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Abstract: One of the main consequences of urban pollution is intersection congestion, which occurs
due to frequent vehicle stops. These interruptions lead to increased fuel consumption and harm-
ful gas emissions (CO, NOy, SO;, O3), along with other pollutants such as fine particulates (PMjj,
PMj; 5). These pollutants can adversely affect the respiratory, cardiac, and neurological health of city
residents. To address the growing demand for smart and sustainable transportation systems in large
cities, predicting intersection congestion using artificial intelligence offers a promising solution. In
this study, we present a predictive modeling approach to classify congestion levels at intersections
controlled by traffic lights. Using the CN+ dataset collected in Bremen, Germany, our methodology
incorporates vehicle and environmental features to predict congestion levels, optimize traffic flow, and
reduce pollutant emissions. We employ data preprocessing, feature engineering, and machine learning
techniques, including an innovative feature selection method called Dual Importance Intersection
Feature Selection (DIFS), which combines Random Forest (RF) and Chi-square analysis. We tested
various classifiers, including RE, XGBoost, LightGBM, CatBoost, and Artificial Neural Network (ANN),
utilizing SMOTE balancing to address the class imbalance. The results indicate that RF achieved the
highest overall Fl-score (0.75) and QWK score (0.54), demonstrating its robustness in congestion classi-
fication. While ensemble methods such as XGBoost, LightGBM, and CatBoost exhibited competitive
performance (F1-scores between 0.71 and 0.72), ANN lagged behind in terms of F1-score (0.69) and
runtime efficiency. Among all models, RF not only delivered the best balance of precision, recall,
and F1-score but also outperformed others in computational efficiency, making it a suitable choice
for real-time congestion prediction. These findings highlight the importance of feature selection and
model selection in achieving reliable traffic congestion forecasting. This makes our approach a robust
tool for managing traffic sustainably and efficiently.

Keywords: intersection congestion; sustainable urban traffic; artificial intelligence; machine learning;
dual importance intersection feature selection; emission reduction; traffic flow optimization

1. Introduction

Urban traffic congestion, especially at intersections, represents a major challenge for sustainable
urban development. Frequent vehicle stops at traffic lights significantly contribute to increased fuel
consumption and emissions of harmful pollutants, including carbon monoxide (CO), nitrogen dioxide
(NOy,), sulfur dioxide (SO;), ozone (O3), and fine particulate matter (PM;g, PMy5). According to the
World Health Organization (WHO), exposure to these pollutants has been linked to severe respiratory,
cardiovascular, and neurological health issues, contributing to approximately 4.2 million premature
deaths worldwide in 2019 [1]. Beyond human health concerns, transport-related emissions exacerbate
environmental pollution and climate change, necessitating innovative solutions to mitigate congestion
and its associated impacts [2-5].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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To address these challenges, intelligent transportation systems (ITS) have emerged as a promis-
ing approach to optimize traffic management and reduce environmental impacts. ITS leverages
data-driven technologies and artificial intelligence (Al) to improve traffic flow and decrease emis-
sions, making them essential for transitioning to green and sustainable cities [6]. Among the key
components of ITS is the ability to predict traffic congestion levels accurately at intersections. Pre-
dictive models facilitate proactive traffic light management, reducing idle time, minimizing delays,
and lowering pollutant emissions [7]. However, the development of such models poses challenges,
including handling imbalanced datasets, incorporating real-time data, and achieving high predictive
performance [8].

Application of Congestion Prediction for Traffic Management

The purpose of predicting intersection congestion levels in this study is to enhance traffic man-
agement by providing data-driven insights that enable proactive congestion mitigation strategies. By
leveraging machine learning techniques, the model aims to classify congestion levels at intersections,
allowing traffic authorities to optimize traffic flow and reduce vehicular emissions.

Traffic authorities can utilize these predictions in several ways:

e  Adaptive Traffic Signal Control: Predictions can help adjust traffic light timings dynamically to
alleviate congestion, reducing unnecessary stops and improving travel time efficiency.

e  Traffic Rerouting Strategies: Identifying congestion hotspots in advance allows for better traffic
diversion plans, guiding vehicles towards less congested routes.

*  Resource Allocation: Forecasting congestion patterns enables better deployment of traffic enforce-
ment units, public transit prioritization, and road maintenance scheduling.

e Pollution Reduction: By reducing congestion, emissions from idling vehicles (CO, NO,, PM) can
be minimized, contributing to improved urban air quality.

*  Long-Term Infrastructure Planning: Insights from congestion predictions can guide urban plan-
ning decisions, such as road expansion, traffic signal placement, or alternative transport infras-
tructure investments.

Existing research has explored machine learning techniques for traffic congestion prediction, such
as Random Forest (RF), Support Vector Machines (SVM), and Gradient Boosting (GB) [9,10]. While
these studies have demonstrated the potential of machine learning in traffic management, many do
not fully address the dynamic nature of urban traffic conditions. Furthermore, few studies combine
real-time vehicle and environmental data to optimize urban transportation comprehensively.

This study uses the CN+ dataset gathered in Bremen, Germany, to suggest a novel predictive
modeling approach to fill these gaps. This dataset contains extensive features on traffic and environ-
mental conditions and enables a comprehensive analysis of intersection congestion. Our methodology
introduces an innovative feature selection technique called DIFS, which integrates random forest and
chi-square analysis to identify the most influential predictors. We use state-of-the-art machine learning
models based on XGBoost, LightGBM, Random Forest, CatBoost, and ANN to classify congestion
levels. Our results show significant improvements in prediction performance, with metrics such as
precision, recall, F1-score, and QWK indicating high model reliability.

Novelty and Contributions of the Research

The present study significantly contributes to sustainable urban transport management by integrating
advanced feature selection, environmental impact analysis, and comprehensive model evaluation. First,
we introduce the DIFS method, which combines RF and Chi-square analysis to identify the most influential
predictors of congestion. This approach ensures the model effectively captures traffic and environmental
factors influencing congestion patterns. Second, we enhance the dataset by incorporating air pollutant
measurements, including CO, NO,, SO,, O3, PMyg, and PM; 5, to assess the environmental impact of
congestion. This integration allows for a more comprehensive analysis of how intersection congestion
contributes to urban pollution, highlighting the potential benefits of predictive congestion management
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in reducing vehicular emissions. Third, we conduct a rigorous evaluation of RF, XGBoost, LightGBM,
CatBoost, and ANN for congestion classification. The results demonstrate that RF outperforms all
other models, achieving the highest F1 score (0.75) and QWK score (0.54) while maintaining superior
computational efficiency. These findings underscore the importance of selecting the right combination of
features and predictive models for effective traffic management. By bridging the gap between congestion
prediction and environmental impact assessment, this research provides a data-driven foundation for
intelligent transportation systems (ITS), paving the way for adaptive traffic control, emission reduction
strategies, and sustainable urban mobility solutions.

