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Abstract: Generative Artificial Intelligence marks a critical inflection point in the evolution of
machine learning systems, enabling the autonomous synthesis of content across text, image, audio,
and biomedical domains. While these capabilities are advancing at pace, their deployment raises
profound ethical, security, and privacy concerns that remain inadequately addressed by existing
governance mechanisms. This study undertakes a systematic inquiry into these challenges,
combining a PRISMA-guided literature review with thematic and quantitative analyses to interrogate
the socio-technical implications of generative Artificial Intelligence. The article develops an
integrated theoretical framework, grounded in established models of technology adoption,
cybersecurity resilience, and normative governance. Structured across five lifecycle stages (design,
implementation, monitoring, compliance, and feedback) the framework offers a practical schema for
evaluating and guiding responsible Al deployment. The analysis reveals a disconnection between
the fast adoption of generative systems and the maturity of institutional safeguards, resulting with
new risks from the shadow Artificial Intelligence, and underscoring the need for adaptive, sector-
specific governance. This study offers a coherent pathway towards ethically aligned and secure
application of Artificial Intelligence in national critical infrastructure.

Keywords: generative Artificial Intelligence; shadow Al policy development; responsible Al
deployment; data ethics; cybersecurity

1. Introduction

Artificial Intelligence (Al) operates through self-evolving uses that can autonomously produce
new data outputs. Generative Al represents a significant departure from classical algorithmic
methods. Generative Al use advanced deep learning frameworks such as Generative Adversarial
Networks (GANs) [1] and Variational Autoencoders (VAEs). These architectures facilitate the
generation of high-dimensional data by employing latent space manipulation and probabilistic
modelling. GANSs, for instance, employ a dual-network approach, consisting of a generator and
discriminator, engaged in a zero-sum game to improve output quality iteratively. In parallel, VAEs
focus on encoding data distributions into lower-dimensional latent spaces, from which new samples
can be generated. These models are not confined to traditional data outputs. Still, they can instead
synthesise intrinsically new outputs, ranging from high-resolution images to contextually rich
natural language sequences, often indistinguishable from human-created content.

Generative Al has been deployed in several sectors, each using its unique capacity for
autonomous creation. In the creative industries, the automation of content generation (be it in visual
art, music composition, or text production) challenges the very notion of human creativity and
authorship. Within biomedicine, generative models are accelerating drug discovery by designing
novel molecular structures and improving diagnostic accuracy through synthetic medical
imaging. Cybersecurity applications exploit generative Al for automated threat detection and
adversarial attack simulation, enhancing defensive strategies and offensive capabilities.
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However, the increasing reliance on generative Al introduces many challenges. Ethical concerns
are at the top, particularly in deepfakes and algorithmic bias. Deepfake technologies, driven by
GANSs, have shown an unsettling ability to create hyper-realistic yet entirely fabricated audio-visual
content, posing risks toinformation integrity and public trust. Meanwhile, the unintentional
propagation of biases embedded in training data can lead to discriminatory outcomes in decision-
making systems, exacerbating social inequities.

From a security perspective, generative Al introduces potential attack vectors. Its capability to
autonomously generate code or craft sophisticated phishing schemes increases the scale and
complexity of cyber-attacks. These threats are intensified by using generative Al to
automate misinformation campaigns, where false narratives can be rapidly disseminated, further
complicating detection and mitigation efforts.

Privacy concerns also take centre stage, particularly regarding the use of personal datain
training these expansive models. The vast datasets required to fine-tune generative architectures
often include sensitive information, raising profound questions about data ownership, consent, and
the potential for re-identification in anonymised datasets. These evolving technologies continually
test the legal and regulatory frameworks governing Al applications, including the General Data
Protection Regulation (GDPR) [2,3], necessitating more robust and contextually adaptive governance.

Resilience in Generative Al Cybersecurity

Resilience in complex systems refers to the ability to anticipate, absorb, recover from, and adapt
to adverse conditions. In the context of generative Al, resilience must be evaluated through its
capacity to withstand cyber threats, mitigate risks, and ensure robust governance mechanisms that
preserve societal stability. We need new governance frameworks for enhancing resilience by
establishing risk mitigation strategies that address Al-generated threats while promoting a
sustainable and adaptive regulatory environment.

From a cybersecurity perspective, resilience is traditionally assessed by analysing how a system
functions under stress. Generative Al introduces novel risks, such as adversarial attacks, automated
misinformation propagation, and large-scale privacy breaches, which can compromise the integrity
of digital ecosystems. We need new frameworks that quantifies these risks by measuring the impact
of generative Al in adversarial scenarios, ensuring that security vulnerabilities do not erode trust in
Al-driven infrastructures.

In this paper, risk assessment for the shadow Al serves as a mechanism for evaluating the

resilience of generative Al. We measure resilience by examining how Al systems respond to
adversarial shocks, such as:
¢ Data Poisoning and Model Robustness: The resilience of generative Al models depends on their
ability to maintain integrity when exposed to manipulated training datasets. Our framework
incorporates adversarial training and differential privacy techniques to fortify models against such
attacks.
® Deepfake and Misinformation Detection: The proliferation of deepfake technology presents
significant societal risks. Our framework enhances resilience by integrating Al-driven detection
mechanisms to counteract misinformation and preserve digital authenticity.
* Governance and Policy Enforcement: Regulatory oversight is essential for resilient Al ecosystems.
By embedding security compliance and ethical AI governance, our framework ensures that
generative Al operates within well-defined constraints, enhancing its adaptability and sustainability
in dynamic threat landscapes.

Research Gap

While the current body of research has been predominantly centred on advancing the technical
capabilities of generative Al, there remains a deficiency in examining the broader ethical [4-8],
security [9-13], and privacy [14] implications accompanying its widespread deployment [4-6].
Existing scholarship has largely prioritised algorithmic efficiency and model performance
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improvements, often neglecting the complex socio-technical ramifications of integrating these
systems into various sectors. This oversight is particularly problematic given the rapid pace of
generative Al's advancement, which outstrips the development of corresponding governance
frameworks, ethical guidelines, and security protocols [15,16].

The divided nature of scholarly discourse compounds this issue. Research is siloed into
specialised domains without a holistic approach that addresses the intersectionality of ethical,
security, and privacy concerns. Ethical challenges, such as algorithmic bias and the generation of
misleading content [17], are often discussed in isolation from security vulnerabilities [18,19], such as
adversarial attacks [20-30], and privacy breaches, like the unauthorised exploitation of personal data
[31-34]. This lack of integration results in an incomplete understanding of the full spectrum of risks
posed by generative Al technologies.

Moreover, discussions regarding the responsible application of generative Al are still in their
infancy. While some initial steps have been made towards establishing regulatory frameworks, many
remain embryonic and lack the robustness to manage the multifaceted risks inherent in this rapidly
advancing field. The absence of comprehensive, context-specific guidelines further exacerbates the
potential for misuse, leaving a critical gap in the literature that necessitates immediate scholarly
attention. This gap represents an urgent opportunity for academic contributions that bridge
theoretical exploration and provide practical frameworks for generative Al systems’ ethical, secure,
and private deployment.

Objectives and Contributions

The principal objective of this paper is to construct acomprehensive and integrated
framework that captures the ethical, security, and privacy dimensions of generative Al while
concurrently advocating for fostering technological innovation. This framework seeks to balance the
requirement of advancing Al capabilities and mitigating associated risks (see key objectives in Figure
1), ensuring that the deployment of generative Al adheres to responsible standards.

To achieve this, the paper will address the following key objectives:

OO0 0O

Identify and Develop an

Synthesise v P Offer Practical Set the Stage for
Analyse the Integrated

Existing Literature Recommendations Future Research
Challenges Framework

— b d b S

Figure 1. Key objectives.

1. This paper synthesis the current research landscape, consolidating unrelated strands of
discourse surrounding generative Al It also critically examines technological
advancements and emergent ethical, security, and privacy challenges in deploying generative
AL

2. Analysis of the specific risks and challenges posed by generative Al, with a particular focus on
the ethical dilemmas (e.g., bias propagation, misinformation), security threats (e.g., adversarial
attacks, automation of cyber threats), and privacy infringements (e.g., re-identification risks in
anonymised data).

3. Proposes a multi-layered framework that provides a unified structure for addressing these
ethical, security, and privacy challenges. This framework offers a practical utility to various
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stakeholders, including Al practitioners, policymakers, and regulatory bodies, to guide the
responsible deployment of generative Al technologies.

4. Formulates actionable guidelines to ensure that generative Al systems are developed and
deployed in accordance with ethical principles, robust security measures, and privacy
protections. These recommendations are tailored to the needs of various stakeholders,
including developers, users, and regulators.

5. Identify key gaps in the existing literature and propose directions for future research. This
includes suggestions for interdisciplinary collaboration to explore the evolving challenges
associated with generative Al and its responsible governance.

2. Research Methodology

This study employs a mixed-methods research design,
integrating quantitative and qualitative approaches to capture generative Al's complex and multi-
dimensional nature. This methodological framework is selected to provide a comprehensive analysis
of the economic, ethical, and technological aspects of generative AI, which are inherently
interconnected but often studied in isolation. Combining empirical data and expert insight ensures
that the research addresses measurable outcomes and the more subtle, qualitative dimensions of Al's
broader societal implications.

