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Abstract 

Neural networks (NNs), inspired by the biological visual cortex, have been widely applied in computer vision, 

natural language processing, and beyond. As Moore's Law approaches its physical limits, photonic neural 

networks (PNNs), which leverage photons rather than electrons as information carriers, have emerged as a 

promising technological advancement. With ultrafast speeds and ultralow energy consumption in ultra-high 

throughput, PNNs usher in a new generation of intelligent computing. Moreover, the advent of photonic 

integrated circuits (PICs) provides a compact and reliable hardware platform for computing, further advancing 

the development of PNNs. In this paper, we review recent advances in linear and nonlinear computation and 

integrated optical devices serving as fan-in and fan-out. We also summarize large-scale on-chip PNN and discuss 

the future challenges associated with their monolithic integration.  

Keywords: optical neuromorphic processing; integrated optics; machine learning; artificial 

intelligence 

 

Introduction 

Deep learning, a rapidly developing breakthrough technology, is leading the change in science 

and technology [1,2]. It adopts NNs to extract the data representations by performing extensive 

algebraic operations on the input data, such as matrix multiplication and convolution, thereby 

creating an ever-increasing demand for computing performance.  

In recent years, electronic hardware with higher performance has been developed to better 

support the computation of NNs, such as the tensor processing unit proposed by Google [3] and the 

Cambrian series acceleration chip launched by the Computing Institute of the Chinese Academy of 

Sciences[4]. 

Nevertheless, the size of integrated circuit devices is approaching the physical limit, 

accompanied by other phenomena such as quantum tunneling, parasitic effects, etc., which hinder 

further progress. Indeed, in the post-Moore age, traditional microelectronic computing chips based 

on Complementary Metal-Oxide-Semiconductor (CMOS) technology encounter a bottleneck in 

meeting the growing demand for computing power. Hence, the pursuit of novel computing and 

processing methods, along with their physical realizations, has garnered increasing attention. 

PNNs, a deep fusion of optical information processing and neural network theory, aim to 

leverage the interaction between light and matter to map the network computation onto the optical 

field and utilize the transmission functions of different optical devices to perform computation, 

thereby executing specific tasks, as shown in Figure 1. PNNs have shown great potential in 

supporting the NNs computation due to their ultra-high bandwidth, low energy consumption, low 

latency, and high parallelism. While substantial progress has been made in developing PNNs 

implemented through discrete off-chip optical devices[6,7], integration remains the dominant 

approach for addressing the challenges of scalability, efficiency, and practical development within 

operational environments. In particular, the development of diverse material platforms has enabled 

the fabrication of various optical devices, driven by advancements in integrated photonics 
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technology. This progress has significantly accelerated the realization of PNNs and other photonic-

based technologies, paving the way for more efficient and scalable solutions in the field. 

 

Figure 1. The components and applications of the PNNs. 

In this review, we provide a comprehensive introduction to the three fundamental components 

of PNNs: linear operators, nonlinear operators, and data interfaces. We analyze recent advancements 

in these areas, highlighting researches that leverage various optical devices or materials. 

Additionally, we provide an overview of large-scale on-chip integrated PNNs and discuss the 

challenges associated with their further development. 

Linear Operators 

Linear operation is the fundamental computation in NNs, playing a crucial role in a wide range 

of AI tasks. Since each layer of NNs typically consists of neurons that perform linear mappings, a 

significant portion of the computational cost arises from performing large-scale linear operations. 

The light’s high parallelism has the inherent advantage of performing linear operators, and such 

operations are already available in different photonic devices.  

Linear operator based on Mach-Zehnder Interferometer (MZI) 

As a fundamental passive optical device, a single MZI typically consists of two couplers and two 

interference arms. By applying external electronic control signals to the heaters deposited on top of 

each MZI arm, the device can be configured to provide independent power splitting ratios and 

relative phase shifts, making it a simple linear operator.  

Any arbitrary unitary transformation can be realized by designing appropriate routing 

structures (e.g., triangular or rectangular) [8]. Furthermore, large-scale MZI calibration relies on 

various extensively studied algorithms[9–12], providing a solid foundation for implementing linear 

operators based on MZI[13–18]. 

