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Abstract: Constructing a knowledge structure using the variable precision FT-rough set model is an 
effective approach. Since directly constructing a knowledge structure for a subject or field is 
challenging, synthesizing global information from local information becomes a viable solution. 
However, local information often overlaps (partially), making it crucial to ensure consistency 
between global and local information, which is an urgent issue to address. Therefore, based on the 
variable precision FT-rough set model and the knowledge structure constructed from it, this paper 
investigates the conditions for the composability of knowledge structures constructed using the 
lower (upper) inverse operator of the variable precision FT-rough set. Under these conditions, the 
knowledge structure constructed from the local fuzzy approximation space can be integrated into the 
knowledge structure constructed from the global fuzzy approximation space. 

Keywords: knowledge space theory; variable precision FT-rough set; fuzzy approximation space; 
knowledge structure; composability condition 
 

1. Introduction 

Knowledge Space Theory (KST) [1] is a mathematical theoretical framework grounded in 
pedagogy and psychology, providing an effective methodology for studying educational principles 
and enabling scientific educational assessment and learning guidance. KST has since evolved into 
various research branches, including competency-based knowledge space theory [2,3] and 
polytomous knowledge space theory [4,5]. A systematic overview of KST’s theoretical advances and 
applications was provided by Li et al. [6]. KST has been successfully applied in fields such as assisted 
learning and adaptive testing. For instance, the learning platform ALEKS (Assessment and Learning 
in Knowledge Spaces) [7] is developed based on this theory. 

Construction of knowledge structures is one of the key research topics in KST. A knowledge 
structure encompasses all possible knowledge states, where each knowledge state represents a subset 
of problems in a specific domain or subject. Thus these knowledge states reflect an individual's 
cognitive level in the corresponding field. Doignon et al. [2] introduced skill maps and skill 
multimaps, establishing relationships between problems and skills, and proposed methods for 
constructing knowledge structures based on these maps. In recent years, integrating Rough Set 
Theory (RST) [8] and Fuzzy Set Theory (FST) [9] into knowledge spaces has emerged as a significant 
research direction. Notable contributions include: Yao et al. [10] pioneered the introduction of rough 
set approximation concepts into KST to construct knowledge structures. Liu [11] established 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2025 doi:10.20944/preprints202505.0110.v1

©  2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0110.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 16 

 

connections between rough set-based upper and lower approximation operators and skill maps and 
skill multimaps, proposing new methods for knowledge structure construction. Sun et al. [12] 
incorporated Fuzzy Set Theory into KST, proposing a novel theoretical framework for constructing 
knowledge structures using fuzzy skill maps and fuzzy skill multimaps. Xu et al. [13] further 
advanced this direction by introducing variable precision models based on fuzzy skill maps and 
variable precision competency models based on fuzzy skill multimaps. 

In the study of rough sets, several distinct rough set models have been developed, including: the 
variable precision T-rough set proposed by Zhu et al. [14]; the double-universe T-rough fuzzy set 
model under general fuzzy binary relations introduced by Thao et al. [15]; the fuzzy T-rough set (FT-
rough set) investigated by Zhang et al. [16], who examined the properties of its upper and lower 
inverse operators under union and intersection operations. The FT-rough set model offers the 
advantage of handling continuous data while preserving data integrity. However, the conditions for 
knowledge state induction by its upper and lower inverse operators can be either too strict or too 
lenient. In contrast, the variable precision rough set model permits a certain misclassification rate 
during the classification process. Therefore, employing the upper and lower inverse operators of 
variable precision FT-rough sets to induce knowledge states allows for threshold adjustment of the 
required skill mastery ratio when solving problems. This approach effectively mitigates the issues of 
overly strict or lenient conditions mentioned above. 

When constructing a knowledge structure for a specific domain or subject, it is necessary to first 
define a problem domain Q . One or more experts are then required to identify all valid knowledge 
states. However, since the number of possible subsets (knowledge states) grows exponentially with 
the size of Q  ( | |Q ), and | |Q  is typically large in practical applications, it becomes clearly infeasible 
to have experts directly determine all possible states for the entire problem domain [1]. A viable 
alternative approach involves constructing large knowledge structures by combining smaller ones. 
Specifically, this method decomposes Q  into sufficiently small subdomains that can be completely 
covered, with different experts independently identifying and assigning relevant problem-solving 
skills to each subdomain. However, inconsistencies may arise in skill assignments among different 
experts, leading to two key challenges: How to ensure global consistency when aggregating local 
information? Is it possible to properly distribute global information to local contexts? To address 
these issues, Heller et al. [17] introduced the concept of distributed skill functions, which can 
represent the integration of a finite number of skill functions. This approach enables the synthesis of 
local information provided by multiple experts into a globally consistent framework, leveraging the 
composability property of knowledge structures to resolve the aforementioned problems. 

This paper first introduces relevant basic concepts, then addresses the aforementioned problems 
by investigating the composability conditions of knowledge structures constructed based on the 
upper (lower) inverse operators of variable precision FT-rough sets. 

2. Preliminaries 

In this section, the core concepts of fuzzy sets, FT-rough sets, and KST are briefly reviewed to 
establish the theoretical framework. 

The following is a brief overview of fuzzy sets, which proposed by Zadeh [9] in 1965.  
A fuzzy set over the universe S  is a map from S  to the real interval [0,1] , i.e., : [0,1]Y S → . 

s S∀ ∈ , ( ) [0,1]Y s ∈  denotes the membership grade of s  with respect to Y . Generally, the family 
of all fuzzy sets on S  is denoted as: ( ) { | : [0,1]}S Y Y S= → . For convenience, we denote 

: [0,1]Y S →  by {( , ( )) : }Y s Y s s S= ∈ . Additionally, we suppress ( , ( ))s Y s  if ( ) 0Y s =  for any 
s S∈ . The definitions of equality relations, inclusion relations, and the operations of union, and 
intersection on ( )S  are as follows [9,12]: 

1 2 1 2( ) ( )Y Y Y s Y s= ⇔ = , s S∀ ∈ ; 
1 2 1 2( ) ( )Y Y Y s Y s⊆ ⇔ ≤ , s S∀ ∈ ; 
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1 2 1 2 )( )( () ) (Y s Y s sYY ⇔ ∨ , s S∀ ∈ ; 
1 2 1 2 )( )( () ) (Y s Y s sYY ⇔ ∧ , s S∀ ∈ . 

Let Q  and S  be two nonempty finite sets, if for each q Q∈ , there corresponds a nonempty 
fuzzy set on S , then : ( ) \{ }T Q S→ ∅  is called a fuzzy set-valued map [9], where 

( ) ( ) \{ }T q S∈ ∅ . For convenience, we denote ( )T q  by qT . And we call the triple ( , , )Q S T  a 

fuzzy approximation space. 
Based on the fuzzy set-valued map, and for ( )Y S∈ , the upper inverse( ( )T Y+ ) and lower 

inverse( 1( )T Y− ) approximations of Y  are respectively defined as: 
( ) { | , ( ) ( )}qT Y q Q s S T s Y s+ = ∈ ∀ ∈ ≤ , 

1( ) { | ,0 ( ) ( )}qT Y q Q s S T s Y s− = ∈ ∃ ∈ < ≤ . 
Then the ordered pair 1( ( ), ( ))T Y T Y+ −  is called an FT-rough set. 
Knowledge states, knowledge structures, etc. are fundamental concepts in KST. Let Q  be a 

nonempty finite set of items and   be a family of subsets of Q , then a knowledge structure is the 
pair ( , )Q  , where   contains at least the empty set ∅  and Q . And each element K  in   is 
referred to a knowledge state. If for any ,M N ∈ , their union M N  is also a knowledge state of 
 , then ( , )Q   is called a knowledge space. If for any ,M N ∈ , their intersection M N  is also 
a knowledge state of  , then ( , )Q   is called a simple closure space. And if ( , )Q   is both a 
knowledge space and a simple closure space, then it is called a quasi-ordinal space. 

