoot Car Rental System

Instruction: Generate a complete and correct UML Class Diagram for the iCoot Car Rental System.
You are a software analyst. From the following domain description, extract all relevant UML Class Diagram
components. Ensure the diagram includes:

3 All relevant classes (e.g., entities and domain objects),

. All relationships between classes (associations, generalizations, aggregations),
3 Explicit multiplicities on each relationship (e.g., 1..%,0..1),

. Class attributes and operations where appropriate.

Use correct UML notation. Apply inheritance for specialization (e.g., Member, NonMember), and use aggregation where
appropriate (e.g., between CarModel and Car).

System Description:

The iCoot Car Rental System revolves around Customer, who may be either Member or NonMember.

3 Members have an InternetAccount, CreditCard, and Address, and they can reserve and rent cars.
3 NonMembers do not have InternetAccounts but can still make rentals and reservations.
. Rental represents agreements involving one or more Car instances. Each Car links to CarDetails (e.g., Make).

. CarModel represents a type of car, associated with many Car instances, and connects to CarModelDetails,
Category, and Vendor.

. Reservations are created by Members for CarModels.
UML Modeling Rules Followed

- Inheritance: Customer — Member, NonMember
- Aggregation/Composition: CarModel — Car; Member — CreditCard, Address, InternetAccount

- Associations:
* Customer <> Rental
* Reservation <> CarModel

* Rental <> Car
* CarModel <> Category, Vendor, CarModelDetails

= Multiplicities: A CarModel has many Cars; a Member may have one or more CreditCards
- Attributes and Methods: Include fields like ReservationDate, RentalDuration, Make; methods such as
reserveCar (), cancelReservation()

Rule-Based Validation
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Table A1. Validation of Prompt Based on Rule-Based Framework.

Rule Step Applied Output

ExtractCriteria Identified core classes: Customer, Member, NonMember, Car,
CarModel, Reservation, Rental, CreditCard, Address,
InternetAccount, Category, Vendor, CarModelDetails
MapRelationships | Defined generalization, aggregation, and associations based on
domain semantics. Mapped actions like reserve/rent/cancel to
operations.

DefineConstraints | Added multiplicities, role labels, and semantic constraints on
class-to-class relationships.

ValidatePrompt Satisfied completeness and correctness criteria based on coverage
and UML alignment.

To assess the effectiveness of prompt-engineered UML Class Diagrams, we applied (CR) and (CS)
validation metrics, as described in Section 3.2. Below are the detailed evaluations for both LLM-assisted
and human-created diagrams based on the iCoot car rental scenario.

LLM-Generated UML Class Diagram

¢ Implemented Elements: 19 out of 29

*  Observed Coverage: Included major domain classes such as Customer, Member, Car, and Rental
*  Missing Elements: Vendor, Category, CarModelDetails, and Make

¢  Satisfied Constraints: 22 out of 33

*  Strengths: Correct usage of inheritance and multiplicity annotations

¢ Limitations: Lacked precise naming conventions, omitted some aggregations and compositions

Scores: 19
CRiim = 2 x 100 = 65.52% (A1)

22
CSiim = 3 x 100 = 66.67% (A2)

Human-Generated UML Class Diagram

¢ Implemented Elements: 24 out of 29

* Observed Coverage: Included nearly all expected elements, including Vendor, Make,
CarModelDetails, and Category

¢  Satisfied Constraints: 27 out of 33

¢  Strengths: Correct use of inheritance, composition, aggregation, and multiplicity; improved
naming and semantic precision

Scores:
24
CRyuman = 7 x 100 = 82.76% (A3)
27
CSHuman = 33 x 100 = 81.82% (A4)
Table A2. Evaluation Summary: LLM vs. Human UML Class Diagrams.
Source Implemented Elements | CR (%) | Satisfied Constraints | CS (%)
LLM-Generated 19 / 29 65.52% 22 /33 66.67%
Human-Generated 24 /29 82.76% 27 / 33 81.82%

The figures in Table A2 reveal a comparable performance difference between human-generated
and LLM-generated UML class diagrams on both completeness and correctness metrics.
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The LLM-generated diagram achieved a completeness score of 65.52%, indicating that it contained
approximately two-thirds of the domain-sound elements defined in the prompt. While it successfully
modeled central concepts such as Customer, Member, Rental, and Car, it left out important supporting
entities such as Vendor, Make, CarModelDetails, and Category. These omissions significantly affect
the semantic coverage of the generated diagram, constraining its capability to represent the true
business domain of the iCoot car rental system.

