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Abstract: Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that often begins
decades before clinical symptoms manifest. Early detection remains critical for effective intervention,
particularly in younger adults where biomarker deviations may signal pre-symptomatic risk. This
research presents a computational modeling framework to predict cognitive impairment progression
and stratify individuals into risk zones based on age-specific biomarker thresholds. The model
integrates sigmoid-based data generation to simulate non-linear biomarker trajectories reflective
of real-world disease progression. Core biomarkers—including CSF AB4,, Amyloid PET, CSF Tau,
and MRI FDG-PET’ were analyzed simultaneously to compute a Cognitive Impairment (CI) score,
dynamically adjusted for age. Higher CSF ABy; levels consistently demonstrated a protective effect,
while elevated Amyloid PET and Tau levels increased cognitive risk. Age-specific CI thresholds
prevented the overestimation of risk in younger individuals and the underestimation in older cohorts.
The study highlights the model’s potential to identify individuals in risk zones, enabling targeted early
interventions. Furthermore, the framework supports retrospective disease trajectory analysis, offering
clinicians insights into optimal intervention windows even after symptom onset. Future work aims to
validate the model using longitudinal real-world datasets and expand its predictive capacity through
machine learning techniques and the integration of genetic and lifestyle factors. Ultimately, this
research contributes to advancing precision medicine approaches in Alzheimer’s Disease by providing
a scalable computational tool for early risk assessment and intervention planning.

Keywords: Alzheimer’s disease; cognitive impairment; biomarkers; machine learning; computational
modeling; age-specific risk; precision medicine; sigmoid simulation

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that impairs memory,
cognitive function, and the ability to perform daily activities. It remains the leading cause of dementia
among aging individuals. According to the Alzheimer’s Association’s 2024 Facts and Figures report [1],
nearly 7 million Americans are currently living with AD, with one in nine people aged 65 and older
affected. By 2050, this number is projected to rise to 12.7 million, barring any medical breakthroughs
in prevention or cure.

Currently, there is no cure for Alzheimer’s disease. Available treatments are limited in their
ability to halt disease progression; instead, they offer temporary relief by slowing the worsening of
dementia-related symptoms. Research has identified several primary risk factors associated with AD,
including advanced age, genetics, lifestyle factors, head trauma, cardiovascular conditions, cognitive
engagement, and chronic neuronal inflammation [2—4]. Notably, studies indicate that brain atrophy
and pathological changes begin decades before clinical symptoms emerge [5,6], emphasizing the
importance of early interventions in delaying or mitigating disease progression [7-9].

Given the complexity of the human body and the multifactorial nature of Alzheimer’s pathology,
no single biomarker is sufficient to conclusively predict cognitive risk or disease progression. Relying
solely on one marker risks misclassification, as each biomarker captures only a subset of the disease
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mechanism. For instance, while low CSF Ay, levels suggest amyloid plaque formation, similar reduc-
tions can occur in cognitively normal aging individuals [10,11,15]. Similarly, Amyloid PET imaging
quantifies plaque burden but does not always correlate with current cognitive impairment [12,14]. CSF
Tau and phosphorylated Tau (p-Tau) levels reflect neurodegeneration or neuronal injury but are less
reliable as early-stage indicators [12,13]. Moreover, FDG-PET imaging captures brain hypometabolism
downstream of amyloid and tau pathology, but its changes often lag behind other biomarkers, making
it less sensitive to early-stage detection [12,16].
This study focuses on two hallmark pathological features of AD:

1.  Amyloid Beta (A) Plaques
Neurofibrillary Tangles (NFTs)

From a computational perspective, this research explores the Time Factor Hypothesis, which posits
that the early identification, detection, and quantification of neuronal biomarker changes—potentially
decades before symptom onset—could enable timely diagnosis and intervention. This hypothesis
suggests that targeting younger adults for early screening and preventative measures may offer a
promising strategy to combat AD Onset/progression.

Ultimately, understanding the age-related progression of AD can inform the development of more
effective diagnostic tools and therapeutic interventions aimed at significantly inhibiting or preventing
disease advancement. Our findings highlight that early detection and intervention—beginning as early
as ages 30 to 40—could substantially reduce both the incidence and severity of Alzheimer’s disease.