Let ( , )Q   be a knowledge structure, for Q Q′ ⊂  and Q′ ≠ ∅ , the projection (or trace) of   
on Q′  is defined as | { | }Q K Q K′ ′= ∈  . Here |Q′  is a substructure of  , and   is the parent 
structure of |Q′  [1]. Based on this, the composition of knowledge structures is defined as follows. 

Definition 1 [1]. Let ( , ) , i iQ i I∈  and ( , )Q   be knowledge structures. ( , )Q   is said to be a 
composition of the family of knowledge structures {( , ) | }i iQ i I∈ , if the following conditions are 
satisfied: 

(1) 
i

i I

Q Q
∈

=


; 

(2) 
, |

ii Qi I∀ ∈ = 
. 

Definition 2 [17]. Let ( , , ),   i i iQ S T i I∈  be fuzzy approximation spaces, their composition ( , , )Q S T  
is defined by: 

(1) 
i

i I

Q Q
∈

=


; 

(2) 
i

i I

S S
∈

=


; 

(3) q Q∀ ∈ , 
*( )q i q

i I

T T
∈

=


, where 
{* ( )    ( )        

i q i
i q

i

T q QT q Q
∈= ∅ ∉

，
， . 

It can be easily proved that ( , , )Q S T  is also a fuzzy approximation space. 
In [12], the concepts from fuzzy sets theory are extended to knowledge spaces, leading to the 

definition of a fuzzy skill map. Let ( )Q,S,T  be a fuzzy approximation space, and regarding Q  as a 
nonempty finite set of items(or questions) and S  as a nonempty finite set of skills. Then T  
represents a map from the item(or questions) set Q  to the fuzzy skill set family ( ) \{ }S ∅ . In KST, 
it means that to solve a question, an individual should first master the skills related to solving the 
question to a certain extent, i.e. qT ≠ ∅ . The triple ( , , )Q S T  is also referred to as fuzzy skill map in 

KST. 
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3. Variable Precision FT-Rough Sets and the Knowledge Structure Con-tructed 

This section introduces the variable precision FT-rough set model and the properties of its 
operators, and proposes a knowledge structure constructed based on this model. 

Definition 3. Let ( , , )Q S T  be a fuzzy approximation space. For any ( )B S∈ , (0.5,1]β ∈ , the β -
lower inverse and β -upper inverse of B  with respect to T  are defined as  

1 | { | 0 ( ) ( )} |
( ) { | 1 }

|{ | ( ) 0} |
q

q

s S T s B s
T B q Q

s S T sβ β− ∈ < ≤
= ∈ > −

∈ > , 
| { | 0 ( ) ( )} |

( ) { | }
|{ | ( ) 0} |

q

q

s S T s B s
T B q Q

s S T sβ β+ ∈ < ≤
= ∈ ≥

∈ >

. 
Then the ordered pair 1( ( ), ( ))T B T Bβ β

+ −  is called a β -variable precision FT-rough set. 

The upper and lower inverse operators of the variable precision FT-rough sets possess the 
following properties: 

Proposition 1. Let ( )Q,S,T  be a fuzzy approximation space. For , ( )A B S∈ , (0.5,1]β ∈ , then 

(1) 
1( ) ( )T Tβ β
− +∅ = ∅ = ∅ ; 

(2) 
1( ) ( )T S T S Qβ β
− += = ; 

(3) 
1( ) ( )T B T Bβ β

+ −⊆ ; 
(4) If A B⊆ , then 

( ) ( )T A T Bβ β
+ +⊆ , 

1 1( ) ( )T A T Bβ β
− −⊆ ; 

(5) ( ) ( ) ( )T A B T A T Bβ β β
+ + +⊆  ; 

(6) ( ) ( ) ( )T A T B T A Bβ β β
+ + +⊆  ; 

(7) 
1 1 1( ) ( ) ( )T A T B T A Bβ β β
− − −⊆  ; 

(8) 
1 1 1( ) ( ) ( )T A B T A T Bβ β β
− − −⊆  ; 

(9) If 1 2 10.5 ββ < ≤< , then 

2 1 1 2

1 1( ) ( ) ( ) ( )T B T B T B T Bβ β β β
+ + − −⊆ ⊆ ⊆

. 
The proof of Proposition 1 is similar to the proof of the properties of FT-rough sets in [16], and 

it is not listed here. 
From Definition 3, it follows that when the threshold β  takes the value of 1, the variable 

precision -rough sets will degenerate into the FT-rough sets. Therefore, the variable precision FT-
rough set has wider applicability than the FT-rough sets. 

As shown in Proposition 1, the upper and lower inverse operators of variable precision FT-rough 
sets can induce knowledge states and derive knowledge structures. 

Definition 4 [13]. Let ( )Q,S,T  be a fuzzy approximation space. For any q Q∈ , ( )B S∈ , we call  
| { | 0 ( ) ( )} |

( / )
| { | ( ) 0} |

q
q

q

s S T s B s
D B T

s S T s
∈ < ≤

=
∈ >  

a fuzzy skill inclusion degree with respect to qT  and B . 

Definition 5. Given a fuzzy approximation space ( )Q,S,T , the knowledge state delineated by the 
lower inverse model of the variable precision FT-rough set with respect to B ( ( )B S∈ ) is defined 
by 

1
, ( ) { | ( / ) 1 }B qK T B q Q D B Tβ β β− −= = ∈ > − , 
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where (0.5,1]β ∈ .  
The family of all the knowledge states delineated by the lower inverse model is denoted by 

,{ | ( )}BK B Sβ β
− −= ∈  . 

Definition 6. Given a fuzzy approximation space ( )Q,S,T , the knowledge state delineated by the 
upper inverse model of the variable precision FT-rough set with respect to B ( ( )B S∈ ) is defined 
by 

, ( ) { | ( / ) }B qK T B q Q D B Tβ β β+ += = ∈ ≥ , 

where (0.5,1]β ∈ .  
The family of all the knowledge states delineated by the lower inverse model is denoted by 

,{ | ( )}BK B Sβ β
+ += ∈  . 

Theorem 1. Given a fuzzy approximation space ( )Q,S,T , and the families of the knowledge states delineated 
by the lower and upper inverse models are ,{ | ( )}BK B Sβ β

− −= ∈   and ,{ | ( )}BK B Sβ β
+ += ∈  , respectively. 

Then both β
−  and β

+  are knowledge structures. 