Quantitative Analysis

The quantitative component of the study focuses on a statistical examination of generative Al's
impact across various sectors. Market trends, economic repercussions, and technological
advancements are analysed to quantify the scope and trajectory of generative Al integration into
healthcare, cybersecurity, and creative industries. Secondary data sources, including market
reports, publicly available databases (e.g., from the International Data Corporation (IDC)and
the Institute of Electrical and Electronics Engineers (IEEE)), and industry publications, are leveraged
for this analysis.

Analytical techniques employed in the quantitative phase include:

e Regression analysis to assess relationships between the adoption of generative Al and its
economic impact across different industries.

e  Time-series analysis to track the evolution of generative Al technologies and market responses
over time.

e  Predictive modelling to forecast future developments and potential disruptions brought about
by generative Al in various sectors.

These techniques are facilitated through statistical tools such as SPSS and data analysis libraries
in Python (e.g., Pandas and NumPy), ensuring a robust and data-driven analysis of generative Al's
economic and technological footprint.

Qualitative Analysis

The qualitative component is centred on the thematic analysis of scholarly literature, expert
interviews, and white papers. This methodology aspect is critical for capturing the nuanced
ethical, security, and privacy implications of generative Al—issues that are often difficult to quantify
but essential to responsible deployment.

Primary qualitative data sources include:

e In-depth interviews with industry experts and academic specialists in Al, focusing on their
perspectives  regarding  the ethical challenges, security = vulnerabilities, and privacy
concerns related to generative Al technologies.

e A comprehensive review of peer-reviewed academic articles, industry white papers, and
regulatory documents to establish the current state of discourse surrounding the responsible
implementation of generative AL
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Thematic analysis is conducted using NVivo software, allowing for the systematic coding of
qualitative data to identify recurrent themes, patterns, and emergent insights. This method provides
an analytical framework to explore areas that quantitative data alone may not reveal, such as the
potential for generative Al to exacerbate biases or be exploited in malicious cyber-attacks.

Data Integration and Analysis

By integrating quantitative metrics and qualitative insights, the study adopts a holistic
approach that ensures the validity and reliability of the findings. Quantitative results provide
abroad, empirical understanding of generative Al's economic and technological impact,
while qualitative insights offer depth and context regarding the ethical, security,
and privacy challenges. This dual approach allows the research to align closely with the study's
objectives and maintains empirical rigour and contextual relevance.

Quantitative data is primarily obtained from market reports, industry analyses, and academic
publications. Qualitative datais sourced throughexpert interviewsand a review of
pertinent literature. This blend of data ensures the research captures the breadth and depth of
generative Al's implications.

Analytical Techniques

The following analytical techniques are employed to ensure rigour:

e  Regression and predictive modelling to forecast the future trajectory of generative Al's influence
across industries.

e  Time-series analysis to assess the evolution of generative Al applications and their implications
over time.

e  Thematic coding for identifying and analysing patterns in expert interviews and literature on
the ethical, security, and privacy concerns surrounding generative Al

Combined with SPSS and Python libraries, these tools ensure a methodologically sound, data-
driven analysis that aligns with the study's objectives.

This comprehensive methodological approach ensures that the study addresses the multi-
faceted nature of generative Al, providing a rigorous foundation for the research findings and
allowing for the synthesis of empirical evidence and contextual insight. By doing so, the
methodology aligns with the study's overarching aim to deliver a balanced, well-supported
framework for understanding and addressing the implications of generative AL

3. Literature Review and Bibliometric Analysis - with Visual Examples

The literature review and bibliometric analysis are conducted throughout the research article
and are addressing specific aspects of the study. This research methodology was chosen to ensure
specific sections are developed with references to relevant literature on the specific issues addressed
in specific sections of the article. The brief review below provides an examination of generative Al
technologies, their practical applications, and their various security, ethics, and privacy challenges.

Theoretical Background of Generative Al Technologies

Generative Adversarial Networks (GANSs) [1] and Variational Autoencoders (VAEs) [35-38] are
two facets of generative Al that have transformed the field of image synthesis and medical imaging,
respectively [39-51]. GANs have the potential to generate hyper-realistic images, as demonstrated by
StyleGAN [45] in creating highly realistic human faces. GANs have expedited drug discovery
processes in the pharmaceutical industry, as shown by Zhavoronkov et al. [52], where novel
molecules were designed in a notably short time frame.

VAEs, on the other hand, have notably impacted medical imaging by enhancing MRI accuracy
[53], thereby improving diagnostic methodologies. This is indicative of the broad scope of generative
Al technologies.
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Transformer-based models, such as GPT-3 [54], further expand the application horizon of
generative Al. These models can generate text indistinguishable from human writing, which has
significant implications across sectors such as journalism and creative industries. This underlines the
versatile applications of generative AL

Generative Al is a type of Al model that can create new data samples that resemble a given input
data set. It differs from discriminative models that classify or differentiate between data points.
Generative models can be used in various media, such as text, images, video, and audio. For example,
they can generate coherent paragraphs for automated storytelling or news article generation, produce
new images that were not part of the original dataset, create new video sequences or modify the
existing ones for video editing and movie production. They can also produce sound or modify
existing audio tracks for music composition and voice generation.

There are several real-world examples of generative Al, such as wearable sensors in healthcare
that detect irregular heart rhythms and conduct ECGs; generative Al in art, where artists use GANs
to create visual art pieces; accelerometer datasets for fitness apps that track and analyse physical
activity; and generative Al in video games, which uniquely generates planets, species, and terrain for
the game.

Why the Hype Around Generative AI?

Generative Al has exploded with significant implications for technology, economics, and
society. From generating hyper-realistic images to creating new kinds of music, this technology
fundamentally reshapes how we create and consume content.

A generic search on the Web of Science Core Collection for 'Generative Al' (as of September 4,
2023) returns only 1,195 publications (see breakdown in Figure 2).

282 193 120
Computer Science Artificial Intelligence Computer Science Information Systems

Computer Science
Interdisciplinary Applications

44
Imaging Science
Photographic
Technology

Figure 2. Search results on 'Generative AI' from the Web of Science Core Collection.

We extracted the data records as a file and analysed them with R to extract further input from
the data. In Figure 3, we created a three-field data plot to compare output by country, institution, and
keywords. The data analysis results are somewhat unconvincing because, despite all recent
developments in the United States, the three-field plot in Figure 3 shows that Swansea University is
leading in research output on Generative Al This shows an error in the data set, or an error in the
analysis of the data set, and requires further analysis. For clarity, and for reproducing the same
results, we share the data set with other researchers to analyse and identify the causes of this result,
but for the purpose of this study, we chose to analyse further data sets, and apply different methods
of analysis.
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Figure 3. Three Fields Plot.

Given that Figure 2's results are unconvincing, we continued analysing this data file with various
statistical approaches. We derived a very different visualisation of collaborations in the data: the
social structure of the data is analysed as a country collaboration world map (Figure 4).

Country Collaboration Map

Longitude

Latitude

Figure 4. Social Structure.

The results show in Figure 4, clearly show that the social structure of research output on this
topic is strongly corelated to the US. This is significantly different than the results in the Figure 3, and
yet, its different analysis of the exact same dataset from the Web of Science Core Collection. This
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clearly descries why simply taking data records from the Web of Science Core Collection, Scopus, or
any other database, without applying a strong research methodology, can lead to bias and errors in
the data analysis. The next section (Figure 5) details the structured review approach that was selected
for eliminating these errors in the datasets and the data analysis process. The two figures (Figure 3
and Figure 4) are included for illustrative purposes only, to justify the need for a strong research
methodology, which is detailed in the following section.

Identification

Records identified through database searching (n = 1,526)

Screening

Records after duplicates removed (n = 1,215)

Records screened (n = 1,215)

Records excluded (title/abstract) (n = 776)

Eligibility

Full-text articles assessed for eligibility (n = 439)

Full-text articles excluded (n = 292)

Included

Studies included in qualitative synthesis (n = 147)

Studies included in final review (n = 124)

Figure 5. PRISMA Flow Diagram for the Systematic Literature Review.

Literature Review Methodology: A PRISMA-Guided Approach

To ensure methodological rigour and transparency, we conducted a systematic literature review
following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
framework. This approach allowed us to comprehensively identify, select, and synthesise relevant
academic and grey literature on the ethical, security, and privacy implications of generative Al.
Identification

We initiated a comprehensive search across four major academic databases: Web of Science,
Scopus, IEEE Xplore, and ACM Digital Library. The following Boolean keyword strategy was
employed:

(“Generative AI” OR “Generative Adversarial Networks” OR “VAEs” OR “Transformer
Models”) AND (“Security” OR “Privacy” OR “Ethics” OR “Governance” OR “Resilience”)

The search was limited to peer-reviewed journal articles and conference papers published
between January 2019 and September 2024 to ensure a focus on recent and high-impact literature. We
also screened reputable white papers from institutions such as the IEEE, NIST, and OECD.
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This process yielded 1,526 unique records.
Screening

All search results were exported to Zotero for reference management. After automatic and
manual removal of duplicate entries (n = 311), the remaining 1,215 studies underwent a title and
abstract screening. Two independent reviewers assessed the relevance based on predefined inclusion
and exclusion criteria (see below).

