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Abstract: Generative Artificial Intelligence marks a critical inflection point in the evolution of 
machine learning systems, enabling the autonomous synthesis of content across text, image, audio, 
and biomedical domains. While these capabilities are advancing at pace, their deployment raises 
profound ethical, security, and privacy concerns that remain inadequately addressed by existing 
governance mechanisms. This study undertakes a systematic inquiry into these challenges, 
combining a PRISMA-guided literature review with thematic and quantitative analyses to interrogate 
the socio-technical implications of generative Artificial Intelligence. The article develops an 
integrated theoretical framework, grounded in established models of technology adoption, 
cybersecurity resilience, and normative governance. Structured across five lifecycle stages (design, 
implementation, monitoring, compliance, and feedback) the framework offers a practical schema for 
evaluating and guiding responsible AI deployment. The analysis reveals a disconnection between 
the fast adoption of generative systems and the maturity of institutional safeguards, resulting with 
new risks from the shadow Artificial Intelligence, and underscoring the need for adaptive, sector-
specific governance. This study offers a coherent pathway towards ethically aligned and secure 
application of Artificial Intelligence in national critical infrastructure. 

Keywords: generative Artificial Intelligence; shadow AI; policy development; responsible AI 
deployment; data ethics; cybersecurity 
 

1. Introduction   

Artificial Intelligence (AI) operates through self-evolving uses that can autonomously produce 
new data outputs. Generative AI represents a significant departure from classical algorithmic 
methods. Generative AI use advanced deep learning frameworks such as Generative Adversarial 
Networks (GANs) [1] and Variational Autoencoders (VAEs). These architectures facilitate the 
generation of high-dimensional data by employing latent space manipulation and probabilistic 
modelling. GANs, for instance, employ a dual-network approach, consisting of a generator and 
discriminator, engaged in a zero-sum game to improve output quality iteratively. In parallel, VAEs 
focus on encoding data distributions into lower-dimensional latent spaces, from which new samples 
can be generated. These models are not confined to traditional data outputs. Still, they can instead 
synthesise intrinsically new outputs, ranging from high-resolution images to contextually rich 
natural language sequences, often indistinguishable from human-created content. 

Generative AI has been deployed in several sectors, each using its unique capacity for 
autonomous creation. In the creative industries, the automation of content generation (be it in visual 
art, music composition, or text production) challenges the very notion of human creativity and 
authorship. Within biomedicine, generative models are accelerating drug discovery by designing 
novel molecular structures and improving diagnostic accuracy through synthetic medical 
imaging. Cybersecurity applications exploit generative AI for automated threat detection and 
adversarial attack simulation, enhancing defensive strategies and offensive capabilities. 
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However, the increasing reliance on generative AI introduces many challenges. Ethical concerns 
are at the top, particularly in deepfakes and algorithmic bias. Deepfake technologies, driven by 
GANs, have shown an unsettling ability to create hyper-realistic yet entirely fabricated audio-visual 
content, posing risks to information integrity and public trust. Meanwhile, the unintentional 
propagation of biases embedded in training data can lead to discriminatory outcomes in decision-
making systems, exacerbating social inequities. 

From a security perspective, generative AI introduces potential attack vectors. Its capability to 
autonomously generate code or craft sophisticated phishing schemes increases the scale and 
complexity of cyber-attacks. These threats are intensified by using generative AI to 
automate misinformation campaigns, where false narratives can be rapidly disseminated, further 
complicating detection and mitigation efforts. 

Privacy concerns also take centre stage, particularly regarding the use of personal data in 
training these expansive models. The vast datasets required to fine-tune generative architectures 
often include sensitive information, raising profound questions about data ownership, consent, and 
the potential for re-identification in anonymised datasets. These evolving technologies continually 
test the legal and regulatory frameworks governing AI applications, including the General Data 
Protection Regulation (GDPR) [2,3], necessitating more robust and contextually adaptive governance. 

Resilience in Generative AI Cybersecurity 

Resilience in complex systems refers to the ability to anticipate, absorb, recover from, and adapt 
to adverse conditions. In the context of generative AI, resilience must be evaluated through its 
capacity to withstand cyber threats, mitigate risks, and ensure robust governance mechanisms that 
preserve societal stability. We need new governance frameworks for enhancing resilience by 
establishing risk mitigation strategies that address AI-generated threats while promoting a 
sustainable and adaptive regulatory environment. 

From a cybersecurity perspective, resilience is traditionally assessed by analysing how a system 
functions under stress. Generative AI introduces novel risks, such as adversarial attacks, automated 
misinformation propagation, and large-scale privacy breaches, which can compromise the integrity 
of digital ecosystems. We need new frameworks that quantifies these risks by measuring the impact 
of generative AI in adversarial scenarios, ensuring that security vulnerabilities do not erode trust in 
AI-driven infrastructures. 

In this paper, risk assessment for the shadow AI serves as a mechanism for evaluating the 
resilience of generative AI. We measure resilience by examining how AI systems respond to 
adversarial shocks, such as: 
• Data Poisoning and Model Robustness: The resilience of generative AI models depends on their 
ability to maintain integrity when exposed to manipulated training datasets. Our framework 
incorporates adversarial training and differential privacy techniques to fortify models against such 
attacks. 
• Deepfake and Misinformation Detection: The proliferation of deepfake technology presents 
significant societal risks. Our framework enhances resilience by integrating AI-driven detection 
mechanisms to counteract misinformation and preserve digital authenticity. 
• Governance and Policy Enforcement: Regulatory oversight is essential for resilient AI ecosystems. 
By embedding security compliance and ethical AI governance, our framework ensures that 
generative AI operates within well-defined constraints, enhancing its adaptability and sustainability 
in dynamic threat landscapes. 

Research Gap 

While the current body of research has been predominantly centred on advancing the technical 
capabilities of generative AI, there remains a deficiency in examining the broader ethical [4–8], 
security [9–13], and privacy [14] implications accompanying its widespread deployment [4–6]. 
Existing scholarship has largely prioritised algorithmic efficiency and model performance 
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improvements, often neglecting the complex socio-technical ramifications of integrating these 
systems into various sectors. This oversight is particularly problematic given the rapid pace of 
generative AI's advancement, which outstrips the development of corresponding governance 
frameworks, ethical guidelines, and security protocols [15,16]. 

The divided nature of scholarly discourse compounds this issue. Research is siloed into 
specialised domains without a holistic approach that addresses the intersectionality of ethical, 
security, and privacy concerns. Ethical challenges, such as algorithmic bias and the generation of 
misleading content [17], are often discussed in isolation from security vulnerabilities [18,19], such as 
adversarial attacks [20–30], and privacy breaches, like the unauthorised exploitation of personal data 
[31–34]. This lack of integration results in an incomplete understanding of the full spectrum of risks 
posed by generative AI technologies. 