2017, Shen et al. experimentally demonstrated the essential part of the concept using a 

programmable nanophotonic processor featuring a cascaded array of 56 programmable MZI in a 

silicon photonic integrated circuit and show its utility for vowel recognition (Figure 2a)[13]. 
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Theoretically, any matrix can be decomposed into one diagonal matrix and two unitary matrices 

using the singular value decomposition method. The optical attenuators can implement any diagonal 

matrix function, and the beam splitters and phase shifters can achieve any unitary matrix function. 

Thus, the training weight matrices of PNNs can be physically implemented one-to-one via integrated 

optical elements.  

Besides the real-valued computation, some works reported complex-valued linear operators 

utilizing MZI mesh. 

In 2021, Zhang et al. utilized both the phase and amplitude of light by cleverly assigning routes 

in the MZI mesh, implementing input preparation, weight multiplication, reference light, and 

coherent detection onto a single chip (Figure 2b)[14]. The work demonstrated relatively completed 

work such as logic gate operation, IRIS dataset category prediction, nonlinear data (circle and spiral) 

classification, and MNIST dataset handwritten digit recognition. 

In 2022, Zhu et al. proposed an integrated chip diffractive neural network(DNN), using an MZI 

array to implement convolution operations in the complex field after finishing an optical discrete 

Fourier transform (ODFT) operation (Figure 2c)[15]. 

 

Figure 2. Linear operators based on MZI. a Programmable nanophotonic processor based on 56 MZI. b Complex-

valued neural network chip based on MZI mesh. c On-chip DNN based on MZI array. 

Linear operator based on microring resonator (MRR) 

Compared to MZI, MRR generally requires more meticulous design efforts in optimizing 

coupling parameters to achieve sufficient extinction ratios. However, MRR-based architectures can 

perform precise linear operations through resonance wavelength tuning. This distinctive feature 

makes MRR particularly advantageous for implementing programmable linear operators.[19–29].  

In 2016, Tait et al. conducted a detailed study on the MRR weight banks, including the principle 

of MRR, mutual channel crosstalk, and its design methods[19]. Afterward, they demonstrated a 

broadcast-and-weight system that is very significant in linear operators based on MRR weight banks 

(Figure 3a)[20]. Its core idea is that incoming WDM signals are weighted by reconfigurable, 

continuous-valued filters called photonic weight banks and then summed by total power detection. 

The works above provide theoretical support for using MRR weight banks in linear operators. 

In 2021, Huang et al. fabricated MRR weight banks based on a silicon-on-insulator platform and 

demonstrated that they can complete nonlinear compensation assistance with electronic hardware 

(Figure 3b)[21]. 

In 2022, Bai et al. proposed a parallel photonic processing unit integrating MRR and delay lines 

and performing a convolution operator (Figure 3c)[22]. The add-drop MRR weight bank 
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simultaneously performs spectrum slicing, kernel weight loading, and spectrum recombination, 

achieving a record-high weight precision of 9 bits. 

To improve convolution parallelism, in the same year, Xu et al. proposed an integrated photonic 

tensor flow processor based on MRR and WDM (Figure 3d)[23]. The three weight banks were divided 

by two delay lines, and each weight bank included four MRR, which can weigh four different 

wavelengths. The team then used the same chip to implement analog spatiotemporal feature 

extraction, facilitating the further expansion of the application scene[24]. 

 

Figure 3. Linear operator based on MRR. a Broadcast-and-weight system based on MRR weight banks. b 

Nonlinear compensation based on MRR weight banks. c Integrated photonics processing unit based on MRR. d 

Integrated photonic tensor flow processor based on MRR. 

Optical devices based on optical storage mediums 

Significant progress has been made in the development of non-volatile memory devices 

integrating optical storage materials with waveguides for PNNs. Optical storage materials, such as 

phase-change materials (PCMs), can undergo rapid and reversible structural phase transitions under 

the influence of electrical or laser pulses, resulting in non-volatile differences in electrical or optical 

properties. These materials are considered one of the key candidates for enabling non-Von Neumann 

computing architectures. Several linear operators based on optical storage media have been proposed 

and extensively investigated. 