® Inclusion criteria: Studies focused explicitly on generative Al and its cybersecurity, ethical, or
privacy implications; articles proposing frameworks, empirical results, or taxonomies.

*  Exclusion criteria: Editorials, news articles, opinion pieces, papers focused solely on model
architecture without application discussion.

Following this screening phase, 439 papers were selected for full-text analysis.
Eligibility

Full texts of the remaining articles were reviewed to assess methodological soundness and
thematic alignment. Papers that lacked sufficient empirical basis or did not engage with the socio-
technical aspects of generative Al were excluded. A final set of 147 articles were deemed eligible.
Inclusion

Of the eligible articles, we included 112 peer-reviewed articles and 12 white papers in the final
synthesis. These sources were coded using NVivo to identify thematic clusters around ethical
governance, adversarial robustness, privacy preservation, and regulatory gaps.

The final selection of studies, as illustrated in Figure 5, provides a robust foundation for
understanding the multi-dimensional risks and governance challenges associated with generative AL
By employing NVivo to thematically code the included literature, we identified recurring patterns
and conceptual gaps across four primary domains: ethical governance (e.g., fairness, accountability),
adversarial robustness (e.g., attack surface analysis, model poisoning), privacy preservation (e.g.,
data minimisation, anonymisation), and regulatory frameworks (e.g.,, GDPR compliance, sector-
specific guidelines). This structured analysis ensured methodological transparency and facilitated the
development of an integrated framework that synthesises technical, ethical, and policy-driven
insights. The resulting evidence base serves as a critical scaffold for the subsequent theoretical and
empirical components of this study.

Generative Al in Real-World Use Cases: Review of Case Study Examples from Healthcare and Climate Data
Analysis

Generative Al has exemplified the development of dynamically generated video game
environments that adapt to individual playstyles. In the medical field, synthetic data creation for
training algorithms stands out, offering enhanced diagnostic capabilities while safeguarding patient
privacy. These developments, previously envisaged as distant possibilities, are now tangible realities,
owing to the transformative impact of generative Al Imagine video games with worlds generated on
the fly, adapting to your playstyle. This is close in reality. In Figure 6, we can see a visual
demonstration of an image generated on the fly, and the potential for such image generations is
unlimited, even with the current technologies. Consider synthetic data that can train medical
algorithms (e.g., MRI, X-Rays), improving diagnostics without compromising patient privacy.
Although the image in Figure 6 seems far-fetched in comparison to a medical image, this is just a
demonstration of what generative Al is capable of, in other research projects, we use advanced and
synthetically generated MRI and X-rays that are representative of specific diseases and illnesses, and
we train the Al to detect specific conditions, and this is happening now. Generative Al enables
technological leaps we couldn't have imagined a decade ago.
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Figure 6. Generative Al enables synthetically generated MRI and X-rays that represent specific diseases and

illnesses.

However, the rise of generative Al is accompanied by a complex array of ethical considerations
that require analysis from different perspectives. The potential for ingrained biases and a lack of
impartiality within Al systems is a real concern.

Another critical dimension concerns accountability and transparency in Al decision-making
processes. Buolamwini and Gebru's 2018 research [57] sheds light on profound racial and gender
biases in facial recognition technologies. These findings challenge the prevailing assumptions about
the responsibility and openness of Al systems.

Furthermore, AI's broader societal and employment implications represent a primary area of
concern. Acemoglu and Restrepo's 2020 discourse [58] expanded into Al's broader social
repercussions, particularly focusing on its effects on employment patterns and economic disparities.
These considerations underscore the need for a balanced approach to harnessing the potential of
generative Al while mitigating its unintended consequences.

Societal Impact

Generative Al extends beyond technological and business applications, indicating an era where
creativity is democratised. This innovation enables those without artistic backgrounds to produce
artistic imagery through Al tools. In healthcare, the advent of personalised treatments tailored to
individual health profiles is now a growing possibility. We stand at the cusp of an era where personal
experiences can be profoundly customised through these generative models. However, this progress
brings significant privacy concerns. Generative Al democratises creativity, and synthetic images are
valuable in medical applications. For example, a medical practitioner without artistic skills and
capabilities can create compelling visuals using Al tools and images (see Figure 7). Even if such
images are not of the same quality and creativity as real artists, the images can be developed
according to what the medical practitioners require and what the Al system needs to be trained. Such
images would enable medical practitioners to visualise the body's composition without intrusive
procedures. In medicine, personalised treatments could be generated based on individual health
data. Our personal experiences and professional requirements can be deeply customised with
generative Al models.

! https://commons.wikimedia.org/wiki/File:Brain_regions_on_T1_MRILpng
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Figure 7. Generative Al democratises creativity, and synthetic images are valuable in medical applications.

The issue of Consent and Anonymisation is critical, as demonstrated by Rocher et al. [60]. Their
research revealed the startling ease with which supposedly anonymised data could be re-identified,
underscoring the urgent need for robust data protection measures.

The Cambridge Analytica scandal, reported by Cadwalladr and Graham-Harrison in 2018 [61],
starkly illustrates the risk of data misuse. This incident serves as a stark reminder of the dangers
inherent in the mishandling of personal data and highlights the necessity for ethical data
management practices. As Kostka discusses [62], Al has amplified concerns about surveillance and
monitoring in systems such as China's social credit scheme [62]. The application of Al in these
surveillance contexts raises significant privacy issues, necessitating a balanced approach to deploying
Al technologies.

Economic Considerations

The economic landscape of generative Al is set for considerable growth, reflecting its
transformative potential across various industries. Although precise predictions for the market size
vary, the trajectory suggests a significant financial impact. Generative Al is expected to significantly
contribute to the broader Al market, which is experiencing rapid expansion.

The cost-efficiency aspect of generative Al is particularly noteworthy. Using synthetic data to
train models can reduce data collection and processing expenses. This cost-saving factor is financially
advantageous and contributes to accelerated development cycles for AI models, enabling swifter
deployment and realising technological benefits.

Moreover, generative Al is anticipated to influence the job market and service industries, though
the scope and nature of this impact are subject to ongoing research and discussion. While there is
potential for Al-driven automation to affect traditional job roles, generative Al also presents
opportunities for creating new job positions and services. These emerging roles and services,
indicative of the evolving nature of the Al-driven economic landscape, could contribute to new areas

2 https://syntheticmr.com/archive/clinical-studies/accelerated-synthetic-mri-with-deep-learning-based-reconstruction-for-

pediatric-neuroimaging/
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of economic growth and innovation. Its integration into various sectors is likely to result in cost
efficiencies, operational improvements, and the emergence of new job roles and services, collectively
contributing to a global economic transformation in the Al era. The continual developments in this
field highlight the importance of ongoing research and analysis to fully understand and capitalise on
the economic potential of generative Al

Challenges and Opportunities

Generative Al, while groundbreaking, presents new ethical problems. We must consider how to
effectively address the emergence of Al-generated fake news or deepfakes. Moreover, it is crucial to
ensure these technologies are used equitably and don't reinforce existing social biases. Yet, these
issues also open doors to new governance models, the ethical design of Al, and meaningful public
discussions about the future we aspire to create with these technologies.

Security vulnerabilities are a significant concern in generative Al A key issue is the susceptibility
of Al models to manipulation, which could significantly compromise the effectiveness of systems like
spam filters and pose potential security risks.

Another pressing issue is the misuse of deepfake technology. This technology's potential for
spreading misinformation, as seen in various contexts, underscores the need for robust security
measures to mitigate these risks. While deepfake technology was initially used only for face
replacement, with its advancement, misinformation can spread in various areas, such as climate
change. In this case, images can easily be manipulated to misrepresent reality, see the image in Figure
9 of nature paper [63], and alternative image generated by Generative Al in Figure 8.
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Figure 8. Climate Impact of Generative Figure 9. Microorganisms and climate change in marine and
Al - deepai.org terrestrial biomes [63]

Additionally, the sophistication of Al-generated phishing emails represents an evolving
challenge in cybersecurity. This development necessitates advancing defensive strategies to protect
against such automated cyber threats.

The use of generative Al has raised concerns regarding security vulnerabilities. One such
vulnerability is the susceptibility of Al models to manipulation, as demonstrated by Biggio et al. [64].
They showed that spam filter performance could be severely compromised due to malicious inputs,
serving as a warning for potential security breaches in Al systems.

Another significant concern is the potential misuse of deepfake technology, as highlighted by
Korshunov and Marcel [65] This has significant implications for spreading misinformation. The 2020
US election deepfake incidents further emphasise the need for robust security measures.

As Wallace et al. [7] demonstrated, the sophistication of Al-generated phishing emails represents
a new frontier in cybersecurity threats. This underscores the need for advanced defensive strategies
to protect against automated cyber-attacks.
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4. Discriminative vs. Generative Models

Discriminative models act like judges, with the main task of differentiating or classifying
different types of data. For example, if you have a basket of fruits and you want to separate apples
from oranges, a discriminative model will learn the boundary that distinguishes the two.

