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Abstract: The first camelized mouse model (Nrap-255in78) was developed to explore how camels adapt
to extreme environments. Previous studies showed that these mice exhibit a cold-resistant
phenotype, with increased expression of inflammatory cytokine-related genes in the heart under cold
stress. This study aims to build on prior research by analyzing the heart transcriptomes of Nrape25ins78
mice under non-stress conditions to investigate the origins of inflammatory cytokine responses in the
heart during cold exposure. For this purpose, RNA sequencing was used to analyze the heart
transcriptomes of 12-week-old male and female Nrap2%%s78 mice and control wild-type mice. As a
result, we identified 25 differentially expressed genes between wild-type and Nrape255is78 mice.
Twelve of them were associated with the cell cycle and division, all consistently downregulated in
Nrape25in78 mice. The Cib3 (calcium and integrin-binding protein) gene was significantly upregulated
(FDR < 0.05; P < 0.001). These DEGs are linked to altered calcium dynamics in cardiomyocytes,
maintaining homeostasis, and suggest that inflammatory cytokines during cold exposure may serve
as an adaptive response. Our findings provide insights into the genetic mechanisms underlying
temperature adaptation in camels and suggest pathways for enhancing stress resistance in other
mammals.

Keywords: adaptation; mouse model; heart; transcriptome Nrap

1. Introduction

Camels are unique mammals that have adapted remarkably to extreme environmental
conditions, thriving in harsh habitats like deserts. Numerous studies have highlighted the
physiological, behavioral, and genetic mechanisms camels have developed to survive under such
conditions [1-3]. However, our understanding of the genetic variations that drive environmental
adaptation in camels remains incomplete.

Our previous research identified that exon 4 of the NRAP gene in camels plays a significant role
in cold resistance. Specifically, the Nrape2*5s78 yariant in mice exhibits unique expression in the heart,
where it enhances inflammatory cytokine production under cold stress, thereby contributing to
temperature resilience [4]. Cytokine expression is known to change in mammals exposed to cold [5-
7]. For instance, cold exposure has been reported to increase interleukin (IL)-1f and IL-6 levels in
cold-resistant humans [8], while in mice, cold stress elevates tumor necrosis factor (TNF)-a and IL-6
levels [9].

These findings suggest a greater upregulation of inflammatory cytokines in Nrap<?5ns¢ mice
compared to wild-type mice. To investigate these cytokine mechanisms, this study analyzes changes
in the heart transcriptome of Nrap<2ns78 mice under non-stress conditions using RNA sequencing

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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(RNA-seq). RNA-seq is a widely used tool for analyzing transcriptomic changes in organs influenced
by internal and external environments [10-13]. This approach, comparing the differentially expressed
gene set under normal conditions, may provide insights into the cytokine expression pathways
observed in the heart under cold stress. Ultimately, this study could further contribute to
understanding temperature adaptation mechanisms in camels and environmental stress adaptation
in various mammals.

2. Materials and Methods
2.1. Ethics

All animal experiments including standards of euthanasia for this study were performed
according to the Korean Food and Drug Administration (KFDA) guidelines and the relevant legal
guidelines and conducted in the GEM division of Macrogen Inc. (Seoul, Republic of Korea). The
protocols were reviewed and approved by the IACUC (MS-2022-01).

2.2. RNA-seq

To investigate gender-based differences in gene expression, twelve-week-old Nrapc.255ins78
homozygous mice (2 males and 2 females) were used, along with twelve-week-old wild-type mice (2
males and 2 females) as controls. The excised hearts were photographed to confirm phenotypic
characteristics, and total RNA was extracted using Trizol reagent (Sigma-Aldrich, St. Louis and
Burlington, MA, USA) following the manufacturer’s instructions. Detailed RNA sequencing
procedures were previously reported [4].

2.3. Differentially Expressed Gene (DEG) Analyses

The quality of raw read data for each sample was assessed using FastQC software v0.11.7.
Adaptor trimming was conducted with Trimmomatic v0.38, based on quality results. The trimmed
reads were then aligned to the reference genome (GRCm39) from the Ensembl genome browser using
HISAT2 v2.1.0. Raw counts for each library were calculated based on the exons in Mus musculus GTF
v110 (Ensembl) using the featureCounts function of the Subread package v1.6.3. Differentially
expressed gene (DEG) analysis was conducted using edgeR v3.26.5, with raw counts normalized via
the TMM (Trimmed Mean of M-values) method. DEGs were identified in the hearts of Nrape2%ins78
mice compared to wild-type mice, using a false discovery rate (FDR) of <0.05 and an absolute log2
fold-change (FC) threshold of > 1. A multidimensional scaling (MDS) plot analysis was also
performed to illustrate the sample clustering.