Feldmann et al. developed a fully connected all-light peak neural network photon chip. Under 

the action of light pulses, the PCMs unit coupled to the waveguide structure controls the neuronal 

weight and performs summation operations on the multiple optical signals through the MRR array 

(Figure 4a)[30]. Afterward, they demonstrated that integrated photonics tore based on PCMs can 

perform at speeds of trillions of multiply-accumulate per second (Figure 4b)[31].  

In 2023, Zhou et al. developed non-volatile electronically reprogrammable PCMs memory cells 

(Figure 4c)[32]. Variable Optical Attenuator (VOA) encodes image information in different 

wavelengths, electronically controlling weight based on PCMs cells, which can perform 4-bit weight 

encoding and low energy consumption per modulation depth. At last, the multiplication results were 

obtained by PD. The same year, Dong et al. proposed higher-dimensional in-memory computing 

with continuous-time data based on PCMs (Figure 4d)[33]. Inputting 3D array data into the photonic 

tensor core, whose basic building block is the MZI cascading PCMs memory. Specifically, using the 

MZI’s route function to perform data summation, the PCMs’ state is controlled to perform data 

weighting.  
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Figure 4. Linear operator based on optical storage medium. a All-optical spiking neuronsynaptic network based 

on PCMs. b Photonic in-memory computing based on PCMs units. c In-memory photonic–electronic dot-product 

engine based on PCMs. d Photonic tensor core based on PCMs. 

Linear operator based on modulator array 

Modulators are common devices for signal input. Notably, they function as linear operators only 

when a direct current (DC) bias voltage is applied. Based on this working mechanism, modulator 

arrays are also form a crucial architecture of linear operators[36–41].  

In 2021, Xu et al. demonstrated that an optical coherent dot-product chip can implement 

sophisticated regression tasks (Figure 5a)[40]. The laser was split into seven branches, with one as a 

reference path for providing local oscillator light, and the other branches have two modulators. 

Utilizing modulators work in different models to perform signal modulation and computing matrix 

load. 

In 2024, Moralis-Pegios et al. presented a 4x4 coherent crossbar structure and performed 1000 

arbitrary linear transformations achieving a record-high fidelity of 99.997%±0.002 (Figure 5b)[41]. The 

main component device is a 50 GHz silicon germanium (SiGe)-based electro-absorption modulator, 

functioning as an input vector and transformation matrix. 
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Figure 5. Linear operators based on modulator arrays other integrated optical devices, and on-chip diffractive 

metasurfaces. a Optical coherent dot-product chip based on modulator array. b On-chip linear operator based 

on N × M crossbar architecture. c PDNN based on PIN. d Parallel convolution processing unit based on MMI. e 

On-chip DONN architecture based on a 1D dielectric metasurface. f On-chip diffractive metasurfaces for 

multimodal deep learning. 

Linear operators based on other integrated optical devices 

Other devices, like multimode interference (MMI) P-doped-intrinsic-N-doped (PIN), can also 

perform linear operators, in addition to traditional optical devices[42–46]. These devices offer unique 

advantages in implementing linear computation, further expanding the range of tools available for 

photonic-based processing. 

In 2022, Ashtiani et al. proposed an integrated end-to-end photonic deep neural network that 

performs sub-nanosecond image classification (Figure 5c)[42]. The linear part of this work was 

realized by tuning long PIN current-controlled attenuators; every attenuator can control the optical 

power to complete weight mapping respectively. 

In 2023, Meng et al. designed and fabricated two MMI cells and four phase shifters to perform 

parallel convolution operations (Figure 5d)[43]. This work used 4×4 MMI's transmission function, 

four tunable phase shifters, and off-chip SOA to build the convolutional kernel. Ten-class 

classification of handwritten digits from the MNIST database is experimentally demonstrated. 

Linear operator based on on-chip diffractive metasurfaces 

On-chip diffractive metasurfaces have found widespread applications in diffractive optical 

neural networks (DONNs) due to their ability to perform linear computations by controlling the 

wavefront of reflected beams [47–52]. 