On the other hand, generative models act like artists. They are not concerned with separating
apples from oranges. Instead, they can create or generate new fruit similar to what it has seen during
training. So, if a generative model is trained on apples and oranges, it has the potential to generate a
new variety of apples or oranges.

There are key differences between these two models. Discriminative models give you a label,
such as "This is an apple,” while generative models create new data, such as "Here's a new kind of
apple." Discriminative models learn the boundaries between classes, while generative models learn
the distribution of a single data class.

Discriminative models are primarily used for tasks like classification, while generative models
have a broader range of applications, including data generation, text completion, and much more.

5. Analysis of Generative vs Discriminative Al

Artificial intelligence has led to developing two main machine learning models: generative and
non-generative (also known as discriminative) models. Both models have unique characteristics that
make them suitable for different tasks. Non-generative models are best suited for data classification
tasks and are generally easier to train. On the other hand, generative models offer more capabilities,
such as data generation and semi-supervised learning, but require more computational resources and
may be subject to biases. It is important to understand these models to make informed decisions
about which model to use for a particular project, leading to more effective and efficient solutions.

Non-generative or discriminative models are designed to distinguish between different
categories or classes. As the name suggests, these models aim to identify the decision boundary that
separates distinct categories. For example, Support Vector Machines (SVM) identify hyperplanes that
best separate data into distinct classes [66].

In classification tasks, non-generative models, such as logistic regression, are commonly used to
recognise benign and malignant tumours in medical diagnostics [67]. Convolutional Neural
Networks (CNNs) excel at identifying and classifying objects within images for image recognition
[68].

Generative models are designed to identify and replicate the data distribution of their training
sets, unlike discriminative models that aim to classify the input data. These models can generate new
instances that closely resemble the original data by capturing the inherent patterns and variations
within the data.

Generative Adversarial Networks (GANs) are widely used to create realistic images and art.[1],
but autoencoders have demonstrated significant efficacy in data denoising, enabling audio
restoration applications [69]. Moreover, generative models have proven useful in natural language
processing; for instance, language models such as GPT-2 [70] can generate text that is frequently
indistinguishable from human-generated content.

Comparative Analysis

In machine learning, there are two main models: generative and non-generative. Non-generative
models are designed to learn the boundaries that separate different classes, which makes them
optimal for categorisation tasks. On the other hand, generative models aim to capture the underlying
data distribution, enabling them to create new data instances.

Regarding capabilities, non-generative models are specialised for classification and regression
tasks but lack the inherent ability to produce new data. On the other hand, generative models can
generate new data instances and are also helpful in semi-supervised learning scenarios where
labelled data is scarce [71].
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Non-generative models are limited to the classes they were trained on and require less
computational power, while generative models are computationally expensive and require larger
training datasets [1].

The preceding section provided a thorough academic overview of the distinctions between
generative and non-generative models. This was supported by robust empirical studies and specific
examples, making it crucial for Al practitioners and researchers to understand these differences
clearly. The selection of which model to use is highly dependent on a project's specific requirements,
so a strong grasp of these distinctions is essential for confidently navigating Al development.

The key differences are outlined in Table 1.

Table 1. Comparison table of the key differences between Generative and Discriminative Al

Learn to differentiate Learn to generate

Classification, Regression Data generation, semi-supervised learning

SVM, Logistic Regression GANSs, Autoencoders

Spam Filters, Image Recognition Art Generation, Data Augmentation

Limited to existing classes May require more data, susceptible to
biases

Exploring generative and non-generative models in Al provides invaluable insights into their
distinct capabilities and limitations. Non-generative models excel in classification and regression
tasks, leveraging their ability to discern and categorise different data classes. In contrast, generative
models can generate new data instances and are pivotal in art creation, data augmentation, and semi-
supervised learning. The choice between these models hinges on the specific requirements of a
project. For tasks requiring precise classification, non-generative models are more suitable, whereas,
for projects that benefit from the creation of new data or dealing with limited labelled data, generative
models are advantageous. This comparative analysis, encapsulated in Table 1, is essential for Al
practitioners and researchers. It guides them in selecting the most appropriate model for their unique
objectives, thereby optimising the efficacy and innovation potential of their Al-driven projects.

6. Core Technologies Behind Generative Al

Neural networks are at the core of modern Al and are used in many generative models. They
are designed to mimic the neural networks in the human brain, allowing machines to learn from data.
Neural networks comprise layers of interconnected nodes or "neurons”, where the output of one layer
serves as the input for the next. Convolutional neural networks (CNNs) are commonly used in image
recognition tasks.

Autoencoders are neural networks that learn to compress and reconstruct input data. They
consist of two parts: an encoder that compresses the input data into a lower-dimensional
representation and a decoder that reconstructs the original input from the lower-dimensional
representation. Autoencoders are helpful for tasks such as image denoising and dimensionality
reduction.

Generative Adversarial Networks (GANs) are generative models that learn to generate new data
similar to a given dataset. GANs consist of two neural networks: a generator that generates new data
and a discriminator that tries to distinguish between generated and real data. The generator learns to
generate better data by trying to fool the discriminator, while the discriminator learns to distinguish
between real and generated data.

Transformer Models are neural network architectures for natural language processing tasks
such as translation and text generation. They use a self-attention mechanism to process input data
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and generate output. The most well-known transformer model is the GPT (Generative Pre-trained
Transformer) series, with the latest GPT-3. GPT-4 is currently in development.

Neural networks are the foundation of modern AI and are widely used in generative models.
Autoencoders learn to compress and reconstruct input data, while GANs learn to generate new data
similar to a given dataset. Transformer models, such as GPT-4, are based on a self-attention
mechanism for natural language processing tasks [68]. The CNN layers' capability to capture spatial
hierarchies makes them an excellent precursor for image-generating models. Neural networks
frequently adopt more complex architectures when transitioning to generative paradigms to
adequately model complex data distributions.

Autoencoders are a type of neural network specifically designed for unsupervised learning
tasks. They consist of two primary components: the encoder and the decoder. The encoder
compresses the input data into a lower-dimensional latent space, and the decoder reconstructs the
data from this latent representation. Autoencoders have been used in numerous applications, such
as dimensionality reduction, anomaly detection, and, notably, in generative tasks [72]. For instance,
Variational Autoencoders (VAEs) provide a probabilistic method for describing observations,
thereby capturing the inherent uncertainties associated with data generation [71]. In practice, VAEs
are frequently utilised to generate similar new data to the training data, such as synthesising new
molecules for drug discovery.

Ian Goodfellow et al. [1] introduced Generative Adversarial Networks (GANs) in 2014, making
them one of the most well-known generative models. A Generative Adversarial Network (GAN)
comprises two neural networks: the generator and the discriminator. These networks are trained
simultaneously in a game of cat and mouse. The generator aims to create indistinguishable data from
real data, while the discriminator seeks to differentiate between genuine and artificially generated
data. GANs have a broad range of applications, including generating artwork that has been sold for
substantial amounts at auction houses like Christie's [73] and generating realistic medical imaging
data for research [48]. These models can generate high-quality data, often to the point where it is
difficult to distinguish them from actual data.

Transformer models, originating from the natural language processing (NLP) field, have taken
generative tasks to an unparalleled level. Initially designed for machine translation, Transformer
architecture has evolved into models like GPT (Generative Pre-trained Transformer). GPT-4 is a state-
of-the-art example of Transformer-based generative models [74]. GPT-4 is an advanced artificial
intelligence technology that can generate text that makes sense and is relevant to the context. Thanks
to its complex neural architecture, it also has some basic comprehension and problem-solving
abilities. Its potential diverse applications include automated customer service, content creation, and
even scientific research assistance by generating hypotheses or writing code.

7. Use Cases & Applications

In Art and Design, Generative Al offers many new opportunities, from automated design
layouts to the creation of intricate artworks. One such platform is "Artbreeder" which allows artists
to explore and create new works by combining different elements and styles. Data Augmentation is
another area where Al is making a significant impact, allowing for the creation of diverse and larger
datasets, which can improve the accuracy and robustness of machine learning models. Text
Generation and NLP, or Natural Language Processing, are other areas where Al is used to create
more human-like responses and generate coherent and engaging text. In Virtual Reality and
Simulations, Al creates more immersive experiences, allowing users to interact with virtual
environments in new and exciting ways. Finally, in the Breakout Room Discussion, participants will
explore and imagine the future applications of Al in various fields [23]. For instance, Generative
Adversarial Networks (GANs) can merge different images or art styles, allowing users to create
unique and original works of art. Additionally, Artificial Intelligence (AI) systems can generate
architectural designs, allowing architects to explore unconventional and computationally complex

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2254.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 May 2025 d0i:10.20944/preprints202505.2254.v1

16 of 25

structures. Using Generative Al techniques, the architectural firm Zaha Hadid Architects proposes
avant-garde building designs that push the boundaries of traditional aesthetics and functionality [75].

Data Augmentation is an important application of Generative AI. GANs have been used to
augment existing medical image datasets to enhance diagnostic algorithms' effectiveness in medical
research. Frid-Adar et al. [76] demonstrated that GANs can generate synthetic Computed
Tomography (CT) images, which, when combined with actual CT scans, significantly improved the
performance of lung nodule classification models. This data augmentation capability addresses the
limitations of small or unbalanced datasets and has profound implications for fields inherently
constrained by data availability.