The remainder of this paper is organized as follows: Section 2 reviews the literature on congestion
prediction and sustainable traffic management. Section 3 describes the CN+ dataset and the prepro-
cessing steps. Section 4 describes the methodology and machine learning techniques used. Section
5 presents the experimental results and discusses their implications. Finally, Section 6 concludes the
study and suggests directions for future research.

2. Literature Review

In recent years, predictive modeling of traffic congestion has gained significant attention due
to the increasing demands for sustainable urban mobility and efficient traffic management systems.
Machine learning (ML) and deep learning (DL) methods have emerged as powerful tools for addressing
congestion challenges at intersections.

Nematichari, A. et al. introduced a graph theory and trajectory data mining-based system
that utilizes structural time series models to forecast intersection traffic conditions [11]. Their work
provides real-time analytics and proactive decision-making capabilities, advancing urban traffic
management. Similarly, Qin, Kun. et al. proposed a multiple-graph-based convolutional network
(mGCN) integrating environmental data from street imagery and road networks to predict urban
congestion spots with 85.5% accuracy, showcasing the importance of spatial correlations in urban
environments [12].

Hybrid models have demonstrated significant potential in addressing traffic flow complexities.
Olayode, I. O. et al. evaluated Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and its Genetic
Algorithm-optimized variant (ANFIS-GA) for predicting vehicular flow at intersections, achieving
an R? of 0.9980 with ANFIS-GA [13]. Moumen, Idriss. et al. applied Gated Recurrent Units (GRUs)
to model temporal dependencies in multi-intersection traffic, highlighting the model’s robustness in
handling sparse datasets [14].

Deep learning has further enhanced congestion prediction capabilities. Katambire, Vienna N. et al.
demonstrated that LSTM networks outperform traditional ARIMA models for traffic flow forecasting
at urban intersections [15]. Similarly, Mirzahossein, Hamid. et al. combined wavelet transforms with
GRU-LSTM architectures, achieving over 94% accuracy in traffic volume prediction despite noisy
data [16].

Hybridized techniques integrating machine learning and optimization algorithms have advanced
congestion modeling. Chahal, Ayushi. et al. presented a SARIMA and Bi-LSTM hybrid model,
achieving low error metrics for time-series traffic predictions [17]. Chaoura, Chaimaa. et al. employed
LSTMs and Particle Swarm Optimization (PSO) to improve prediction accuracy, addressing noisy and
dynamic traffic data challenges [18].

Innovative frameworks have also emerged for real-time traffic management. Wang, Jianlong.
et al. introduced a Spatio-Temporal Neural Point Process (STNPP) model combining Graph Neural
Networks and temporal dependencies to predict lane-level congestion events [19]. Gwalani, Aryan. et
al. proposed an intelligent intersection framework incorporating GRUs and V2I communication for
adaptive signal control, significantly reducing congestion and travel times [20].
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Bayesian models and ensemble approaches have shown promise in enhancing traffic forecasting.
AlKheder, Sharaf, et al. developed a Bayesian Combined Neural Network (BCNN) for short-term
traffic volume prediction, achieving over 98% regression accuracy [21]. Navarro-Espinoza, Alfonso.
et al. compared ML and DL methods, finding that MLP outperformed GRU and LSTM in traffic
prediction for multi-lane intersections [22].

Studies by Giraka, Omkar. et al. [23] and Qu, Wenrui. et al. [24] have explored traditional
time-series models such as SARIMA and two-layer stacking techniques for forecasting urban traffic.
These methods provide scalable and computationally efficient solutions for heterogeneous urban
environments.

Addressing limited historical data, Tsalikidis, Nikolaos. et al. employed LightGBM and
Histogram-Based Gradient Boosted Regressor (HGBR), outperforming LSTMs and GRUs for IoT-
enabled congestion management [25]. Tran, Quang Hoc, et al. adapted LSTM networks for multi-lane
arterial roads in Vietnam, achieving superior accuracy with minimal infrastructure requirements [26].
Tang, Bin. et al. proposed a Directed Supra-Adjacency Matrix (DSAM) model for intersection ranking,
leveraging Chebyshev networks to capture temporal dynamics [27].

Table 1 briefly summarizes the previous studies based on their focus, models evaluated, and key
findings.

Analysis of Comparative Studies

While numerous studies have investigated various machine learning and deep learning ap-
proaches for traffic congestion prediction, our work stands out in several respects. First, it leverages the
CN+ dataset, which provides extensive vehicle and environmental features, enabling a more granular
assessment of congestion at intersections. Second, we introduce a novel feature selection method,
DIFS, which combines RF and Chi-square techniques to optimize model performance. Finally, our
framework achieves good F1 and QWK scores across multiple classifiers, underscoring its robustness
and potential for broader application.
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Table 1. Comparative analysis of machine learning approaches for predicting congestion levels at intersections.

Reference Focus Models/Techniques Key Findings
[11] Intersection traffic forecasting Graph theory, trajectory mining Real-hme analytics with structural time se-
ries models.
. o . . i}
[12] Urban congestion spot identification mGCN, DenseNet Ach¥eved 85.5% accuracy in predicting con
gestion spots.
. - ANFIS-GA achieved R? = 0.9980, surpassing
[13] Traffic flow prediction ANFIS, ANFIS-GA standalone ANFIS.
[14] Multi-intersection traffic modeling GRU Dfemonstrated robust performance even
with sparse datasets.
[15] Traffic flow forecasting LSTM, ARIMA LSTM outperformed ARIMA in predictive
reliability.
[16] Volume prediction GRU-LSTM, wavelet transform Ac.h ieved 94 %o accuracy through hybrid
noise reduction methods.
[17,18] Hybrid modeling SARIMA + Bi-LSTM, LSTM + pso  “chieved low RMSE and high prediction
accuracy across test cases.
[19,20] Real-time management frameworks STNPP, GRU + V2I communication Ef.fe‘c tive in rec'lucmg congestion and opti-
mizing travel times.
[21,22] Bayesian and ensemble approaches BCNN, MLP ngh regression aceuracys robust multi-lane
intersection predictions.
[23,24] Time-series and stacking methods SARIMA, KNN + Elman NN Offered cgmputatlonally efficient and scal-
able solutions.
[25-27] ToT and directed networks LightGBM, DSAM, LSTM Reliable congestion management for urban

planning and traffic optimization.