In 2023, Fu et al. fabricated 1-hidden-layer and 3-hidden-layer on-chip DONNs with footprints 

of 0.15 mm[2] and 0.3 mm[2] and experimentally verified their performance on the classification task 

of the Iris plants dataset, yielding accuracies of 86.7% and 90%, respectively. The on-chip DONN 

architecture is based on an integrated one-dimensional (1D) dielectric metasurface (Figure 5e)[51], 
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which consists of a series of silicon slots filled with silicon dioxide; it represents the hidden layer (HL) 

in on-chip DONNs.  

In 2024, Cheng et al. proposed and demonstrated a trainable diffractive optical neural network 

(TDONN) chip based on on-chip diffractive optics with massive tunable elements (Figure 5f)[52]. The 

TDONN chip includes one input layer, five hidden layers, and one output layer, and only one 

forward propagation is required to obtain the inference results without frequent optical-electrical 

conversion. 

Nonlinear operator 

Nonlinear computation is an essential component of neural networks, as introducing 

nonlinearity between linear layers is crucial for achieving optimal performance. Implementing 

nonlinear operations represents a significant step toward realizing all-optical computing. However, 

developing efficient and fully integrated all-optical nonlinearities remains a substantial challenge. 

Currently, nonlinear operators mostly rely on active devices[53–57] or nonlinear optical materials[58–

60].  

Realizing nonlinear processing through the photoelectric effects of active devices is a feasible 

approach. Numerous schemes have been proposed, leveraging modulators and photodetectors to 

achieve this functionality. 

In 2021, Oh et al. released a Mott neuron based on vanadium dioxide (Figure 6a)[56]. The core 

of this work is to simulate the linear increment of the Relu activation function by transitioning 

vanadium dioxide from an insulator to a metal-semiconductor phase, effectively modulating its band 

gap. The study demonstrates the classification performance of Mott activation regions in recognizing 

handwritten digits within the LeNet-5 network. 

In 2022, Shi et al. designed nonlinear germanium-silicon photodiodes to construct on-chip 

optical neurons and a self-monitored all-optical neural network (Figure 6b)[57]. With specifically 

engineered optical-to-optical and optical-to-electrical responses, the proposed neuron merges all-

optical activation and nonintrusive monitoring functions in a compact footprint of 4.3 × 8 μm[2]. 

In addition to utilizing active devices, exploring the intrinsic nonlinearity of materials is also a 

significant research focus, as it can mitigate the need for photoelectric conversion to some extent. 

In 2017, Cheng et al. reported the development of a hardware synapse implemented entirely in 

the optical domain through a photonic integrated-circuit approach (Figure 6c)[60]. Utilizing purely 

optical methods offers the advantages of ultrafast operation speed and virtually unlimited 

bandwidth and eliminates electrical interconnect power losses. The synapse employs phase-change 

materials in conjunction with integrated silicon nitride waveguides. 

In 2024, Chen et al. developed an integrated nonlinear optical activator based on the butt-

coupling integration of two-dimensional (2D) MoTe2 and optical waveguides (Figure 6d)[61]. The 

activator exhibits an ultra-broadband response from visible to near-infrared wavelength, a low 

activation threshold of 0.94 μW, a small device size (~50 μm[2]), an ultra-fast response rate (2.08 THz), 

and high-density integration. The excellent nonlinear effects and broadband response of 2D materials 

have been utilized to create all-optical nonlinear functions. These functions were applied to simulate 

MNIST handwritten digit recognition, achieving an accuracy of 97.6%.  
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Figure 6. Nonlinear operators. a Mott activation neuron based on vanadium dioxide. b Nonlinear function based 

on germanium-silicon photodiodes. c On-chip photonic synapse based on PCMs. d Optical activator based on 

optical waveguides. 

Fan-in and Fan-out 

In large-scale integrated photonic computing systems, modulators and photodetectors (PDs) 

serve as critical electro-optic interfaces for data input and output. These devices enable efficient 

conversion between electrical and optical signals, facilitating precise optical signal processing in the 

photonic domain. In the context of optical computing, several key performance metrics are essential 

for evaluating modulators and photodetectors, including 3 dB bandwidth, data throughput, 

integration capacity, CMOS compatibility, and modulation efficiency. The capacity of modulators 

and PDs to achieve these performance benchmarks, along with their seamless integration into 

existing optical systems, is critical for facilitating the development of high-speed, scalable photonic 

circuits. This section provides an overview of recent advancements in modulator technologies, 

especially focusing on thin-film lithium niobate (TFLN) platforms, and explores their potential for 

integration into optical computing systems. By reviewing the current state of these technologies, we 

highlight the suitability for addressing the demands of large-scale photonic computing, emphasizing 

the ongoing efforts to improve their performance across these key metrics. 