Moreover, discussions regarding the responsible application of generative AI are still in their 
infancy. While some initial steps have been made towards establishing regulatory frameworks, many 
remain embryonic and lack the robustness to manage the multifaceted risks inherent in this rapidly 
advancing field. The absence of comprehensive, context-specific guidelines further exacerbates the 
potential for misuse, leaving a critical gap in the literature that necessitates immediate scholarly 
attention. This gap represents an urgent opportunity for academic contributions that bridge 
theoretical exploration and provide practical frameworks for generative AI systems’ ethical, secure, 
and private deployment. 

Objectives and Contributions 

The principal objective of this paper is to construct a comprehensive and integrated 
framework that captures the ethical, security, and privacy dimensions of generative AI while 
concurrently advocating for fostering technological innovation. This framework seeks to balance the 
requirement of advancing AI capabilities and mitigating associated risks (see key objectives in Figure 
1), ensuring that the deployment of generative AI adheres to responsible standards. 

To achieve this, the paper will address the following key objectives: 

 
Figure 1. Key objectives. 

1. This paper synthesis the current research landscape, consolidating unrelated strands of 
discourse surrounding generative AI. It also critically examines technological 
advancements and emergent ethical, security, and privacy challenges in deploying generative 
AI. 

2. Analysis of the specific risks and challenges posed by generative AI, with a particular focus on 
the ethical dilemmas (e.g., bias propagation, misinformation), security threats (e.g., adversarial 
attacks, automation of cyber threats), and privacy infringements (e.g., re-identification risks in 
anonymised data). 

3. Proposes a multi-layered framework that provides a unified structure for addressing these 
ethical, security, and privacy challenges. This framework offers a practical utility to various 
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stakeholders, including AI practitioners, policymakers, and regulatory bodies, to guide the 
responsible deployment of generative AI technologies. 

4. Formulates actionable guidelines to ensure that generative AI systems are developed and 
deployed in accordance with ethical principles, robust security measures, and privacy 
protections. These recommendations are tailored to the needs of various stakeholders, 
including developers, users, and regulators. 

5. Identify key gaps in the existing literature and propose directions for future research. This 
includes suggestions for interdisciplinary collaboration to explore the evolving challenges 
associated with generative AI and its responsible governance. 

2. Research Methodology 

This study employs a mixed-methods research design, 
integrating quantitative and qualitative approaches to capture generative AI's complex and multi-
dimensional nature. This methodological framework is selected to provide a comprehensive analysis 
of the economic, ethical, and technological aspects of generative AI, which are inherently 
interconnected but often studied in isolation. Combining empirical data and expert insight ensures 
that the research addresses measurable outcomes and the more subtle, qualitative dimensions of AI's 
broader societal implications. 

Quantitative Analysis 

The quantitative component of the study focuses on a statistical examination of generative AI's 
impact across various sectors. Market trends, economic repercussions, and technological 
advancements are analysed to quantify the scope and trajectory of generative AI integration into 
healthcare, cybersecurity, and creative industries. Secondary data sources, including market 
reports, publicly available databases (e.g., from the International Data Corporation (IDC) and 
the Institute of Electrical and Electronics Engineers (IEEE)), and industry publications, are leveraged 
for this analysis. 

Analytical techniques employed in the quantitative phase include: 

• Regression analysis to assess relationships between the adoption of generative AI and its 
economic impact across different industries. 

• Time-series analysis to track the evolution of generative AI technologies and market responses 
over time. 

• Predictive modelling to forecast future developments and potential disruptions brought about 
by generative AI in various sectors. 

These techniques are facilitated through statistical tools such as SPSS and data analysis libraries 
in Python (e.g., Pandas and NumPy), ensuring a robust and data-driven analysis of generative AI's 
economic and technological footprint. 

Qualitative Analysis 

The qualitative component is centred on the thematic analysis of scholarly literature, expert 
interviews, and white papers. This methodology aspect is critical for capturing the nuanced 
ethical, security, and privacy implications of generative AI—issues that are often difficult to quantify 
but essential to responsible deployment. 

Primary qualitative data sources include: 

• In-depth interviews with industry experts and academic specialists in AI, focusing on their 
perspectives regarding the ethical challenges, security vulnerabilities, and privacy 
concerns related to generative AI technologies. 

• A comprehensive review of peer-reviewed academic articles, industry white papers, and 
regulatory documents to establish the current state of discourse surrounding the responsible 
implementation of generative AI. 
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Thematic analysis is conducted using NVivo software, allowing for the systematic coding of 
qualitative data to identify recurrent themes, patterns, and emergent insights. This method provides 
an analytical framework to explore areas that quantitative data alone may not reveal, such as the 
potential for generative AI to exacerbate biases or be exploited in malicious cyber-attacks. 

Data Integration and Analysis 

By integrating quantitative metrics and qualitative insights, the study adopts a holistic 
approach that ensures the validity and reliability of the findings. Quantitative results provide 
a broad, empirical understanding of generative AI's economic and technological impact, 
while qualitative insights offer depth and context regarding the ethical, security, 
and privacy challenges. This dual approach allows the research to align closely with the study's 
objectives and maintains empirical rigour and contextual relevance. 

Quantitative data is primarily obtained from market reports, industry analyses, and academic 
publications. Qualitative data is sourced through expert interviews and a review of 
pertinent literature. This blend of data ensures the research captures the breadth and depth of 
generative AI's implications. 

Analytical Techniques 

The following analytical techniques are employed to ensure rigour: 

• Regression and predictive modelling to forecast the future trajectory of generative AI's influence 
across industries. 

• Time-series analysis to assess the evolution of generative AI applications and their implications 
over time. 

• Thematic coding for identifying and analysing patterns in expert interviews and literature on 
the ethical, security, and privacy concerns surrounding generative AI. 

Combined with SPSS and Python libraries, these tools ensure a methodologically sound, data-
driven analysis that aligns with the study's objectives. 

This comprehensive methodological approach ensures that the study addresses the multi-
faceted nature of generative AI, providing a rigorous foundation for the research findings and 
allowing for the synthesis of empirical evidence and contextual insight. By doing so, the 
methodology aligns with the study's overarching aim to deliver a balanced, well-supported 
framework for understanding and addressing the implications of generative AI. 