Current Work ~ Congestion level prediction at intersections

RE, XGBoost, LightGBM, CatBoost,
ANN

Achieved perfect F1 and QWK scores using
CN+ dataset with advanced feature selec-
tion (DIFS).

50f 24
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3. Dataset Description

This section provides an overview of the dataset used in this paper. First, we describe the data
source origin, followed by a detailed explanation of the dataset’s attributes and relevance.

3.1. Origin of the Dataset

This research leverages the CN+ dataset [28], a valuable resource for studies in ITS and Vehicular
Ad-hoc Networks (VANETs). The dataset was collected over 32 hours at a four-way signalized
intersection in Bremen, Germany, between May 24 and August 6, 2022. Due to privacy concerns
regarding video-based collection methods, the authors used a manual write-down procedure for the
data collection.

The dataset captures a comprehensive range of traffic conditions, including morning and evening
rush hours, peak and off-peak periods, and variations in traffic density between weekdays and
weekends. The CN+ dataset includes 25,935 vehicles, along with additional features such as weather
conditions, significantly enhancing the dataset’s applicability for modeling and simulation.

The CN+ dataset is publicly hosted on the Zenodo platform and distributed under a Creative
Commons Attribution License (CC BY 4.0). This accessibility encourages its use in a wide array of re-
search applications. By focusing on an intersection with mixed traffic types—including private vehicles,
public transport, and trams—the dataset provides a robust foundation for developing and evaluating
predictive algorithms for congestion management and vehicular safety systems. Figure 1 illustrates
the intersection in Bremen, Germany, where the dataset was collected.

Figure 1. Aerial view of the intersection where the dataset was collected [29].

3.2. Data Description

The CN+ dataset originally contained 15,022 rows and 12 attributes. However, through feature
engineering and applying the DIFS approach, we selected ten attributes as input parameters for the
prediction model. For further details on the feature engineering process and the DIFS approach, refer to
the methodology section of this paper. The final attributes used as input parameters for the prediction
models are as follows:

. Rolling_Avg_Congestion: The average congestion level over the last three time intervals;
¢ Previous_Congestion: The congestion level observed in the previous time step;

¢ Direction: The direction taken by the vehicle (14 possible directions, numbered 1 to 14);
¢ Type: The type of vehicle (Normal, Bus, Tram, Bike);

e Second: The second of the minute when the observation was recorded;

e Minute: The minute of the hour when the observation was recorded;

e Hour: The hour of the day;

*  Weekday: The day of the week;
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¢ Day: The day of the month;
*  Month: The month of the year.

The Congestion_Level_Future attribute represents the target variable, categorizing congestion into three
levels: low, medium, and high. Figure 2 illustrates the distribution of the different categories of the

target variable.
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2000 1 1753

Medium High
Congestion Level

Figure 2. Distribution of Congestion Levels.

An analysis of Figure 2 reveals a class imbalance in the dataset. To mitigate the risk of model bias
and ensure robust predictive performance, it is crucial to adopt a data-balancing strategy. This issue is
further discussed in the methodology section of this paper.

Additionally, to quantify the impact of congestion on air quality, we obtained air pollution data
from Open-Meteo.com. These data include key air pollutants: CO, NO,, SO,, O3, PM;g, and PM3 5,
for the studied intersection (latitude: 53.105145, longitude: 8.850398) over the period from May 24,
2022, to August 6, 2022, corresponding to the dataset collection timeframe. Figure 3 illustrates the
distribution of these air pollutants.

320
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Figure 3. Distribution of Air Pollutants.

4. Methodology

In this section, we describe the methodological approach to develop a predictive model for
intersection congestion detection based on the CN+ dataset. The problem was formulated as a
multiclass classification task, where each congestion category corresponded to a specific severity level:
low, medium, and high. This categorization of congestion severity forms the basis of the predictive
modeling framework for solving the multiclass prediction problem.
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Our methodological approach includes evaluating and comparing the performance of several
machine learning algorithms: RF, XGBoost, LightGBM, CatBoost, and ANN. These algorithms were se-
lected to predict intersection congestion levels with high confidence, focusing on model generalization
and performance. The main goal is to highlight the best algorithm in this study context.

In the remainder of this section, we provide a detailed description of the steps taken to develop
our predictive models for intersection congestion detection using the CN+ dataset. We outline
the development environment, highlight the data preprocessing approach, and explain the feature
engineering process, exploratory data analysis, predictive model construction, and validation and
evaluation phases. The ultimate goal is to establish an intersection congestion detection system to
improve traffic flow control, reduce harmful gas emissions from frequent vehicle stops, and facilitate the
transition of major cities worldwide to greener, more environmentally sustainable urban ecosystems.

4.1. Development Environment

Our experimental framework is designed to ensure reproducibility and clarity. The system runs on
Windows 11 with an NVIDIA GeForce GTX 1650 GPU (manufactured by NVIDIA Corporation, Santa
Clara, CA, USA), 32 GB of RAM, and a 1 TB SSD. Python 3.11.4 serves as the primary programming
language, supported by libraries such as Matplotlib 3.9.1, Seaborn 0.13.2, Pandas 2.0.2, NumPy 1.23.5,
Scikit-learn 1.2.1, Tensorflow 2.12.0, XGBoost 2.1.0, LigthGBM 4.5.0 and CatBoost 1.2.5., Jupyter 1.0.0,
Notebook=7.0.8.

4.2. Data Preprocessing

In this subsection, we describe the key preprocessing techniques used to prepare the CN+ dataset
for predictive modeling. These measures improved model performance, guaranteed data quality, and
resolved data compatibility issues with machine learning algorithms.

