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Abstract: Constructing a knowledge structure using the variable precision FT-rough set model is an
effective approach. Since directly constructing a knowledge structure for a subject or field is
challenging, synthesizing global information from local information becomes a viable solution.
However, local information often overlaps (partially), making it crucial to ensure consistency
between global and local information, which is an urgent issue to address. Therefore, based on the
variable precision FT-rough set model and the knowledge structure constructed from it, this paper
investigates the conditions for the composability of knowledge structures constructed using the
lower (upper) inverse operator of the variable precision FT-rough set. Under these conditions, the
knowledge structure constructed from the local fuzzy approximation space can be integrated into the
knowledge structure constructed from the global fuzzy approximation space.
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1. Introduction

Knowledge Space Theory (KST) [1] is a mathematical theoretical framework grounded in
pedagogy and psychology, providing an effective methodology for studying educational principles
and enabling scientific educational assessment and learning guidance. KST has since evolved into
various research branches, including competency-based knowledge space theory [2,3] and
polytomous knowledge space theory [4,5]. A systematic overview of KST’s theoretical advances and
applications was provided by Li et al. [6]. KST has been successfully applied in fields such as assisted
learning and adaptive testing. For instance, the learning platform ALEKS (Assessment and Learning
in Knowledge Spaces) [7] is developed based on this theory.

Construction of knowledge structures is one of the key research topics in KST. A knowledge
structure encompasses all possible knowledge states, where each knowledge state represents a subset
of problems in a specific domain or subject. Thus these knowledge states reflect an individual's
cognitive level in the corresponding field. Doignon et al. [2] introduced skill maps and skill
multimaps, establishing relationships between problems and skills, and proposed methods for
constructing knowledge structures based on these maps. In recent years, integrating Rough Set
Theory (RST) [8] and Fuzzy Set Theory (FST) [9] into knowledge spaces has emerged as a significant
research direction. Notable contributions include: Yao et al. [10] pioneered the introduction of rough
set approximation concepts into KST to construct knowledge structures. Liu [11] established
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connections between rough set-based upper and lower approximation operators and skill maps and
skill multimaps, proposing new methods for knowledge structure construction. Sun et al. [12]
incorporated Fuzzy Set Theory into KST, proposing a novel theoretical framework for constructing
knowledge structures using fuzzy skill maps and fuzzy skill multimaps. Xu et al. [13] further
advanced this direction by introducing variable precision models based on fuzzy skill maps and
variable precision competency models based on fuzzy skill multimaps.

In the study of rough sets, several distinct rough set models have been developed, including: the
variable precision T-rough set proposed by Zhu et al. [14]; the double-universe T-rough fuzzy set
model under general fuzzy binary relations introduced by Thao et al. [15]; the fuzzy T-rough set (FT-
rough set) investigated by Zhang et al. [16], who examined the properties of its upper and lower
inverse operators under union and intersection operations. The FT-rough set model offers the
advantage of handling continuous data while preserving data integrity. However, the conditions for
knowledge state induction by its upper and lower inverse operators can be either too strict or too
lenient. In contrast, the variable precision rough set model permits a certain misclassification rate
during the classification process. Therefore, employing the upper and lower inverse operators of
variable precision FT-rough sets to induce knowledge states allows for threshold adjustment of the
required skill mastery ratio when solving problems. This approach effectively mitigates the issues of
overly strict or lenient conditions mentioned above.

When constructing a knowledge structure for a specific domain or subject, it is necessary to first
define a problem domain Q. One or more experts are then required to identify all valid knowledge
states. However, since the number of possible subsets (knowledge states) grows exponentially with
thesizeof QO (|Q|), and | Q] istypically large in practical applications, it becomes clearly infeasible
to have experts directly determine all possible states for the entire problem domain [1]. A viable
alternative approach involves constructing large knowledge structures by combining smaller ones.
Specifically, this method decomposes Q into sufficiently small subdomains that can be completely
covered, with different experts independently identifying and assigning relevant problem-solving
skills to each subdomain. However, inconsistencies may arise in skill assignments among different
experts, leading to two key challenges: How to ensure global consistency when aggregating local
information? Is it possible to properly distribute global information to local contexts? To address
these issues, Heller et al. [17] introduced the concept of distributed skill functions, which can
represent the integration of a finite number of skill functions. This approach enables the synthesis of
local information provided by multiple experts into a globally consistent framework, leveraging the
composability property of knowledge structures to resolve the aforementioned problems.

This paper first introduces relevant basic concepts, then addresses the aforementioned problems
by investigating the composability conditions of knowledge structures constructed based on the
upper (lower) inverse operators of variable precision FT-rough sets.

2. Preliminaries

In this section, the core concepts of fuzzy sets, FI-rough sets, and KST are briefly reviewed to
establish the theoretical framework.

The following is a brief overview of fuzzy sets, which proposed by Zadeh [9] in 1965.

A fuzzy set over the universe S isamap from S to the real interval [0,1],ie., Y:S—[0,1].