3. Literature Review and Bibliometric Analysis - with Visual Examples  

The literature review and bibliometric analysis are conducted throughout the research article 
and are addressing specific aspects of the study. This research methodology was chosen to ensure 
specific sections are developed with references to relevant literature on the specific issues addressed 
in specific sections of the article. The brief review below provides an examination of generative AI 
technologies, their practical applications, and their various security, ethics, and privacy challenges.  

Theoretical Background of Generative AI Technologies 

Generative Adversarial Networks (GANs) [1] and Variational Autoencoders (VAEs) [35–38] are 
two facets of generative AI that have transformed the field of image synthesis and medical imaging, 
respectively [39–51]. GANs have the potential to generate hyper-realistic images, as demonstrated by 
StyleGAN [45] in creating highly realistic human faces. GANs have expedited drug discovery 
processes in the pharmaceutical industry, as shown by Zhavoronkov et al. [52], where novel 
molecules were designed in a notably short time frame. 

VAEs, on the other hand, have notably impacted medical imaging by enhancing MRI accuracy 
[53], thereby improving diagnostic methodologies. This is indicative of the broad scope of generative 
AI technologies. 
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Transformer-based models, such as GPT-3 [54], further expand the application horizon of 
generative AI. These models can generate text indistinguishable from human writing, which has 
significant implications across sectors such as journalism and creative industries. This underlines the 
versatile applications of generative AI. 

Generative AI is a type of AI model that can create new data samples that resemble a given input 
data set. It differs from discriminative models that classify or differentiate between data points. 
Generative models can be used in various media, such as text, images, video, and audio. For example, 
they can generate coherent paragraphs for automated storytelling or news article generation, produce 
new images that were not part of the original dataset, create new video sequences or modify the 
existing ones for video editing and movie production. They can also produce sound or modify 
existing audio tracks for music composition and voice generation. 

There are several real-world examples of generative AI, such as wearable sensors in healthcare 
that detect irregular heart rhythms and conduct ECGs; generative AI in art, where artists use GANs 
to create visual art pieces; accelerometer datasets for fitness apps that track and analyse physical 
activity; and generative AI in video games, which uniquely generates planets, species, and terrain for 
the game. 

Why the Hype Around Generative AI? 

Generative AI has exploded with significant implications for technology, economics, and 
society. From generating hyper-realistic images to creating new kinds of music, this technology 
fundamentally reshapes how we create and consume content. 

A generic search on the Web of Science Core Collection for 'Generative AI' (as of September 4, 
2023) returns only 1,195 publications (see breakdown in Figure 2). 

 
Figure 2. Search results on 'Generative AI' from the Web of Science Core Collection. 

We extracted the data records as a file and analysed them with R to extract further input from 
the data. In Figure 3, we created a three-field data plot to compare output by country, institution, and 
keywords. The data analysis results are somewhat unconvincing because, despite all recent 
developments in the United States, the three-field plot in Figure 3 shows that Swansea University is 
leading in research output on Generative AI. This shows an error in the data set, or an error in the 
analysis of the data set, and requires further analysis. For clarity, and for reproducing the same 
results, we share the data set with other researchers to analyse and identify the causes of this result, 
but for the purpose of this study, we chose to analyse further data sets, and apply different methods 
of analysis.  
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Figure 3. Three Fields Plot. 

Given that Figure 2's results are unconvincing, we continued analysing this data file with various 
statistical approaches. We derived a very different visualisation of collaborations in the data: the 
social structure of the data is analysed as a country collaboration world map (Figure 4).  

 
Figure 4. Social Structure. 

The results show in Figure 4, clearly show that the social structure of research output on this 
topic is strongly corelated to the US. This is significantly different than the results in the Figure 3, and 
yet, its different analysis of the exact same dataset from the Web of Science Core Collection. This 
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clearly descries why simply taking data records from the Web of Science Core Collection, Scopus, or 
any other database, without applying a strong research methodology, can lead to bias and errors in 
the data analysis. The next section (Figure 5) details the structured review approach that was selected 
for eliminating these errors in the datasets and the data analysis process. The two figures (Figure 3 
and Figure 4) are included for illustrative purposes only, to justify the need for a strong research 
methodology, which is detailed in the following section.  

 
Figure 5. PRISMA Flow Diagram for the Systematic Literature Review. 

Literature Review Methodology: A PRISMA-Guided Approach 

To ensure methodological rigour and transparency, we conducted a systematic literature review 
following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 
framework. This approach allowed us to comprehensively identify, select, and synthesise relevant 
academic and grey literature on the ethical, security, and privacy implications of generative AI. 
Identification 

We initiated a comprehensive search across four major academic databases: Web of Science, 
Scopus, IEEE Xplore, and ACM Digital Library. The following Boolean keyword strategy was 
employed: 

(“Generative AI” OR “Generative Adversarial Networks” OR “VAEs” OR “Transformer 
Models”) AND (“Security” OR “Privacy” OR “Ethics” OR “Governance” OR “Resilience”) 

The search was limited to peer-reviewed journal articles and conference papers published 
between January 2019 and September 2024 to ensure a focus on recent and high-impact literature. We 
also screened reputable white papers from institutions such as the IEEE, NIST, and OECD. 
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This process yielded 1,526 unique records. 
Screening 

All search results were exported to Zotero for reference management. After automatic and 
manual removal of duplicate entries (n = 311), the remaining 1,215 studies underwent a title and 
abstract screening. Two independent reviewers assessed the relevance based on predefined inclusion 
and exclusion criteria (see below). 

• Inclusion criteria: Studies focused explicitly on generative AI and its cybersecurity, ethical, or 
privacy implications; articles proposing frameworks, empirical results, or taxonomies. 

• Exclusion criteria: Editorials, news articles, opinion pieces, papers focused solely on model 
architecture without application discussion. 

Following this screening phase, 439 papers were selected for full-text analysis. 

Eligibility 
Full texts of the remaining articles were reviewed to assess methodological soundness and 

thematic alignment. Papers that lacked sufficient empirical basis or did not engage with the socio-
technical aspects of generative AI were excluded. A final set of 147 articles were deemed eligible. 
Inclusion 

Of the eligible articles, we included 112 peer-reviewed articles and 12 white papers in the final 
synthesis. These sources were coded using NVivo to identify thematic clusters around ethical 
governance, adversarial robustness, privacy preservation, and regulatory gaps. 

The final selection of studies, as illustrated in Figure 5, provides a robust foundation for 
understanding the multi-dimensional risks and governance challenges associated with generative AI. 
By employing NVivo to thematically code the included literature, we identified recurring patterns 
and conceptual gaps across four primary domains: ethical governance (e.g., fairness, accountability), 
adversarial robustness (e.g., attack surface analysis, model poisoning), privacy preservation (e.g., 
data minimisation, anonymisation), and regulatory frameworks (e.g., GDPR compliance, sector-
specific guidelines). This structured analysis ensured methodological transparency and facilitated the 
development of an integrated framework that synthesises technical, ethical, and policy-driven 
insights. The resulting evidence base serves as a critical scaffold for the subsequent theoretical and 
empirical components of this study. 