Text Generation and Natural Language Processing (NLP) have shown great potential with
Generative Al OpenAl's GPT-4 model has set new language comprehension and generation
benchmarks. These models can produce logically coherent and contextually relevant text over long
passages, making them invaluable for automated content creation, summarisation, and machine
translation. One notable application of text generation is the creation of synthetic yet realistic legal
contracts for preliminary reviews, significantly saving time and effort. However, there is a need for
further research into the ethical aspects of text generation, particularly in misinformation and content
authenticity.

Generative Al has wide-ranging applications in the fields of virtual reality and simulations. For
example, NVIDIA has developed deep learning-based image synthesis techniques to generate highly
realistic virtual training environments for autonomous vehicles. These simulations cover various
driving conditions and scenarios, providing a comprehensive training framework. Furthermore, the
airline industry is exploring the potential of Generative Al to develop more realistic flight simulators
for pilot training. As these simulations become increasingly similar to real-world situations, the
effectiveness of the training programs increases exponentially.

8. Limitations of Generative Al and Ethical Considerations

The development of Al models faces certain limitations and challenges. One of the key
challenges is the high computational cost associated with the training and generation phases.
Creating a convincing deepfake requires a large dataset and significant computational power.
However, this resource-intensive nature of Al not only restricts accessibility but also raises
environmental concerns due to the energy consumption of the data centres that run these models.

Another limitation is that AI models heavily rely on the quality of the training data. Thus, the
quality of the generated output is only as good as the quality of the training data. Therefore, if the
data used to train the AI model is biased or misleading, the Al model can perpetuate and amplify
those biases, negatively affecting the accuracy and fairness of the generated content. This is
particularly important in cases where ethical dilemmas such as deepfakes are involved.

The rapid development of technology has brought about many advancements that have
significantly improved our lives. However, some of these advancements have also raised significant
concerns. One such concern is the development of technologies that allow video and audio
manipulation with an extreme degree of authenticity.

The most well-known of these technologies are deepfakes, which are synthetic media that can
show people doing or saying things they never actually did. The ability of deepfakes to generate
synthetic media that is difficult to distinguish from the real thing raises serious concerns about
identity theft and invasion of privacy. Such deepfakes can cause significant personal, professional,
and reputational harm. For example, a CEO's deepfake speech in a fake announcement caused a
company's stock to plummet, resulting in financial losses.

Moreover, deepfakes also significantly threaten the veracity of news and information. In a
politically charged instance, a deepfake video purporting to show a politician engaging in corrupt
practices was distributed. Even after the video was debunked, public confidence and the damage to
the electoral process were irreparable.
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The legal implications of deepfakes are also significant. Current laws are inadequate to address
the problems posed by deepfakes. While defamation laws may protect victims, they still bear the
burden of proving falsity and malice. The ease with which deepfakes can cross international borders
exacerbates the legal complexities.

The development of technologies that allow video and audio manipulation with an extreme
degree of authenticity has raised serious concerns about identity theft, invasions of privacy, the
veracity of news and information, and the legal implications of deepfakes. Addressing these concerns
requires developing new technologies that can detect deepfakes and improving our laws to better
protect victims of deepfakes.

9. Integrated Theoretical Framework for Generative AI Governance

Building on the thematic insights identified in our systematic literature review (Section 3), this
section presents an integrated theoretical framework designed to address the ethical, security, and
privacy challenges posed by generative Al systems. The framework is informed by established
theories in technology adoption, cybersecurity, and ethical governance, and synthesises conceptual
elements drawn from empirical findings and normative guidelines discussed earlier in this paper.

At the core of the framework is a three-tiered structure aligned with the PRISMA-derived
thematic clusters: (1) Adoption and Acceptance, (2) Security and Resilience, and (3) Ethical and
Regulatory Alignment. The first tier incorporates established adoption models, most notably the
Diffusion of Innovations Theory (Rogers) and the Technology Acceptance Model (TAM), to model how
generative Al systems gain traction within different institutional contexts. This includes user
perception of utility, system usability, and the role of social norms in shaping Al adoption
behaviours. These models are foundational in capturing the socio-technical dynamics that influence
early adoption, resistance, or rejection of generative systems, particularly in sectors such as healthcare
and finance.

The second-tier addresses cybersecurity imperatives and is underpinned by the CIA Triad
(Confidentiality, Integrity, and Availability) as well as the NIST Cybersecurity Framework [77]. These
principles provide a normative scaffold for defining resilience in Al systems against adversarial
threats such as model poisoning, data exfiltration, and automated misinformation. The inclusion of
adversarial training, model robustness testing, and threat modelling supports proactive risk
mitigation, directly responding to the vulnerabilities highlighted in Section 6 and our quantitative
results.

The third-tier addresses ethics and governance by incorporating normative principles from the
Asilomar Al Principles, IEEE’s Ethically Aligned Design, and GDPR-compliant privacy regimes. These
components collectively ensure that Al development respects human dignity, ensures accountability,
and maintains proportionality in data usage. The framework operationalises these norms by
proposing implementation tools such as algorithmic auditing, explainability-by-design, consent
management, and differential privacy —all of which are grounded in the use cases and privacy risks
explored in Sections 7 and 8.

Figure 10 illustrates the framework as a modular and iterative pipeline, from design and
deployment through to monitoring and governance, thereby enabling practitioners to evaluate
generative Al systems through the lenses of usability, security posture, and ethical conformity. Unlike
traditional risk management models, our framework offers a cyclical structure that integrates
continuous feedback and self-correction, supporting resilience over time.

In doing so, the framework moves beyond theoretical abstraction and delivers a practical schema
for developers, regulators, and end-users. By embedding it within a multi-layered structure that
reflects the reviewed literature and empirical findings, the framework directly addresses the
reviewer’s call for conceptual coherence and methodological justification.
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Detailed Conceptual Framework for Developing Responsible Generative Al
Generative Al Development Initiate by developing generative Al technologies focusing on innovation and potential applications.
<
Ethical, Security, Privacy Challenges Identify and assess challenges related to ethics, security, and privacy in Al deployment.
<
Research & Analysis Conduct comprehensive research and analysis to deeply understand the implications and dimensions of these challenges.
<
Integrated Framework Proposal Propose an integrated, multidisciplinary k that these ! holistically.
<
Practical Recommendations Develop actionable rec s and for to ensure Al use.
Implementation & Monitoring Implement the guidelines, continuously monitor their effectiveness, and adjust strategies as needed.
Feedback & Improvement Collect feedback, evaluate outcomes, and iterate the framework to foster ongoing improvement and adaptation.

Figure 10. Comprehensive guide for practitioners, outlining a clear path from the development of Al

technologies to the responsible implementation and continuous improvement of Al systems.

The framework in Figure 10 collectively provides the basis for understanding and addressing
the challenges of adopting generative Al while ensuring security, ethical integrity, and privacy
protection. It guides the development and implementation of generative Al in a socially responsible,
ethically sound manner and in compliance with established norms and regulations.

The proposed theoretical framework synthesised in Table 2 offers a structured, multi-
dimensional approach to responsible generative Al deployment. Grounded in established theories
and regulatory standards, the framework integrates perspectives from technology adoption,
cybersecurity resilience, and ethical governance. It is organised across five sequential lifecycle stages,
ranging from system design through to post-deployment feedback, and maps these against three
foundational tiers: user adoption and acceptance, technical security and resilience, and regulatory
and ethical alignment. This structure allows practitioners and researchers to operationalise complex
theoretical insights within real-world Al system lifecycles, ensuring both robustness and
accountability in generative Al applications.

Table 2. Integrated Framework for Responsible Generative Al Deployment.

- Define user needs and - Apply CIA Triad in - Conduct Data Protection
expectations -  Map architecture design - Identify ~Impact Assessments (DPIA) -
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principles from Asilomar &
IEEE

- Integrate privacy-by-design -
Review for bias/fairness - Apply
GDPR data handling
constraints

- Perform algorithmic audits -
Check for transparency &
explainability gaps - Ensure
ongoing consent

- Align with GDPR, HIPAA,
sectoral laws - Use FIPPs for
data governance - Adopt AI Act
/15O Al standards
= Update compliance
documents - Re-audit models

post-deployment - Reassess

fairness and accountability

Table 2 explains how each lifecycle phase incorporates distinct, yet interdependent,
responsibilities across the three tiers. In the early design phase, emphasis is placed on identifying
user needs, embedding security architectures such as the CIA Triad, and anticipating legal and ethical
implications via instruments like data protection impact assessments. As systems move into
implementation and deployment, the framework calls for usability testing, adversarial robustness
methods, and privacy-by-design protocols. During monitoring, it encourages both quantitative (e.g.,
threat modelling, stress testing) and qualitative (e.g., user trust evaluation, transparency audits)
assessments. Policy alignment is achieved through compliance with domain-specific standards such
as GDPR, NIST, and IEEE. Finally, the feedback and recalibration phase ensures that Al systems
remain adaptive, ethical, and resilient through continual learning, stakeholder engagement, and re-
certification. This lifecycle-integrated perspective ensures the framework is both theoretically
grounded and practically actionable.