TFLN MZI Modulators 

TFLN is often referred to as ‘optical silicon’ due to its prominent nonlinear electro-optic Pockels 

effect, which provides a significantly high electro-optic coefficient and enables highly efficient 

modulation performance. In addition to these material properties, TFLN significantly improves light 

confinement, integration, and compactness, resulting in high modulation efficiency[62]. These 

characteristics align with the performance metrics outlined later, positioning TFLN as the suitable 

material for modulators in large-scale PICs. Numerous miniaturized and high-performance TFLN 

modulators have already been demonstrated, further showcasing the platform’s potential. 

Typically, TFLN modulators are designed using a MZI structure. In this configuration, 

modulation is achieved through the interference phenomenon caused by the phase difference 

between the two arms of the MZI modulator. These phase changes result in corresponding intensity 

changes, called Mach-Zehnder Modulator (MZM).  

In 2018, Wang et al. proposed the first TFLN MZM in a traveling-wave MZI structure[63]. This 

design demonstrated a modulation efficiency of 2.2 V·cm and an electro-optic bandwidth of over 100 
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GHz, while maintaining a CMOS-level voltage levels and supporting data rates beyond 200 G baud. 

This milestone represented a significant breakthrough in the development of TFLN-based integrated 

modulators (Figure 7a). Further, Feng et al. demonstrated an innovative application of a MZI 

structured TFLN modulator for medical image processing (Figure 7b) [64]. The TFLN MZM they used 

exhibits a 3dB bandwidth exceeding 67GHz while maintaining a modulation efficiency of 2.6V·cm. 

The researchers successfully implemented an optical image edge detection system within a deep 

convolutional neural network framework, achieving remarkable segmentation accuracy of 97.3% in 

their edge-enhanced computational model. This groundbreaking research not only showcases the 

potential of PICs in advanced computing applications but also establishes a significant foundation 

for the convergence of photonic technologies and artificial intelligence systems. 

Subsequent progress on TFLN-based modulators has introduced a variety of advanced 

architectures. Examples include single-polarization In-phase & Quadrature (IQ) modulators[65], 

dual-polarization TFLN IQ modulators[66,67], and multi-loop design modulators[68]. For instance, 

Cai’s group reported the first dual-polarization IQ (DP-IQ) modulator[67] (Figure 7c) which achieved 

a V_π of 1 V and an ultra-high 3-dB bandwidth of over 110 GHz for all sub-MZMs. Moreover, this 

DP-IQ modulator delivered a net bit rate of up to 1.96 Tb/s with ultra-low power consumption per 

bit (1.04 fJ/bit) at CMOS-level voltages. This work significantly advanced electro-optic interface 

speeds for integrated photonic computing systems while maintaining low power consumption. 

Today, state-of-the-art TFLN MZMs have reached modulation efficiency of 0.21V·cm with a 

modulation bandwidth of surpassing 110GHz[69]. In other implementations, TFLN modulators 

exhibit a modulation efficiency of approximately 1 V·cm, 3-dB bandwidths surpassing 170 GHz[70], 

and insertion losses of only a few decibels[71]. 

 

Figure 7. Typical high-speed electro-optical interfaces: modulators and photodetectors. a First MZI structure 

TFLN MZM. b First DP-IQ TFLN modulator. c Integrated lithium niobate microwave photonic processing 
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engine. d A coplanar waveguide microwave resonator with an on-chip optical racetrack resonator TFLN 

modulator. e An optimized U-shaped electrode Ge-Si PD. f An ultra-high bandwidth of 260 GHz PD. 

TFLN cavity-based modulators.  