Generative AI in Real-World Use Cases: Review of Case Study Examples from Healthcare and Climate Data 
Analysis  

Generative AI has exemplified the development of dynamically generated video game 
environments that adapt to individual playstyles. In the medical field, synthetic data creation for 
training algorithms stands out, offering enhanced diagnostic capabilities while safeguarding patient 
privacy. These developments, previously envisaged as distant possibilities, are now tangible realities, 
owing to the transformative impact of generative AI. Imagine video games with worlds generated on 
the fly, adapting to your playstyle. This is close in reality. In Figure 6, we can see a visual 
demonstration of an image generated on the fly, and the potential for such image generations is 
unlimited, even with the current technologies. Consider synthetic data that can train medical 
algorithms (e.g., MRI, X-Rays), improving diagnostics without compromising patient privacy. 
Although the image in Figure 6 seems far-fetched in comparison to a medical image, this is just a 
demonstration of what generative AI is capable of, in other research projects, we use advanced and 
synthetically generated MRI and X-rays that are representative of specific diseases and illnesses, and 
we train the AI to detect specific conditions, and this is happening now. Generative AI enables 
technological leaps we couldn't have imagined a decade ago. 
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AI image, generated with: hotpot.ai Brain regions on T1 MRI, taken from Wikimedia Commons1: 

representing Neuroimaging studies [55], and the medical 

applications of artificial intelligence for medical image 

analysis [56]. 

Figure 6. Generative AI enables synthetically generated MRI and X-rays that represent specific diseases and 
illnesses. 

However, the rise of generative AI is accompanied by a complex array of ethical considerations 
that require analysis from different perspectives. The potential for ingrained biases and a lack of 
impartiality within AI systems is a real concern.  

Another critical dimension concerns accountability and transparency in AI decision-making 
processes. Buolamwini and Gebru's 2018 research [57] sheds light on profound racial and gender 
biases in facial recognition technologies. These findings challenge the prevailing assumptions about 
the responsibility and openness of AI systems. 

Furthermore, AI's broader societal and employment implications represent a primary area of 
concern. Acemoglu and Restrepo's 2020 discourse [58] expanded into AI's broader social 
repercussions, particularly focusing on its effects on employment patterns and economic disparities. 
These considerations underscore the need for a balanced approach to harnessing the potential of 
generative AI while mitigating its unintended consequences. 

Societal Impact 

Generative AI extends beyond technological and business applications, indicating an era where 
creativity is democratised. This innovation enables those without artistic backgrounds to produce 
artistic imagery through AI tools. In healthcare, the advent of personalised treatments tailored to 
individual health profiles is now a growing possibility. We stand at the cusp of an era where personal 
experiences can be profoundly customised through these generative models. However, this progress 
brings significant privacy concerns. Generative AI democratises creativity, and synthetic images are 
valuable in medical applications. For example, a medical practitioner without artistic skills and 
capabilities can create compelling visuals using AI tools and images (see Figure 7). Even if such 
images are not of the same quality and creativity as real artists, the images can be developed 
according to what the medical practitioners require and what the AI system needs to be trained. Such 
images would enable medical practitioners to visualise the body's composition without intrusive 
procedures. In medicine, personalised treatments could be generated based on individual health 
data. Our personal experiences and professional requirements can be deeply customised with 
generative AI models. 

 
1 https://commons.wikimedia.org/wiki/File:Brain_regions_on_T1_MRI.png 
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AI image, generated with: deepai.org Accelerated Synthetic MRI with Deep Learning 2 : 

Based Reconstruction for Pediatric Neuroimaging 

[59] 

Figure 7. Generative AI democratises creativity, and synthetic images are valuable in medical applications. 

The issue of Consent and Anonymisation is critical, as demonstrated by Rocher et al. [60]. Their 
research revealed the startling ease with which supposedly anonymised data could be re-identified, 
underscoring the urgent need for robust data protection measures. 

The Cambridge Analytica scandal, reported by Cadwalladr and Graham-Harrison in 2018 [61], 
starkly illustrates the risk of data misuse. This incident serves as a stark reminder of the dangers 
inherent in the mishandling of personal data and highlights the necessity for ethical data 
management practices. As Kostka discusses [62], AI has amplified concerns about surveillance and 
monitoring in systems such as China's social credit scheme [62]. The application of AI in these 
surveillance contexts raises significant privacy issues, necessitating a balanced approach to deploying 
AI technologies. 

Economic Considerations 

The economic landscape of generative AI is set for considerable growth, reflecting its 
transformative potential across various industries. Although precise predictions for the market size 
vary, the trajectory suggests a significant financial impact. Generative AI is expected to significantly 
contribute to the broader AI market, which is experiencing rapid expansion.  

The cost-efficiency aspect of generative AI is particularly noteworthy. Using synthetic data to 
train models can reduce data collection and processing expenses. This cost-saving factor is financially 
advantageous and contributes to accelerated development cycles for AI models, enabling swifter 
deployment and realising technological benefits. 

Moreover, generative AI is anticipated to influence the job market and service industries, though 
the scope and nature of this impact are subject to ongoing research and discussion. While there is 
potential for AI-driven automation to affect traditional job roles, generative AI also presents 
opportunities for creating new job positions and services. These emerging roles and services, 
indicative of the evolving nature of the AI-driven economic landscape, could contribute to new areas 

 
2 https://syntheticmr.com/archive/clinical-studies/accelerated-synthetic-mri-with-deep-learning-based-reconstruction-for-

pediatric-neuroimaging/ 
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of economic growth and innovation. Its integration into various sectors is likely to result in cost 
efficiencies, operational improvements, and the emergence of new job roles and services, collectively 
contributing to a global economic transformation in the AI era. The continual developments in this 
field highlight the importance of ongoing research and analysis to fully understand and capitalise on 
the economic potential of generative AI. 

Challenges and Opportunities 

Generative AI, while groundbreaking, presents new ethical problems. We must consider how to 
effectively address the emergence of AI-generated fake news or deepfakes. Moreover, it is crucial to 
ensure these technologies are used equitably and don't reinforce existing social biases. Yet, these 
issues also open doors to new governance models, the ethical design of AI, and meaningful public 
discussions about the future we aspire to create with these technologies. 