VseS§, Y(s)<€[0,1] denotes the membership grade of s with respect to Y. Generally, the family
of all fuzzy sets on § is denoted as: F(S)={Y|Y:S—[0,1]} . For convenience, we denote
Y:§—>[0,1] by Y={(s,Y(s)):seS}. Additionally, we suppress (s,Y(s)) if Y(s)=0 for any
se§. The definitions of equality relations, inclusion relations, and the operations of union, and
intersection on F(S) are as follows [9,12]:

=Y, ST =10) yees,
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Let 0 and S be two nonempty finite sets, if for each ¢ € Q, there corresponds a nonempty
fuzzy set on S , then T:0—>F(S)\{J} 1is called a fuzzy set-valued map [9], where
T(q) € F(S)\{D} . For convenience, we denote 7(q) by 7, . And we call the triple (Q,S,T) a
fuzzy approximation space.

Based on the fuzzy set-valued map, and for Y € F(S), the upper inverse(7*(Y)) and lower
inverse(T™'(Y) ) approximations of Y are respectively defined as:

T'(Y)={qeQ|VseS. T (s)<Y(s)}

T7'(Y)={geQ|3seS,0< T.(s)<Y(s)}

Then the ordered pair (7" (Y),7'(Y)) is called an FT-rough set.

Knowledge states, knowledge structures, etc. are fundamental concepts in KST. Let O be a
nonempty finite set of items and K be a family of subsets of Q, then a knowledge structure is the
pair (Q,K), where K contains at least the empty set & and Q. And each element K in K is
referred to a knowledge state. If for any M,N € K, their union M UN is also a knowledge state of
K, then (Q,K) is called a knowledge space. If for any M,N € K, their intersection M (N is also
a knowledge state of K, then (Q,K) is called a simple closure space. And if (Q,K) is both a

knowledge space and a simple closure space, then it is called a quasi-ordinal space.
Let (Q,K) be a knowledge structure, for Q' Q and Q' #J, the projection (or trace) of K

on Q' isdefinedas K|,={KNQ'|K eK}.Here K|, isasubstructureof K, and K isthe parent

structure of K|, [1]. Based on this, the composition of knowledge structures is defined as follows.

Definition 1 [1]. Let (Q,,K),ie! and (Q,K) be knowledge structures. (Q,K) is said to be a
composition of the family of knowledge structures {(Q,K,) |i €I}, if the following conditions are

satisfied:
0= U Qi
1) il
Viel LK =K|,
) “.
Definition 2 [17]. Let (Q,,S,,T)), i€l be fuzzy approximation spaces, their composition (Q,S,T)
is defined by:
o=Ug
1) iel
s=Js
(2) iel ;
* "y = (7:) » 4 € Qi
reyon, o300
B3) VqeOQ, iel , Where .

It can be easily proved that (Q,S,T) is also a fuzzy approximation space.

In [12], the concepts from fuzzy sets theory are extended to knowledge spaces, leading to the
definition of a fuzzy skill map. Let (Q,S,T) be a fuzzy approximation space, and regarding 0 asa
nonempty finite set of items(or questions) and § as a nonempty finite set of skills. Then T
represents a map from the item(or questions) set O to the fuzzy skill set family F(S5)\{J} . In KST,
it means that to solve a question, an individual should first master the skills related to solving the
question to a certain extent, i.e. T, #. The triple (Q,S,T) is also referred to as fuzzy skill map in

KST.
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3. Variable Precision FT-Rough Sets and the Knowledge Structure Con-tructed

This section introduces the variable precision FT-rough set model and the properties of its
operators, and proposes a knowledge structure constructed based on this model.

Definition 3. Let (Q,S,T) be a fuzzy approximation space. For any Be F(S), f<(0.51], the f-

lower inverse and f-upper inverse of B with respect to 7' are defined as

[{s€S10<T (s)< B(s)}| g
[{s € SIT,(s)> 0}

1=}

4

T,'(B)=1{q Q|

S10<T (s)<B
|{s€S10<T,(s) (S)Hzﬂ}
|{s € S[T,(s) > 05|

Ty (B)={q€Q|

Then the ordered pair (7 (B),T, '(B)) iscalled a f-variable precision FT-rough set.

The upper and lower inverse operators of the variable precision FT-rough sets possess the
following properties:

Proposition 1. Let (Q,S,T) be a fuzzy approximation space. For 4,B € F(S), f<(0.5,1], then
) T,'(2)=T, (D) =®;
@ Tgl(S)=T£(S)=Q;
@) BBTB),

@If 4S8 then

T;()eTi(B) T, (DT, B,

5 L ANB ST (N (B),

(6)
@)

8)
1 05<A <B<1 en

T, (B)S T, (B) T, (B)= T, (B)

T;(DUT, (B) T, (AUB).
T, (HUT, (B) c T,'(4UB)
T,'(ANB) T, (AHNT, ' (B) ,

The proof of Proposition 1 is similar to the proof of the properties of FT-rough sets in [16], and
it is not listed here.

From Definition 3, it follows that when the threshold S takes the value of 1, the variable
precision -rough sets will degenerate into the FT-rough sets. Therefore, the variable precision FT-
rough set has wider applicability than the FT-rough sets.

As shown in Proposition 1, the upper and lower inverse operators of variable precision FT-rough
sets can induce knowledge states and derive knowledge structures.

Definition 4 [13]. Let (Q,S,T) be a fuzzy approximation space. Forany g€ Q, Be F(S), we call
[{s € S10<T (s)<B(s)}|
[{s € S|T,(s)>0}|

a fuzzy skill inclusion degree with respectto 7, and B.