2.4. Gene Ontology (GO) Functional Enrichment Analysis

The identified DEGs were annotated with Gene Ontology (GO) terms using DAVID (Database
for Annotation, Visualization, and Integrated Discovery) v2024ql [14]. GO annotations were
conducted across the categories of Biological Processes (BP), Cellular Components (CC), and
Molecular Functions (MF), using thresholds of P-value <0.05 and counts > 2. Enriched GO terms were
grouped with similar terms and visualized in a bubble plot, displaying -log10 P-value and fold
enrichment.

2.5. Interaction Network Construction

A network based on the DEGs was constructed using the Search Tool for the Retrieval of
Interacting Genes (STRING) in Cytoscape v3.10.2. The interaction score was set to 0.4, representing a
medium confidence level.

2.6. RT-qPCR Validation
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Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed using
the SYBR Green PCR mix (Qiagen, Hilden, Germany) to validate the RNA-seq results. (3-actin was
used as a control for normalization. Relative quantification of mRNA expression was calculated using
the 2-AACt method, and results were presented as the average relative fold change. The primer
sequences and amplification temperatures are provided in Table S1.

2.7. Statistics

All statistical values are presented as mean + SEM. RNA-seq data analysis and visualization
were conducted using R statistical software v4.3.3. The qPCR experiments were independently
repeated three times. Statistical significance was evaluated using a paired t-test, with a P-value of less
than 0.05 considered statistically significant.

3. Results

3.1. Data Processing and Transcriptomes

The average overall mapping rate was 99.15%, and the average unique mapping rate was 72.60%
(Table S2). Multiclustering was observed in the MDS analysis, with the transcriptomes of each sample
showing differentiation by sex and genotype (Figure 1a). DEG analysis was conducted by comparing
expression levels, which were visualized in a volcano plot (FDR < 0.05, absolute log2FC > 1) (Figure
1b). In total, 25 DEGs were identified in heart tissue, with 7 upregulated and 18 downregulated (Table
S3).
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Figure 1. Transcriptome in heart of Nrap?*n78 and wild-type mice. (a) Group clustering and Multidimensional
scaling (MDS). Grouping transcript frequencies between Nrap ¢255n78 and wild- type mice revealed distinct
differences. (b) Differentially expressed genes (DEGs) identified using a volcano plot are displayed with the x-
axis representing the logz fold change and the y-axis representing the -logio P-value. (c) The gene ontology (GO)
bubble plot was created based on the —log P-values and fold enrichment related to the biological processes (BP),

cellular components (CC), and molecular functions (MF) terms.

3.2. Functional Annotations

Functional enrichment analysis was conducted based on Gene Ontology (GO) terms in heart
tissue and visualized with a bubble plot (Figure 1c). The most significantly enriched Biological
Processes (BP) included cell division (GO:0051301; P-value = 8.78E-10; FDR = 1.21E-07) and cell cycle
(GO:0007049; P-value = 1.30E-9; FDR = 1.21E-07). A comprehensive list and detailed values for each
GO term are provided in Table 54.

3.3. Expression Pattern and Validation

We visualized the expression patterns of the 25 DEGs across all samples in a heatmap (Figure
2a) and performed a co-expression network analysis to examine interactions among genes identified
in enriched GO terms (Figure 2b). The network analysis revealed interactions based on the GO terms
“cell division” and “cell cycle.” Within this network, the Kifll gene displayed a text-mining
association with Cib3, which was identified as an upregulated gene

To confirm the reliability of the RNA-seq data, we selected 3 upregulated genes (Cib3, Aldob,
Rtn4r), 4 downregulated genes (Ccnbl, Kifll, Aspm, Ncapg), and 2 non-significant genes (Nrap,
Spkh2) for validation. The expression levels of all genes closely matched the transcriptome analysis
results (Figure 2c).
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Figure 2. Expression pattern of Nrapc.255ins78 heart. (a) Heatmap for expression between all DEGs. (b) The
interactions using DEGs indicate the associations between co-expression of each gene. (c) Verification of the
RNA-seq by RT-qPCR. * and *** indicate P-value < 0.05 and P-vlaue < 0.001, respectively.

4. Discussion

In mammals, the heart is a critical organ for regulating body temperature and circulating blood
to accommodate sudden physiological changes [15-17]. In this study, we grouped the heart
transcriptomes of Nrape2%%i»78 and wild-type mice by genotype and sex. Transcriptomic differences
were observed in each group through MDS visualization (Figure 1a), suggesting that Nrapc25ins7s
exhibits distinct phenotypes depending on gender.