Security vulnerabilities are a significant concern in generative AI. A key issue is the susceptibility 
of AI models to manipulation, which could significantly compromise the effectiveness of systems like 
spam filters and pose potential security risks. 

Another pressing issue is the misuse of deepfake technology. This technology's potential for 
spreading misinformation, as seen in various contexts, underscores the need for robust security 
measures to mitigate these risks. While deepfake technology was initially used only for face 
replacement, with its advancement, misinformation can spread in various areas, such as climate 
change. In this case, images can easily be manipulated to misrepresent reality, see the image in Figure 
9 of nature paper [63], and alternative image generated by Generative AI in Figure 8.  

 
Figure 8. Climate Impact of Generative 

AI - deepai.org 

 
Figure 9. Microorganisms and climate change in marine and 

terrestrial biomes [63]  

Additionally, the sophistication of AI-generated phishing emails represents an evolving 
challenge in cybersecurity. This development necessitates advancing defensive strategies to protect 
against such automated cyber threats. 

The use of generative AI has raised concerns regarding security vulnerabilities. One such 
vulnerability is the susceptibility of AI models to manipulation, as demonstrated by Biggio et al. [64]. 
They showed that spam filter performance could be severely compromised due to malicious inputs, 
serving as a warning for potential security breaches in AI systems. 

Another significant concern is the potential misuse of deepfake technology, as highlighted by 
Korshunov and Marcel [65] This has significant implications for spreading misinformation. The 2020 
US election deepfake incidents further emphasise the need for robust security measures. 

As Wallace et al. [7] demonstrated, the sophistication of AI-generated phishing emails represents 
a new frontier in cybersecurity threats. This underscores the need for advanced defensive strategies 
to protect against automated cyber-attacks. 
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4. Discriminative vs. Generative Models 

Discriminative models act like judges, with the main task of differentiating or classifying 
different types of data. For example, if you have a basket of fruits and you want to separate apples 
from oranges, a discriminative model will learn the boundary that distinguishes the two. 

On the other hand, generative models act like artists. They are not concerned with separating 
apples from oranges. Instead, they can create or generate new fruit similar to what it has seen during 
training. So, if a generative model is trained on apples and oranges, it has the potential to generate a 
new variety of apples or oranges. 

There are key differences between these two models. Discriminative models give you a label, 
such as "This is an apple," while generative models create new data, such as "Here's a new kind of 
apple." Discriminative models learn the boundaries between classes, while generative models learn 
the distribution of a single data class.  

Discriminative models are primarily used for tasks like classification, while generative models 
have a broader range of applications, including data generation, text completion, and much more. 

5. Analysis of Generative vs Discriminative AI 

Artificial intelligence has led to developing two main machine learning models: generative and 
non-generative (also known as discriminative) models. Both models have unique characteristics that 
make them suitable for different tasks. Non-generative models are best suited for data classification 
tasks and are generally easier to train. On the other hand, generative models offer more capabilities, 
such as data generation and semi-supervised learning, but require more computational resources and 
may be subject to biases. It is important to understand these models to make informed decisions 
about which model to use for a particular project, leading to more effective and efficient solutions. 

Non-generative or discriminative models are designed to distinguish between different 
categories or classes. As the name suggests, these models aim to identify the decision boundary that 
separates distinct categories. For example, Support Vector Machines (SVM) identify hyperplanes that 
best separate data into distinct classes [66].  

In classification tasks, non-generative models, such as logistic regression, are commonly used to 
recognise benign and malignant tumours in medical diagnostics [67]. Convolutional Neural 
Networks (CNNs) excel at identifying and classifying objects within images for image recognition 
[68]. 

Generative models are designed to identify and replicate the data distribution of their training 
sets, unlike discriminative models that aim to classify the input data. These models can generate new 
instances that closely resemble the original data by capturing the inherent patterns and variations 
within the data. 

Generative Adversarial Networks (GANs) are widely used to create realistic images and art.[1], 
but autoencoders have demonstrated significant efficacy in data denoising, enabling audio 
restoration applications [69]. Moreover, generative models have proven useful in natural language 
processing; for instance, language models such as GPT-2 [70] can generate text that is frequently 
indistinguishable from human-generated content. 

Comparative Analysis 

In machine learning, there are two main models: generative and non-generative. Non-generative 
models are designed to learn the boundaries that separate different classes, which makes them 
optimal for categorisation tasks. On the other hand, generative models aim to capture the underlying 
data distribution, enabling them to create new data instances. 

Regarding capabilities, non-generative models are specialised for classification and regression 
tasks but lack the inherent ability to produce new data. On the other hand, generative models can 
generate new data instances and are also helpful in semi-supervised learning scenarios where 
labelled data is scarce [71]. 
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Non-generative models are limited to the classes they were trained on and require less 
computational power, while generative models are computationally expensive and require larger 
training datasets [1]. 

The preceding section provided a thorough academic overview of the distinctions between 
generative and non-generative models. This was supported by robust empirical studies and specific 
examples, making it crucial for AI practitioners and researchers to understand these differences 
clearly. The selection of which model to use is highly dependent on a project's specific requirements, 
so a strong grasp of these distinctions is essential for confidently navigating AI development. 

The key differences are outlined in Table 1.  

Table 1. Comparison table of the key differences between Generative and Discriminative AI. 

Criteria Non-Generative Models Generative Models 

Learning Approach Learn to differentiate Learn to generate 

Capabilities Classification, Regression Data generation, semi-supervised learning 

Common 

Algorithms 

SVM, Logistic Regression GANs, Autoencoders 

Use-Cases Spam Filters, Image Recognition Art Generation, Data Augmentation 

Limitations Limited to existing classes May require more data, susceptible to 

biases 

Exploring generative and non-generative models in AI provides invaluable insights into their 
distinct capabilities and limitations. Non-generative models excel in classification and regression 
tasks, leveraging their ability to discern and categorise different data classes. In contrast, generative 
models can generate new data instances and are pivotal in art creation, data augmentation, and semi-
supervised learning. The choice between these models hinges on the specific requirements of a 
project. For tasks requiring precise classification, non-generative models are more suitable, whereas, 
for projects that benefit from the creation of new data or dealing with limited labelled data, generative 
models are advantageous. This comparative analysis, encapsulated in Table 1, is essential for AI 
practitioners and researchers. It guides them in selecting the most appropriate model for their unique 
objectives, thereby optimising the efficacy and innovation potential of their AI-driven projects. 

6. Core Technologies Behind Generative AI   

Neural networks are at the core of modern AI and are used in many generative models. They 
are designed to mimic the neural networks in the human brain, allowing machines to learn from data. 
Neural networks comprise layers of interconnected nodes or "neurons", where the output of one layer 
serves as the input for the next. Convolutional neural networks (CNNs) are commonly used in image 
recognition tasks. 