2. Computational Framework

This section presents the computational framework developed to model cognitive impairment
progression and assess Alzheimer’s Disease (AD) risk in younger adults. Grounded in the Time Factor
Hypothesis, the model is designed to capture the non-linear trajectory of biomarker changes leading
to cognitive decline, potentially decades before clinical symptoms manifest. The conceptual diagram
for this fit is represented in Figure 1 starting from Biomarker Data — Simulation — Risk Zones —
Correlative Risk Scoring — Risk Classification.

T AN ALZHEIMER’S DISEASE Age Group | Safe CI | Mild Risk CI | Unsafe CI
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RISK PREDICTION FRAMEWORK 050y -4 anT T
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Figure 1. Conceptual diagram illustrating computational framework for Alzheimer’s Disease risk prediction. It
captures Biomarker Data — Simulation — Risk Zones — Correlative Risk Scoring — Risk Classification.
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Axiom: The framework is based on gradual pathological changes in the brain’

The gradual pathological accumulations follow a non-linear progression — starting subtly, accel-
erating over time, and eventually plateauing. This biological behavior is best represented by a sigmoid
function, which allows the model to simulate early-stage deviations in biomarkers before cognitive
impairment becomes clinically apparent.

The model incorporates the following key biomarkers, each weighted based on its relative
contribution to cognitive risk:

*  Cerebrospinal Fluid (CSF) AB4»

*  Amyloid PET imaging

®  CSF Tau and phosphorylated Tau (p-Tau)
e  MRI FDG-PET (brain metabolism)

The computational framework is structured into three main components:

Descriptive Analysis — Under this cadre, we performed a descriptive analysis to establish the
expected physiological ranges for the cognitive risk associated with each biomarker. These baseline
values were modeled using a sigmoid function to generate a synthetic dataset that captures the
biomarker’s variability over time and across age groups.

Parameter Accumulation — This component tracks the progression and accumulation of biomark-
ers over time. By modeling these trajectories, we assessed deviations from normal levels, providing
insights into the temporal dynamics of each biomarker in relation to AD risk.

Correlation and Classification — We analyzed the correlation between biomarker accumulation
and neuronal changes associated with Alzheimer’s disease. This enabled us to classify cognitive risk
into distinct categories — normal, mild risk, or high risk — based on biomarker fluctuations and their
combined effect on Cognitive Impairment (CI) scoring.

2.1. Descriptive Analysis

Previous studies [16-20] have evaluated the expected average levels of key cerebrospinal fluid
(CSF) biomarkers across different age groups and populations, including individuals living with
HIV infection. Based on these findings, CSF A4, levels below 480 pg/mL or above 800 pg/mL are
considered clinically significant indicators of cognitive health status. Specifically, reduced Apy; levels
suggest amyloid plaque accumulation, while elevated levels are typically associated with normal
cognitive function.

For CSF Tau, age-specific thresholds have been proposed: levels should remain below 300 pg/mL
for individuals aged 21 to 50, below 450 pg/mL for those aged 51 to 70, and under a critical threshold
in individuals aged 70 to 90. Similarly, in Amyloid PET imaging, a Centiloid score of 0 is typical in
younger adults, while scores approaching 100 are indicative of mild neurodegenerative changes.

Further research shows that individuals with CSF A4 levels between 600-800 pg/mL generally
maintain normal cognitive function, whereas levels falling below 480 pg/mL are linked to progressive
cognitive decline [10]. Additionally, [11,24] observed that Amyloid PET values less than 7 and CSF
Tau levels below 7 are commonly found in cognitively normal individuals. In contrast, Amyloid
PET values exceeding 7-10 correlate with amyloid positivity and an increased risk of Mild Cognitive
Impairment (MCI) and Alzheimer’s disease. Tau levels above the 7-10 range are also associated with
early neurodegenerative processes.