Functional annotation of the 25 DEGs showed significant associations with the “cell cycle” and
“cell division” GO terms (Figure 1c). Notably, all 12 genes (Kif11, Anln, Ccnbl, Kntcl, Kif23, Ncapg,
Aspm, Mki67, Pimreg, Knll, Top2a, Nr4a3) associated with cell cycle and division terms were
consistently downregulated in Nrap<255i:78 mice (Figure 2a, b). Reduced expression of Nr4a3 has been
linked to an increased population of cells susceptible to infection [18]. In T. cruzi-infected human
fibroblasts, cytokines are secreted as part of the immune response; however, cell cycle
downregulation due to infection occurs independently of cytokine signaling [19]. This suggests that
inflammatory cytokine regulation and cell cycle function may operate separately, potentially
explaining why cell cycle downregulation was not observed under cold exposure conditions.

The DEG network illustrates interactions among 12 genes involved in the cell cycle and division,
with Cib3 (calcium and integrin-binding protein 3) showing an association with Kif11 (Figure 2b).
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Cib3 was the most significantly upregulated gene (Table S3) and belongs to the CIB family, which
includes Cib1, Cib2, and Cib4 [20]. CIB proteins are small EF-hand calcium-binding proteins that
interact with the cytoplasmic domain of integrin allb@33, playing a role in hemostasis. Among these,
Cib3 is expressed at relatively low levels in the heart and muscle tissues [21,22]. Notably, prior
research has demonstrated that overexpression of Cibl, which shares strong homology with Cib3,
inhibits cell proliferation [23]. These findings align with the results of our study.

Maintaining appropriate calcium levels in the heart is essential for preserving calcium
homeostasis in the cytoplasm through ATPase pumps. Although our analysis alone cannot determine
the causal relationship between cell proliferation and Cib3 upregulation, the observed inhibition of
cell cycle and division genes in Nrap<2557 mouse hearts suggest a regulatory mechanism to control
abnormal calcium flow [24,25]. This altered calcium flow can potentially affect intracellular signaling
pathways, and the significant upregulation of Cib3, which is expressed in a calcium-dependent
manner, can be interpreted as a response to the calcium flow in cardiomyocytes [26].

This transcriptome analysis did not identify differential expression of the Nrap (nebulin-related
anchoring protein) gene, but qPCR results indicated a slight increase in its expression (Figure 2c).
The Nrap is a Z-disc protein with nebulin-like super repetitive sequences, playing a crucial role in
myofibril formation [27,28]. Nebulin can bind to calmodulin (CaM) and regulate calcium release in
skeletal muscle [29]. The predictions of the domains and protein structure of Nrap<?%78 suggest that
there be structural and functional alteration in the protein [4]. Although further in-depth analysis of
the protein structure is necessary, this change in the domain structure of the Nrap<255n78 protein may
lead to altered interactions with proteins like CaM, potentially affecting calcium levels in
cardiomyocytes [30].

Despite the downregulation of genes involved in cell cycle and division, the hearts of Nrape25ins78
mice did not significantly differ in size from those of wild-type mice (Figure S1). In our findings,
downregulated genes such as Angptl4, Ccnbl, Mki67, and Top2a are known to be influenced by
YAP/TAZ signaling [31-34]. Consequently, YAP/TAZ inactivation could lead to alterations in
extracellular matrix (ECM) stiffness [35]. Although the precise mechanisms by which ECM stiffness
regulates YAP/TAZ remain unclear, compensatory effects in actin cytoskeleton stability might have
helped maintain organ size under these conditions [36].

Future investigations should incorporate histological staining, heart rate measurements, and
blood composition analyses, including calcium concentration assessments, to clarify physiological
impacts. Additionally, integrating transcriptome analyses of other organs, such as the lungs and
kidneys, could offer a more comprehensive understanding of genetic influence on temperature stress
adaptation.

5. Conclusions

The heart transcriptomes of Nrapc.255ins78 mice under non-stress conditions revealed
consistent downregulation of cell proliferation-related genes alongside significant upregulation of
the Cib3 gene. These findings suggest a homeostatic response within cardiomyocytes to altered
calcium dynamics, ultimately indicating heightened cytokine sensitivity compared to wild-type. This
study provides foundational insights into temperature adaptation mechanisms, broadening the
understanding of the NRAP gene’s exon 4 function beyond camels.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org, Figure S1: Comparison of heart tissue Nrapc.255ins75 and wild-type mice; Table
S1: RT-qPCR primer sequences; Table 52: Overview of data process for RNA-seq; Table S3: DEG profiling; Table
S4: Functional annotations based on identified DEGs
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