Proof of Theorem 1. It can be easily deduced from (1) and (2) of Proposition 1 that when B = ∅ , we 
have 1 1( ) ( )T B Tβ β

− −= ∅ =∅ , and ( ) ( )T B Tβ β
+ += ∅ =∅ ; when B S= , we have 1 1( ) ( )T B T S Qβ β

− −= = , and 

( ) ( )T B T S Qβ β
+ += = . Then  

1
,{ ( ) | ( )} { | ( )}BT B B S K B Sβ β β

− − −= ∈ = ∈   , 
,{ ( ) | ( )} { | ( )}BT B B S K B Sβ β β

+ + += ∈ = ∈   , 
are the knowledge structures delineated by the lower and upper inverse models of the variable 
precision FT-rough set respectively. 

4. Composability of Knowledge Structure 

Let the fuzzy approximation space ( , , )Q S T  be composed of the family of fuzzy approximation 
spaces }{( , , ) |  i i iQ S iT I∈ . The variable precision threshold is β ( (0.5,1]β ∈ ), the knowledge 
structures delineated by the lower inverse and upper inverse models of the variable precision FT-
rough set in the fuzzy approximation space ( , , )i i iQ S T ,  i I∈  are denoted as ( )i β

−  and ( )i β
+  

respectively. The knowledge structures delineated by the lower inverse and upper inverse models of 
the variable precision FT-rough set in the fuzzy approximation space ( , , )Q S T  are denoted as β

−  

and β
+  respectively. This section studies the conditions under which β

−  and β
+  can be 

composed of the knowledge structure families {( ) | }i i Iβ
− ∈  and {( ) | }i i Iβ

+ ∈  respectively. 

For convenience, the following notation is given: 

Notation 1. Let ( )Y S∈ , jS S⊆ , denote 

( ),     | ( )    0,       j

j
S

j

Y s s SY s s S S
∈=  ∈ − . 

Then the knowledge structure β
−  delineated by the lower inverse model of the variable 

precision FT-rough set in the fuzzy approximation space ( , , )Q S T  is not necessarily the composition 
of the knowledge structure family }{( ) |  i i Iβ

− ∈ . The knowledge structure β
+  delineated by the 

upper inverse model is not necessarily the composition of }{( ) |  i i Iβ
+ ∈ . Example 1 below illustrates 

this problem. 

Example 1. Let 1 1 1( , , )Q S T  and 2 2 2( , , )Q S T  be two fuzzy approximation spaces, where 

1 1 2 3{ , , }Q q q q= , 1 1 2 3{ , , }S s s s= , 
11 1 2( ) {( ,0.7), ( ,0.5)}qT s s= ,  
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21 1 2 3( ) {( ,0.8), ( ,0.6), ( ,0.6)}qT s s s=
, 31 2 3( ) {( ,0.7), ( ,0.6)}qT s s=

;  

2 1 3 4{ , , }Q q q q= , 2 2 3 4{ , , }S s s s= , 
12 2 3( ) {( ,0.6), ( ,0.8)}qT s s= , 

32 2 3( ) {( ,0.8), ( ,0.7)}qT s s=
, 42 3 4( ) {( ,0.7), ( ,0.6)}qT s s=

.  

Let ( , , )Q S T  is composed of 1 1 1( , , )Q S T  and 2 2 2( , , )Q S T , then  
1 2 3 4{ , , , }Q q q q q= , 1 2 3 4{ , , , }S s s s s= ,  

1 1 2 3( ) {( ,0.7), ( ,0.6), ( ,0.8)}qT s s s=
, 2 1 2 3( ) {( ,0.8), ( ,0.6), ( ,0.6)}qT s s s=

, 

3 2 3( ) {( ,0.8), ( ,0.7)}qT s s=
, 4 3 4( ) {( ,0.7), ( ,0.6)}qT s s=

. 
In the following, taking 2

3( ,1]β ∈  as an example, calculate the knowledge structures delineated 
by the lower and upper inverse models under the variable precision FT-rough set in 1 1 1( , , )Q S T , 

2 2 2( , , )Q S T  and ( , , )Q S T , respectively. 

(1) In 1 1 1( , , )Q S T : 
1 1 1 2 2 3 1( ) { ,{ },{ , },{ , }, }q q q q q Qβ

− = ∅ , 
1 1 3 1 3 2 3 1( ) { ,{ },{ },{ , },{ , }, }q q q q q q Qβ

+ = ∅ ; 

(2) In 2 2 2( , , )Q S T : 
2 1 4 1 3 1 4 3 4 2( ) { ,{ },{ },{ , },{ , },{ , }, }q q q q q q q q Qβ

− = ∅ , 
2 1 3 4 1 3 1 4 3 4 2( ) { ,{ },{ },{ },{ , },{ , },{ , }, }q q q q q q q q q Qβ

+ = ∅ ; 

(3) In ( , , )Q S T : 

1 2 4 1 2 1 4 2 4

1 2 3 1 2 4 2 3 4

{ ,{ },{ },{ },{ , },{ , },{ , },
           { , , },{ , , },{ , , }, }

q q q q q q q q q
q q q q q q q q q Q

β
− = ∅

 
1 2 3 4 1 2 1 3 1 4

2 3 2 4 3 4 1 2 3 1 2 4

1 3 4 2 3 4

{ ,{ },{ },{ },{ },{ , },{ , },{ , },
          { , },{ , },{ , },{ , , },{ , , },
          { , , },{ , , }, }

q q q q q q q q q q
q q q q q q q q q q q q
q q q q q q Q

β
+ = ∅

 
Then the projections of β

−  on 1Q  and 2Q  are respectively: 

1 1 2 1 2 2 3 1| { ,{ },{ },{ , },{ , }, }Q q q q q q q Qβ
− = ∅

, 

2 1 4 1 3 1 4 3 4 2| { ,{ },{ },{ , },{ , },{ , }, }Q q q q q q q q q Qβ
− = ∅

. 
The projections of β

+  on 1Q  and 2Q  are respectively: 

1 1 2 3 1 2 1 3 2 3 1| { ,{ },{ },{ },{ , },{ , },{ , }, }Q q q q q q q q q q Qβ
+ = ∅

, 

2 1 3 4 1 3 1 4 3 4 2| { ,{ },{ },{ },{ , },{ , },{ , }, }Q q q q q q q q q q Qβ
+ = ∅

. 
It can be seen that 

11( ) |Qβ β
− −≠  , 

22( ) |Qβ β
− −=  , 

11( ) |Qβ β
+ +≠  , 

22( ) |Qβ β
+ +=  . Therefore, when 

2
3( ,1]β ∈ , β

−  is not the composition of 1( )β
−  and 2( )β

− , and β
+  is not the composition of 1( )β

+  

and 2( )β
+ .  

4.1. Composability of the Knowledge Structure Delineated by the Lower Inverse Model 

Let the fuzzy approximation space ( , , )Q S T  be composed of a family of fuzzy approximation 
spaces }{( , , ) |  i i iQ S iT I∈ . For ( , , )j j jQ S T , ( j I∈ ), and any ( )j jY S∈ , then the knowledge state 
delineated via the lower inverse model of the variable precision FT-rough set by jY  is  

1( ) ( ) { | ( / ( ) ) 1 }j j j j j qT Y q Q D Y Tβ β− = ∈ > − , 
where 

(0.5,1]β ∈  and 
| { | 0 ( ) ( ) ( )} |

( / ( ) )
| { | ( ) ( ) 0} |

j j q j
j j q

j j q

s S T s Y s
D Y T

s S T s
∈ < ≤

=
∈ >

. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2025 doi:10.20944/preprints202505.0110.v1

https://doi.org/10.20944/preprints202505.0110.v1


 7 of 16 

 

For any ( )Y S∈ , the knowledge state delineated via the lower inverse model of the variable 
precision FT-rough set by Y  is 

1( ) { | ( / ) 1 }qT Y q Q D Y Tβ β− = ∈ > − , 
where 

| { | 0 ( ) ( )} |
( / )

| { | ( ) 0} |
q

q
q

s S T s Y s
D Y T

s S T s
∈ < ≤

=
∈ > . 