Appendix B. Deployment Diagram
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Figure A3. Human-created Deployment diagram.
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Deployment Diagram Prompt: iCoot Car Rental System

Generate a UML Deployment Diagram for the iCoot Car Rental System that:

i Focuses on the physical deployment architecture of the system across clients, application servers, and database
servers.

2 Shows relationships between nodes (CootHTMLClient, DBServer), deployed artifacts
(cootschema.ddl, icoot.ear, iCoot folder), and runtime components (WebServer, CootBusinessServer,
DBMS).

& Includes:

CootServer,

. Two DBServer nodes hosting DBMS and cootschema.ddl.

. Two CootServer nodes hosting WebServer and CootBusinessServer, with deployment of icoot.ear and
iCoot folder.

. Web-based access from CootHTMLClient nodes to WebServer via HTTP.

. Internal communication between WebServer and CootBusinessServer.

. Communication between CootBusinessServer and DBMS.
4. Follows UML 2.5 deployment diagram conventions with proper node-artifact and node-component mappings.
53 Emphasizes modularity, fault tolerance (via duplication), and clarity in deployment layers (presentation,

application, and data tiers).

Additional requirements:

. Notation: PlantUML or UML 2.5-compliant tools.
. Detail level: Fully detailed, including all deployment artifacts and communication paths.
. Special considerations:

- Show all nodes (CootHTMLClient, CootServer1/2, DBServer1/2) distinctly.
- Include multiplicity (* for clients).
- Omit low-level protocol specifications unless explicitly defined.

Follow-up Instructions:

Expand the diagram to include fault tolerance annotations.

Add a LoadBalancer node between clients and WebServers.

Show communication types (e.g., HITP, internal /proprietary).

Verify deployment relationship correctness between artifacts and nodes/components.
Optimize layout for a horizontal three-tier architecture.
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Figure A4. LLM-assisted Deployment diagram.

Rule-Based Validation
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Table A3. Validation of Deployment Diagrams Based on Rule-Based Framework.
Rule Step Applied Output
ExtractComponents | Identified nodes and environments: CootHTMLClient,

CootServer, DBServer, with execution environments like
WebServer, CootBusinessServer, and DBMS.

MapRelationships | Mapped inter-node communication (e.g., HTTP, internal links),
deployment of artifacts (e.g., icoot.ear, cootschema.ddl), and
WebServer — BusinessServer interactions.

DefineConstraints Included deployment semantics, replicated nodes for reliability,
layered structure (client — app — data), and use of artifacts per
UML standard.

ValidatePrompt Compared against UML 2.5 structure; evaluated for completeness

(elements, relationships) and correctness (notation, stereotypes).

To assess the effectiveness of both human and LLM-assisted UML Deployment Diagrams, we
applied the validation metrics of Completeness Rate (CR) and Correctness Score (CS). Below are the
detailed results based on the iCoot deployment architecture.

LLM-Generated UML Deployment Diagram

e Implemented Elements: 18 out of 18

e  Observed Coverage: All major nodes, execution environments, and artifacts included

e  Missing Constraints: Lacked full UML stereotypes (e.g., «device», <execution environmentsy),
no «manifest» usage

e  Satisfied Constraints: 21 out of 26

e Strengths: Clear three-tier layout, full redundancy modeling, artifact deployment clarity

¢ Limitations: Missing UML annotations (e.g., stereotypes), minor layout inconsistency

Scores: 18
CRiim = E x 100 = 100% (A5)
21
CSiim = % x 100 = 80.77% (A6)