Cognitive impairment scores (CI) further contextualize these biomarkers, with scores below 3
(CI < 3) associated with normal cognitive aging and scores above 6 indicating early-stage cognitive
impairment [24]. Integrating these biomarker thresholds with cognitive impairment scoring provides
a structured and quantifiable framework for classifying individuals into cognitive risk zones relevant
to Alzheimer’s disease onset and related neurodegenerative disorders.
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2.2. Sigmoid Simulation & Parameter Accumulation

To standardize the accumulation of biomarker values and imaging results relative to age, we
modeled the biomarker measurements using a sigmoid function, defined in Equation 1. In this
formulation, L represents the maximum potential value of a given parameter, while k serves as a
scaling factor to adjust for variability in the input data. The term (x) denotes the individual biomarker
measurement, and x represents the mean of the respective biomarker column, acting as a reference
point for standardization. The sigmoid function is mathematically expressed as:

_ L
o 1+ ek(x_xo)

5(x)

This function effectively constrains the output between 0 and L, making it well-suited for classifi-

1)

cation tasks where the goal is to assess the likelihood of an individual belonging to a specific cognitive
risk category. Within the context of this research, the sigmoid function enables the stratification of
individuals into normal, mild-risk, and high-risk groups based on their biomarker profiles associated
with Alzheimer’s Disease (AD).

To further analyze biomarker progression, we computed the derivative of the sigmoid function,
S’(x), to identify critical points and ensure smooth curve behavior. By leveraging regression analysis
alongside the derivative S’(x), we reverse-engineered feature distributions, allowing for the controlled
generation of synthetic instances representing individuals aged 10 years and older. This approach
enriched the dataset, supporting the modeling of early biomarker changes potentially preceding
clinical symptoms (see Figure 1 for reference).

Henceforth, the term donor may be written as donor to reflect the enrichment and synthetic
extension of the original dataset.

2.3. The Dataset

Most existing datasets in Alzheimer’s research predominantly comprise data from older individ-
uals, typically aged 50 years and above. However, due to the scarcity of available data for younger
individuals, particularly those aged 30-50, and the defined nature of available biomarker data —often
either MRI imaging or numerical with categorical values, but rarely both— this study adopts a hybrid
dataset approach to enrich the dataset and broaden age representation.

The dataset construction involved aggregating data from Kaggle, ANDI, and OASIS, followed
by rigorous cleaning and filtering to retain relevant features. When duplicate or similar entries were
identified, data were grouped and averaged, with Age serving as the primary instance identifier.
To address missing data, particularly for individuals under the age of 50, synthetic instances were
generated using the sigmoid simulation described in Equation (1).

Table 1 presents a snapshot of the resulting biomarker dataset designed for Alzheimer’s Disease
(AD) risk assessment. Notably, the dataset starts from age 10, reflecting an intentional focus on
early-stage biomarker progression rather than traditional cohorts limited to older populations.

Initial observations suggest that CSF ABy, levels increase with age during early development,
potentially reflecting normal physiological changes before the expected decline associated with AD.
Similarly, Amyloid PET and CSF Tau levels demonstrate gradual increases, indicating progressive
biomarker changes that may begin well before clinical symptoms emerge.

The dataset includes the following key attributes:
¢ Age: The individual’s age (beginning at 10 years).

*  CSF ABy,: Cerebrospinal Fluid Amyloid Beta 42 levels, a biomarker indicating amyloid plaque
accumulation, a hallmark of AD.

¢ Amyloid PET: Positron Emission Tomography measurements of amyloid deposition in the brain,
where higher values denote greater amyloid accumulation.

¢  CSF Tau: Levels of tau protein in cerebrospinal fluid, serving as an indicator of neurodegeneration
associated with AD.
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e  MRI FDG-PET: A neuroimaging metric capturing structural and metabolic brain changes.

Table 1. Early Biomarker Progression and Cognitive Assessment in Young Individuals. This table presents
a biomarker levels snapshot for individuals. Ages 10 to 110 years were considered, focusing on early-stage
Alzheimer’s Disease (AD) risk factors. The dataset includes key cerebrospinal fluid (CSF), neuroimaging biomark-
ers such as CSF AB4,, Amyloid PET, CSF Tau, and MRI FOG PET.