10. Discussion: Operationalising Resilience in Generative AI Deployment

This study has highlighted the dual potential of generative Al to drive innovation and
simultaneously introduce critical risks related to security, privacy, and ethical integrity. The findings
presented throughout the paper, particularly the PRISMA-guided literature review, the empirical
case analysis, and the integrated theoretical framework, demonstrate that the responsible
deployment of generative Al cannot be approached as a purely technical endeavour. Instead, it must
be understood as a socio-technical challenge requiring layered governance, stakeholder alignment,
and adaptive security mechanisms.

The integrated framework introduced in Section 9 provides a practical blueprint for stakeholders
to address these complexities across the entire Al lifecycle. For instance, early-stage design choices
must not only consider model efficiency and computational optimisation but also pre-empt usability
and fairness, as identified in the adoption and acceptance tier. This is particularly relevant in sectors
such as healthcare, where trust in Al-generated diagnostics depends on perceived utility and
transparency. The implementation phase must similarly be informed by adversarial training and
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sandbox testing, as discussed in the cybersecurity tier, to mitigate threats such as model poisoning or
deepfake synthesis, risks identified in both the empirical and bibliometric analyses.

Moreover, our results demonstrate that monitoring and risk assessment are not static procedures
but must evolve through continuous threat modelling, algorithmic audits, and engagement with
compliance standards such as GDPR, NIST, and ISO Al frameworks. These findings validate the
policy alignment tier of the framework and point toward the growing convergence of technical
standards and ethical mandates. For instance, privacy-preserving techniques like federated learning
and differential privacy, when applied proactively, serve not only as protective mechanisms but also
as compliance enablers.

Through thematic synthesis, we also identified gaps between emerging use cases, such as
generative Al in creative production, diagnostics, or climate modelling, and current governance
regimes. These use cases illustrate the urgency of translating abstract ethical principles into
enforceable protocols, as shown in the ethical and regulatory alignment tier. Real-world scenarios,
such as the re-identification risks in anonymised health datasets and the spread of synthetic
misinformation via deepfakes, underline the need for integrated policy responses that combine
technical vigilance with regulatory agility.

Ultimately, resilience in generative Al must be understood as a dynamic and cross-disciplinary
construct, and sustaining accountability, trust, and adaptability in rapidly evolving socio-technical
systems.

11. Conclusion

This study has critically examined the security, ethical, and privacy implications of generative
Al technologies and proposed a multi-layered governance framework to enhance their resilience
across domains such as healthcare, cybersecurity, and creative industries. Drawing on a systematic
literature review guided by the PRISMA framework, combined with qualitative thematic analysis
and quantitative evaluation, this research has identified persistent gaps in the integration of
governance mechanisms, socio-technical resilience, and regulatory compliance in current Al
deployments.

A key contribution of this work is the development of an Integrated Framework for
Responsible Generative AI Deployment, which maps governance strategies across the Al lifecycle,
from system design to post-deployment recalibration. The framework operationalises theoretical
constructs from technology adoption (e.g., TAM, Diffusion of Innovations), cybersecurity (e.g., CIA
Triad, NIST), and ethical governance (e.g., GDPR, IEEE, Asilomar Principles), offering a unified,
actionable model for responsible deployment. Through the introduction of this framework, the study
provides both a conceptual lens and a practical roadmap for Al developers, regulators, and
institutional adopters seeking to embed trust, accountability, and robustness into generative Al
systems.

The findings of this study reveal that while generative Al enables transformative capabilities
(from synthetic data generation to multimodal content creation) it simultaneously introduces risks
such as adversarial manipulation, re-identification of anonymised data, and deepfake proliferation.
These risks are amplified by the rapid diffusion of generative models in sectors that lack mature
governance ecosystems. As such, resilience must be redefined in technical terms but also in terms of
ethical accountability and policy adaptability.

This work contributes to the academic discourse by bridging the often-disconnected
conversations between Al engineering, digital ethics, and regulatory studies. It advances a holistic
perspective that acknowledges the socio-technical complexity of deploying generative Al at scale.
The framework presented is intended to be used as a dynamic tool that can evolve with the
technological and regulatory landscape.

Looking ahead, future research should focus on empirically validating the framework across
specific sectors through longitudinal case studies and stakeholder-driven evaluation. Further work
is also needed to quantify resilience metrics in generative Al systems and to integrate real-time threat
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detection, ethical auditing, and user feedback mechanisms into scalable Al infrastructures. By doing
so, we can ensure that generative Al development proceeds with technical ambition, ethical foresight,
and social responsibility.

Acknowledgements: Eternal gratitude to the Fulbright Visiting Scholar Project.

References

1.  Goodfellow, Ian., Pouget-Abadie, Jean., Mirza, Mehdi., Xu, Bing., Warde-Farley, David., Ozair, Sherjil.,
Courville, Aaron., and Bengio, Yoshua, ‘Generative Adversarial Networks’, Commun ACM, vol. 63, no. 11,
pp- 139-144, Jun. 2014.

2.  GDPR, ‘What is GDPR, the EU’s new data protection law? - GDPR.eu’, 2018. [Online]. Available:
https://gdpr.eu/what-is-gdpr/. [Accessed: 07-Jul-2023].

3. ICO, ‘Information Commissioner’s Office (ICO): The UK GDPR’, UK GDPR guidance and resources, 2018.
[Online]. Available: https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/lawful-basis/a-
guide-to-lawful-basis/lawful-basis-for-processing/consent/. [Accessed: 08-Jul-2023].

4. Jobin, Anna., lenca, Marcello., and Vayena, Effy, ‘“The global landscape of Al ethics guidelines’, Nature
Machine Intelligence 2019 1:9, vol. 1, no. 9, pp. 389-399, Sep. 2019.

European Commission, ‘Ethics guidelines for trustworthy AI | Shaping Europe’s digital future’, 2018.
TEEE, ‘IEEE INTRODUCES NEW PROGRAM FOR FREE ACCESS TO AI ETHICS AND GOVERNANCE
STANDARDS’, 2023.

7.  Roberts, Huw., Cowls, Josh., Morley, Jessica., Taddeo, Mariarosaria., Wang, Vincent., and Floridi, Luciano,
“The Chinese approach to artificial intelligence: an analysis of policy, ethics, and regulation’, Al Soc, vol. 36,
no. 1, pp. 59-77, Mar. 2021.

8.  Mokander, Jakob., Schuett, Jonas., Kirk, Hannah Rose., and Floridi, Luciano, ‘Auditing large language
models: a three-layered approach’, Al and Ethics, vol. 4, no. 4, pp. 1085-1115, Nov. 2024.

9.  He, Yifeng., Wang, Ethan., Rong, Yuyang., Cheng, Zifei., and Chen, Hao, ‘Security of Al Agents’, Jun. 2024.

10. Porambage, Pawani., Kumar, Tanesh., Liyanage, Madhusanka., Partala, Juha., Lovén, Lauri., Ylianttila,
Mika., and Seppanen, Tapio, ‘Sec-EdgeAl: Al for Edge Security Vs Security for Edge Al BrainlCU-
Measuring brain function during intensive care View project ECG-based emotion recognition View project
Sec-EdgeAl: Al for Edge Security Vs Security for Edge AI’, 2019.

11. Sarker, Igbal H., Furhad, Md Hasan., and Nowrozy, Raza, ‘Al-Driven Cybersecurity: An Overview, Security
Intelligence Modeling and Research Directions’, SN Comput Sci, vol. 2, no. 3, pp. 1-18, May 2021.

12. Mishra, Shailendra, ‘Exploring the Impact of Al-Based Cyber Security Financial Sector Management’,
Applied Sciences 2023, Vol. 13, Page 5875, vol. 13, no. 10, p. 5875, May 2023.

13. Deng, Zehang., Guo, Yongjian., Han, Changzhou., Ma, Wanlun., Xiong, Junwu., Wen, Sheng., and Xiang,
Yang 2024, ‘Al Agents Under Threat: A Survey of Key Security Challenges and Future Pathways’, vol. 1,
Jun. 2024.

14. Bartoletti, Ivana, ‘Al in healthcare: Ethical and privacy challenges’, in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, vol. 11526
LNAL pp. 7-10.

15. Tedeneke, Alem, “World Economic Forum Launches Al Governance Alliance Focused on Responsible
Generative Al’, 2023.

16. Kendzierskyj, Stefan. Jahankhani, Hamid., and Hussien, Osama Akram Amin Metwally, ‘Space
Governance Frameworks and the Role of Al and Quantum Computing’, in Part of the book series: Space Law
and Policy (SLP), Springer, Cham, 2024, pp. 1-39.

17.  Orphanou, Kalia., Otterbacher, Jahna., Kleanthous, Styliani., Batsuren, Khuyagbaatar., Giunchiglia, Fausto.,
Bogina, Veronika., Tal, Avital Shulner., ... Kuflik, Tsvi, “‘Mitigating Bias in Algorithmic Systems - A Fish-eye
View’, ACM Comput Surv, vol. 55, no. 5, Dec. 2022.