Human-Generated UML Deployment Diagram

¢ Implemented Elements: 14 out of 18

¢ Observed Coverage: Core layers present, but no node redundancy, partial client-side representa-
tion

¢  Satisfied Constraints: 24 out of 26

*  Strengths: Accurate UML stereotypes, manifest usage, well-formed internal structure

¢ Limitations: Missing replicated nodes (no DBServer2 or CootServer2), lacks scalability represen-

tation
Scores: 14
CRyuman = 18 x 100 = 77.78% (A7)
24
CSHuman = 5 * 100 = 92.31% (A8)
Table A4. Evaluation Summary: LLM vs. Human UML Deployment Diagrams.
Source Implemented Elements | CR (%) | Satisfied Constraints | CS (%)
LLM-Generated 18 / 18 100.00% 21/ 26 80.77%
Human-Generated 14 / 18 77.78% 24 / 26 92.31%
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The results in Table A4 reveal a complementary contrast between the LLM and human outputs.
The LLM-generated diagram achieved perfect completeness by including all deployment artifacts,
replicated servers, and client tiers. However, it fell short in formal UML syntax, missing critical
stereotypes and semantic decorators. Its correctness score reflects these syntactic gaps.

In contrast, the human-generated diagram attained a very high correctness score, emphasizing
adherence to UML 2.5 specification with appropriate stereotypes, manifest blocks, and well-structured
component packaging. However, the absence of redundancy nodes like CootServer2 and DBServer2
penalized its completeness score.

These findings illustrate that while LLMs excel in structural breadth and layout generation, human
modelers outperform in semantic precision and notational discipline. A combined workflow using
LLM-generated scaffolding followed by human UML review may yield the best modeling outcomes.

Appendix C. Use Case Diagram

Use Case Diagram Prompt: iCoot Car Rental System

Instruction: Generate a complete and correct UML Use Case Diagram for the iCoot Car Rental System, based on the
functional description provided below.

Requirements:

1. Include all relevant actors: Customer, Member, NonMember, Assistant.

2. Apply generalization between actors (e.g., Customer — Member, NonMember).
3. Include all use cases, including:

. Public services: Browse CarModel Index (Ul), Search CarModels (U4), View CarModel Results
(U2), View CarModel Details (U3)

. Member-only services: Log On (U5), Log 0ff (U12), Make Reservation (U7), Cancel Reservation
(U11), Check Membership Details (U6), Change Password (U9), View Reservations (U10), View
Rentals (U8)

. Other: Look for CarModels (U13),Move Cars (Assistant only)

4. Represent all relationships between use cases:

. Use «include» for shared sub-behaviors (e.g., U1 and U4 include U2)
. Use «extend» for optional or conditional behavior (e.g., U3 extends U2)
. Use generalization (e.g., U13 generalizes Ul and U4)

. Use constraints and preconditions when relevant (e.g., reservation must follow viewing CarModel details)
5. Enclose all use cases in a system boundary labeled iCoot.
6. Follow UML 2.5 notation conventions: actors outside boundary, use cases as ovals, arrows for relationships.

Scenario Description: Any Customer can look for CarModels by browsing the CarModel Index (U1) or by Searching
(U4). The search filters by categories, makes, or engine sizes. Both browsing and searching include a shared result view
(U2), after which the customer may optionally view detailed information about specific CarModels (U3). These actions
are all forms of Looking for CarModels (U13).

A Customer who logs in as a Member (via U5) gains access to services including: Make Reservation (U7), Cancel
Reservation (U11), Check Membership Details (U6), Change Password (U9), View Reservations (U10), View
Rentals (U8), and Log 0ff (U12).

To perform Make Reservation (U7),the Member must be viewing CarModel details. To cancel a reservation (U11),
the Member must be viewing outstanding reservations. NonMembers cannot reserve, even if they view model details.
Assistants help manage physical Car movement related to reservations.