Age CSF_Ab42 Amyloid PET CSF tau MRI FOG PET
10 1.422776195 1.15055579 0.839682182 0.63837886
11 1.546666892 1.251055685 0.91156436 0.689563902
12 1.719772277 1.36639224 0.989358424 0.74564352
13 1.88920682 1.488831819 1.073507365 0.805661359
14 2.0745661 1.60277478 1.164480779 0.878329193
15 2.225745401 1.76235397 1.262772013 0.033977347
16 2.45188095 1.197938204 1.368893079 1.014954524
17 2.73368883 2.085104465 1.483419148 1.055688099
18 2.995514674 2.265577082 1.606890123 1.188384416
19 3.272046536 2.400189615 1.739908743 1.275627274
20 3.576887651 2.666988017 1.883888619 1.375780022
21 3.003254331 2.885211264 2.037061649 1.48328319
22 4.255311947 3.13731708 2.202474709 1.598592854
23 4.633957953 3.396927461 2.379885564 1.722181014
24 5.03344846 3.6748514 2.570257903 1.885453881
25 5.72765714 3.771898817 2.773955443 1.996147716
26 5.934483343 4.288584041 2.991735033 2.147521424
27 6.4249505099 4.625735365 3.224238726 2.309173001

This enriched dataset enables the investigation of biomarker dynamics across a broader age range,
offering valuable insights into early-stage Alzheimer’s risk assessment.

2.4. Correlation Analysis and Cognitive Risk Categories

It is critical to identify correlations between biomarkers and establish classification regions that
stratify donors into normal (no_risk), mild_risk, and high_risk cognitive categories associated with AD.
For instance, the significance of CSF Ay, is that its reduction signals amyloid plaque accumulation in
the brain, a hallmark of Alzheimer’s disease (AD) [17].

Furthermore, Figure 2 illustrate two key relationships in the dataset. Figure 2a presents the
age-dependent trajectory of CSF AfBy4; levels, displaying a sigmoidal trend. CSF ABy, levels rise
gradually during early life (ages 10-30), possibly reflecting normal amyloid metabolism. From midlife
(ages 30-60), AB4, levels increase more rapidly, potentially indicating changes in amyloid clearance
efficiency. Levels plateau in later years (60+), likely due to reduced clearance or plaque accumulation
in brain tissues.
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Figure 2. Age-dependent relationship between CSF A4, and CSF Tau. (a) Sigmoidal increase in CSF AB4, with
age, reflecting key transitions in amyloid metabolism. (b) Correlation plot showing that elevated Tau levels are
associated with reduced A4y, supporting amyloid-driven neurodegeneration in AD.

This trajectory aligns with established AD biomarker models, where CSF A4, concentrations
decline in individuals with amyloid pathology [5,16,21].

Figure 2b highlights the correlation between CSF AB4, and CSF Tau levels. The scatter plot and
regression line reveal an inverse relationship: as CSF A4, decreases, CSF Tau increases sharply. This
supports the hypothesis that amyloid deposition (low ApBy;) is linked to neurodegeneration (elevated
Tau), both of which are critical to AD progression.

Applying predefined medical thresholds, Section 2.1 provides clear cutoffs for biomarker levels,
enabling the classification of cognitive states (Figure 3). This visualization traces biomarker trajectories
across the lifespan, highlighting cognitive risk zones. The shaded backgrounds (green, yellow, orange,
and red) indicate transitions from normal cognitive function to mild cognitive impairment (MCI). With
increasing age, deviations in biomarker levels become more pronounced, particularly in individuals
transitioning into high-risk or MCI categories.

Biomarker Levels Across Risk Categories

30 __ csFAga2

—— Amyloid PET
25 CSF Tau
—— MRI + FDG PET
—— Cagnitive Impairment
20 Normal
Low Risk
High Risk
MCI

15

10

Biomarker Abnormality Level

10 20 30 40 50 60 70 80
Age

Figure 3. Age-related biomarker trajectories transformed by sigmoid scaling. CSF AB4; (purple) declines with
age, while Amyloid PET, CSF Tau, and MRI + FDG PET levels rise, reflecting the progressive risk of cognitive
impairment. Shaded areas indicate transitions between cognitive risk categories.

These cognitive risk zones are defined as:

1.  Normal: Biomarker levels within safe physiological ranges
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2. mild Risk: Slightly elevated biomarker levels indicating potential early changes

®

High Risk: Significant biomarker abnormalities but without formal clinical diagnosis
4.  MCI (Mild Cognitive Impairment): Biomarker levels exceed critical thresholds indicating
cognitive deterioration

As illustrated, CSF AB4, (purple) declines sharply with age, while Amyloid PET (red), CSF Tau
(yellow), and MRI + FDG PET (blue) show progressive increases. The green cognitive impairment
curve mirrors this upward trend, reinforcing the relationship between biomarker deviations and
cognitive decline.