D(BIT,)=

Definition 5. Given a fuzzy approximation space (Q,S,T), the knowledge state delineated by the
lower inverse model of the variable precision FT-rough set with respect to B (B € F(S)) is defined
by

Ky, =T,/ (B)={qQ|D(B/T)) >1=p1
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where 80511
The family of all the knowledge states delineated by the lower inverse model is denoted by
Ky ={K, 51 Be F(S)}.

Definition 6. Given a fuzzy approximation space (Q,S,T), the knowledge state delineated by the
upper inverse model of the variable precision FT-rough set with respect to B (B € F(S)) is defined
by

Kyp=T;(B) =g Q|DBIT)2p}
where £ €031,

The family of all the knowledge states delineated by the lower inverse model is denoted by
Ky ={K; ;1 Be F(S)}.

Theorem 1. Given a fuzzy approximation space (Q,S,T), and the families of the knowledge states delineated
by the lower and upper inverse models are K; ={K, , | Be F(S)} and K; ={K; ;| B € F(S)}, respectively.
Then both K; and K, are knowledge structures.
Proof of Theorem 1. It can be easily deduced from (1) and (2) of Proposition 1 that when B =, we
have T;'(B) =T, (&)= ,and T,(B)=T,(D)=J;when B=S,wehavel; (B)=T1,'(S)=0,and
T,(B)=T,(S)=Q. Then

Ky =T, (B)|Be F(S)}={K,, | B € F(8)}

Ky =T (B)| B F(S);=1K;, | BeF(S)}

are the knowledge structures delineated by the lower and upper inverse models of the variable
precision FT-rough set respectively.

4. Composability of Knowledge Structure

Let the fuzzy approximation space (Q,S,7) be composed of the family of fuzzy approximation
spaces {(Q,,S,,T)| iel}. The variable precision threshold is S ( f€(0.5,1]), the knowledge

structures delineated by the lower inverse and upper inverse models of the variable precision FT-
rough set in the fuzzy approximation space (Q,,S,,T;), i€l are denoted as (K;), and (K)),

respectively. The knowledge structures delineated by the lower inverse and upper inverse models of
the variable precision FT-rough set in the fuzzy approximation space (Q,S,T) are denoted as K,

and K, respectively. This section studies the conditions under which K, and K; can be
composed of the knowledge structure families {(K0), i€/} and {(K,),|ie} respectively.

For convenience, the following notation is given:

Notation 1. Let Y € F(S), S, cS, denote
Y(s), seS.
o= o055
’ j
Then the knowledge structure K, delineated by the lower inverse model of the variable
precision FT-rough set in the fuzzy approximation space (Q,S,T) isnot necessarily the composition
of the knowledge structure family {(K}),| i e/}. The knowledge structure K; delineated by the
upper inverse model is not necessarily the composition of {(X}), | i € I} . Example 1 below illustrates

this problem.

Example 1. Let (Q,,S,,7}) and (0,,S,,T,) be two fuzzy approximation spaces, where
Q= lnndndd, 520505 (), = ((5,0.7),(5,,0.9)
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(1), =1(5,0.8),(5,,0.6),(5;,0.6)}  (T}),, =1{(5,,0.7),(53,0.6)}

0, =19,-9:-49.} , S, =185,,55,5,} , (Tz)q1 ={(s,,0.6),(s;,0.8)} ,
(), = (508, (50.0T))  (T3), = (5,,0.7). (5,06}

Let (@5.T) i composed of (@510 and (QZ’SZ’TZ),then
0=14,.9,.95-9.} , S= {S1aS27S3’S4},

(T),, =1(5,,0.7),(s,,0.6),(s5,0.8)} (), =1(s,,0.8),(s,,0.6),(s5,0.6)}
(1), =1(5,0.8). (55,070} (D), =1(53,0.7).(5,,0.6)}

In the following, taking f € (3,1] as an example, calculate the knowledge structures delineated
by the lower and upper inverse models under the variable precision FT-rough set in (Q,,S,,7),
(0,,5,,T,) and (Q,S,T), respectively.

1) In @51,

(Kzl);? ={9Aq 9, 9,419,,94:},. O}

7

(KD =19.44,},19:}:19,: 455195, 451, O}
) In (QzaSpTz):
(Icz);; ={9.1440,},19.}:191,4: 15191, 9,455 9.3, Do}

7

() =944, 3195349449045 490, 94351955943, O, }
@) m @5D,

A URRUNRURRUN S RUNRRUINR
9.9::9:3:191,9>-9,1.49. 95943, O}

Ky ={D.44,} 40,3193 1943490, 42490, 45351915 44 »
19,4:4:492- 9434955 9.1,49,, 920953191, 92- 44 »

{4:95.49435192- 95,941, O}
Then the projections of K, on O, and Q, are respectively:

]Cp_ |QI SR ZBUNRUNRUNS U/ N

7

]C; |Qz: HZRUNRUARUN SRR BRUN NS

7

7

The projections of K; on O and Q, are respectively:

IC; |Q1 AU RUARUNRUNRIYRUNS RUMNNROY

7

IC,; |QZ R ZAU R UNRURRUNN RN NSNS

It can be seen that (K), =K, |, , (K,), =K, 1y, (K), =K, |, , (K),; =K, |, - Therefore, when
Be.1], K, isnot the composition of (K;), and (K,),,and K, is not the composition of (k)
and (K,);.