4.2.1. Temporal Data Consolidation

The data set initially contained two separate columns for date (in YYYY.MM.DD format) and time
(in HH:MM:SS format). To optimize the analysis, these columns were merged into a single Datetime
column using the to_datetime function from the Pandas library. The original Date and Time columns
were then removed. This consolidation enabled the extraction of additional temporal features such as
day of the week, hour, and minute for further analysis.

4.2.2. Weather-Related Attributes Conversion

The Temperature and Dew Point columns contained values with the unit °F. To convert these
columns to numeric values, the °F unit was removed, and the values were converted to float32.
Similarly, the same process was applied to the Humidity, Wind Speed, Wind Gust, and Pressure
columns by removing their respective units (% for Humidity, mph for Wind Speed and Wind Gust,
and in for Pressure). Tables 2 and 3 below provide examples of the values from these columns before
and after the transformations.

Table 2. Sample values of weather-related attributes before transformation.

Temperature Dew Point Humidity Wind Speed Wind Gust Pressure
61 °F 48 °F 63 % 15 mph 0 mph 29.71in
61 °F 48 °F 63 % 15 mph 0 mph 29.71in
61 °F 48 °F 63 % 15 mph 0 mph 29.71in
61 °F 48 °F 63 % 15 mph 0 mph 29.711in

61 °F 48 °F 63 % 15 mph 0 mph 29.71in
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Table 3. Sample values of weather-related attributes after transformation.
Temperature Dew Point Humidity Wind Speed Wind Gust Pressure
61.0 48.0 63.0 15.0 0.0 29.71
61.0 48.0 63.0 15.0 0.0 29.71
61.0 48.0 63.0 15.0 0.0 29.71
61.0 48.0 63.0 15.0 0.0 29.71
61.0 48.0 63.0 15.0 0.0 29.71

4.2.3. Direction Encoding

The Direction column, which specified vehicular directions (e.g., "Direction 13"), was preprocessed
by removing the string prefix and converting the values to integers. This transformation ensured
compatibility with machine learning models.

4.2.4. Conversion of Wind Directions to Degrees

The Wind Direction column was converted into corresponding angular values in degrees using
a custom mapping (e.g., North = 0°, East = 90°). This preprocessing step facilitated the numerical
analysis of directional data, enabling its integration into predictive models. Figure 4 below illustrates
this transformation.

W 270°

WswW

@ Wind Direction

Figure 4. Wind Direction Mapping to Degrees.

4.2.5. Encoding Categorical Variables

Categorical attributes, such as Type (Normal, Bus, Tram, and Bike), were encoded numerically
using a manual mapping strategy. For example:

*  Normal vehicles were assigned a value of 0;
e  Buses were encoded as 1, trams as 2, and bikes as 3.

4.3. Handling Missing Values

The Datetime column contained 12 missing entries (0.08% of the dataset). These records were
removed as their impact on the dataset was negligible. Following this, the dataset was verified to be
free of missing values.
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4.4. Feature Engineering

To enhance the dataset, additional attributes were derived from the consolidated Datetime column
to capture temporal patterns with greater precision:

¢  Weekday: Day of the week, represented numerically (0-6);

¢ Day: Day of the year;

*  Month: Month of the year;

®  Year: Year of the observation;

* IsWeekend: Binary indicator for weekends, where 1 represents a weekend, and 0 represents a
weekday;

¢ Hour, Minute, and Second: Extracted to provide finer temporal granularity.

These engineered features provide valuable insights into traffic patterns, facilitating more effective
predictive modeling and significantly contributing to the accuracy and interpretability of the models.

4.5. Assigning Congestion Severity

To classify congestion severity more accurately, we utilize the volume-to-capacity (v/c) ratio
instead of relying solely on vehicle counts. The v/c ratio is a well-established metric in traffic engineer-
ing that compares traffic demand to a roadway’s available capacity. This method offers a more precise
measure of congestion severity, as it considers the intersection’s ability to handle the observed traffic
flow.

4.5.1. Estimating Lane Capacity

Since direct lane capacity measurements were unavailable in our dataset, we estimated capacity
dynamically. The dataset was grouped by Direction and Hour, and the 95th percentile of the number of
vehicles recorded in a given hour was used as an approximation of the effective lane capacity for that
time period:

Lane Capacity(d, ) = Qo.95(Number(d, 1)) (1)

where d represents the direction and / represents the hour of observation. Using the 95th
percentile instead of the maximum helps smooth out extreme values and provides a more realistic
estimate of lane demand-based capacity.

4.5.2. Computing the Volume-to-Capacity Ratio

The v/c ratio for each record was then calculated as:

Number of Vehicles
v/c = . 2)
Lane Capacity

This ratio provides a congestion measure that reflects demand relative to available capacity rather
than an absolute count of vehicles.

4.5.3. Congestion Classification

Following established traffic engineering principles [30], we categorized congestion into three
severities based on the computed v/c ratio:

e Low Congestion: v/c < 0.5
¢  Medium Congestion: 0.5 < v/c < 0.85
¢  High Congestion: v/c > 0.85

A v/c ratio exceeding 0.85 indicates severe congestion as demand approaches or surpasses
available capacity, leading to traffic delays. Ratios between 0.5 and 0.85 represent moderate congestion,
while values below 0.5 correspond to free-flowing traffic conditions.
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4.5.4. Implementation and Automation

To ensure consistency, congestion levels were assigned programmatically using a mapping
function that evaluated each record’s v/c ratio. The resulting Congestion_Level attribute provides
a structured and scalable classification of intersection congestion, making it suitable for predictive
modeling and further traffic analysis.

4.6. Dual Importance Intersection Feature Selection (DIFS)

The DIFS method is a hybrid feature selection approach that combines RF feature importance
ranking with Chi-square statistical analysis to improve congestion prediction accuracy. By combining
the strengths of model-based and statistical feature selection techniques, DIFS enhances both model
performance and interpretability.

4.6.1. Principles of the DIFS Approach
DIFS selects features using two complementary methods:

¢ Random Forest: Evaluates feature importance by measuring its contribution to reducing un-
certainty within a decision tree model. RF is well suited for capturing nonlinear relationships
between features and the target variable.

®  Chi-square: Measures the statistical association between categorical features and the target
variable, prioritizing features with strong relationships based on statistical significance.

DIFS selects the top-ranked features from both methods and retains only those that overlap in
both approaches. This ensures the selection of robust and informative features while reducing the
biases inherent in individual selection techniques.