Figure 4 models the progression of cognitive impairment as a function of age, segmented into
cognitive risk categories. Data points, color-coded by risk level, reveal a nonlinear increase in cog-
nitive impairment over time. Initially, most individuals remain in the normal range (blue). As age
advances, the probability of transitioning into mild-risk (orange), high-risk (green), and MCI (red)
increases significantly.

Cognitive Impairment by Age and Risk Category
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Figure 4. Cognitive impairment progression over age, color-coded by risk levels. The model shows an initial
period of cognitive stability, followed by gradual and then accelerated increases in risk, particularly after age 50.

The trajectory indicates a critical period around midlife (50-60 years), where cognitive risk accel-
erates sharply. This observation aligns with neurodegenerative models suggesting that biological and
cognitive reserves initially buffer against decline until cumulative damage leads to rapid deterioration.

These findings emphasize the importance of early detection and monitoring. Individuals classified
as mild-risk still represent a key intervention window where preventive strategies could delay or
mitigate progression. Integrating machine learning techniques could further enhance this model by
identifying subtle early indicators of cognitive impairment.

Considering Figures 3 and 4, the central research question emerges: What biomarker values can
individuals aged 30—40 (and 40-50) maintain to remain within the safe (green) zone for healthy AD-free old age?
Or put it in another way, what thresholds signal progression toward mild or high risk of developing Alzheimer’s
disease at an older age?

3. Computational Summation

To answer the final question in the previous section, it is essential to recall /reaffirm the objective
of this paper. To achieve this, we restrict and define the potential symptoms of brain atrophy based on
cognitive impairment observed in donors.
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3.1. Cognitive Impairment

Cognitive impairment (CI) was modeled as a weighted sum of biomarker values (CSF AB4y,
Amyloid PET, CSF Tau, MRI FDG PET), incorporating an exponential scaling factor to account for the
accelerated impairment. Since biomarkers contribute linearly to cognitive impairment, an increase in
Amyloid PET and CSF Tau elevates the risk, while a decrease in CSF A4, also contributes to increased
risk. The terms can be modeled as,

By (A) = k1€_m1A, BQ(A) = kze_’”zA, B3(A) = kge_m3A, B4(A) = k4€_m4A

where By (A) is the CSF ABy, value, which decreases exponentially with age. B, corresponds to
the Amyloid PET value, which increases exponentially with age. B3(A) represents (CSF Tau), and
B4(A) denotes MRI FDG PET, both of which increase at different rates over time. Such that cognitive
impairment (CI) can be rewritten as:

CI(A) = w.ePt + wikie ™A + wokpe ™A 4 wikze ™4 4 wykye ™A )

Thus, we define the risk zones —Safe, Mild Risk, and Unsafe— using Equation 2, based on the
values of the underlying biomarker parameters. Specifically, this equation determines the range of
biomarker values an instance aged 30-40, (30-50) must possess to remain safe, be at mild risk, or
become unsafe from the disease at an older age. Specifically, the following system of exponential
equations explains it succinctly;

ISSENZOREMER) — o + Yoo Bi(4) < v @
WEIRBRIZORE < oo + D) <0 @
B Yo > ®

where: A represents Age, CI(A) denotes the cognitive impairment score at age A, and B;(A)
corresponds to the biomarker level at age A. The parameter w; is the weight coefficient that determines
the contribution of each biomarker value to cognitive impairment. The parameters & and j are scaling
factors of CI(A) [22], where cognitive decline is modeled by the exponential function ef, capturing
the accelerated progression of impairment with aging.

Safe zone holds when CSF AB4, dominates over other biomarkers and remains high, and Amyloid
PET, CSF Tau, and MRI FDG PET remain below mild risk levels. A mild Zone occurs if CSF AB4»
declines slightly, but Amyloid PET and CSF Tau rise moderately (perhaps accounting for the early
onset of AD). The evidence for an Unsafe Zone is given by a significant drop of CSF A4, and Amyloid
PET, CSF Tau, and MRI FDG PET reach high threshold levels. Referencing Section 2.1, we conclude
that v = 3, and 6 = 6 within 30-40 age bracket and respectively 4, and 7 for 40-50 years age bracket.