4.1. Composability of the Knowledge Structure Delineated by the Lower Inverse Model

Let the fuzzy approximation space (Q,S,7T) be composed of a family of fuzzy approximation
spaces {(0,,S,,T))| iel}. For (Q,,S,,T)), (j€l), and any Y, € 7(S,), then the knowledge state
delineated via the lower inverse model of the variable precision FT-rough set by Y, is

(1), (1) =g €0, | DY, /(T)),)>1- B}
where
l{s€S,10<(T),(5)<Y,(s)i |

s €S, [(T), (>0

£ €(0.5,1] and D(Yj /(Tj)q) =
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For any Y € F(S), the knowledge state delineated via the lower inverse model of the variable
precision FT-rough setby Y is

T,'(Y)={geQ| DY /T, >1=p}
where
[{s€S|0<T (s)<Y(s)}|

DY/T,)= |{s€S|T,(s)> 0}

For jel,thereis
T, (Nl =T, (NNQ, =lg €0, | DY IT))>1- B}

Theorem 2. Let (Q,S,T) be composed of a family of fuzzy approximation spaces {(Q,,S,,T,)| ieI}. For
any qeQ, and seS;, jel, when (T, (s)=0, it satisfies T (s)=0, then for any Y e F(S),
B e(0.5,1], thereis T,'(Y s)NQ, < (T), (Y l5,)-
Proof of Theorem 2.
I,'(Y[)NQ, ={ge Q| DY, IT)>1-FNQ, ={g€Q, | DY | IT)>1-p}

If there is q'eT/;'(YISj)ﬂQj,then
[{s € S[0<T,(s)<Y]s ()}

[{s € S[T,.(s)>O0}]

D(Y |, /T,)= >1-5

ef(S) =0

For any Y and 7€ o, , by Definition 2 and when (7)), (s)=0 , satisfying L) , we

have
[is € SIT,(5) > 0} 2| {s €5, | T,.(5) > 0} | =[{s €5, | (T)),.() > O}
and
[{s € S[0<T, ()<Y s ()}
{58, [0<T, ()<Y |y ()} +] s €S-8, [0< T, () <V, (5)}]
(s, [0<T, ()<Y |y ()}
<{s€8,10<(T), ()<Y (3.
Then
{5 €8, 10<(T), ()<Y s ()}
15 €5, (7)), (5)> 0}
[{s€S[0<T, ()<Y (5)}]
ST eSIT(0)> 0}

g'e(T); (Y,

DY |y AT),) =

=D(Y| IT,)>1-p.

T, (¥ ,)NQ, (T, (¥ |;)

Then . Therefore .o

Theorem 3. Let (Q,S,T) be composed of a family of fuzzy approximation spaces {(Q,,S,,T,)| ieI}. For

270

any qeQ,, jel, Be(0.5,1], the following conclusions hold:

(1) If
i) (T, =T,1s, holds for seS,,
ii) T, ()=0 holds for SES_Sf,

then for any Y € F(S), thereis T, (Y 5)NQ; = (T), ¥ 5,)

(2) I for any Y € F(S), thereis T;'(Y 5)NQ, =(T), (Y ls,), then (T)), =T, -

(3) Let (K,), and K, are knowledge structures delineated by the lower inverse model of the variable
precision FT-rough set in the fuzzy approximation space (Q,,S,,T;,) and (Q,S,T) respectively. If
T,V )NQ; =(T), (Y5, then (K)), <Kyl -
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Proof of Theorem 3. (1) Since when seS,, (7)), =T, ls, » then when (7)), (s) =0, we have T (s)=0
. It is easy to know from Theorem 2 that for any Y € F(S), T;(Y |S/)ﬂQj c (TJ.);(Y |S/_).
Forany Y € F(S), if thereis ¢ e(Tj);,l(Y |Sj), then D(Y |Sj AT),)>1-p holds, i.e.
[{s€§;10<(T), ()<Y (5)}]
I{s €S, [(T),(s)> 0}

>1-4

and since when seS,, (Tj)q=7;|sj,then
[{s€8,[0<T, |y ()<Y ()}
[{s €S, |T, s, (s)> 0}
seS—SjI Tq(s):(),then
[{seS[0<T, ()<Y (5)}]
[{s € S[T,(s)> 05|

'Y .
then there is , therefore geTy (Yls) ng,
Therefore, T,'(Y 5)N0; = (T), (¥ 5,) holds.
(2) Use the proof by contradiction. For ¢ e Q,, there exists se S, such that (7,),(s) =7, | s, (s)
, that is, it satisfies 0< (7)), (s)<T,(s).Let n, =|{se S, [(T),(s)>0}|, n=[{seS|T,(s)>0}],

>1-4

Also, when
>1-4,

(T); (V) T, (¥ |)HNG,

D(Y |, IT))>1-5 then

i) When (T3)y ()70 , let
(T),(s)+T,(s)

Y (u)= 2 ’

0, u#s,uecs

7

then we have Y" e F(S), then there exists fe(0.5,1] such that DY |; AT)),) =L> 1-3.
J n