Autoencoders are neural networks that learn to compress and reconstruct input data. They 
consist of two parts: an encoder that compresses the input data into a lower-dimensional 
representation and a decoder that reconstructs the original input from the lower-dimensional 
representation. Autoencoders are helpful for tasks such as image denoising and dimensionality 
reduction. 

Generative Adversarial Networks (GANs) are generative models that learn to generate new data 
similar to a given dataset. GANs consist of two neural networks: a generator that generates new data 
and a discriminator that tries to distinguish between generated and real data. The generator learns to 
generate better data by trying to fool the discriminator, while the discriminator learns to distinguish 
between real and generated data. 

Transformer Models are neural network architectures for natural language processing tasks 
such as translation and text generation. They use a self-attention mechanism to process input data 
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and generate output. The most well-known transformer model is the GPT (Generative Pre-trained 
Transformer) series, with the latest GPT-3. GPT-4 is currently in development. 

Neural networks are the foundation of modern AI and are widely used in generative models. 
Autoencoders learn to compress and reconstruct input data, while GANs learn to generate new data 
similar to a given dataset. Transformer models, such as GPT-4, are based on a self-attention 
mechanism for natural language processing tasks [68]. The CNN layers' capability to capture spatial 
hierarchies makes them an excellent precursor for image-generating models. Neural networks 
frequently adopt more complex architectures when transitioning to generative paradigms to 
adequately model complex data distributions. 

Autoencoders are a type of neural network specifically designed for unsupervised learning 
tasks. They consist of two primary components: the encoder and the decoder. The encoder 
compresses the input data into a lower-dimensional latent space, and the decoder reconstructs the 
data from this latent representation. Autoencoders have been used in numerous applications, such 
as dimensionality reduction, anomaly detection, and, notably, in generative tasks [72]. For instance, 
Variational Autoencoders (VAEs) provide a probabilistic method for describing observations, 
thereby capturing the inherent uncertainties associated with data generation [71]. In practice, VAEs 
are frequently utilised to generate similar new data to the training data, such as synthesising new 
molecules for drug discovery. 

Ian Goodfellow et al. [1] introduced Generative Adversarial Networks (GANs) in 2014, making 
them one of the most well-known generative models. A Generative Adversarial Network (GAN) 
comprises two neural networks: the generator and the discriminator. These networks are trained 
simultaneously in a game of cat and mouse. The generator aims to create indistinguishable data from 
real data, while the discriminator seeks to differentiate between genuine and artificially generated 
data. GANs have a broad range of applications, including generating artwork that has been sold for 
substantial amounts at auction houses like Christie's [73] and generating realistic medical imaging 
data for research [48]. These models can generate high-quality data, often to the point where it is 
difficult to distinguish them from actual data. 

Transformer models, originating from the natural language processing (NLP) field, have taken 
generative tasks to an unparalleled level. Initially designed for machine translation, Transformer 
architecture has evolved into models like GPT (Generative Pre-trained Transformer). GPT-4 is a state-
of-the-art example of Transformer-based generative models [74]. GPT-4 is an advanced artificial 
intelligence technology that can generate text that makes sense and is relevant to the context. Thanks 
to its complex neural architecture, it also has some basic comprehension and problem-solving 
abilities. Its potential diverse applications include automated customer service, content creation, and 
even scientific research assistance by generating hypotheses or writing code. 

7. Use Cases & Applications   

In Art and Design, Generative AI offers many new opportunities, from automated design 
layouts to the creation of intricate artworks. One such platform is "Artbreeder" which allows artists 
to explore and create new works by combining different elements and styles. Data Augmentation is 
another area where AI is making a significant impact, allowing for the creation of diverse and larger 
datasets, which can improve the accuracy and robustness of machine learning models. Text 
Generation and NLP, or Natural Language Processing, are other areas where AI is used to create 
more human-like responses and generate coherent and engaging text. In Virtual Reality and 
Simulations, AI creates more immersive experiences, allowing users to interact with virtual 
environments in new and exciting ways. Finally, in the Breakout Room Discussion, participants will 
explore and imagine the future applications of AI in various fields [23]. For instance, Generative 
Adversarial Networks (GANs) can merge different images or art styles, allowing users to create 
unique and original works of art. Additionally, Artificial Intelligence (AI) systems can generate 
architectural designs, allowing architects to explore unconventional and computationally complex 
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structures. Using Generative AI techniques, the architectural firm Zaha Hadid Architects proposes 
avant-garde building designs that push the boundaries of traditional aesthetics and functionality [75]. 

Data Augmentation is an important application of Generative AI. GANs have been used to 
augment existing medical image datasets to enhance diagnostic algorithms' effectiveness in medical 
research. Frid-Adar et al. [76] demonstrated that GANs can generate synthetic Computed 
Tomography (CT) images, which, when combined with actual CT scans, significantly improved the 
performance of lung nodule classification models. This data augmentation capability addresses the 
limitations of small or unbalanced datasets and has profound implications for fields inherently 
constrained by data availability. 

Text Generation and Natural Language Processing (NLP) have shown great potential with 
Generative AI. OpenAI's GPT-4 model has set new language comprehension and generation 
benchmarks. These models can produce logically coherent and contextually relevant text over long 
passages, making them invaluable for automated content creation, summarisation, and machine 
translation. One notable application of text generation is the creation of synthetic yet realistic legal 
contracts for preliminary reviews, significantly saving time and effort. However, there is a need for 
further research into the ethical aspects of text generation, particularly in misinformation and content 
authenticity. 

Generative AI has wide-ranging applications in the fields of virtual reality and simulations. For 
example, NVIDIA has developed deep learning-based image synthesis techniques to generate highly 
realistic virtual training environments for autonomous vehicles. These simulations cover various 
driving conditions and scenarios, providing a comprehensive training framework. Furthermore, the 
airline industry is exploring the potential of Generative AI to develop more realistic flight simulators 
for pilot training. As these simulations become increasingly similar to real-world situations, the 
effectiveness of the training programs increases exponentially. 

8. Limitations of Generative AI and Ethical Considerations   

The development of AI models faces certain limitations and challenges. One of the key 
challenges is the high computational cost associated with the training and generation phases. 
Creating a convincing deepfake requires a large dataset and significant computational power. 
However, this resource-intensive nature of AI not only restricts accessibility but also raises 
environmental concerns due to the energy consumption of the data centres that run these models. 