4.6.2. Advantages of the DIFS Method
DIFS offers several advantages over traditional feature selection techniques:

*  Robustness: By incorporating statistical relevance (Chi?) and model-based feature importance
(RF), DIFS minimizes over-reliance on a single method, enhancing reliability.

¢  Redundancy Reduction: The intersection approach eliminates redundant or weakly relevant
features, improving model efficiency and reducing overfitting.

* Interpretability: The selected features are statistically significant and influential in predictive
modeling, enhancing interpretability.

e  Computational Efficiency: Unlike wrapper-based methods, DIFS efficiently reduces feature
dimensionality without requiring extensive computational resources.

¢ Adaptability: DIFS can be integrated with other feature selection techniques to optimize perfor-
mance for different datasets.

4.6.3. Comparative Analysis with Traditional Methods
Existing feature selection techniques have notable limitations:

¢  Filter methods (e.g., Chi-square, mutual information) evaluate features based on their correlation
with the target variable, potentially overlooking interactions.

e  Wrapper methods (e.g., RFE, genetic algorithms) iteratively test different feature subsets within a
model, improving performance but requiring significant computational resources.

e  Embedded methods (e.g., LASSO, RF importance) integrate selection within model training,
identifying important predictors efficiently but sometimes overfitting to training data.

DIFS mitigates these issues by leveraging statistical significance and predictive importance while
maintaining computational efficiency.

4.6.4. Empirical Evaluation and Model Performance Improvements

To validate DIFS, we evaluated model performance using;:
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e  Baseline models without feature selection.

e Models using only RF-based selection.

*  Models using only Chi-square selection.

*  Models using DIFS (RF + Chi-square intersection).

The results indicate that DIFS consistently improves predictive accuracy while reducing feature
redundancy. Notably:

*  Higher classification accuracy (QWK = 0.54, F1-score = 0.75 for RF).
e More efficient computation, avoiding the high runtime costs of wrapper-based approaches.
*  Lower feature redundancy, improving generalization and reducing noise in the model.

4.6.5. Conclusion: The Novelty of DIFS
DIFS represents an innovative feature selection framework for congestion prediction by:

¢  Combining statistical relevance and model-based importance to enhance feature selection robust-
ness.
¢  Eliminating redundant features while maintaining interpretability and efficiency.
¢  Balancing computational efficiency with predictive performance, making it suitable for real-time
applications.
e Handling class imbalance more effectively than traditional methods by leveraging RF’s adaptive
capabilities.
Future research should explore integrating additional selection techniques, such as mutual infor-
mation or Principal Component Analysis (PCA), to refine predictive accuracy and efficiency.
The table 4 presents the feature importance scores and selection results obtained using the DIFS
approach, which combines RF and Chi? statistical methods.

Table 4. Feature importance scores and selection results from the Dual DIFS method.

Feature Importance Score Top25RF  Top 25 Chi? Selected (Final
(RF) (Chi?) Features)

Second 0.149726 1.393803 True True True
Lane_Capacity 0.135371 625.745138 True True True
Minute 0.128438 0.537253 True True True
Rolling_Avg_Cong. 0.115735 222.695906 True True True
vc_ratio 0.083693 219.885640 True True True
Previous_Cong. 0.074941 118.899532 True True True
Direction 0.074234 51.890878 True True True
Number 0.037306 31.259874 True True True
Type 0.021417 1161.434540 True True True
03 0.017822 1.313062 True True True
no2 0.015387 0.417706 True True True
pm2_5 0.015247 1.012076 True True True
s02 0.014297 1.831040 True True True
Temperature 0.009806 7.999304 True True True
Day 0.009368 15.255901 True True True
Humidity 0.009286 8.865574 True True True
Hour 0.009038 14.022089 True True True
Wind 0.009033 5.855798 True True True
Wind Speed 0.008898 5.567105 True True True
Weekday 0.008526 40.147760 True True True
Dew Point 0.007091 1.925835 True True True
Pressure 0.007571 5.446331 True True True
Month 0.003691 8.535287 True True True
pm10 0.015471 0.237498 True False False

co 0.014222 0.070474 True False False
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4.7. Data Balancing Using SMOTE

The training dataset had a significant class imbalance in the target variable Congestion_Level,
with 6,688 records in the Low Congestion class, 1,276 in the Medium Congestion class, and 1,946 in the
High Congestion class. Such imbalance can negatively impact the performance of machine learning
models as they tend to favor the majority class, leading to biased predictions and poor generalization
for underrepresented classes.

To address this problem, we used the Synthetic Minority Oversampling Technique (SMOTE) [31],
a widely used algorithm for oversampling minority classes in imbalanced datasets. SMOTE generates
synthetic samples for the minority classes instead of duplicating existing samples. These synthetic
examples are created by interpolating between a sample and its nearest neighbors in feature space,
preserving the diversity and variability of the dataset.

After applying SMOTE, the training dataset was balanced, with each class—Low, Medium, and
High Congestion—containing 6,688 samples. This balancing ensures that the model is not biased
toward the majority class, allowing it to learn the characteristics of all congestion levels effectively. By
leveraging SMOTE, we aim to improve the robustness and generalization capability of the predictive
model, especially for the minority classes, resulting in better overall performance.

4.8. Exploratory Data Analysis

Understanding the data distribution and identifying key patterns is essential for developing an
effective predictive model for congestion levels at the traffic intersection. This section explores the
dataset through various dimensions, including the relationship between vehicle counts, temporal
trends, and directional traffic flows. The analysis highlights significant trends and correlations that
will inform the modeling process.

4.8.1. Relationship Between Vehicle Count and Congestion Level

The violin plot presented in Figure 5 illustrates the relationship between the number of vehicles
(Number) and congestion levels (Congestion_Level). The congestion levels are divided into three
categories: Low, Medium, and High, with the number of vehicles represented on the y-axis.
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Figure 5. Relationship Between Vehicle Count and Congestion Level.

Figure 5 highlights several important observations:

¢ Low and Medium Congestion Levels: For congestion levels categorized as Low and Medium, the
number of vehicles is consistently low, predominantly concentrated around 1 or 2. This indicates
that minimal vehicular presence corresponds to these lower congestion levels;
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e  High Congestion Level: For the High congestion level, the distribution of vehicle counts is much
broader. The number of vehicles ranges significantly, with the density peak observed around
5. The spread and height of the distribution suggest that a larger number of vehicles is a key
indicator of high congestion;

e  Distribution Shape: The sharp increase in density for High congestion at lower vehicle counts,
coupled with a long tail extending to higher counts, reflects the variability in vehicular presence
during high congestion scenarios. This highlights the importance of accounting for such variability
in predictive modeling.