For j I∈ , there is  
1 1( ) | ( ) { | ( / ) 1 }

jQ j j qT Y T Y Q q Q D Y Tβ β β− −= = ∈ > −

. 

Theorem 2. Let ( , , )Q S T  be composed of a family of fuzzy approximation spaces }{( , , ) |  i i iQ S iT I∈ . For 
any jq Q∈  and js S∈ , j I∈ , when ( ) ( ) 0j qT s = , it satisfies ( ) 0qT s = , then for any ( )Y S∈ , 

(0.5,1]β ∈ , there is 1 1( | ) ( ) ( | )
j jS j j ST Y Q T Yβ β

− −⊆ . 

Proof of Theorem 2.  
1 ( | ) { | ( | / ) 1 } { | ( | / ) 1 }

j j jS j S q j j S qT Y Q q Q D Y T Q q Q D Y Tβ β β− = ∈ > − = ∈ > − 

. 
If there is 1' ( | )

jS jq T Y Qβ
−∈  , then  

'
'

'

| { | 0 ( ) | ( )} |
( | / ) 1

|{ | ( ) 0} |
j

j

q S
S q

q

s S T s Y s
D Y T

s S T s
β

∈ < ≤
= > −

∈ > . 

For any ( )Y S∈  and jq Q∈ , by Definition 2 and when ( ) ( ) 0j qT s = , satisfying ( ) 0qT s = , we 
have 

' ' '{ | ( ) 0} |{ | ( ) 0} | = { | ( ) ( ) 0}q j q j j qs S T s s S T s s S T s∈ > ≥ ∈ > ∈ >
 

and 
'

' '

'

'

 | { | 0 ( ) | ( )} |

| { | 0 ( ) | ( )} | | { | 0 ( ) | ( )} |

| { | 0 ( ) | ( )} |

| { | 0 ( ) ( ) | ( )} | .

j

j j

j

j

q S

j q S j q S

j q S

j j q S

s S T s Y s

s S T s Y s s S S T s Y s

s S T s Y s

s S T s Y s

∈ < ≤

= ∈ < ≤ + ∈ − < ≤

= ∈ < ≤

≤ ∈ < ≤
 

Then 
'

'
'

'
'

'

| { | 0 ( ) ( ) | ( )} |
     ( | /( ) )

| { | ( ) ( ) 0} |
| { | 0 ( ) | ( )} |

( | / ) 1 .
| { | ( ) 0} |

j

j

j

j

j j q S
S j q

j j q

q S
S q

q

s S T s Y s
D Y T

s S T s
s S T s Y s

D Y T
s S T s

β

∈ < ≤
=

∈ >

∈ < ≤
≥ = > −

∈ >  

Then 
1' ( ) ( | )

jj Sq T Yβ
−∈

. Therefore 
1 1( | ) ( ) ( | )

j jS j j ST Y Q T Yβ β
− −⊆

. □ 

Theorem 3. Let ( , , )Q S T  be composed of a family of fuzzy approximation spaces }{( , , ) |  i i iQ S iT I∈ . For 
any jq Q∈ , j I∈ , (0.5,1]β ∈ , the following conclusions hold: 

(1) If  
i) ( ) |

jj q q ST T=  holds for js S∈ , 

ii) ( ) 0qT s =  holds for js S S∈ − , 
then for any ( )Y S∈ , there is 1 1( | ) ( ) ( | )

j jS j j ST Y Q T Yβ β
− −= . 

(2) If for any ( )Y S∈ , there is 1 1( | ) ( ) ( | )
j jS j j ST Y Q T Yβ β

− −= , then ( ) |
jj q q ST T= . 

(3) Let ( )j β
−  and β

−  are knowledge structures delineated by the lower inverse model of the variable 
precision FT-rough set in the fuzzy approximation space ( , , )j j jQ S T  and ( , , )Q S T  respectively. If 

1 1( | ) ( ) ( | )
j jS j j ST Y Q T Yβ β

− −= , then ( ) |
jj Qβ β

− −⊆  . 
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Proof of Theorem 3. (1) Since when js S∈ , ( ) |
jj q q ST T= , then when ( ) ( ) 0j qT s = , we have ( ) 0qT s =

. It is easy to know from Theorem 2 that for any ( )Y S∈ , 1 1( | ) ( ) ( | )
j jS j j ST Y Q T Yβ β

− −⊆ .  

For any ( )Y S∈ , if there is 1( ) ( | )
jj Sq T Yβ

−∈ , then ( | /( ) ) 1
jS j qD Y T β> −  holds, i.e. 

| { | 0 ( ) ( ) | ( )} |
1

|{ | ( ) ( ) 0} |
jj j q S

j j q

s S T s Y s

s S T s
β

∈ < ≤
> −

∈ > ; 
and since when js S∈ , ( ) |

jj q q ST T= , then  

| { | 0 | ( ) | ( )} |
1

|{ | | ( ) 0} |
j j

j

j q S S

j q S

s S T s Y s

s S T s
β

∈ < ≤
> −

∈ >
. 

Also, when js S S∈ − , ( ) 0qT s = , then  
| { | 0 ( ) | ( )} |

1
|{ | ( ) 0} |

jq S

q

s S T s Y s

s S T s
β

∈ < ≤
> −

∈ >
, 

then there is 
( | / ) 1

jS qD Y T β> −
, therefore 

1( | )
jS jq T Y Qβ

−∈ 

, then 
1 1( ) ( | ) ( | )

j jj S S jT Y T Y Qβ β
− −⊆ 

. 
Therefore, 1 1( | ) ( ) ( | )

j jS j j ST Y Q T Yβ β
− −=  holds. 

(2) Use the proof by contradiction. For jq Q∈ , there exists js S∈ , such that ( ) ( ) | ( )
jj q q ST s T s≠

, that is, it satisfies 0 ( ) ( ) ( )j q qT s T s≤ < . Let | { | ( ) ( ) 0} |j j j qn s S T s= ∈ > , | { | ( ) 0} |qn s S T s= ∈ > , 

i) When ( ) ( ) 0j qT s ≠ , let 

*
( ) ( ) ( )

,        ( ) 2
           0,                    ,

j q qT s T s
u sY u
u s u S

+
== 

 ≠ ∈ ,  

then we have * ( )Y S∈ , then there exists (0.5,1]β ∈  such that * 1( | /( ) ) 1
jS j q

j

D Y T
n

β= > − . 