J
Therefore, g (T,), (Y ls,). And if for any S e (0.51], DY’ s, /T,)=0<1-p, then there must be
qeT,' (Y s,)NQ; . This contradicts ;'Y 5)NQ; = (T), (¥ 5,) -
ii) When (7,),(s)=0, let
Y = {T,,(S), u=s

uzs,ues

7

then Y e F(S), and for any Se(0.51], DY |s, [T;),)=0<1-4, then there must be

)

q¢(T),; (Y |s) , and there exists Se(0.51] such that D(Y'| /Tq)=1>1—,8 , then
Jj / n

qel,' (Y’ 5,)NQ;, which also contradicts 7, (Y| s )NQ, =(T, ), (Y 5,) - Therefore, (2) holds.
(3)Forany BeF(S;), K, ,=(T, );;‘ (B)e(K,;), betheknowledge state delineated by B viathe

lower inverse model. Let
. B'(s), seS,
Y'(s)= '
0, sesS— Sj

7

Y e F(S) , we have
(T)), (B) = (T)), (" |s)=T,'(v" [, )NO, €K; |,
Kl
However, it can be seen from Example 1, when g € (3,1], thereis (K} ) S ICﬂ' ‘Ql , (K, ) S ICﬂ' |QZ

,but (), =7, 15, (T), =T, s, (T), #T, |5 - Therefore, Theorem 3(1) is a sufficient but not

then

the

necessary condition for (K,), € K, |Q/ .
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Corollary 1. Let (Q,S,T) be composed of a family of fuzzy approximation spaces {(Q,,S,,T;)| i eI}. For

27

any jel, B =1, the following statements are equivalent.
(1) For any €9 pug ESJ', T), =T,1s, -
(2) Forany Y e F(S), T'(Y|)NQ, = (T (Y ).
Similar to Theorem 3, (K,); c K |Q/ can be deduced from Corollary1 (1) or (2).
Theorem 4. Let (Q,S,T) be composed of a family of fuzzy approximation spaces {(Q,,S,,T;)| iel}. If

T,=T,s holds for any geQ,, jel and Be(0.5,1], then T;l(YIS/)ﬂQj:Tﬂ’I(Y)ﬂQj holds for any
Y e F(S).

Proof of Theorem 4. i) For any Y e F(S), let quﬁ’l(Y|S/_)ﬂQj , then geQ,, jel and
[{s€S10<T ()<Y (s)}]
s 517,(5)>0})

T (s)=0 holds for seS-S,.Then
{seS|0<Tq(s)SY|S/ ()} ={seS|0<T, (s)<Y(s)}

DY | IT)>1-p, ie. >1-p . Since for any ¢geQ,, T, =T, ls, - then

Then there is
[{s€S|0<T (s)<Y(s)}|
[{s € S|T, (s)> 0}

>1-p8

Thatis D(Y/T,)>1-f. Therefore geT,'(Y)NQ,, then T;‘(Y|S/)ﬂngTﬁ’l(Y)ﬂQj.

ii) For any Y e F(S), let ¢eT;'(Y)NQ,, then geQ,, jel and DY /T)>1-p, that is
[{s€S[0<T,(s)<Y(s)}|

[{seS|T,(s)>0}]

. Then
s €S|0<T,(9) <Y ()}

[{s € S|T,(s)>0}]

>1-p.Sinceforany qeQ,, Tq=Tq|Sj,then T,(s)=0 holdsfor seS-S,

DY |y IT)>1-f geT, (Y [;)NQ,

that is , then there is

Then 1r NQ, €T, (Y1)HNQ;
Therefore, Tﬂ‘l(Y|Sf)ﬂQj =T,(Y)NQ, holds. o
However, if Tﬂ'l(Y|S})ﬂQj =T,'(Y)NQ, holds for any YeF(S) and Be(051], T, =T, s,
does not necessarily holds. The following uses the proof by contradiction to show that if
T;(Y|Sj)ﬂQj =T,'(Y)NQ, holds for any YeF(S) and B=1, then there is T, =T, |, for any
qeQ,, jel.
For geQ,, if there is T =T, ls, - then there exists seS-S,, such that 7 (s)>0. Let
Y*(u):{Tq(S)’ “=s , then Y e F(S), Y | =0, then T/;l(Y* | ) =< . Therefore, for any
0, u#s,uecsS g !
Be(051], there is T,'(Y 5,)NQ, = . And obviously [{seS[0<T (s)<Y (5)}[>0 , then
[{s € S|0<T,(s) <Y ()} .
[{s € S|T,(s)>0}]
Then there must be ge{geQ,|DY /T)>0}=T,"(Y')NQ, , which contradicts
'Y s, )NQ, =T (Y)NQ, forany Y e F(S). Therefore, T, =T, |, holds for p=1.

DY /T)= 1-p5=0.