18. CVE, ‘CVE security vulnerability database. Security vulnerabilities, exploits, references and more’, 2022.
[Online]. Available: https://www.cvedetails.com/. [Accessed: 03-Jan-2023].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2254.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 May 2025 d0i:10.20944/preprints202505.2254.v1

22 of 25

19. Miaoui, Yosra., and Boudriga, Noureddine, ‘Enterprise security investment through time when facing
different types of vulnerabilities’, Information Systems Frontiers, vol. 21, no. 2, pp. 261-300, Apr. 2019.

20. Sun, Lu., Tan, Mingtian., and Zhou, Zhe, ‘A survey of practical adversarial example attacks’, Cybersecurity,
vol. 1, no. 1, pp. 1-9, Dec. 2018.

21. Carlini, Nicholas., and Wagner, David, ‘MagNet and “Efficient Defenses Against Adversarial Attacks” are
Not Robust to Adversarial Examples’, Nov. 2017.

22.  Ren, Kui., Zheng, Tianhang., Qin, Zhan., and Liu, Xue, ‘Adversarial Attacks and Defenses in Deep Learning’,
Engineering, vol. 6, no. 3, pp. 346-360, Mar. 2020.

23.  Chen, S, Carlini, N., on, D Wagner - Proceedings of the 1st ACM Workshop., and 2020, undefined, ‘Stateful
detection of black-box adversarial attacks’, dl.acm.org.

24.  Chen, Steven., Carlini, Nicholas., and Wagner, David, ‘Stateful Detection of Black-Box Adversarial Attacks’,
SPAI 2020 - Proceedings of the 1st ACM Workshop on Security and Privacy on Artificial Intelligent, Co-located with
AsiaCCS 2020, pp. 30-39, Oct. 2020.

25. Sava, PA., Schulze, JP., Sperl, P, ACM, K Bottinger - Proceedings of the 15th., and 2022, undefined,
"Assessing the impact of transformations on physical adversarial attacks’, dl.acm.org.

26. Sava, Paul Andrei., Schulze, Jan Philipp., Sperl, Philip., and Bottinger, Konstantin, ‘Assessing the Impact of
Transformations on Physical Adversarial Attacks’, AlSec 2022 - Proceedings of the 15th ACM Workshop on
Artificial Intelligence and Security, co-located with CCS 2022, pp. 79-90, Nov. 2022.

27. Wang, H,, Wu, C,, Networks, K Zheng - Neural., and 2024, undefined, ‘Defense against adversarial attacks
based on color space transformation’, Elsevier.

28. Du, Xia., Zhang, Qi., Zhu, Jiajie., and Liu, Xiaoyuan, ‘Adaptive unified defense framework for tackling
adversarial audio attacks’, Artif Intell Rev, vol. 57, no. 8, pp. 1-22, Aug. 2024.

29. Zbrzezny, Agnieszka M., and Grzybowski, Andrzej E., ‘Deceptive Tricks in Artificial Intelligence:
Adversarial Attacks in Ophthalmology’, | Clin Med, vol. 12, no. 9, May 2023.

30. Khamaiseh, Samer Y., Bagagem, Derek., Al-Alaj, Abdullah., Mancino, Mathew., and Alomari, Hakam W.,
‘Adversarial Deep Learning: A Survey on Adversarial Attacks and Defense Mechanisms on Image
Classification’, IEEE Access, vol. 10, pp. 102266-102291, 2022.

31. Esteve, Asuncion, ‘The business of personal data: Google, Facebook, and privacy issues in the EU and the
USA’, International Data Privacy Law, vol. 7, no. 1, pp. 36-47, 2017.

32. Zyskind, Guy., Nathan, Oz., and Pentland, Alex Sandy, ‘Decentralizing privacy: Using blockchain to
protect personal data’, Proceedings - 2015 IEEE Security and Privacy Workshops, SPW 2015, pp. 180-184, Jul.
2015.

33. Wheatley, Spencer., Maillart, Thomas., and Sornette, Didier, “The extreme risk of personal data breaches
and the erosion of privacy’, European Physical Journal B, vol. 89, no. 1, pp. 1-12, Jan. 2016.

34. African Union, ‘African Union Convention on Cyber Security and Personal Data Protection | African
Union’, 2020. [Online]. Available: https://au.int/en/treaties/african-union-convention-cyber-security-and-
personal-data-protection. [Accessed: 25-Jul-2023].

35. Kutuzova, Svetlana., Krause, Oswin., McCloskey, Douglas., Nielsen, Mads., and Igel, Christian,
‘Multimodal Variational Autoencoders for Semi-Supervised Learning: In Defense of Product-of-Experts’,
Jan. 2021.

36. Silva-Filarder, Matthieu Da., Ancora, Andrea., Filippone, Maurizio., and Michiardi, Pietro, ‘Multimodal
Variational Autoencoders for Sensor Fusion and Cross Generation’, Proceedings - 20th IEEE International
Conference on Machine Learning and Applications, ICMLA 2021, pp. 1069-1076, 2021.

37. Lawry Aguila, Ana., Chapman, James., and Altmann, Andre, ‘Multi-modal Variational Autoencoders
for Normative Modelling Across Multiple Imaging Modalities’, Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 14220 LNCS, pp. 425-
434, 2023.

38. Shi, Yuge. Siddharth, N., Paige, Brooks., and Torr, Philip H S, ‘Variational Mixture-of-Experts
Autoencoders for Multi-Modal Deep Generative Models’, Adv Neural Inf Process Syst, vol. 32, 2019.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2254.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 May 2025 d0i:10.20944/preprints202505.2254.v1

23 of 25

39. Kenfack, Patrik Joslin., Arapov, Daniil Dmitrievich., Hussain, Rasheed., Kazmi, S. M.Ahsan., and Khan,
Adil, ‘On the Fairness of Generative Adversarial Networks (GANSs), 2021 International Conference
‘Nonlinearity, Information and Robotics’, NIR 2021, 2021.

40. Ding, Xin., Wang, Yongwei., Xu, Zuheng., Welch, William J., and Wang, Z Jane, ‘Ccgan: Continuous
conditional generative adversarial networks for image generation’, in International conference on learning
representations, 2021.

41. Antoniou, Antreas., Storkey, Amos., and Edwards, Harrison, ‘Augmenting image classifiers using data
augmentation generative adversarial networks’, Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11141 LNCS, pp. 594-603, 2018.

42.  Wang, Zichong., Wallace, Charles., Bifet, Albert., Yao, Xin., and Zhang, Wenbin, ‘FG2 AN: Fairness-Aware
Graph Generative Adversarial Networks’, Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 14170 LNAI, pp. 259275, 2023.

43. Radford, Alec., Metz, Luke., and Chintala, Soumith, ‘Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks’, 4th International Conference on Learning Representations,
ICLR 2016 - Conference Track Proceedings, Nov. 2015.

44. Wang, Qiping., Luo, Ling., Xie, Haoran., Rao, Yanghui., Lau, Raymond Y.K., and Zhang, Detian, ‘A deep
data augmentation framework based on generative adversarial networks’, Multimed Tools Appl, vol. 81, no.
29, pp. 42871-42887, Dec. 2022.

45. Karras, Tero., Laine, Samuli, and Aila, Timo, ‘A style-based generator architecture for generative
adversarial networks’, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2019-June, pp. 4396-4405, Jun. 2019.

46. Buzuti, Lucas F., and Thomaz, Carlos E., ‘Fréchet AutoEncoder Distance: A new approach for evaluation of
Generative Adversarial Networks’, Computer Vision and Image Understanding, vol. 235, p. 103768, Oct. 2023.

47. Beers, Andrew., Brown, James., Chang, Ken., Campbell, ]. Peter., Ostmo, Susan., Chiang, Michael F., and
Kalpathy-Cramer, Jayashree, ‘High-resolution medical image synthesis using progressively grown
generative adversarial networks’, May 2018.

48. Dar, Salman U.H., Yurt, Mahmut., Karacan, Levent., Erdem, Aykut., Erdem, Erkut., and Cukur, Tolga,
‘Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks’, IEEE Trans
Med Imaging, vol. 38, no. 10, pp. 2375-2388, Oct. 2019.

49. Sandfort, Veit., Yan, Ke., Pickhardt, Perry J., and Summers, Ronald M., ‘Data augmentation using generative
adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks’, Scientific Reports
2019 9:1, vol. 9, no. 1, pp. 1-9, Nov. 2019.

50. Sindhura, Dn., Pai, Radhika M., Bhat, Shyamasunder N., and Pai, Mm Manohara, ‘Sub-Axial Vertebral
Column Fracture CT Image Synthesis by Progressive Growing Generative Adversarial Networks
(PGGANSs)’, 2022 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics,
DISCOVER 2022 - Proceedings, pp. 311-315, 2022.

51. Welander, Per., Karlsson, Simon., and Eklund, Anders, ‘Generative Adversarial Networks for Image-to-
Image Translation on Multi-Contrast MR Images - A Comparison of CycleGAN and UNIT, Jun. 2018.