This analysis demonstrates the strong correlation between the number of vehicles and congestion
severity. Consequently, the feature Number is a critical predictor for modeling congestion levels at
intersections.

4.8.2. Hourly Traffic Patterns

Figure 6 below shows the hourly distribution of congestion levels (low, medium, and high) over
different times of the day and provides valuable insights into the traffic patterns at the intersection.
Each bar represents the total number of congestion incidents recorded per hour, segmented by severity.
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Figure 6. Hourly Variations in Congestion Incidents.

The previous plot reveals several key observations:

*  Morning Traffic (8 AM - 10 AM): The number of congestion incidents steadily increases from 1,731
at 8 AM to 2,005 at 10 AM. This trend indicates increasing traffic flow during the morning rush
hours, with a notable proportion of High and Medium severity levels;

e Afternoon Traffic (3 PM - 6 PM): Congestion incidents peak between 4 PM and 5 PM, reaching a
maximum of 2,543 at 5 PM. This reflects the typical evening rush hour, where high congestion
levels dominate, suggesting significant delays and traffic buildup;

e  Severity Proportions: Throughout the day, Low congestion levels (green) form the main pro-
portion of incidents, followed by Medium (yellow) and High (red). However, during peak
hours, the proportion of High congestion levels increases significantly, highlighting critical traffic
management challenges.

Analysis of Figure 6 underscores the importance of time-specific traffic management strategies.
The peak congestion hours identified in the graph can guide the deployment of interventions, such as
adaptive traffic light control, to alleviate delays and enhance traffic flow. These insights are essential
for developing predictive models tailored to address temporal variations in congestion.

4.8.3. Day of the Week vs. Congestion Level

Figure 7 illustrates the variation in congestion levels (low, medium, and high) on different
weekdays and provides critical insights into weekly traffic patterns at the intersection.
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Figure 7. Weekly Distribution of Congestion Incidents.

Figure 7 reveals the following key observations :

¢  Higher Congestion on Weekdays:

-  Congestion incidents are notably higher from Monday to Thursday, with Tuesday and
Wednesday showing the peak total congestion levels at 2,508 and 2,491 incidents, respectively;

-  Low Congestion (green) dominates, followed by Medium (yellow) and High (red) congestion
levels. The presence of High Congestion highlights the impact of weekday commuting
patterns.

*  Reduced Congestion on Weekends:

- Asignificant reduction in congestion incidents is observed on Saturday and Sunday, with
totals dropping to 1,670 and 1,721 incidents, respectively. This aligns with lower traffic
volumes typically associated with weekends;

-  Low congestion incidents continue to occur most frequently on these days, while high
congestion incidents occur less frequently compared to weekdays.

¢  Transition on Friday:

-  Friday marks a transition between the high congestion levels of weekdays and the lower
congestion of weekends, with 1,973 total incidents. This reflects the changing traffic dynamics
as work-related commuting gives way to leisure and weekend activities.

This analysis emphasizes the temporal variability in traffic patterns and congestion severity.
Incorporating the Weekday feature into predictive models can enhance their accuracy by accounting
for these observed trends, particularly the sharp contrast between weekdays and weekends. Targeted
traffic management strategies for peak congestion days like Tuesday and Wednesday could further
improve intersection efficiency.

4.8.4. Direction of Vehicles vs. Congestion Level

Figure 8 below shows the distribution of congestion levels (low, medium, and high) based on the
direction of vehicle movement at the intersection. Each bar represents the total number of congestion
events for a given direction, segmented by severity.
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Figure 8. Direction of Vehicles vs. Congestion Level.

Figure 8 reveals key insights below:

¢  Dominant Congestion Directions:

- Directions 6 and 13 account for the highest number of congestion incidents, with totals
of 6,242 and 5,792, respectively. These directions exhibit a substantial proportion of High
Congestion (red) and Medium Congestion (yellow), indicating their critical role in overall
traffic congestion at the intersection;

—  This dominance suggests that these directions may correspond to main traffic inflow or
outflow routes.

e  Lower Congestion in Other Directions:

—  Directions 2, 9, 10, 11, and 12 have significantly fewer incidents, with totals ranging between
13 and 207. These directions show predominantly Low Congestion (green), implying less
frequent or less severe traffic issues.

e Intermediate Congestion Levels:

—  Directions such as 1, 3, 5, 7, and 8 show moderate numbers of congestion incidents, with a
mix of Low and Medium congestion levels. This pattern may reflect secondary traffic routes
or turning lanes with moderate traffic density.

e  Traffic Dynamics at Intersections:

- The evident disparity in congestion levels across directions suggests directional bias in traffic
flow, likely influenced by factors such as road hierarchy, intersection design, or traffic signal
timing.

The analysis of Figure 8 highlights the importance of considering direction as a predictive feature
when modeling at the congestion level. Targeted traffic management strategies such as optimizing traf-
fic light times or adding dedicated lanes for high-volume directions could effectively ease congestion
in critical directions such as 6 and 13. These insights are critical for developing a robust predictive
model and improving traffic flow at intersections.

4.8.5. Monthly Traffic Trends

Figure 9 depicts the monthly distribution of congestion incidents (Low, Medium, and High) across
four months: May, June, July, and August. Each bar represents the total number of congestion incidents
recorded during a specific month, segmented by congestion severity levels.


https://doi.org/10.20944/preprints202501.0445.v4

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2025

17 of 24

6000 5828 Congestion Level

- Low
Medium
mmm High

w
<]
b1
]

4000 1

3000

2000

Number of Congestion Incidents

1000

S &

&
@ < ¥

&
Month

Figure 9. Monthly Variations in Congestion Incidents.

Figure 9 above reveals the following critical insights:
Peak Congestion in May and July:

-  May records the highest total number of congestion incidents at 5,828, closely followed by
July with 5,242 incidents. These months are dominated by Low Congestion (green), but both
show a notable proportion of Medium (yellow) and High Congestion (red) levels. The high
traffic volumes during these months may correspond to seasonal patterns or increased travel
activity.