In pursuit of minimizing the spatial occupation of modulators on integrated circuits, enhancing 

EO modulation efficiency, suppressing RF losses in MZI modulators and ensuring precise velocity 

matching, cavity-based modulators have emerged as a critical paradigm in the field of optical 

modulation technology. These devices often integrate a ring waveguide with an applied electric field, 

employing configurations such as photonic crystal cavities[72], ring cavities[73], Fabry-Perot (FP) 

cavities[74], and Bragg grating resonator cavities[75], all of which are engineered to confine photons 

for extended durations. Owing to the structural constraints inherent in cavity design, a fundamental 

trade-off exists between the bandwidth and quality factor (Q) in these modulators. As a 

representative example, Wang et al.[76] proposed a novel architecture that synergistically combines 

a coplanar waveguide microwave resonator electrode with an on-chip optical racetrack resonator, 

demonstrating significant performance enhancements (Figure 7d). This optimized configuration 

demonstrates significant performance metrics, achieving a quality factor (Q factor) of 8.5×10^5 

through implementation of a 2.3 mm racetrack resonator. The device successfully generates 

broadband optical frequency combs (OFCs) with a spectral coverage exceeding 85 nm, while 

maintaining a free spectral range (FSR) of approximately 25 GHz, which corresponds to the 

microwave driving frequency. These experimental results substantiate the viability of this approach 

as a practical and economically favorable solution for developing high-performance integrated 

electro-optic frequency comb generators in photonic integrated circuits. 

Beyond TFLN modulators, a variety of other materials have been demonstrated on the silicon 

photonics platform, including pure silicon modulators[77,78], silicon-based thin-film lithium 

tantalate modulators[79], silicon-based germanium modulators[80,81], and silicon-based polymer 

hybrid modulators[82,83]. For example, an advanced slow-light silicon modulator has achieved an 

impressive bandwidth of 110 GHz, supporting a data rate of 112 Gbps within an 8 nm spectral 

window for on-off keying (OOK) signals[77]. Pure silicon modulators are particularly well-suited for 

large-scale, cost-effective photonic chips due to the maturity of CMOS fabrication technology. While 

silicon's centrosymmetric crystal structure inherently limits its nonlinear electro-optic properties, 

ongoing research continues to explore alternative approaches to enhance modulation capabilities 

within silicon photonic platforms. 

Photodetector 

In programmable photonic circuits composed of large arrays of MZI or MRR, PD primarily serve 

to convert optical signals into electrical signals[84,85]. Moreover, in certain convolutional computing 

operations, PDs also perform summation functions across multiple convolutional kernels[6,86]. As 

the demand for increased speed and data throughput continues to rise, striking an optimal balance 

between bandwidth, internal responsivity, and sensitivity for PDs becomes an increasingly pressing 

challenge. 

In recent years, significant advancements in low-power optical signals in fibre optic 

communication, sensing biotechnologies and quantum applications have driven the development of 

high-speed and high sensitivity PDs[87], which have progressively matured with improvements in 

material quality and processing technologies. Based on the photoactive materials used, PDs can be 

categorized into those employing III-V compounds, such as InGaAs[88], HgCdTe[89,90]and InP[91], 

AlInAsSb[92], emerging two-dimensional (2D) materials, including graphene[93], perovskites[94] 

and germanium[95–97].  

Therein, germanium-on-silicon (GeSi) technology has advanced rapidly, achieving high 

compatibility and maturity in integrated photonic applications. For instance, Zhang et al. 

demonstrated a breakthrough by achieving a bandwidth exceeding 100 GHz with vertically 

integrated germanium photodetectors, along with an impressive optical responsivity of 0.95 A/W. 

Additionally, their work successfully realized open eye diagrams for 120 Gbps on-off keying (OOK) 
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and 200 Gbps four-level pulse amplitude modulation (PAM-4) signal transmission[98]. This work 

offers a promising solution for ultra-fast photodetection on chip (Figure 7e). In addition, L. 

Zimmermann et al. achieved a remarkable breakthrough in photodetector bandwidth, demonstrating 

an ultrahigh 3 dB bandwidth of 265 GHz on a silicon waveguide-coupled germanium structure [99] 

(Figure 7f). While the internal responsivity of the device at 1550 nm is limited to 0.3 A/W, highlighting 

a trade-off between bandwidth performance and responsivity. Broadly speaking, the large 

bandwidth, high sensitivity and nice internal responsivity PD still needs a long way to go on the 

manufacture and technologies. 

Table 1. Performance comparison of modulator across various architectures or material platforms. 