Based on Theorems 3 and Theorems 4, we derive the conditions for the composability of the
knowledge structure delineated by the lower inverse model of variable precision FT-rough sets.
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Theorem 5. Let (Q,S,T) be composed of a family of fuzzy approximation spaces {(Q,,S,,T,)| ieI}. For
any qeQ;, je€l and Be(0.51], if T,=(T,), holds for seS,, and T,(s)=0 holds for seS-S,,
then

(1) T,'(NNQ, =(T)), (Y|s) forany YeF(S),

@) Fs=Ralo,
Proof of Theorem 5. (1) For any ¢e€Q,, (T),cT, s, <7, - If 7,=(7,), holds for seS,, and
T,(s)=0 holds for seS-S,, then T =T, |s]. holds for seS§,. Then by Theorem 3, for any
YeF(S) , we have T;'(Y 5)NQ, =(T), (¥ ) . And by Theorem 4, we have
T,'\(Y s, )NQ, =T, (Y)NQ, . Therefore, T;'(V)NQ, =(T,), (¥ |5,) holds.
(2) By (1), forany K eK,;, fe(05,1], thereexists ¥ e F(S) such that
K o= T,)MNQ, =(T), (Y 5,)€(K,); . Then K, |, < (K,),. And according to Theorem 3,
(KD =Ky lp, 50 (K)); =K5 1, holds. o

Theorem 5 is a sufficient condition for (K;), =K |, , but not necessary. The following Example
2 shows this.
Example 2. Let (Q,,S,,7;) and (Q,,S,,T,) be fuzzy approximation spaces,
where

0] :{%sqzsqs}, S, = {Spsz}, (Tl)q1 ={(s,,0.7),(s,,0.5)},

(T)),, = {(5,,0.8),(5,,0.1)}  (T)), ={(s,,0.9)}_

Q=10dd | S2=108 (1) = {(5,,0.)}, (B),, ={(5,,0.8),(5,,0.9)}.
(©@,5.7) composed of ©150T) angq (©52T)

Then

0=19.9,-95-9.} S={sl7s29S3}, (T),,l ={(s,,0.7),(s,,0.5)},

(1), =1(s,,0.8),(s,,0.7)} (1), ={(s,,09} (T), :{(s2,0.8),(s3,0.9)}'

Then for g e(3,1], the krrlowledge structure,s delineated by the lower inverse model under the
variable precision FT-rough setin (Q,,S,.7}), (0,,S,,T,) and (Q,S,T) are respectively:

(K =10:493:19.9.3.03  (Ky), = {Q{qz},{%},Qz}l

IC/; ={9.19,},:19.}:191, 9,119,943 191,45, 4.} O} )

Then
]Cﬂ_ ‘Ql = {gs{%}s{%sqz}’Q]} = (Kl);

K; lo.= {21403 10,3, 0.} = (),

N . -
So for Pei ’1], Ks is composed of (K1) and (KZ)”. However, 7, #(T,), . Therefore, for

any 99, , 0€ 5 , jel, I, =), is not a necessary condition for the composabilily of the
knowledge structure.
Corollary 2. Let (Q,S,T) be composed of a family of fuzzy approximation spaces {(Q,,S,,T,)| i€ I}. Then
we have:

(DIf O, iel arepairwise disjoint, then for f€(0.5,1], K, is composed of the family of knowledge
structures {(K,),|jel}.

2)If S,, i€l arepairwise disjoint, then for =1 andany jel, thereis (K)); =K |, .
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Proof of Corollary 2. (1) If Q,, i€l are pairwise disjoint, then forany ¢eQ,, j€I,when seS§,,
there is 7, =(T}),; when seS-S,, there is T, (s)=0. Then by Theorem 5, there is (K,), =K, |Qj .
Therefore, K, is composed of the knowledge structure family {(KC,),|je/}.

() If S, iel arepairwise disjoint, then forany ¢eQ,, j€l,when seS§,, thereis (7)), =T, ls, -
Then by corollary 1, there is (K,); < K |Q/_ .0

4.2. Composability of the Knowledge Structure Delineated by the Upper Inverse Model

Let the fuzzy approximation space (Q,S,T) be composed of a family of fuzzy approximation
spaces {(Q0,,S,,T;)| iel} . For (Q,,S,,T)), (j€l ), and any Y, eF(S,), the knowledge state

delineated via the upper inverse model of the variable precision FT-rough set by Y, is
(T =lg € Q, | DY, [(T),)2 B}
where
[15€5,10<(T), () <V, ()i |
[{s €S, [(T}),(s)> 0|
For any Y e F(S), the knowledge state delineated via the upper inverse model on the variable

051 4 D(Y, /(T),)=

precision FT-rough setby Y is
T;(Y)={q€Q|D(Y/7;)2ﬂ}’
where
[{s€S[0<T,(s)<¥(s)} |
[seSIT,()>0}

Be031] ang DY /T,)=

For J ej,there is

T;(Y)\QET}(Y)QQJ-={€1€Q,|D(Y/Tq)2ﬂ}_
Theorem 6. Let (Q,S,T) be composed of a family of fuzzy approximation spaces {(Q,,S,,T,)| ieI}. For
any qeQ, and seS,, jel , when (T)), (s)=0, it satisfies T (s)=0, then for any Y e F(S),
B €(0.5,1], thereis T, (Y |Sj)ﬂQj c(T),(Y l5,) -
Proof of Theorem 6.