Therefore, 1 *( ) ( | )
jj Sq T Yβ

−∈ . And if for any (0.5,1]β ∈ , *( | / ) 0 1
jS qD Y T β= ≤ − , then there must be 

1 *( | )
jS jq T Y Qβ

−∉  . This contradicts 1 1( | ) ( ) ( | )
j jS j j ST Y Q T Yβ β

− −= . 

ii) When ( ) ( ) 0j qT s = , let  

* ( ),       
( )

  0,           ,
qT s u s

Y u
u s u S
== 
≠ ∈ , 

then * ( )Y S∈ , and for any (0.5,1]β ∈ , *( | /( ) ) 0 1
jS j qD Y T β= ≤ − , then there must be 

1 *( ) ( | )
jj Sq T Yβ

−∉ , and there exists (0.5,1]β ∈  such that * 1( | / ) 1
jS qD Y T

n
β= > − , then 

1 *( | )
jS jq T Y Qβ

−∈  , which also contradicts 1 1( | ) ( ) ( | )
j jS j j ST Y Q T Yβ β

− −= . Therefore, (2) holds. 

(3) For any ( )jB S∈ , 1
, ( ) ( ) ( )B j jK T Bβ β β

− − −= ∈   be the knowledge state delineated by B  via the 

lower inverse model. Let  

*
( ),       

( )
  0,           

j

j

B s s S
Y s

s S S

′ ∈=  ∈ − ,  

then 
* ( )Y S∈ , we have 

1 1 * 1 *( ) ( ) ( ) ( | ) ( | ) |
j j jj j S S j QT B T Y T Y Qβ β β β

− − − −′ = = ∈

, 

then 
( ) |

jj Qβ β
− −⊆ 

. □ 
However, it can be seen from Example 1, when 2

3( ,1]β ∈ , there is 
11( ) |Qβ β

− −⊆  , 
22( ) |Qβ β

− −⊆ 

, but 
1 1 11( ) |q q ST T≠ , 

2 2 11( ) |q q ST T= , 
3 3 11( ) |q q ST T≠ . Therefore, Theorem 3(1) is a sufficient but not 

necessary condition for ( ) |
jj Qβ β

− −⊆  . 
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Corollary 1. Let ( , , )Q S T  be composed of a family of fuzzy approximation spaces }{( , , ) |  i i iQ S iT I∈ . For 
any j I∈ , 1β = , the following statements are equivalent. 

(1) For any jq Q∈  and js S∈ , ( ) |
jj q q ST T= . 

(2) For any ( )Y S∈ , 1 1
1 1( | ) ( ) ( | )

j jS j j ST Y Q T Y− −= . 

Similar to Theorem 3, 1 1( ) |
jj Q

− −⊆   can be deduced from Corollary1 (1) or (2). 

Theorem 4. Let ( , , )Q S T  be composed of a family of fuzzy approximation spaces }{( , , ) |  i i iQ S iT I∈ . If 
|

jq q ST T=  holds for any jq Q∈ , j I∈  and (0.5,1]β ∈ , then 1 1( | ) ( )
jS j jT Y Q T Y Qβ β

− −=   holds for any 

( )Y S∈ . 
Proof of Theorem 4. i) For any ( )Y S∈ , let 1( | )

jS jq T Y Qβ
−∈  , then jq Q∈ , j I∈  and 

( | / ) 1
jS qD Y T β> − , i.e. 

| { | 0 ( ) | ( )} |
1

|{ | ( ) 0} |
jq S

q

s S T s Y s

s S T s
β

∈ < ≤
> −

∈ >
. Since for any jq Q∈ , |

jq q ST T= , then 

( ) 0qT s =  holds for js S S∈ − . Then  
{ | 0 ( ) | ( )} { | 0 ( ) ( )}

jq S qs S T s Y s s S T s Y s∈ < ≤ = ∈ < ≤
,  

Then there is  
| { | 0 ( ) ( )} |

1
|{ | ( ) 0} |

q

q

s S T s Y s
s S T s

β
∈ < ≤

> −
∈ > , 

That is ( / ) 1qD Y T β> − . Therefore 1( ) jq T Y Qβ
−∈  , then 1 1( | ) ( )

jS j jT Y Q T Y Qβ β
− −⊆  . 

ii) For any ( )Y S∈ , let 1( ) jq T Y Qβ
−∈  , then  jq Q∈ , j I∈  and ( / ) 1qD Y T β> − , that is 

| { | 0 ( ) ( )} |
1

|{ | ( ) 0} |
q

q

s S T s Y s
s S T s

β
∈ < ≤

> −
∈ >

. Since for any jq Q∈ , |
jq q ST T= , then ( ) 0qT s =  holds for js S S∈ −

. Then 
| { | 0 ( ) | ( )} |

1
|{ | ( ) 0} |

jq S

q

s S T s Y s

s S T s
β

∈ < ≤
> −

∈ > , 

that is 
( | / ) 1

jS qD Y T β> −
, then there is 

1( | )
jS jq T Y Qβ

−∈ 

. 

Then 
1 1( ) ( | )

jj S jT Y Q T Y Qβ β
− −⊆ 

. 
Therefore, 1 1( | ) ( )

jS j jT Y Q T Y Qβ β
− −=   holds. □ 

However, if 1 1( | ) ( )
jS j jT Y Q T Y Qβ β

− −=   holds for any ( )Y S∈  and (0.5,1]β ∈ , |
jq q ST T=  

does not necessarily holds. The following uses the proof by contradiction to show that if 
1 1( | ) ( )

jS j jT Y Q T Y Qβ β
− −=   holds for any ( )Y S∈  and 1β = , then there is |

jq q ST T=  for any 

jq Q∈ , j I∈ . 
For jq Q∈ , if there is |

jq q ST T≠ , then there exists js S S∈ − , such that ( ) 0qT s > . Let 

* ( ),       
( )

  0,           ,
qT s u s

Y u
u s u S
== 
≠ ∈

, then * ( )Y S∈ , * |
jSY = ∅ , then 1 *( | )

jST Yβ
− = ∅ . Therefore, for any 

(0.5,1]β ∈ , there is 1 *( | )
jS jT Y Qβ

− = ∅ . And obviously *| { | 0 ( ) ( )} | 0qs S T s Y s∈ < ≤ > , then 
*

* | { | 0 ( ) ( )} |
( / ) 1 0

|{ | ( ) 0} |
q

q
q

s S T s Y s
D Y T

s S T s
β

∈ < ≤
= > − =

∈ >
. 

Then there must be * 1 *{ | ( / ) 0} ( )j q jq q Q D Y T T Y Qβ
−∈ ∈ > =  , which contradicts 

1 1
1 1( | ) ( )

jS j jT Y Q T Y Q− −=   for any ( )Y S∈ . Therefore, |
jq q ST T=  holds for 1β = . 

Based on Theorems 3 and Theorems 4, we derive the conditions for the composability of the 
knowledge structure delineated by the lower inverse model of variable precision FT-rough sets. 
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Theorem 5. Let ( , , )Q S T  be composed of a family of fuzzy approximation spaces }{( , , ) |  i i iQ S iT I∈ . For 
any jq Q∈ , j I∈  and (0.5,1]β ∈ , if ( )q j qT T=  holds for js S∈ , and ( ) 0qT s =  holds for js S S∈ − , 

then  
(1) 1 1( ) ( ) ( | )

jj j ST Y Q T Yβ β
− −=  for any ( )Y S∈ , 

(2) 
( ) |

jj Qβ β
− −= 

. 
Proof of Theorem 5. (1) For any jq Q∈ , ( ) |

jj q q S qT T T⊆ ⊆ . If ( )q j qT T=  holds for js S∈ , and 

( ) 0qT s =  holds for js S S∈ − , then |
jq q ST T=  holds for js S∈ . Then by Theorem 3, for any 

( )Y S∈ , we have 1 1( | ) ( ) ( | )
j jS j j ST Y Q T Yβ β

− −= . And by Theorem 4, we have 
1 1( | ) ( )

jS j jT Y Q T Y Qβ β
− −=  . Therefore, 1 1( ) ( ) ( | )

jj j ST Y Q T Yβ β
− −=  holds. 