Additional Requirements:

. Notation: UML 2.5 compliant; arrows labeled with «includes, «extend», and generalization as needed.
. Detail Level: High-level use case interaction and specialization logic.
. Special Considerations: Use conditional arrows only where system rules enforce sequencing (e.g., Reservation

requires prior detail viewing).
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Figure A5. Human-created Use Case diagram.
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Figure A6. LLM-assisted Use Case diagram.
Rule-Based Validation

Table A5. Validation of Use Case Diagrams Based on Rule-Based Framework.

Rule Step Applied Output

ExtractComponents | Identified actors: Customer, Member, NonMember, Assistant.
Identified use cases: Log On, Make Reservation, Cancel
Reservation, Browse, Search, View Results, View CarModel
Details, etc.

MapRelationships Modeled associations between actors and use cases. Applied gen-
eralization between Customer, Member, and NonMember. Defined
includes («include») and extends («extend») relationships.
DefineConstraints Applied system boundary, actor-use case mapping constraints,
logical grouping, and interaction coverage per domain. Checked
for overlapping actor responsibilities and goal-oriented behavior.
ValidatePrompt Evaluated based on UML completeness (actors, use cases, rela-
tionships) and syntactic correctness (notation, use of stereotypes,
boundary box).

LLM-Generated UML Use Case Diagram

e Implemented Elements: 16 out of 18

®  Observed Coverage: Covered all key actors and most use cases

*  Missing Elements: Omitted abstraction of “Look for Car Models” (U13); fewer «extend» relations
used

e  Satisfied Constraints: 22 out of 28

e  Strengths: Accurate actor generalization, proper naming, and most core use cases shown

e Limitations: Lacked a system boundary, missed include/extend richness, and scenario abstraction

Scores:

1
CRym = £ x 100 = 88.89% (A9)
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CSiim = % x 100 = 78.57% (A10)

Human-Generated UML Use Case Diagram

¢ Implemented Elements: 18 out of 18

*  Observed Coverage: All actors, use cases, and abstract/generalized goals (e.g., U13: Look for
Car Models)

¢  Satisfied Constraints: 26 out of 28

*  Strengths: Rich use of «includes and «extend», clear boundary, correct generalization, scenario
modularity

e Limitations: Minor clutter in layout (non-impacting correctness)

Scores: 18
CRuyman = 18 < 100 = 100.00% (A11)
26
CSHuman = 78 = 100 = 92.86% (A12)
Table A6. Evaluation Summary: LLM vs. Human UML Use Case Diagrams.
Source Implemented Elements | CR (%) | Satisfied Constraints | CS (%)
LLM-Generated 16 / 18 88.89% 22 /28 78.57%
Human-Generated 18 / 18 100.00% 26 / 28 92.86%

The results in Table A6 highlight the comparative strengths of human diagramming for scenario
abstraction and modeling fluency. The LLM-generated diagram scored well on core use case and actor
coverage, achieving 88.89% completeness, but lacked structural abstraction and semantic enrichment
through «extend» relations and boundary usage.

The human diagram performed near-perfectly in completeness (100%) and scored higher in
correctness (92.86%) by applying generalized actions like Look for Car Models (U13) and explicitly
modeling use case reuse through «include» and scenario variants through «extends. Its careful actor-
role mapping and detailed modularity demonstrate a stronger understanding of use case semantics
and system behavior modeling.

These results again suggest that while LLMs can scaffold functional diagrams reliably, human
expertise currently remains superior in translating complex textual scenarios into high-fidelity UML
representations.
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Appendix D. Sequence Diagram
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:Authentication :Authentication :Member :
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Figure A7. Human-created Sequence diagram.
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MeBe [Browser| | Il | | I |
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Figure A8. LLM-assisted Sequence diagram.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2054.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2025 d0i:10.20944/preprints202505.2054.v1

25 of 28

Sequence Diagram Prompt: Log Off Functionality

Instruction: Generate a complete and correct UML Sequence Diagram for the Log Off Use
Case in the iCoot Car Rental System.
Requirements:

1. Include all relevant actors and objects involved in the scenario: Member,
Browser, AuthenticationServlet, AuthenticationServer, MemberHome, Member,
InternetAccount.