Iy V15)NQ, =1g € QI DX |5 /IT) = BNQ, =19 0, | DY |5, /T)) = B}

If there is quﬂ*(Y|Sj)ﬂQj,then
[{s€SI0<T ()<Y, (S)}\>

|{s € S[T,(s) >0} |

e F(S) and geQ

DY, /T)) =

(T,), () =0 T,(s)=0

For any 7, by Definition 2 and when , satisfying we
have
[is € SIT,(5) > 0} 2/ s € S, 1T, () > 0} | =ts € S, [ (T)), (5) > O}

and
[{seS[0<T (s)<Y | (5)}]

=|{seSj|0<7;(S)SY|SJ )} +[{seS-S, |0<Tq(s)SY|Sj ()}
= {s€S;[0<T,(s)<Y]s ()}

Yis €S, 10<(T), ()<Y s ($)}].

Then
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158, 10<(T), ()Y |y ()
s €S, 1(T),(5)> 03]
_tseS10<T,(9) <Yy ()]

s € SIT,()> 0}
Then 9ETHTL) 1o TN, ST )

Theorem 7. Let (Q,S,T) be composed of a family of fuzzy approximation spaces {(Q,,S,,T,)| iI}. For

i

D(Y|;, [T),) =

=D(Y |, IT))> .
.0

any qeQ,, jel, Be(0.5,1], the following conclusions hold:

(1) If
i) (), =T,1s, holds for any seS,,
ii) T,()=0 holds for any SES_S«",

then for any Y € F(S), thereis T, (Y |Sj)ﬂQj =(T)),(Y ls,)-

(2) If forany Y € F(S), thereis T, (Y |S/_)ﬂQj =(T),(Y ls,), then (T)), =T, 15 .

(3) Let (K;), and K, are knowledge structures delineated by the upper inverse model of the variable
precision FT-rough set in the fuzzy approximation space (Q,,S,,T,) and (Q,S,T) respectively. If
Ty N0, =T, (Y |y, then (), <K, -

Proof of Theorem 7. (1) Since when seS,, (7)), =T, |S/ , then when (7)), (s)=0, we have T, (s)=0
. It is easy to know from Theorem 6 that for any Y e F(S), T, (Y ls,) NQ, c(T)),(Y ls,) -
Forany Y e F(S),if thereis qe(T,),(Y |Sj ), then DY |s, AT),)= B holds, ie.
58, [0<(T), ()<Y |y ()]
15 €5, 1(T),(5)> 0} _
And since when seS,, (T), =T, ls, » then
EALRANCE(NOIR
[s€S, 17,15 (5)> 0}

seS—SjI T,(s)=0

Also, since when , then
[{seS[0<T (s)<Y|g (S)}|>
[{s € S|T, (s)>0}] .
DY |, /T)= TS (Y . TYL(Y T (Y )
Then there is ¥l /1) ﬁ,andthen g€l ( |Sf)ﬂQ’.So,thereis( D) T, (Xl )NE,

Therefore, T, (Y s, YNQ, =(T,),(Y |s,) holds.
(2) Use the proof by contradiction. For g e Q,, there exists se S, such that (7,),(s)#7, | s, (s)
, that is, it satisfies 0<(T)), (s)<T,(s). Let n,={seS, [(T),(s)>0}|, n={seS|T,(s)>0}|, then

<
nj_n.

i) When (7}),()# 0 , let
(1), () +T,(s)

- 5,

Y (u) = (1), (w), u#s,ues,;
0, ueS—Sj

7
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. n, —1
then Y e F(S) . Then there exists fBe(0.5,1] such that D(Y ls, /T,) = 4

<pf, and then

quﬂ*(Y* |S/)ﬂQJ. . And for any Be(051, DY’ s, /(Tj)q):%:lzﬂ , then there must be

J

qe (Tj);(Y* |Sj ). This contradicts 7, (Y |SJ YNQ, =(T)), (Y |S, ).
ii) When (7,),(s) =0, let

0, Uu=s
Y (u) = (T),w) , u#sues,
0, uesS-3S§,

7

then Y eZ(S), and for any Be(0.51], DY | /(T/.)q):ﬂ:lzﬁ , then there must be
/ n

J
£ * n i
qe(T),(Y |g) , and there exists p'€(0.51] such that DY [ /T)= L <p' , then
J J n

qeT, " |S, n O, , which also contradicts 7 (¥ |S, n Q,=(T),(Y |S/ ) . Therefore, (2) holds.
(3)Forany Be F(S;), K;,=(T),(B)e(K,), betheknowledge state delineated by B via the
upper inverse model. Let
B(s), seS.,
vy < [BO) j
0, sesS— Sj

4

Y e F(S)

then , we have

(T);(B)=(T), (Y s )=T; (Y | )NQ, €K, |,

then (K =K o, .o

Similar to Theorem 3, Theorem 7(1) is a sufficient but not necessary condition for (X, ); c IC; o

Theorem 8. Let (Q,S,T) be composed of a family of fuzzy approximation spaces {(Q,,S,,T,)| iel}. If

T, =T, holds for any qeQ,, je€l and pe(0.5,1], then T/;(Y|Sj)ﬂQj=Tﬂ+(Y)ﬂQj holds for any
YeF(S).
Proof of Theorem 8. i) For any YeF(S), let quﬁ*(Y|S,)ﬂQj , then geQ,, jel and
D(Y |5, IT)2 f, ie.

[{seS[0<T, (s)<Y]g (S)}I>

[{s € S|T,(s) >0}

Since forany ¢ e Q,, thereis T, =T, |S/_,then T,(s)=0 holds for seS-5S,.