Ref. Platform Structure 
Bandwidth-

3dB (GHz) 

physical 

size 
Vπ Signal rate 

63 TFLN MZM 45GHz 20mm 1.4V 
210Gbit/s  

8-ASK 

63 TFLN MZM 100GHz 5mm 4.4V 200Gbaud 

67 TFLN DPIQ 110GHz 23.5mm 1V 
1.96Tb/s 

400QAM 

69 TFLN MZM 110GHz 1mm 2.1V N.A. 

100 TFLN 
Folded 

MZM 
>67GHz 22.5mm 1V 703Gb/s 

101 TFLN 

Micro-

structured 

electro 

>100GHz 

 
N.A. 1.3V N.A. 

72 TFLN 
EOM 

resonator  
17.5GHz ~0.58𝑢𝑚3 N.A. 12Gb/s 

77 Si 
Bragg 

grating  
110GHz 

0.124mm 

 
5V 112Gb/s 

80 SiGe MZM 43GHz 500mm 3.8V 128Gb/s 

 
Large-scale on-chip photonic neural networks 

In the domain of photonic neural networks, enhancing computational performance, enabling 

large-scale photonic computing, and optimizing energy efficiency are essential objectives. To meet 

these demands, a key strategy is the integration of heterogeneous components onto a monolithic chip. 

Furthermore, the deployment of multi-layer neural network architectures within a single chip is 

critical for realizing scalable and efficient photonic computing solutions. Recently, there has been a 

considerable amount of research focused on achieving this goal.  
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Figure 8. Large scale PNNs. a ACCEL. b Taichi. c Single-chip PNN. 

For example, Dai’s group introduced ACCEL[103], an all-analog chip combining diffractive 

optical and electronic analog computing, achieving on-chip scalability, nonlinearity, and flexibility 

(Figure 8a). By encoding information directly into light fields and using photodetectors for nonlinear 

operations, ACCEL achieved 97.1% accuracy on 10-class MNIST, offering a promising framework for 

intelligent computing. The following year, the same group developed Taichi[18], a large-scale 

photonic chiplet platform with a diffractive-interference hybrid design (Figure 8b). Taichi excelled in 

complex tasks like 1000-category classification, advancing photonic computing for artificial general 

intelligence (AGI) applications.  

In 2024, MIT achieved a breakthrough with the fully monolithic integration of coherent optical 

neural networks[102], combining a coherent matrix multiplication unit and optical nonlinear function 

unit on a single chip as shown in Figure 8c. Fabricated using a commercial silicon photonics process, 

the chip integrates programmable linear and nonlinear transformations, enabling in-situ training, 

nanosecond latency, and femtojoule efficiency. This advancement achieved 92.5% accuracy on vowel 

classification, marking a significant step toward scalable and efficient optical computing. 

Additionally, we have compiled a comprehensive summary of recent advancements in 

integrated ONNs in Table 2, highlighting key developments in power consumption, computational 

speed, and integration density over the past few years. 

Table 2. Comparison of state-of-the-art integrated photonic neural network systems. 

Ref. 
Integration 

Level 

Integrated 

Devices 

Computin
g Speed 
(TOPS) 

Power 

(TOPS/W) 

Material

s 
Tasks Latency 

Footprint 

(mm[2]) 

102 
End-to-end 

DNN 

MZM 

PD 

MZI 

MRR 

0.59 0.013 SiP 

Six-class 

vowel 

classification 

 (92.5%) 

410ps 34.2 

42 
End-to-end 

PDNN 

PIN 

PD 

MZM 

0.27 0.07 
SiP 

SiGe 

Two-class 

classification  

(93.8%) 

0.57 

ns/frame 
9.3 
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31 
Linear unit 

light source 

MRR 

PCM 
4 0.4 

Si3N4 

Ge2Sb2Te5 

MNIST  

(95.3%) 

8.1×103 ns/

frame 
~6.5 

103 

Linear unit 

Nonlinear 

unit 

Phase 

mask 

PD 

4.55×10[3] 7.48×10[4] SiO2 

Time-lapse 

video 

recognition  

(92.6%) 

72 ns 4.7 

18 

Input 

Output 

Linear unit 

Diff. units 

PS 

MZI 

VOA 

5×10[4] 160.82 
Si 

TiN 

1623-category 

Omniglot 

dataset (91.8%) 

3.79 ms N.A. 