52. Zhavoronkov, Alex., Ivanenkov, Yan A., Aliper, Alex., Veselov, Mark S., Aladinskiy, Vladimir A.,
Aladinskaya, Anastasiya V., Terentiev, Victor A., ... Aspuru-Guzik, Alan, ‘Deep learning enables rapid
identification of potent DDR1 kinase inhibitors.’, Nat Biotechnol, vol. 37, no. 9, pp. 1038-1040, Sep. 2019.

53. Hosny, Ahmed., Parmar, Chintan., Quackenbush, John., Schwartz, Lawrence H., and Aerts, Hugo JW.L.,
“Artificial intelligence in radiology’, Nat Rev Cancer, vol. 18, no. 8, p. 500, Aug. 2018.

54. Brown, Tom B., Mann, Benjamin., Ryder, Nick., Subbiah, Melanie., Kaplan, Jared., Dhariwal, Prafulla.,
Neelakantan, Arvind., ... Amodei, Dario, ‘Language Models are Few-Shot Learners’, Adv Neural Inf Process
Syst, vol. 2020-December, May 2020.

55. Gifford, George., McCutcheon, Robert., and McGuire, Philip, ‘Neuroimaging studies in people at clinical
high risk for psychosis’, Risk Factors for Psychosis: Paradigms, Mechanisms, and Prevention, pp. 167-182, Jan.
2020.

56. Sollee, John., Tang, Lei., Igiraneza, Aime Bienfait., Xiao, Bo., Bai, Harrison X., and Yang, Li, ‘Artificial
intelligence for medical image analysis in epilepsy’, Epilepsy Res, vol. 182, May 2022.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2254.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 May 2025 d0i:10.20944/preprints202505.2254.v1

24 of 25

57. Buolamwini, Joy., and Gebru, Timnit, ‘Gender Shades: Intersectional Accuracy Disparities in Commercial
Gender Classification’, Proceedings of Machine Learning Research, vol. 81. PMLR, pp. 77-91, 21-Jan-2018.

58. Acemoglu, Daron., and Restrepo, Pascual, ‘The Wrong Kind of AI? Artificial Intelligence and the Future of
Labor Demand’, in NBER WORKING PAPER SERIES, 2019.

59. Kim, E., Cho, H. H, Cho, S. H,, Park, B., Hong, J., Shin, K. M., Hwang, M. J,, ... Lee, S. M., ‘Accelerated
Synthetic MRI with Deep Learning-Based Reconstruction for Pediatric Neuroimaging’, AJNR Am |
Neuroradiol, vol. 43, no. 11, pp. 1653-1659, Nov. 2022.

60. Rocher, Luc.,, Hendrickx, Julien M., and de Montjoye, Yves Alexandre, ‘Estimating the success of re-
identifications in incomplete datasets using generative models’, Nature Communications 2019 10:1, vol. 10,
no. 1, pp. 1-9, Jul. 2019.

61. Cadwalladr, Carole., and Graham-Harrison, Emma., ‘Revealed: 50 million Facebook profiles harvested for
Cambridge Analytica in major data breach’, The Guardian, 2018.

62. Kostka, Genia, ‘China’s social credit systems and public opinion: Explaining high levels of approval’, New
Media Soc, vol. 21, no. 7, pp. 1565-1593, Jul. 20109.

63. Cavicchioli, Ricardo., Ripple, William J., Timmis, Kenneth N., Azam, Farooq., Bakken, Lars R., Baylis,
Matthew., Behrenfeld, Michael J., ... Webster, Nicole S., ‘Scientists” warning to humanity: microorganisms
and climate change’, Nature Reviews Microbiology 2019 17:9, vol. 17, no. 9, pp. 569-586, Jun. 2019.

64. Biggio, Battista., Nelson, Blaine., and Laskov, Pavel, ‘Poisoning Attacks against Support Vector Machines’,
Proceedings of the 29th International Conference on Machine Learning, ICML 2012, vol. 2, pp. 1807-1814, Jun.
2012.

65. Korshunov, Pavel., and Marcel, Sebastien, ‘DeepFakes: a New Threat to Face Recognition? Assessment and
Detection’, Dec. 2018.

66. Platt, John C, ‘Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized
Likelihood Methods'.

67. Chhatwal, Jagpreet., Alagoz, Oguzhan., Lindstrom, Mary J., Kahn, Charles E., Shaffer, Katherine A., and
Burnside, Elizabeth S., ‘A logistic regression model based on the national mammography database format
to aid breast cancer diagnosis’, American Journal of Roentgenology, vol. 192, no. 4, pp. 1117-1127, Apr. 2009.

68. Krizhevsky, Alex., Sutskever, Ilya., and Hinton, Geoffrey E, ‘ImageNet Classification with Deep
Convolutional Neural Networks’.

69. Lu, Xugang., Tsao, Yu., Matsuda, Shigeki., and Hori, Chiori, ‘Speech enhancement based on deep denoising
autoencoder’, Proceedings of the Annual Conference of the International Speech Communication Association,
INTERSPEECH, pp. 436-440, 2013.

70. Radford, Alec., Wu, Jeffrey., Child, Rewon., Luan, David., Amodei, Dario., and Sutskever, Ilya, ‘Language
Models are Unsupervised Multitask Learners’, OpenAl Blog, 2019.

71. Kingma, Durk P., Mohamed, Shakir., Jimenez Rezende, Danilo., and Welling, Max, ‘Semi-supervised
Learning with Deep Generative Models’, Adv Neural Inf Process Syst, vol. 27, 2014.

72. Hinton, G. E,, and Salakhutdinov, R. R., ‘Reducing the dimensionality of data with neural networks’, Science,
vol. 313, no. 5786, pp. 504-507, Jul. 2006.

73. Elgammal, Ahmed., Liu, Bingchen., Elhoseiny, Mohamed., and Mazzone, Marian, ‘CAN: Creative
Adversarial Networks, Generating “Art” by Learning About Styles and Deviating from Style Norms’,
Proceedings of the 8th International Conference on Computational Creativity, ICCC 2017, Jun. 2017.

74. Brown, Tom B., Mann, Benjamin., Ryder, Nick., Subbiah, Melanie., Kaplan, Jared., Dhariwal, Prafulla.,
Neelakantan, Arvind., ... Amodei, Dario, ‘Language models are few-shot learners’, Adv Neural Inf Process
Syst, vol. 2020-December, 2020.

75. Zaha Hadid Architects, ‘Zaha Hadid Architects using Al image generators for design concepts, said Patrik
Schumacher’, 2023. [Online]. Available: https://parametric-architecture.com/zaha-hadid-architects-using-
ai-image-generators-for-design-concepts-said-patrik-schumacher/. [Accessed: 04-Sep-2023].

76. Frid-Adar, Maayan., Diamant, Idit., Klang, Eyal., Amitai, Michal., Goldberger, Jacob., and Greenspan,
Hayit, ‘GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion
classification’, Neurocomputing, vol. 321, pp. 321-331, Dec. 2018.

77. NIST, Cybersecurity_Framework, Cybersecurity Framework | NIST. 2016.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2254.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 May 2025 d0i:10.20944/preprints202505.2254.v1

25 of 25

Short Biographies

Petar Radanliev is a Member of Faculty in Artificial Intelligence and
Cybersecurity at the University of Oxford's Department of Computer Science, and
a Post-Doctoral Researcher at the Alan Turing Institute in London. Dr. Radanliev
completed his PhD in 2013/14 and has since engaged in postdoctoral research at
several prestigious institutions, including Imperial College London, the

University of Cambridge, the Massachusetts Institute of Technology, and the

Department of Engineering Science at the University of Oxford for seven years,
before moving to the Department of Computer Science. Dr. Radanliev, specialises
in artificial intelligence, cybersecurity, quantum security, and blockchain security.
Prior to his academic career, he amassed a decade of experience as a Cybersecurity
Manager at RBS, the world's largest bank at the time and five years as a Lead

Penetration Tester for the Ministry of Defence.

Omar Santos is a Distinguished Engineer at Cisco who pioneers advancements in
artificial intelligence security, cybersecurity research, ethical hacking, incident
response, and vulnerability disclosure. As co-chair of the Coalition for Secure Al

(CoSAI) and board member of the OASIS Open standards organisation, he shapes

the future of secure technology adoption across industries. Omar drives
innovation through multiple leadership roles, including founder of OpenEoX and
co-chair of the Forum of Incident Response and Security Teams (FIRST) PSIRT
Special Interest Group. His commitment to cybersecurity education and
community building is evident in his role as the co-founder and one of the leaders
of the DEF CON Red Team Village and the chair of the Common Security
Adpvisory Framework (CSAF) technical committee. Omar has published over 20
books, created over 20 video courses, and contributed more than 40 academic
research papers to the field. Omar's work in cybersecurity is also recognized
through multiple granted patents. Omar's PGP Key: 0x8e19a9d13af27edc (and
Keybase info).

Uchenna Ani is a Senior Lecturer in Cyber Security at Keele University. He
completed his Ph.D. in Industrial Control System Cybersecurity at Cranfield
University and continued with Post-Doctoral research as a Senior Research
Fellow in Cybersecurity at the PETRAS National Centre of Excellence for IoT
Systems Cybersecurity at the Department of Science Technology Engineering and
Public Policy (STEaPP), University College London (UCL).

4

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2254.v1
http://creativecommons.org/licenses/by/4.0/