Another limitation is that AI models heavily rely on the quality of the training data. Thus, the 
quality of the generated output is only as good as the quality of the training data. Therefore, if the 
data used to train the AI model is biased or misleading, the AI model can perpetuate and amplify 
those biases, negatively affecting the accuracy and fairness of the generated content. This is 
particularly important in cases where ethical dilemmas such as deepfakes are involved. 

The rapid development of technology has brought about many advancements that have 
significantly improved our lives. However, some of these advancements have also raised significant 
concerns. One such concern is the development of technologies that allow video and audio 
manipulation with an extreme degree of authenticity. 

The most well-known of these technologies are deepfakes, which are synthetic media that can 
show people doing or saying things they never actually did. The ability of deepfakes to generate 
synthetic media that is difficult to distinguish from the real thing raises serious concerns about 
identity theft and invasion of privacy. Such deepfakes can cause significant personal, professional, 
and reputational harm. For example, a CEO's deepfake speech in a fake announcement caused a 
company's stock to plummet, resulting in financial losses. 

Moreover, deepfakes also significantly threaten the veracity of news and information. In a 
politically charged instance, a deepfake video purporting to show a politician engaging in corrupt 
practices was distributed. Even after the video was debunked, public confidence and the damage to 
the electoral process were irreparable. 
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The legal implications of deepfakes are also significant. Current laws are inadequate to address 
the problems posed by deepfakes. While defamation laws may protect victims, they still bear the 
burden of proving falsity and malice. The ease with which deepfakes can cross international borders 
exacerbates the legal complexities. 

The development of technologies that allow video and audio manipulation with an extreme 
degree of authenticity has raised serious concerns about identity theft, invasions of privacy, the 
veracity of news and information, and the legal implications of deepfakes. Addressing these concerns 
requires developing new technologies that can detect deepfakes and improving our laws to better 
protect victims of deepfakes. 

9. Integrated Theoretical Framework for Generative AI Governance 

Building on the thematic insights identified in our systematic literature review (Section 3), this 
section presents an integrated theoretical framework designed to address the ethical, security, and 
privacy challenges posed by generative AI systems. The framework is informed by established 
theories in technology adoption, cybersecurity, and ethical governance, and synthesises conceptual 
elements drawn from empirical findings and normative guidelines discussed earlier in this paper. 

At the core of the framework is a three-tiered structure aligned with the PRISMA-derived 
thematic clusters: (1) Adoption and Acceptance, (2) Security and Resilience, and (3) Ethical and 
Regulatory Alignment. The first tier incorporates established adoption models, most notably the 
Diffusion of Innovations Theory (Rogers) and the Technology Acceptance Model (TAM), to model how 
generative AI systems gain traction within different institutional contexts. This includes user 
perception of utility, system usability, and the role of social norms in shaping AI adoption 
behaviours. These models are foundational in capturing the socio-technical dynamics that influence 
early adoption, resistance, or rejection of generative systems, particularly in sectors such as healthcare 
and finance. 

The second-tier addresses cybersecurity imperatives and is underpinned by the CIA Triad 
(Confidentiality, Integrity, and Availability) as well as the NIST Cybersecurity Framework [77]. These 
principles provide a normative scaffold for defining resilience in AI systems against adversarial 
threats such as model poisoning, data exfiltration, and automated misinformation. The inclusion of 
adversarial training, model robustness testing, and threat modelling supports proactive risk 
mitigation, directly responding to the vulnerabilities highlighted in Section 6 and our quantitative 
results. 

The third-tier addresses ethics and governance by incorporating normative principles from the 
Asilomar AI Principles, IEEE’s Ethically Aligned Design, and GDPR-compliant privacy regimes. These 
components collectively ensure that AI development respects human dignity, ensures accountability, 
and maintains proportionality in data usage. The framework operationalises these norms by 
proposing implementation tools such as algorithmic auditing, explainability-by-design, consent 
management, and differential privacy—all of which are grounded in the use cases and privacy risks 
explored in Sections 7 and 8. 

Figure 10 illustrates the framework as a modular and iterative pipeline, from design and 
deployment through to monitoring and governance, thereby enabling practitioners to evaluate 
generative AI systems through the lenses of usability, security posture, and ethical conformity. Unlike 
traditional risk management models, our framework offers a cyclical structure that integrates 
continuous feedback and self-correction, supporting resilience over time. 

In doing so, the framework moves beyond theoretical abstraction and delivers a practical schema 
for developers, regulators, and end-users. By embedding it within a multi-layered structure that 
reflects the reviewed literature and empirical findings, the framework directly addresses the 
reviewer’s call for conceptual coherence and methodological justification. 
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Figure 10. Comprehensive guide for practitioners, outlining a clear path from the development of AI 
technologies to the responsible implementation and continuous improvement of AI systems. 

The framework in Figure 10 collectively provides the basis for understanding and addressing 
the challenges of adopting generative AI while ensuring security, ethical integrity, and privacy 
protection. It guides the development and implementation of generative AI in a socially responsible, 
ethically sound manner and in compliance with established norms and regulations. 

The proposed theoretical framework synthesised in Table 2 offers a structured, multi-
dimensional approach to responsible generative AI deployment. Grounded in established theories 
and regulatory standards, the framework integrates perspectives from technology adoption, 
cybersecurity resilience, and ethical governance. It is organised across five sequential lifecycle stages, 
ranging from system design through to post-deployment feedback, and maps these against three 
foundational tiers: user adoption and acceptance, technical security and resilience, and regulatory 
and ethical alignment. This structure allows practitioners and researchers to operationalise complex 
theoretical insights within real-world AI system lifecycles, ensuring both robustness and 
accountability in generative AI applications. 

Table 2. Integrated Framework for Responsible Generative AI Deployment. 