Drop in June and August:

—  June and August exhibit significantly lower congestion levels, with 2,492 and 1,460 total
incidents, respectively. These months have smaller proportions of High Congestion incidents,
indicating relatively smoother traffic flow during this period.

Severity Distribution:

-  Across all months, Low Congestion levels form the majority, followed by Medium and High
Congestion. However, the share of High Congestion is more prominent in May and July,
emphasizing the challenges of managing traffic during these peak months.

Temporal Variations:

—  The sharp contrast between months with high congestion (May and July) and those with
lower congestion (June and August) highlights the importance of incorporating Month as
a feature in predictive modeling. Understanding such temporal trends can significantly
improve the model’s ability to anticipate congestion levels.

The previous analysis suggests that traffic management strategies should be tailored to account

for monthly variations, particularly during high-congestion months like May and July. These insights

are crucial for predictive models aiming to optimize traffic flow and reduce delays at the intersection

considered in this study.

Keys Factors Influencing Congestion Level at the Intersection:

Based on the exploratory data analysis, several key factors influence congestion levels at the

intersection:

Number of Vehicles: A strong correlation is observed between the number of vehicles and
congestion severity, with higher vehicle counts associated with high congestion levels.

Time of Day: Morning and evening rush hours significantly impact congestion levels, particularly
during peak times (8-10 AM and 4-6 PM).

Day of the Week: Weekdays experience higher congestion levels compared to weekends, driven
by weekday commuting patterns.
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e Direction of Vehicles: Traffic flow patterns, particularly from dominant directions such as 6 and
13, heavily influence congestion.

*  Monthly Variations: Seasonal changes and monthly variations, as observed in May and July,
highlight the importance of accounting for temporal trends in predictive modeling.

The previous insights could serve as a foundation for building predictive models and inform
targeted strategies to mitigate congestion at intersections.

4.9. Development of the Predictive Model

This subsection describes the methodological approach for developing a predictive model to
classify congestion levels at intersections. To achieve this, we compared the performance of several
classification algorithms, including RF, XGBoost, LightGBM, CatBoost, and ANN. These algorithms
were selected based on their demonstrated effectiveness in classification problems within the domain
of ITS, as highlighted in numerous studies [32-34].

To enable congestion prediction, we structured the dataset to forecast congestion at a future time
step rather than classifying current conditions. Given the temporal nature of intersection congestion, we
defined a forecasting horizon of 15 minutes, ensuring that the model anticipates upcoming congestion
levels rather than merely describing present traffic conditions.

To properly structure the dataset, we introduced a time lag in the congestion level variable.
Specifically, for each intersection direction, congestion severity was shifted forward by 15 minutes,
resulting in the creation of a new target variable, Congestion_Level Future:

Yir1s = f(Xe) 3)

where X; represents the traffic and environmental features at time ¢, and y; 15 represents the
congestion level 15 minutes into the future.

By shifting the target variable, the model learns from historical data to predict future traffic states.

To rigorously assess the performance of the selected algorithms, we employed an 80-20 data
partitioning strategy, where 80% of the data was used for training and 20% for testing. This split is
widely recognized in the literature as an optimal balance between providing sufficient data for model
training and reserving enough for robust performance evaluation.

The evaluation and comparison of classification algorithms were based on multiple performance
metrics, including accuracy, recall, precision, F1 score, and QWK. This multi-metric approach en-
sures a comprehensive assessment of each algorithm’s ability to predict congestion effectively while
maintaining high generalization ability.

Our methodology ensures that the selected algorithm not only performs well on the training
data but also maintains high reliability in real-world applications. This is crucial for effective traffic
management systems at intersections, allowing authorities to anticipate congestion and implement
proactive traffic control strategies.

5. Results and Discussion

This section outlines the performance outcomes of the machine learning models employed and
provides an in-depth analysis of the findings.

5.1. Results

The classification report summary (Table 5) presents a comprehensive evaluation of each model’s
predictive capabilities and illustrates it in Figure 10, offering a detailed overview of their performance
metrics.
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Figure 10. Comparison of classification algorithm performance.

Table 5. Summary of classification results across different models.

Class Precision Recall Fl-score Accuracy QWK Score Support Runtime (s)
Random Forest (RF)
Low 0.84 0.91 0.87 - - 3584 -
Medium 0.20 0.09 0.13 - - 518 -
High 0.60 0.61 0.60 - - 712 -
Overall 0.74 0.77 0.75 0.77 0.54 4814 0.081507
XGBoost
Low 0.85 0.82 0.84 - - 3584 -
Medium 0.13 0.14 0.13 - - 518 -
High 0.54 0.61 0.57 - - 712 -
Overall 0.73 0.72 0.72 0.72 0.50 4814 0.579527
LightGBM
Low 0.85 0.80 0.82 - - 3584 -
Medium 0.14 0.17 0.15 - - 518 -
High 0.53 0.60 0.56 - - 712 -
Overall 0.73 0.70 0.71 0.70 0.48 4814 6.460226
CatBoost

Low 0.85 0.81 0.83 - - 3584 -
Medium 0.14 0.16 0.15 - - 518 -
High 0.54 0.60 0.57 - - 712 -
Overall 0.73 0.71 0.72 0.71 0.49 4814 0.376003

Artificial Neural Network (ANN)

Low 0.85 0.78 0.82 - - 3584 -
Medium 0.15 0.25 0.19 - - 518 -
High 0.57 0.54 0.55 - - 712 -

Overall 0.73 0.69 0.71 0.69 0.48 4814 314.791580
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5.2. Discussion
5.2.1. Performance Analysis of Machine Learning Models

The performance metrics presented in Table 5 and Figure 10 reveal notable differences in model
performance across RE, XGBoost, LightGBM, CatBoost, and ANN. While all models effectively classi-
fied congestion levels (Low, Medium, High) at intersections, their ability to handle class imbalances
and computational efficiency varied.

The RF model demonstrated the highest overall F1-score (0.75) and QWK score (0.54), making it
the most reliable model for congestion prediction. This performance can be attributed to RF’s robust
handling of imbalanced data, further enhanced by the use of SMOTE for data balancing.

Despite RF’s strong results, other ensemble models like XGBoost and LightGBM also performed
competitively, with slightly lower QWK scores (0.50 and 0.48, respectively). However, their ability to
generalize effectively across all classes, especially with an imbalanced dataset, remains noteworthy.
CatBoost performed similarly to RF but required slightly less runtime, making it a computationally
efficient alternative.