4. Model Output and Cognitive Risk Zone Classification

We leveraged ChatGPT [25] to generate a synthetic dataset containing 150 instances for testing
(Due to the challenge of acquiring heterogeneous real-world datasets) and computed the Cognitive
Impairment (CI) score for each instance using Equation 2. Each instance was then classified into its
respective cognitive risk zone based on the thresholds defined in Equations (3)—(5), with an example of
the classification summarized in Table 2.
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Table 2. Sample Classification Results of Selected Instances with CI Scores and Risk Zones.

Age CSF ABy;  Amyloid PET CSF_Tau  MRI_FDG_PET CI Risk Level
58 428.21 14.28 382.99 6.92 3.18 Safe
40 411.53 19.13 370.31 14.58 3.37 Mild Risk
53 516.39 8.62 478.00 3.19 3.21 Safe
39 413.08 14.25 403.98 6.57 441 Mild Risk
34 422.18 15.37 393.98 6.55 3.62 Mild Risk
47 427.23 14.69 411.34 6.29 5.30 Mild Risk
48 419.70 14.01 414.07 6.95 4.21 Mild Risk
50 418.06 15.26 399.28 7.18 5.35 Mild Risk

The model output produced age-specific CI risk bands (Table 3), guided by strict threshold
templates; Tables 4—6. Notably, risk classification dynamically references the age-specific intervals

during CI analysis — failure to do so would result in overestimating risk in younger individuals and

underestimating it in older ones. This age-specific risk distribution is further visualized in Figure 5.

Table 3. Age-specific Cognitive Impairment (CI) Risk Bands used for model classification.

Age Group Safe CI Mild Risk CI Unsafe CI
3040 0-3 3-6 6-10
40-50 1-4 4-7 7-12
50-60 1.5-5 5-8 8-13
60-70 2-6 6-9 9-14

Table 4. Estimated Biomarker Thresholds for Ages 30—-40.
Biomarker Safe (Green) Mild Risk (Yellow) Unsafe (Orange)
CSF_AB1» (15, 22) (10, 15) (5, 10)
Amyloid_PET 4,7) (7,10) (10, 15)
CSF_Tau (3, 6) (6,9) 9, 12)
MRI_FDG_PET (2,5) (5, 8) (8,12)
Cognitive_Impairment 0, 3) (3,6) (6, 10)
Table 5. Estimated Biomarker Thresholds for Ages 40-50.

Biomarker Safe (Green) Mild Risk (Yellow) Unsafe (Orange)
CSF_ABs» (12, 18) (8,12) (5,8)
Amyloid_PET 5,9 (9,12) (12, 18)

CSF_Tau 4,7) (7,10) (10, 14)

MRI_FDG_PET (3,6) 6,9) 9,13)

Cognitive_Impairment 1,4) 4,7) (7,12)
Table 6. Estimated Biomarker Thresholds for Ages 55-65.

Biomarker Safe (Green) Mild Risk (Yellow) Unsafe (Orange)
CSF_ABs» (10, 15) (6, 10) (3,6)
Amyloid_PET (7,12) (12, 16) (16, 22)

CSF_Tau (5,8 (8,12) (12, 16)
MRI_FDG_PET 4,7) (7,10) (10, 15)
Cognitive_Impairment (2,5) (5,9) 9,14)
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Figure 5. Visual representation of Cognitive Impairment (CI) scores and age-specific risk thresholds.

The 3040 age group applies the strictest thresholds, reflecting the expectation of relatively
healthy biomarkers. In contrast, the 40-50 age group tolerates mild biomarker deviations, shifting
the "Safe" range upward. The 50-60 age group follows a similar trend, reflecting normal biomarker
drift with aging.

Key observations from the model analysis include:

1. Higher CSF ABy levels are protective, reducing the cognitive risk score.

Elevated Amyloid PET and Tau levels increase the CI score, indicating greater neurodegenerative

risk.

3. Age contributes exponentially, but moderately, due to the model’s exponential scaling component.

Notably, MRI scan results can reveal structural brain changes, including mild parietal or temporal
lobe atrophy, cortical thinning, white matter lesions, or hippocampal volume loss. The model identified
17 instances classified within the mild-risk zone. Next, we examine six representative mild-risk
cases to gain deeper simultaneous insights into biomarker patterns and cognitive risk profiles in the
next section.