Lifecycle Stage Tier 1: Adoption & 

Acceptance 

Tier 2: Security & Resilience Tier 3: Ethics & Regulation 

1. System Design & 

Objectives 

- Define user needs and 

expectations   - Map 

stakeholders   - Anticipate 

adoption barriers 

- Apply CIA Triad in 

architecture design - Identify 

attack surfaces - Embed 

secure coding practices 

- Conduct Data Protection 

Impact Assessments (DPIA) - 

Map ethical risks - Apply 
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principles from Asilomar & 

IEEE 

2. Implementation & 

Adoption 

- Ensure usability and 

accessibility   - Align with 

TAM constructs (usefulness, 

ease-of-use) 

- Implement adversarial 

training   - Use sandbox 

testing for vulnerabilities 

- Integrate privacy-by-design - 

Review for bias/fairness - Apply 

GDPR data handling 

constraints 

3. Monitoring & Risk 

Assessment 

- Collect adoption metrics - 

Evaluate user satisfaction - 

Observe behavioural 

adaptation 

- Conduct penetration 

testing   - Monitor for 

adversarial inputs - Validate 

model robustness 

- Perform algorithmic audits - 

Check for transparency & 

explainability gaps - Ensure 

ongoing consent 

4. Policy & 

Compliance 

Alignment 

- Align with organisational 

digital policy - Embed AI 

guidelines into internal 

culture 

- Apply NIST Cybersecurity 

Framework - Ensure system 

auditability and logging 

- Align with GDPR, HIPAA, 

sectoral laws - Use FIPPs for 

data governance - Adopt AI Act 

/ ISO AI standards 

5. Feedback & 

Recalibration 

- Gather end-user feedback 

for retraining - Update UI/UX 

based on engagement data 

- Patch known exploits - Use 

red-teaming and stress tests - 

Re-tune resilience metrics 

- Update compliance 

documents - Re-audit models 

post-deployment - Reassess 

fairness and accountability 

Table 2 explains how each lifecycle phase incorporates distinct, yet interdependent, 
responsibilities across the three tiers. In the early design phase, emphasis is placed on identifying 
user needs, embedding security architectures such as the CIA Triad, and anticipating legal and ethical 
implications via instruments like data protection impact assessments. As systems move into 
implementation and deployment, the framework calls for usability testing, adversarial robustness 
methods, and privacy-by-design protocols. During monitoring, it encourages both quantitative (e.g., 
threat modelling, stress testing) and qualitative (e.g., user trust evaluation, transparency audits) 
assessments. Policy alignment is achieved through compliance with domain-specific standards such 
as GDPR, NIST, and IEEE. Finally, the feedback and recalibration phase ensures that AI systems 
remain adaptive, ethical, and resilient through continual learning, stakeholder engagement, and re-
certification. This lifecycle-integrated perspective ensures the framework is both theoretically 
grounded and practically actionable. 

10. Discussion: Operationalising Resilience in Generative AI Deployment 

This study has highlighted the dual potential of generative AI to drive innovation and 
simultaneously introduce critical risks related to security, privacy, and ethical integrity. The findings 
presented throughout the paper, particularly the PRISMA-guided literature review, the empirical 
case analysis, and the integrated theoretical framework, demonstrate that the responsible 
deployment of generative AI cannot be approached as a purely technical endeavour. Instead, it must 
be understood as a socio-technical challenge requiring layered governance, stakeholder alignment, 
and adaptive security mechanisms. 

The integrated framework introduced in Section 9 provides a practical blueprint for stakeholders 
to address these complexities across the entire AI lifecycle. For instance, early-stage design choices 
must not only consider model efficiency and computational optimisation but also pre-empt usability 
and fairness, as identified in the adoption and acceptance tier. This is particularly relevant in sectors 
such as healthcare, where trust in AI-generated diagnostics depends on perceived utility and 
transparency. The implementation phase must similarly be informed by adversarial training and 
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sandbox testing, as discussed in the cybersecurity tier, to mitigate threats such as model poisoning or 
deepfake synthesis, risks identified in both the empirical and bibliometric analyses. 

Moreover, our results demonstrate that monitoring and risk assessment are not static procedures 
but must evolve through continuous threat modelling, algorithmic audits, and engagement with 
compliance standards such as GDPR, NIST, and ISO AI frameworks. These findings validate the 
policy alignment tier of the framework and point toward the growing convergence of technical 
standards and ethical mandates. For instance, privacy-preserving techniques like federated learning 
and differential privacy, when applied proactively, serve not only as protective mechanisms but also 
as compliance enablers. 

Through thematic synthesis, we also identified gaps between emerging use cases, such as 
generative AI in creative production, diagnostics, or climate modelling, and current governance 
regimes. These use cases illustrate the urgency of translating abstract ethical principles into 
enforceable protocols, as shown in the ethical and regulatory alignment tier. Real-world scenarios, 
such as the re-identification risks in anonymised health datasets and the spread of synthetic 
misinformation via deepfakes, underline the need for integrated policy responses that combine 
technical vigilance with regulatory agility. 

Ultimately, resilience in generative AI must be understood as a dynamic and cross-disciplinary 
construct, and sustaining accountability, trust, and adaptability in rapidly evolving socio-technical 
systems. 

11. Conclusion  

This study has critically examined the security, ethical, and privacy implications of generative 
AI technologies and proposed a multi-layered governance framework to enhance their resilience 
across domains such as healthcare, cybersecurity, and creative industries. Drawing on a systematic 
literature review guided by the PRISMA framework, combined with qualitative thematic analysis 
and quantitative evaluation, this research has identified persistent gaps in the integration of 
governance mechanisms, socio-technical resilience, and regulatory compliance in current AI 
deployments. 

A key contribution of this work is the development of an Integrated Framework for 
Responsible Generative AI Deployment, which maps governance strategies across the AI lifecycle, 
from system design to post-deployment recalibration. The framework operationalises theoretical 
constructs from technology adoption (e.g., TAM, Diffusion of Innovations), cybersecurity (e.g., CIA 
Triad, NIST), and ethical governance (e.g., GDPR, IEEE, Asilomar Principles), offering a unified, 
actionable model for responsible deployment. Through the introduction of this framework, the study 
provides both a conceptual lens and a practical roadmap for AI developers, regulators, and 
institutional adopters seeking to embed trust, accountability, and robustness into generative AI 
systems. 

The findings of this study reveal that while generative AI enables transformative capabilities 
(from synthetic data generation to multimodal content creation) it simultaneously introduces risks 
such as adversarial manipulation, re-identification of anonymised data, and deepfake proliferation. 
These risks are amplified by the rapid diffusion of generative models in sectors that lack mature 
governance ecosystems. As such, resilience must be redefined in technical terms but also in terms of 
ethical accountability and policy adaptability. 

This work contributes to the academic discourse by bridging the often-disconnected 
conversations between AI engineering, digital ethics, and regulatory studies. It advances a holistic 
perspective that acknowledges the socio-technical complexity of deploying generative AI at scale. 
The framework presented is intended to be used as a dynamic tool that can evolve with the 
technological and regulatory landscape. 

Looking ahead, future research should focus on empirically validating the framework across 
specific sectors through longitudinal case studies and stakeholder-driven evaluation. Further work 
is also needed to quantify resilience metrics in generative AI systems and to integrate real-time threat 
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detection, ethical auditing, and user feedback mechanisms into scalable AI infrastructures. By doing 
so, we can ensure that generative AI development proceeds with technical ambition, ethical foresight, 
and social responsibility.  
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