(2) By (1), for any 
,Y

K
β β

− −∈ , (0.5,1]β ∈ , there exists ( )Y S∈  such that 

,

1 1| ( ) ( ) ( | ) ( )
Y j jQ j j S jK T Y Q T Y
β β β β

− − − −= = ∈  . Then | ( )
jQ jβ β

− −⊆  . And according to Theorem 3, 

( ) |
jj Qβ β

− −⊆  , so ( ) |
jj Qβ β

− −=   holds. □ 

Theorem 5 is a sufficient condition for ( ) |
jj Qβ β

− −=  , but not necessary. The following Example 

2 shows this. 
Example 2. Let 1 1 1( , , )Q S T  and 2 2 2( , , )Q S T  be fuzzy approximation spaces, 
where  

1 1 2 3{ , , }Q q q q= , 1 1 2{ , }S s s= , 
11 1 2( ) {( ,0.7), ( ,0.5)}qT s s= ,  

21 1 2( ) {( ,0.8), ( ,0.7)}qT s s=
, 31 2( ) {( ,0.9)}qT s=

;  
2 2 4{ , }Q q q= , 2 2 3{ , }S s s= , 

22 2( ) {( ,0.7)}qT s= , 
42 2 3( ) {( ,0.8), ( ,0.9)}qT s s= . 

( , , )Q S T  is composed of 1 1 1( , , )Q S T  and 2 2 2( , , )Q S T .  
Then 

1 2 3 4{ , , , }Q q q q q= , 1 2 3{ , , }S s s s= , 
1 1 2( ) {( ,0.7), ( ,0.5)}qT s s= ,  

2 1 2( ) {( ,0.8), ( ,0.7)}qT s s=
, 3 2( ) {( ,0.9)}qT s=

, 4 2 3( ) {( ,0.8), ( ,0.9)}qT s s=
. 

Then for 1
2( ,1]β ∈ , the knowledge structures delineated by the lower inverse model under the 

variable precision FT-rough set in 1 1 1( , , )Q S T , 2 2 2( , , )Q S T  and ( , , )Q S T  are respectively: 

1 1 1 2 1( ) { ,{ },{ , }, }q q q Qβ
− = ∅ , 2 2 4 2( ) { ,{ },{ }, }q q Qβ

− = ∅ , 
1 4 1 2 1 4 1 2 4{ ,{ },{ },{ , },{ , },{ , , }, }q q q q q q q q q Qβ

− = ∅ . 
Then 

1 1 1 2 1 1| { ,{ },{ , }, } ( )Q q q q Qβ β
− −= ∅ = 

,  

2 2 4 2 2| { ,{ },{ }, } ( )Q q q Qβ β
− −= ∅ = 

.  

So for 
1
2( ,1]β ∈ , β

−  is composed of 1( )β
−  and 2( )β

− . However, 
2 22( )q qT T≠ . Therefore, for 

any jq Q∈ , js S∈ , j I∈ , ( )q j qT T=  is not a necessary condition for the composabilily of the 
knowledge structure.  
Corollary 2. Let ( , , )Q S T  be composed of a family of fuzzy approximation spaces }{( , , ) |  i i iQ S iT I∈ . Then 
we have: 

(1) If iQ , i I∈  are pairwise disjoint, then for (0.5,1]β ∈ , β
−  is composed of the family of knowledge 

structures {( ) | }j j Iβ
− ∈ . 

(2) If iS , i I∈  are pairwise disjoint, then for 1β =  and any j I∈ , there is 1 1( ) |
jj Q

− −⊆  . 
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Proof of Corollary 2. (1) If iQ , i I∈  are pairwise disjoint, then for any jq Q∈ , j I∈ , when js S∈ , 

there is ( )q j qT T= ; when js S S∈ − , there is ( ) 0qT s = . Then by Theorem 5, there is ( ) |
jj Qβ β

− −=  . 

Therefore, β
−  is composed of the knowledge structure family {( ) | }j j Iβ

− ∈ .  
(2) If iS , i I∈  are pairwise disjoint, then for any jq Q∈ , j I∈ , when js S∈ , there is ( ) |

jj q q ST T= . 

Then by corollary 1, there is 1 1( ) |
jj Q

− −⊆  . □ 

4.2. Composability of the Knowledge Structure Delineated by the Upper Inverse Model 

Let the fuzzy approximation space ( , , )Q S T  be composed of a family of fuzzy approximation 
spaces }{( , , ) |  i i iQ S iT I∈ . For ( , , )j j jQ S T , ( j I∈ ), and any ( )j jY S∈ , the knowledge state 
delineated via the upper inverse model of the variable precision FT-rough set by jY  is  

( ) ( ) { | ( / ( ) ) }j j j j j qT Y q Q D Y Tβ β+ = ∈ ≥ , 
where 

(0.5,1]β ∈  and 
| { | 0 ( ) ( ) ( )} |

( / ( ) )
| { | ( ) ( ) 0} |

j j q j
j j q

j j q

s S T s Y s
D Y T

s S T s
∈ < ≤

=
∈ >

. 

For any ( )Y S∈ , the knowledge state delineated via the upper inverse model on the variable 
precision FT-rough set by Y  is  

( ) { | ( / ) }qT Y q Q D Y Tβ β+ = ∈ ≥ , 
where 

(0.5,1]β ∈  and 
| { | 0 ( ) ( )} |

( / )
| { | ( ) 0} |

q
q

q

s S T s Y s
D Y T

s S T s
∈ < ≤

=
∈ >

. 

For j I∈ , there is 
( ) | ( ) { | ( / ) }

jQ j j qT Y T Y Q q Q D Y Tβ β β+ += = ∈ ≥

. 
Theorem 6. Let ( , , )Q S T  be composed of a family of fuzzy approximation spaces }{( , , ) |  i i iQ S iT I∈ . For 
any jq Q∈  and js S∈ , j I∈ , when ( ) ( ) 0j qT s = , it satisfies ( ) 0qT s = , then for any ( )Y S∈ , 

(0.5,1]β ∈ , there is ( | ) ( ) ( | )
j jS j j ST Y Q T Yβ β

+ +⊆ . 

Proof of Theorem 6.  
( | ) { | ( | / ) } { | ( | / ) }

j j jS j S q j j S qT Y Q q Q D Y T Q q Q D Y Tβ β β+ = ∈ ≥ = ∈ ≥ 

. 
If there is ( | )

jS jq T Y Qβ
+∈  , then  

| { | 0 ( ) | ( )} |
( | / )

| { | ( ) 0} |
j

j

q S
S q

q

s S T s Y s
D Y T

s S T s
β

∈ < ≤
= ≥

∈ > . 