The ANN model exhibited the lowest F1-score (0.69) and QWK score (0.48), despite its ability to
model nonlinear relationships. Its high computational cost (314.79s runtime) makes it less practical
compared to tree-based models, especially for real-time congestion prediction tasks.

Figure 10 provides a visual representation of the uniformity and slight variations in model
performances. The observed differences highlight the effectiveness of preprocessing techniques,
particularly SMOTE, which improved recall for minority classes. However, the classification of the
Medium congestion class remained a challenge for all models, as reflected in the lower recall scores.

In real-world applications, RF emerges as the best choice due to its high predictive performance
and computational efficiency. However, XGBoost and LightGBM may be preferred when interpretabil-
ity is crucial, while CatBoost offers a balance between accuracy and speed.

In summary, the study demonstrates that ensemble methods combined with effective data balanc-
ing (SMOTE) improve congestion classification.** Future research could explore further refinements in
feature selection and alternative oversampling techniques to improve the classification of Medium
congestion levels.

5.2.2. Environmental Impact of Traffic Congestion

While this study primarily focuses on predicting congestion to improve traffic flow and reduce
emissions, it is crucial to evaluate how different congestion levels translate into environmental and
public health impacts. Using air quality data from the studied intersection, we analyzed the relationship
between congestion severity and major air pollutants, including carbon monoxide (CO), nitrogen
dioxide (NOy), fine particulate matter (PM; 5, PMyg), and ozone (O3).

Air Pollution Trends by Congestion Level

Figure 11 presents a comparative analysis of air pollutant concentrations across different conges-
tion levels (Low, Medium, High) over a typical week. Key findings include:

¢ NO; Concentrations: Nitrogen dioxide levels exhibit a direct correlation with congestion severity,
with peaks observed on high-traffic weekdays such as Tuesday and Wednesday. NO,, a primary
emission from combustion engines, is a major contributor to respiratory diseases and urban smog
formation.

*  Fine Particulate Matter (PM; 5, PMyg): Particulate emissions rise significantly under high con-
gestion conditions, particularly during morning and evening rush hours. Fine particulates pose
serious health risks, including cardiovascular and pulmonary diseases.

¢ Carbon Monoxide (CO) Trends: CO levels increase with congestion, indicating inefficient com-
bustion due to frequent stop-and-go traffic. Elevated CO exposure can lead to reduced oxygen
transport in the bloodstream, affecting vulnerable populations such as children and the elderly.
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®  Ozone (O3) Fluctuations: Although ozone is a secondary pollutant formed through photochemical
reactions involving NO, and volatile organic compounds, its levels show a delayed correlation
with congestion trends. High congestion periods contribute indirectly to ozone formation, further
exacerbating air quality issues.

Implications for Traffic Management and Emission Reduction

These findings reinforce the environmental benefits of congestion prediction and traffic optimiza-
tion strategies. By proactively reducing congestion through adaptive traffic light control and intelligent
routing, urban planners can achieve tangible reductions in air pollution, leading to:

* Improved Air Quality: A reduction in NO, and particulate emissions directly benefits urban air
quality, reducing risks of respiratory illnesses.

*  Lower Greenhouse Gas Emissions: Traffic optimization can cut CO emissions, contributing to
climate change mitigation efforts.

e  Public Health Improvements: Reducing exposure to fine particulates and NO; can lower rates of
cardiovascular diseases and improve overall public health outcomes.

Implementation in the Predictive Model

To integrate these insights into congestion forecasting, future work could explore predictive
models that quantify emission reductions associated with congestion mitigation strategies. This could
involve incorporating air quality forecasting models alongside traffic predictions to provide a holistic
approach to sustainable urban mobility.
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Figure 11. Impact of Congestion Levels on Air Pollution Trends.
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6. Conclusions and Future Research

This study presents a predictive modeling framework for assessing congestion levels at urban
intersections, leveraging machine learning techniques to address critical challenges in traffic manage-
ment. Using the CN+ dataset collected in Bremen, Germany, our approach incorporates comprehensive
data preprocessing, feature selection via the DIFS method, and robust machine learning algorithms,
including RE, XGBoost, LightGBM, CatBoost, and ANN. The experimental results demonstrate strong
predictive performance across models, with RF achieving the highest F1-score (0.75) and QWK score
(0.54), as shown in Table 5 and Figure 10.

The findings reveal that temporal patterns (hourly and weekly), traffic direction, and vehicle
type significantly impact congestion levels. These insights can inform targeted traffic management
strategies, such as adaptive signal control and optimized lane configurations. However, a key limitation
observed across all models is their difficulty in accurately predicting the "Medium" congestion class,
highlighting the need for improved feature representation or resampling techniques.

Model performance analysis:

RF outperformed other models with a balanced trade-off between accuracy and computational
efficiency (runtime of 0.08s). XGBoost and LightGBM had comparable overall performance but
required higher runtimes (0.57s and 6.46s, respectively). CatBoost offered slightly lower accuracy but
better computational efficiency (0.37s runtime), making it a viable alternative. ANN struggled with
predictive performance (F1-score of 0.69) and had the highest computational cost (314.79s runtime),
limiting its real-world applicability.

Key Limitations:

While SMOTE balancing improved model generalization, misclassification of the Medium con-
gestion class suggests the need for additional refinements. Moreover, as the study is based on a single
dataset from Bremen, generalizing the findings to other urban environments remains a challenge.
Future research should validate the framework across multiple datasets to enhance robustness and
applicability.

Future Research Directions:

*  Geographic Scalability: Expanding the framework to diverse urban settings with varying traffic
patterns and infrastructure to assess adaptability.

* Advanced Feature Engineering: Exploring additional predictors, such as real-time incident
reports, weather conditions, and pedestrian flow, to refine congestion estimation.

e  Real-Time Data Integration: Incorporating live feeds from sensors and intelligent transportation
systems for dynamic congestion forecasting.

e Decision Support Systems: Developing interactive interfaces that visualize congestion predictions,
aiding proactive traffic management.

e  Environmental Impact Analysis: Integrating congestion predictions with emission control strate-
gies to assess sustainability and mitigate air pollution.

By addressing these future directions, the proposed framework can evolve into a powerful tool
for intelligent transportation systems, contributing to more efficient, sustainable, and adaptive urban
traffic management.
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