Then

{seS|0<7;(S)SY|S/ ()} ={seS|0<T, (s)<Y(s)}

Then there is

|{seS|0<Tq(s)SY(s)}\2ﬁ
|{s € S|T,(s)> 0}

thatis D(Y/T,)> g, and then qeT,(Y)NQ,. Then Tg(Y|S/_)ﬂQ/.ng(Y)ﬂQ/..
ii) Forany Y e F(S),let ¢eT,;(Y)NQ,, then gqeQ,, j€l and D(Y/T,)> j, thatis
|{S€S|0<Tq(s)SY(s)}\Zﬂ
[{s €SIT,(s)> 0}

Since forany qeQ,, j€l,thereis T, =T, |Sj,then T,(s)=0 holds for se S-S, . Then
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s eS10<T, () <¥l; O}
[{s € S|T,(s)>0}|

atis brls, /Tq)Z’B,then there is gel; (¥ |S')ﬂQj.
then TN, ST 71,00,
Therefore, T, (Y Is,)ﬂQ,- =T, (Y)Q, holds. o
However, if T, (Y |S})ﬂQj =T,(Y)NQ, holdsforany Y eF(S) andany ge(0.51], T, =T, ls

does not necessarily holds. The following uses the proof by contradiction to show that if
T (Y |S‘,)ﬂQj =T,(Y)NQ, holds for any Y e F(S) and f=1, then there is T, =T, 5, for any
qe€Q,, jel.
For geQ,,if thereis T, #T, s, / then there exists s € S-S, such that 7, (s)>0. Let
1, ues,
V@={T,(s), u=s

0, uis,ueS—Sj

th

7

Y e F(S)
n=[{seS|T (s)>0}]

then

Let , then
[{seS[0<T, ()<Y ()} n

Gesinwso  a Y

DY /T)=

Then for any S €(0.5,1], there mustbe ¢e7; (Y )NQ,. And
[{seSI0<T,(s)<Y | ()i n-1
[{seSIT,()>0  n

D(Y' |, IT,)=

then if =1, there is qeT, (Y 5,)NQ, , which contradicts 7;"(Y[; )NQ, =T (Y)NQ, for any
Y e F(S) . Therefore, T, =T, ls, holds for f=1.

Based on Theorems 7 and 8, we derive the conditions for the composability of the knowledge
structure delineated by the upper inverse model of variable precision FT-rough sets.
Theorem 9. Let (Q,S,T) be composed of a family of fuzzy approximation spaces {(Q,,S,,T,)| ieI}. For
any qeQ, , jel and Be(051], if T, =(T,), holds for se€S,;, and T (s)=0 holds for seS-S,,
then

(1) Forany Y € F(S), wehave T, (Y)NQ, =(T,),(Y l5,) -

oy €Kil
Proof of Theorem 9. (1) For any ¢ Q,, (7)), T, s, =T, Since T, =(T)), holds for seS,, then
(T),=T,ls,- And T (s)=0 holds for seS-S,, then T, =T |; holds for seS.Then by Theorem
7, for any Y e F(S) and S €(0.5,1], we have T, (Y |s,.)ﬂQ,- =(T),(Y ls,) - And by Theorem 8, we
have T;(Y |S, YNQ, =T, (Y)NQ,. Therefore, T, (Y)NQ, =(T;),(Y |SJ) holds.

(2) By (1), for any K:ﬁ ek; , PBe(051] , there exists YeF(S) such that
K;ﬁ lo, = T,NNQ, =(T),Y ls,) € (K;),. Then K, lo, < (K, ) - And according to Theorem 7, there is
(K); <K lo, SO (K=K, lp, holds. o

Similar to Theorem 5, Theorem 9 is a sufficient condition for (K;), =K |Q, , but not necessary.
Corollary 3. Let (Q,S,T) be composed of a family of fuzzy approximation spaces {(Q,,S,,T,)| iel}.If O,
iel are pairwise disjoint, then for Be(0.51], K; is composed of the family of knowledge structures
Ky ljel}.
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Proof of Corollary 3. If Q,, i€/ are pairwise disjoint, then for any geQ,, j€l, when seS,,
there is 7, =(T}),; when se S-S, there is T (s)=0. Then by Theorem 9, there is (K;), =K lo, -
Therefore, K; is composed of the knowledge structure family {(K;),|je1}.

Corollary 2 and Corollary 3 provide a method to ensure that the global information is a
consistent aggregation of local information. Specifically, if the problem domains in all local fuzzy
approximation spaces are pairwise disjoint, then the global knowledge structure delineated via the
lower inverse (or upper inverse) model of variable precision FT-rough sets in the global fuzzy
approximation space is the composition of the local knowledge structures.

5. Conclusions

This paper introduces the variable precision FT- rough set model and its properties, as well as
the knowledge structure delineated by the lower (upper) inverse operator based on this model. On
this basis, the conditions for the composability of the knowledge structure delineated by the lower
(upper) inverse operator of the variable precision FT- rough sets are studied. Meanwhile, the
conditions under which knowledge structures constructed from local fuzzy approximation spaces
can be composed into those built from global fuzzy approximation spaces are investigated. Future
work explores the necessary and sufficient conditions for composing knowledge structures into a
well-graded one, along with the construction of learning paths. Additionally, the composability of
dynamic knowledge structures is a promising research direction.
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