For any ( )Y S∈  and jq Q∈ , by Definition 2 and when ( ) ( ) 0j qT s = , satisfying ( ) 0qT s = , we 
have 

{ | ( ) 0} |{ | ( ) 0} | = { | ( ) ( ) 0}q j q j j qs S T s s S T s s S T s∈ > ≥ ∈ > ∈ >
, 

and 

'

 | { | 0 ( ) | ( )} |

| { | 0 ( ) | ( )} | | { | 0 ( ) | ( )} |

| { | 0 ( ) | ( )} |

| { | 0 ( ) ( ) | ( )} | .

j

j j

j

j

q S

j q S j q S

j q S

j j q S

s S T s Y s

s S T s Y s s S S T s Y s

s S T s Y s

s S T s Y s

∈ < ≤

= ∈ < ≤ + ∈ − < ≤

= ∈ < ≤

≤ ∈ < ≤
 

Then 
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| { | 0 ( ) ( ) | ( )} |
     ( | /( ) )

| { | ( ) ( ) 0} |
| { | 0 ( ) | ( )} |

( | / ) .
| { | ( ) 0} |

j

j

j

j

j j q S
S j q

j j q

q S
S q

q

s S T s Y s
D Y T

s S T s
s S T s Y s

D Y T
s S T s

β

∈ < ≤
=

∈ >

∈ < ≤
≥ = ≥

∈ >  

Then 
( ) ( | )

jj Sq T Yβ
+∈

. Therefore 
( | ) ( ) ( | )

j jS j j ST Y Q T Yβ β
+ +⊆

. □ 
Theorem 7. Let ( , , )Q S T  be composed of a family of fuzzy approximation spaces }{( , , ) |  i i iQ S iT I∈ . For 
any jq Q∈ , j I∈ , (0.5,1]β ∈ , the following conclusions hold: 

(1) If  
i) ( ) |

jj q q ST T=  holds for any js S∈ , 

ii) ( ) 0qT s =  holds for any js S S∈ − , 
then for any ( )Y S∈ , there is ( | ) ( ) ( | )

j jS j j ST Y Q T Yβ β
+ += . 

(2) If for any ( )Y S∈ , there is ( | ) ( ) ( | )
j jS j j ST Y Q T Yβ β

+ += , then ( ) |
jj q q ST T= . 

(3) Let ( )j β
+  and β

+  are knowledge structures delineated by the upper inverse model of the variable 
precision FT-rough set in the fuzzy approximation space ( , , )j j jQ S T  and ( , , )Q S T  respectively. If 

( | ) ( ) ( | )
j jS j j ST Y Q T Yβ β

+ += , then ( ) |
jj Qβ β

+ +⊆  . 

Proof of Theorem 7. (1) Since when js S∈ , ( ) |
jj q q ST T= , then when ( ) ( ) 0j qT s = , we have ( ) 0qT s =

. It is easy to know from Theorem 6 that for any ( )Y S∈ , ( | ) ( ) ( | )
j jS j j ST Y Q T Yβ β

+ +⊆ .  

For any ( )Y S∈ , if there is ( ) ( | )
jj Sq T Yβ

+∈ , then ( | /( ) )
jS j qD Y T β≥  holds, i.e. 

| { | 0 ( ) ( ) | ( )} |

| { | ( ) ( ) 0} |
jj j q S

j j q

s S T s Y s

s S T s
β

∈ < ≤
≥

∈ > . 
And since when js S∈ , ( ) |

jj q q ST T= , then  

| { | 0 | ( ) | ( )} |

| { | | ( ) 0} |
j j

j

j q S S

j q S

s S T s Y s

s S T s
β

∈ < ≤
≥

∈ >
. 

Also, since when js S S∈ − , ( ) 0qT s = , then  
| { | 0 ( ) | ( )} |

| { | ( ) 0} |
jq S

q

s S T s Y s

s S T s
β

∈ < ≤
≥

∈ > . 

Then there is 
( | / )

jS qD Y T β≥
, and then 

( | )
jS jq T Y Qβ

+∈ 

. So, there is
( ) ( | ) ( | )

j jj S S jT Y T Y Qβ β
+ +⊆ 

. 
Therefore, ( | ) ( ) ( | )

j jS j j ST Y Q T Yβ β
+ +=  holds. 

(2) Use the proof by contradiction. For jq Q∈ , there exists js S∈ , such that ( ) ( ) | ( )
jj q q ST s T s≠

, that is, it satisfies 0 ( ) ( ) ( )j q qT s T s≤ < . Let | { | ( ) ( ) 0} |j j j qn s S T s= ∈ > , | { | ( ) 0} |qn s S T s= ∈ > , then 

jn n≤ . 

i) When ( ) ( ) 0j qT s ≠ , let 

*

( ) ( ) ( )
,        

2
( )       ( ) ( ),              ,

           0,                    

j q q

j q j

j

T s T s
u s

Y u T u u s u S
u S S

+
=


= ≠ ∈
 ∈ − ,  
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then * ( )Y S∈ . Then there exists (0.5,1]β ∈  such that * 1
( | / )

j

j
S q

n
D Y T

n
β

−
= < , and then 

*( | )
jS jq T Y Qβ

+∉  . And for any (0.5,1]β ∈ , *( | /( ) ) 1
j

j
S j q

j

n
D Y T

n
β= = ≥ , then there must be 

*( ) ( | )
jj Sq T Yβ

+∈ . This contradicts ( | ) ( ) ( | )
j jS j j ST Y Q T Yβ β

+ += . 

ii) When ( ) ( ) 0j qT s = , let  

*

    0,                 
( )   ( ) ( )  ,     ,

    0,                 
j q j

j

u s
Y u T u u s u S

u S S

=
= ≠ ∈
 ∈ − , 

then * ( )Y S∈ , and for any (0.5,1]β ∈ , *( | /( ) ) 1
j

j
S j q

j

n
D Y T

n
β= = ≥ , then there must be 

*( ) ( | )
jj Sq T Yβ

+∈ , and there exists (0.5,1]β ′∈  such that *( | / ) '
j

j
S q

n
D Y T

n
β= < , then 

*( | )
jS jq T Y Qβ

+
′∉  , which also contradicts ( | ) ( ) ( | )

j jS j j ST Y Q T Yβ β
+ += . Therefore, (2) holds. 

(3) For any ( )jB S∈ , , ( ) ( ) ( )B j jK T Bβ β β
+ + += ∈   be the knowledge state delineated by B  via the 

upper inverse model. Let  

*
( ),       

( )
  0,           

j

j

B s s S
Y s

s S S
∈=  ∈ − ,  

then 
* ( )Y S∈ , we have 

* *( ) ( ) ( ) ( | ) ( | ) |
j j jj j S S j QT B T Y T Y Qβ β β β

+ + + += = ∈

, 

then 
( ) |

jj Qβ β
+ +⊆ 

. □ 
Similar to Theorem 3, Theorem 7(1) is a sufficient but not necessary condition for ( ) |

jj Qβ β
+ +⊆ 

. 
Theorem 8. Let ( , , )Q S T  be composed of a family of fuzzy approximation spaces }{( , , ) |  i i iQ S iT I∈ . If 

|
jq q ST T=  holds for any jq Q∈ , j I∈  and (0.5,1]β ∈ , then ( | ) ( )

jS j jT Y Q T Y Qβ β
+ +=   holds for any 

( )Y S∈ . 
Proof of Theorem 8. i) For any ( )Y S∈ , let ( | )

jS jq T Y Qβ
+∈  , then jq Q∈ , j I∈  and 

( | / )
jS qD Y T β≥ , i.e. 

| { | 0 ( ) | ( )} |

| { | ( ) 0} |
jq S

q

s S T s Y s

s S T s
β

∈ < ≤
≥

∈ > .  
Since for any jq Q∈ , there is |

jq q ST T= , then ( ) 0qT s =  holds for js S S∈ − .  