2. Represent all lifelines and activation bars where applicable.

3. Capture all interaction types, including;

e Method calls (e.g., Logoff (), setSessionId(0))

e Data transfers (e.g., passing Member ID)

¢ Synchronous messages

*  Return messages (e.g., acknowledgment or return values)

4. Ensure the ordering of interactions reflects system behavior accurately.
5. Follow UML 2.5 sequence diagram notation, using arrows, activation rectangles, and
dashed return messages where appropriate.

Scenario Description: When a Member actor elects to log off, their Browser sends a logoff ()
request to the AuthenticationServlet. The servlet retrieves the Member ID from the session
and forwards a logoff (id) message to the AuthenticationServer. The server uses the ID
to locate the corresponding Member object by querying MemberHome. Once found, the server
invokes setSessionId(0) on the Member, which forwards the same request to its associated
InternetAccount to store session ID = 0. This signals that the user has logged off. Finally, the
Browser redirects the Member to the home page for further interaction.

Additional Requirements:

e Notation: UML 2.5 or PlantUML-compatible syntax

*  Detail Level: Mid to high-level granularity (no protocol detail)

*  Special Considerations: Clearly separate control and data messages, show message flow
left-to-right and activation scopes correctly.

Rule-Based Validation

Table A7. Validation of Sequence Diagrams Based on Rule-Based Framework.

Rule Step Applied Output

ExtractComponents | Identified lifelines: Member, Browser, AuthenticationServlet,
AuthenticationServer, MemberHome, InternetAccount.
MapRelationships Modeled message flows such as logoff (), retrieveMember (),
setSessionId(0). Captured synchronous and return messages
between components.

DefineConstraints Validated ordering of messages, logical grouping of synchronous
vs. asynchronous calls, inclusion of return messages, and correct
use of activation bars.

ValidatePrompt Assessed for proper UML 2.x notation, completeness of flow,
and coverage of the "logoff" use case scenario based on system
description.

LLM-Generated UML Sequence Diagram

e Implemented Elements: 12 out of 14

*  Observed Coverage: Included major objects and messages for the logoff scenario

e  Missing Elements: Some unclear labels (e.g., “store session as 0”), absent activation bars
*  Satisfied Constraints: 19 out of 24
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e  Strengths: Good message ordering, full lifeline inclusion, and coverage of all involved actors
¢ Limitations: Mixed semantic annotations (textual labels vs. methods), lacks activation semantics,
missing interaction fragment constructs

Scores: 1
CRiim = 1 x 100 = 85.71% (A13)

19
CSLLM = ﬂ x 100 = 79.17% (A14)

Human-Generated UML Sequence Diagram

¢ Implemented Elements: 14 out of 14

*  Observed Coverage: Full logoff interaction sequence modeled clearly

e  Satisfied Constraints: 22 out of 24

®  Strengths: Clear lifelines, activation bars, correct synchronous calls, consistent use of UML
notation

e Limitations: Slight diagram compactness (layout), missing guard or alt fragments for edge cases
(e.g., failed session retrieval)

Scores: 14
CRyuman = 11 % 100 = 100.00% (A15)
22
CSHuman = 71~ 100 = 91.67% (Al6)
Table A8. Evaluation Summary: LLM vs. Human UML Sequence Diagrams.
Source Implemented Elements | CR (%) | Satisfied Constraints | CS (%)
LLM-Generated 12 / 14 85.71% 19 / 24 79.17%
Human-Generated 14 /14 100.00% 22 /24 91.67%

The results in Table A8 highlight the strengths and weaknesses of LLM-generated vs. human-
generated sequence diagrams. While the LLM successfully covered the core system flow and partici-
pants for the logoff interaction, it fell short in applying proper UML activation bars and reusing clear
method call syntax throughout. Human-generated diagrams scored better in correctness, particularly
due to full compliance with sequence diagram semantics and consistent visual structure.

These observations suggest that LLMs are effective in approximating communication flows but
still require refinement in expressing formal interaction constructs such as fragments, alt conditions,
and execution focus markers. In high-assurance modeling tasks, human refinement remains essential
for achieving high-fidelity UML specifications.
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