Our model further supports retrospective analysis of disease trajectories, providing estimates
of the optimal intervention window. This is particularly valuable for aged donors already exhibiting
Alzheimer’s Disease (AD) symptoms, helping to infer when earlier intervention might have slowed
disease progression. In such cases, perhaps serving as evidence in support of further aggressive
medical attention.

4.1. Discussion of Table 2: Sample Classification Results of Selected Instances with CI Scores and Risk Zones

Table 2 presents the classification of eight sampled instances based on their biomarker values,
computed Cognitive Impairment (CI) scores, and assigned cognitive risk zones according to the
model’s age-specific thresholds.

Key Observations:

1. Higher CSF ApB4; values are associated with lower Cognitive Impairment (CI) scores and safer
classifications. For instance, the 53-year-old individual exhibits the highest CSF A4, level (516.39
pg/mL), which corresponds to a low CI score of 3.21 and a Safe classification, despite moderate
Tau levels. This observation highlights the protective role of CSF AB4, where higher levels
reduce cognitive risk, while lower CSF A4, levels are indicative of amyloid plaque formation
and increased risk of Alzheimer’s Disease.
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2. The 40-year-old instance exhibits high Amyloid PET (19.13) and elevated MRI FDG-PET (14.58)
values. Despite being relatively young, this drives its CI to 3.37, placing it in the Mild Risk zone
due to age-specific stricter thresholds for younger adults. Similarly, higher CSF Tau levels (e.g.,
411.34 in Age 47) contribute to Mild Risk classification. Reiterating that Elevated Amyloid PET
and Tau Drive Risk Upward.

3. Notice the Age-Specific Sensitivity to biomarker deviations. For example, the 34 and 39-year-old
instances fall into the Mild Risk zone even with moderate biomarker levels. This reflects the
model’s stricter criteria for younger adults, where any abnormal biomarker deviation is penalized
more heavily. Older individuals (47-58) tolerate similar or higher biomarker values but remain
classified as Safe or Mild Risk due to relaxed thresholds.

4.  Elevated MRI FDG-PET (metabolic changes) values are seen in Mild Risk cases, especially in the
40-year-old (14.58), suggesting early structural/metabolic brain changes contributing to increased
cognitive risk.

5. Overall, safe cases maintain CI below 4 (Ages 58 and 53). Mild Risk cases occupy the CI range of
3.37 to 5.35, with no instances classified as Unsafe in this sample.

5. Conclusions

This research presents a computational modeling framework designed to explore and predict
the early onset of Alzheimer’s Disease (AD) in younger adults, decades before the manifestation
of clinical symptoms. By leveraging sigmoid-based data generation and cognitive impairment
modeling, the study simulates non-linear biomarker trajectories that align with known patterns
of disease progression.

Through the development of age-adjusted cognitive risk zones, the model provides a quantifiable
system for classifying individuals based on biomarker deviations and their impact on cognitive decline.
Notably, higher CSF AB4; levels consistently demonstrated a protective effect, while elevated Amyloid
PET and Tau levels correlated with increased cognitive impairment scores. These findings underscore
the importance of integrating age-specific thresholds to prevent over- or under-estimation of cognitive
risk across different age groups.

A key contribution of this work is its focus on pre-symptomatic risk detection using computational
methods. The framework enables researchers to model early disease trajectories and offers clinicians a
tool for identifying individuals who may benefit from timely preventive interventions. Importantly,
the model’s flexibility allows for future expansion to incorporate genetic factors, neuroimaging metrics,
and lifestyle variables, enhancing its applicability in clinical settings.

Future directions include validating the framework with longitudinal real-world datasets, en-
hancing predictive accuracy using machine learning architectures such as recurrent neural networks,
and applying explainability tools to interpret feature contributions. Additionally, integrating digital
twin simulations could further personalize risk assessments and support precision treatment planning.

Overall, this research demonstrates the potential of computational modeling to bridge the gap
between complex biomarker dynamics and early diagnostic opportunities in Alzheimer’s Disease.
By establishing a robust mathematical and statistical foundation, this work contributes to advancing
precision medicine approaches in neurodegenerative disease research and clinical care.
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