Then  
{ | 0 ( ) | ( )} { | 0 ( ) ( )}

jq S qs S T s Y s s S T s Y s∈ < ≤ = ∈ < ≤
. 

Then there is  
| { | 0 ( ) ( )} |

| { | ( ) 0} |
q

q

s S T s Y s
s S T s

β
∈ < ≤

≥
∈ > , 

that is ( / )qD Y T β≥ , and then ( ) jq T Y Qβ
+∈  . Then ( | ) ( )

jS j jT Y Q T Y Qβ β
+ +⊆  . 

ii) For any ( )Y S∈ , let ( ) jq T Y Qβ
+∈  , then jq Q∈ , j I∈  and ( / )qD Y T β≥ , that is  

| { | 0 ( ) ( )} |
| { | ( ) 0} |

q

q

s S T s Y s
s S T s

β
∈ < ≤

≥
∈ > .  

Since for any jq Q∈ , j I∈ , there is |
jq q ST T= , then ( ) 0qT s =  holds for js S S∈ − . Then 
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| { | 0 ( ) | ( )} |

| { | ( ) 0} |
jq S

q

s S T s Y s

s S T s
β

∈ < ≤
≥

∈ > , 

that is 
( | / )

jS qD Y T β≥
, then there is 

( | )
jS jq T Y Qβ

+∈ 

. 

Then 
( ) ( | )

jj S jT Y Q T Y Qβ β
+ +⊆ 

. 
Therefore, ( | ) ( )

jS j jT Y Q T Y Qβ β
+ +=   holds. □ 

However, if ( | ) ( )
jS j jT Y Q T Y Qβ β

+ +=   holds for any ( )Y S∈  and any (0.5,1]β ∈ , |
jq q ST T=  

does not necessarily holds. The following uses the proof by contradiction to show that if 
( | ) ( )

jS j jT Y Q T Y Qβ β
+ +=   holds for any ( )Y S∈  and 1β = , then there is |

jq q ST T=  for any 

jq Q∈ , j I∈ . 
For jq Q∈ , if there is |

jq q ST T≠ , then there exists js S S∈ − , such that ( ) 0qT s > . Let  

*

   1,           
( ) ( ),       

  0,           ,

j

q

j

u S
Y u T s u s

u s u S S

∈


= =
 ≠ ∈ − , 

then 
* ( )Y S∈ . 

Let | { | ( ) 0} |qn s S T s= ∈ > , then 
*

* | { | 0 ( ) ( )} |
( / ) 1

|{ | ( ) 0} |
q

q
q

s S T s Y s nD Y T
s S T s n

β
∈ < ≤

= = = ≥
∈ > . 

Then for any (0.5,1]β ∈ , there must be *( ) jq T Y Qβ
+∈  . And 

*
*

| { | 0 ( ) | ( )} | 1( | / ) 1
|{ | ( ) 0} |

j

j

q S
S q

q

s S T s Y s nD Y T
s S T s n

∈ < ≤ −
= = <

∈ > , 
then if 1β = , there is *( | )

jS jq T Y Qβ
+
′∉  , which contradicts 1 1( | ) ( )

jS j jT Y Q T Y Q+ +=   for any 

( )Y S∈ . Therefore, |
jq q ST T=  holds for 1β = . 

Based on Theorems 7 and 8, we derive the conditions for the composability of the knowledge 
structure delineated by the upper inverse model of variable precision FT-rough sets. 
Theorem 9. Let ( , , )Q S T  be composed of a family of fuzzy approximation spaces }{( , , ) |  i i iQ S iT I∈ . For 
any jq Q∈  , j I∈  and (0.5,1]β ∈ , if ( )q j qT T=  holds for js S∈ , and ( ) 0qT s =  holds for js S S∈ − , 

then  
(1) For any ( )Y S∈ , we have ( ) ( ) ( | )

jj j ST Y Q T Yβ β
+ += . 

(2) 
( ) |

jj Qβ β
+ += 

. 
Proof of Theorem 9. (1) For any jq Q∈ , ( ) |

jj q q S qT T T⊆ ⊆ . Since ( )q j qT T=  holds for js S∈ , then 

( ) |
jj q q ST T= . And ( ) 0qT s =  holds for js S S∈ − , then |

jq q ST T=  holds for s S∈ . Then by Theorem 

7, for any ( )Y S∈  and (0.5,1]β ∈ , we have ( | ) ( ) ( | )
j jS j j ST Y Q T Yβ β

+ += . And by Theorem 8, we 

have ( | ) ( )
jS j jT Y Q T Y Qβ β

+ +=  . Therefore, ( ) ( ) ( | )
jj j ST Y Q T Yβ β

+ +=  holds. 

(2) By (1), for any 
,Y

K
β β

+ +∈ , (0.5,1]β ∈ , there exists ( )Y S∈  such that 

,
| ( ) ( ) ( | ) ( )

Y j jQ j j S jK T Y Q T Y
β β β β

+ + + += = ∈  . Then | ( )
jQ jβ β

+ +⊆  . And according to Theorem 7, there is 

( ) |
jj Qβ β

+ +⊆  , so ( ) |
jj Qβ β

+ +=   holds. □ 

Similar to Theorem 5, Theorem 9 is a sufficient condition for ( ) |
jj Qβ β

+ +=  , but not necessary. 

Corollary 3. Let ( , , )Q S T  be composed of a family of fuzzy approximation spaces }{( , , ) |  i i iQ S iT I∈ . If iQ , 
i I∈  are pairwise disjoint, then for (0.5,1]β ∈ , β

+   is composed of the family of knowledge structures 
{( ) | }j j Iβ

+ ∈ . 
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Proof of Corollary 3. If iQ , i I∈  are pairwise disjoint, then for any jq Q∈ , j I∈ , when js S∈ , 

there is ( )q j qT T= ; when js S S∈ − , there is ( ) 0qT s = . Then by Theorem 9, there is ( ) |
jj Qβ β

+ +=  . 

Therefore, β
+  is composed of the knowledge structure family {( ) | }j j Iβ

+ ∈ . 

Corollary 2 and Corollary 3 provide a method to ensure that the global information is a 
consistent aggregation of local information. Specifically, if the problem domains in all local fuzzy 
approximation spaces are pairwise disjoint, then the global knowledge structure delineated via the 
lower inverse (or upper inverse) model of variable precision FT-rough sets in the global fuzzy 
approximation space is the composition of the local knowledge structures. 

5. Conclusions 

This paper introduces the variable precision FT- rough set model and its properties, as well as 
the knowledge structure delineated by the lower (upper) inverse operator based on this model. On 
this basis, the conditions for the composability of the knowledge structure delineated by the lower 
(upper) inverse operator of the variable precision FT- rough sets are studied. Meanwhile, the 
conditions under which knowledge structures constructed from local fuzzy approximation spaces 
can be composed into those built from global fuzzy approximation spaces are investigated. Future 
work explores the necessary and sufficient conditions for composing knowledge structures into a 
well-graded one, along with the construction of learning paths. Additionally, the composability of 
dynamic knowledge structures is a promising research direction. 
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