25 

Light 

source 

Linear unit 

OFC 

MRR 
51.2 4.18 Si3N4 

Human 

emotion 

recognition  

(78.5%) 

N.A. ~5 

104 

Light 

source 

Output 

Linear unit 

LED 

PD 

gratings 

N.A. N.A. 

perovskit

e 

Si3N4 

Edge detection 

(85%) 
N.A. ~5 

22 

Light 

source 

Input 

Linear unit 

OFC 

EOM 

MRR 

DL 

0.136 0.2 
SiP 

AlGaAs 

Edge detection 

(96.9%) 
58.88ps 0.131 

 

Outlook/Discussion 

PNNs based on PICs have significantly improved in the areas discussed above. Notably, 

substantial progress has been achieved in implementing linear operators, with various architectures 

leveraging different optical devices. Photonics offers distinct advantages in computational speed and 

energy efficiency, and it has demonstrated substantial industrial relevance. The computing speed of 

linear operators typically reaches the trillions of operations per second (TOPS) level. In certain 

specialized diffractive metasurfaces, even peta-operations per second (POPS) can be achieved. 

Furthermore, as optical material platforms continue to mature, a wide range of active optical 

devices—such as modulators, photodetectors, and lasers—can now facilitate input/output (I/O) 

operations and nonlinear functions. Despite these advancements, several challenges persist. 

a) Multi-linear layers based on integrated photonic circuits 

Currently, the implementation of linear operators based on PICs has attained a level of maturity, 

with most works showcasing a single layer of linear operations in the optical domain. However, 

multiple layers of linear operators are crucial for facilitating complex AI tasks and deep neural 

networks. Therefore, there is a necessity to further enhance the integration of PICs in the future, fully 

leveraging the benefits of optical linear computations to enable multi-layer operations that can 

address more intricate challenges. 

b) Implementing all-optical nonlinear operators 

Implementing optical nonlinear operators remains predominantly at the research stage. The 

mainstream architecture of PNNs employs a hybrid photoelectric computing approach, in which 

linear computations are executed in the optical domain while nonlinear operations are performed in 

the electrical domain. However, due to limitations such as photoelectric rate mismatches and 

additional energy consumption, this approach fails to fully exploit optical computing’s advantages.  

c) Monolithic integrated photonic networks 

A conventional neural network consists of an input layer, an output layer, linear operators 

(weight matrices), and nonlinear operators (activation functions). Implementing these functions 

within the photonic domain requires the integration of lasers, passive components, and active 

components to establish a fully functional computing system. However, due to the limitations of 

material characteristics and integrated processing technology, most works integrated only partial 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 August 2025 doi:10.20944/preprints202508.1621.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1621.v1
http://creativecommons.org/licenses/by/4.0/


 14 of 27 

 

functions within the optical domain or leveraged different material platforms to develop specialized 

devices. 

Various integrated photonics technologies have been developed to address these challenges, 

with minimizing optical waveguide loss being a fundamental prerequisite for achieving large-scale 

integration. Hence various low-loss optical waveguides have been proposed on different materials, 

including Si3N4, SiO2, and silicon[105–108]. The lowest loss has reached approximately 0.1 dB/cm. In 

addition, emerging material platforms such as graphene, MoS₂, and WS₂ hold great potential for 

enabling disruptive advancements in nonlinear and active photonic devices[109,110]. Heterogeneous 

integration has emerged as the most promising strategy to fully leverage the advantages of diverse 

material platforms and ultimately realize monolithic PNNs, as demonstrated in Figure 9 [111–113]. 

Overall, integrated photonics technology is shaping the present and future of PNNs, paving the way 

for more efficient and scalable optical computing architectures.  

These results confirm the effectiveness of optical microcombs in forming the basis for transversal 

filter microwave spectral filters [114–128] potentially involving advanced circuit designs [136–195] 

including graphene oxide and other 2D material based devices, [174–203] with applications to 

quantum optics. [190–241]  

 

Figure 9. Schematic of monolithically integrated PNNs. 
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